Научни публикации 1
Научни публикации 2
Научни публикации 3
Научни публикации 4
Научни публикации 5
Попул. Публикации 1
Попул. Публикации 2
Пламен Сидеров
Диана Левченко
Азнив Каспарян
Мая Стоянова
Асен Божилов
Евгения Великова
Силвия Бумова
Публикации на Недялко Ненов
- Bounds on the vertex Folkman numbers F(4, 4; 5). Annuaire Univ. Sofia Fac. Math. Inform. 96 (2004), 75-83.
- On the triangle vertex Folkman numbers. Discrete mathematics 271 (2003), 327-334.
- On a class of vertex Folkman numbers. Serdica Math. J. 28 (2002), 219-232.
- Lower bound for a number of vertices of some vertex Folkman graphs, C. R. Acad. Bulg. Sci. 55 (2002), n. 4, 33-36.
- Computation of the vertex Folkman numbers F(2, 2, 2, 4; 6) and F(2, 3, 4; 6). (with Nedialkov, E.) Electron. J. Combin. 9 (2002), #R9.
- On the vertex Folkman number F(3, 4). C. R. Acad. Bulg. Sci., 54 (2001), n. 2, 23-26.
- On the 3-coloring vertex Folkman number F(2, 2, 4). Serdica Math. J. 27 (2001), 131-136.
- Computation of the vertex Folkman numbers F(2, 2, 2, 3; 5) and F(2, 3, 3; 5). Annuaire Univ. Sofia Fac. Math. Inform. 95 (2001), 71-82.
- Computation of the vertex Folkman number F(4, 4; 6). (with Nedialkov, E.) Proceedings of the Third Euro Workshop on Optimal Codes and related topics, Sunny Beach, Bulgaria, 11-16 June 2001, 123-128.
- A generalization of a result of Dirac. Annuaire Univ. Sofia Fac. Math. Inform. 95 (2001), 59-69.
- On the number of independence of a class of graphs. (with Nedialkov, E.) C. R. Acad. Bulg. Sci. 53 (2000), n. 3, 21-24.
- On a class of vertex Folkman graphs. Annuaire Univ. Sofia Fac. Math. Inform. 94 (2000), 15-25.
- On the small graphs with chromatic number 5 without 4-cliques. Discrete Math 188 (1998), 297-298.
- Each 11-vertex graph without 4-cliques has a triangle-free 2-partition of vertices. (with Nedialkov, E.) Annuaire Univ. Sofia Fac. Math. Inform. 91 (1997), 127-147.
- Lower bounds for the number of vertices of some Ramsey graphs. (in Russian) Annuaire Univ. Sofia Fac. Math. Inform. 86 (1992), 11-15.
- On the (3, 4)-Ramsay graphs without 9-cliques. (in Russian) God. Sofij. Univ., Fak. Mat. Infor. 85 (1993), n. 1 (Math.), 71-81 (1991).
- Any 14-vertex graph with a unique triangle has no fewer than five 5-anticliques. (in Russian) (with Khadzhiivanov, N., Pashov, I.) Serdica 13 (1987), 199-209.
- The minimum number of monochromatic 4-cliques for noncovering 2-colorings of the edges of a complete graph. (in Russian) (with Khadzhiivanov, N.) Godishnik Vissh. Uchebn. Zaved. Prilozhna Mat. 22 (1986), 137-149.
- The minimum number of 5-anticliques of 14-vertex graphs with two 3-cliques is three. (in Russian) (with Khadzhiivanov, N., Pashov, I.) Godishnik Vissh. Ped. Inst. Shuman Prirod.-Mat. Fak. 1986 (1986), 23-37.
- On colorings of edges of complete graphs where the monochromatic triangles do not cover the set of all vertices. (in Russian) (with Khadzhiivanov, N.) C. R. Acad. Bulg. Sci. 39 (1986), n. 6, 31-34.