Computability with Partial Information |
Supported by the Bulgarian National Science Fund |
Publications → The omega enumeration degrees |
1. H. Ganchev, Exact pair theorem for the omega-enumeration degrees, Computation and Logic in the Real World, LNCS, vol. 4497, (2007), 316--324. 2. H. Ganchev and M. Soskova, The high/low hierarchy in the local structure of the ω-enumeration degrees, Ann. Pure and Appl. Logic, Vol. 163 (2012), pp. 547 -- 566 3. I. Soskov, The omega-enumeration degrees, Journal of Logic and Computation, Vol. 17(2007) 1193 - 1217. 4. I. Soskov and H. Ganchev, The jump operator on the omega-enumeration degrees, Annals of Pure and Applied Logic, 160 (2009), 289--301. 5. M. Soskova and I. Soskov , Embedding countable partial orderings in the enumeration degrees and the omega-enumeration degrees, Journal of Logic and Computation, doi:10.1093/logcom/exq051 6. H. Ganchev, Definability in the local theory of the omega-enumeration degrees, Mathematical theory and computational practice, LNCS, 5635, Springer, Heidelberg, 2009, 242--249. 7. I. N. Soskov and M. I. Soskova, Kalimullin pairs of of Σ02 omega-enumeration degrees, Int. Journal of Software and Informatics, Vol. 5 (2011), pp. 637-658 |