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1 Introduction

The ω-enumeration degrees and the structure Dω are introduced by Soskov in
[2]. In order to define it we first consider the set of all denumerable sequences of
sets of natural numbers, which we will denote by S. In S we define the reflexive
and transitive relation “≤u” and the equivalence relation “≡u” as follows: for
any two sequences A,B ∈ S

A ≤u B ⇐⇒ JB ⊆ JA, A ≡u B ⇐⇒ JA = JB

where JA is the set of the Turing degrees of all X ⊆ N such that (∀k)(Ak is r.e.
in X(k) uniformly in k). Since we have that A ≡u B ⇐⇒ A ≤u B & B ≤u B,
by factorizing the structure (S,≤u) with respect to ≡u, we obtain the structure
(Dω,≤ω), where the factor relation ≤ω is a partial order. By dω(A) we shall
denote the equivalence class generated by the sequence A.

In [2] it is shown that Dω is an upper semi-lattice with least element, that the
Σ0

2 ω-enumeration degrees are dense and that there is no minimal ω-enumeration
degree. A notion of a jump operator in Dω is also introduced. It is shown that the
substructure D1 = {dω(A) | An = ∅ for n > 0} is isomorphic to the semi-lattice
De of the enumeration degrees.

From the omitting theorem proved in [3] it follows that every ω-enumeration
degree is the greatest lower bound of two ω-enumeration degrees strictly above
it, i.e., every ω-enumeration degree has a minimal pair.

In this paper we shall prove that every monotone increasing sequence of
ω-enumeration degrees has an exact pair.
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Definition 1 Let (X,≤) be a partially ordered set and let a0 ≤ a1 ≤ · · · ≤ an ≤
. . . be an increasing sequence in X. We say that f, g ∈ X form an exact pair for
{an}n<ω if the following two conditions hold:

(i) (∀n)(an ≤ f, g);
(ii) x ≤ f, g =⇒ ∃n(x ≤ an).

The existence of exact pairs for the Turing degrees and for the enumeration
degrees is proved by Spector [4] and Case [1] respectively.

Here we are going to prove the following theorem:

Theorem 1 Let a0 ≤ω a1 ≤ω · · · ≤ω an ≤ω . . . be an increasing sequence in
Dω. Then for each g ∈ Dω, such that an ≤ω g, for all n, there is an f ∈ D1 such
that f ,g form an exact pair for the sequence {an}n<ω. Even more. For arbitrary
k the degrees f (k), g(k) form an exact pair for the sequence {a(k)

n }n<ω, where by
x(k) we denote the k-th jump of the degree x in Dω .

As a corollary we obtain the following exact pair theorem for the enumeration
degrees.

Theorem 2 Let a0 ≤e a1 ≤e · · · ≤e an ≤e . . . be an increasing sequence in
the semi-lattice of the enumeration degrees De. Then for each g ∈ De, such that
an ≤e g, for all n, there is an f ∈ De such that f (k), g(k) form an exact pair
for the sequence {a(k)

n }n<ω for arbitrary k, where by x(k) we denote the k-th
enumeration jump of the degree x.

2 Preliminaries

Let W0,W1, . . . , Wn, . . . be a Gödel enumeration of the recursively enumerable
sets. We will use the same notation for the enumeration operators, i.e., the op-
erators over sets of natural numbers acting by the rule We(A) = {x | ∃v(〈x, v〉 ∈
We & Dv ⊆ A)} for each A ⊆ N, where by Dv we shall denote the finite set
with canonical index v.

The enumeration jump of a set A is defined as A′ = LA ⊕ N\LA, where
LA = {〈a, x〉 | x ∈ Wa(A)}.

Given a sequenceA = {An}n<ω we define its jump sequence P (A) = {Pn(A)}n<ω

as follows:

(i) P 0(A) = A0

(ii) Pn+1(A) = Pn(A)′ ⊕An+1.

In [3] it is shown that for any two sequences A,B we have that A ≤u B ⇐⇒
there is a recursive function g, such that An = Wg(n)(Pn(B)) for all natural
n (in particular An ≤e Pn(B)). This gives us that A ≡u P (A). The jump of
a sequence A ≡u {Pn(A)}n<ω is the sequence A′ = {Pn+1(A)}n<ω. It is true
that JA′ = {a′ | a ∈ JA} and that the jump agrees with the embedding of the
e-degrees, so (A, ∅, ∅, . . . , ∅)′ ≡u (A′, ∅, ∅, . . . , ∅).

Now we are ready to show that Theorem 2 follows from Theorem 1.



Proof of Theorem 2. Suppose that we have an increasing sequence of enu-
meration degrees a0 ≤e a1 ≤e · · · ≤e an ≤e . . . and let g be an enumera-
tion degree, such that g is an upper bound for {an}n<ω. Fix a sequence of sets
A0, A1, . . . , An, . . . such that an = de(An) and let G be such that g = de(G). Now
for each n we take An to be the sequence (An, ∅, ∅, . . . , ∅, . . .) and G to be the se-
quence (G, ∅, ∅, . . . , ∅, . . .). It is clear that A0 ≤u A1 ≤u · · · ≤u An ≤u · · · ≤u G.
Thus we have an increasing sequence

dω(A0) ≤ω dω(A1) ≤ω · · · ≤ω dω(An) ≤ω · · · ≤ω dω(G)

of ω-enumeration degrees.
Now according to Theorem 1 there is an ω-enumeration degree f ∈ D1,

such that f and dω(G) form an exact pair for the sequence {dω(An)}n<ω. Since
f ∈ D1, then f is of the form f = dω(F), where F = (F, ∅, ∅, . . . , ∅, . . .). We
claim that de(G) and de(F ) form an exact pair for the sequence a0 ≤e a1 ≤e

· · · ≤e an ≤e . . . . Indeed: suppose that some enumeration degree x has the
property x ≤ de(G) and x ≤ de(F ). Let x = de(X) and consider the sequence
X = (X, ∅, ∅, . . . , ∅, . . .). We have that X ≤u F and X ≤u G and therefor
X ≤u An for some n. But then X ≤e An, which proves that de(F ) and de(G)
are an exact pair for the sequence a0 ≤e a1 ≤e · · · ≤e an ≤e . . . .

According to the definition of the jump operation in Dω we have that the
sequences A′n, G′ and F ′ are equivalent to the sequences (A′n, ∅, ∅, . . . , ∅, . . .),
(G′, ∅, ∅, . . . , ∅, . . .) and (F ′, ∅, ∅, . . . , ∅, . . .) respectively. Applying the same rea-
soning as above, we obtain that de(F ′) and de(G′) (which are actually de(F )′

and de(G)′) are an exact pair for the sequence a′0 ≤e a′1 ≤e · · · ≤e a′n ≤e . . . .
¤

In the rest of the paper we shall present a proof of Theorem 1.

3 Proof of Theorem 1

First we will prove the following omitting theorem:

Theorem 3 Let A0 ≤u A1 ≤u . . . ≤u An . . . be an increasing sequence of
sequences of sets of natural numbers. Let also {Rk}k<ω be a sequence of elements
of S such that Rk 6≤u An, for each k and n. Then there is an F ∈ S such that
An ≤u F , for each n, but Rk 6≤u F for all k.

For simplicity we will show how to omit only one sequence R. However,
by a simple and standard modification we can use the same technique to omit
countably many sequences.

Let us a fix an increasing sequence A0 ≤u A1 ≤u · · · ≤u An . . . of elements of
S and letR ∈ S be such thatR 6≤u An, for every natural n. We will suppose that
An = {Ak

n}k<ω and R = {Rk}k<ω (we will use upper indexes for coordinates in
the rest of the paper). Fix a sequence g0, g1, . . . , gn, . . . of all recursive functions.

We will search F in the form F = (f0, f1, . . . , fn, . . .), where fn is a mapping
from N in N. We will use the notation

−→
f instead of F . We will construct F by



using a forcing technique so we have to define the modelling and forcing relations
and the notion of finite parts.

Let us begin with the “finite” parts. We shall call finite part every sequence
of the form −→τ = (τ0, τ1, . . . , τn, . . .), where each τ i is a mapping from of an
initial segment of N into N. By lh (τ i) we shall denote the length of the initial
segment which is the domain of τ i. We shall use the notation −→τ , −→ρ ,

−→
δ and −→σ

(sometimes with indexes) for finite parts and τ i, ρi, δi and σi for the respective
coordinates.

If n is a natural number, by −→n we shall denote an increasing sequence a0 <
a1 < a2 < . . . < an of n + 1 natural numbers. We will write −→n ¹ −→m if n ≤ m
and −→m is an extension of −→n .

Since
−→
f has to “encode” in itself all sequences An we will regard only special

finite parts which we will call −→n -coding finite parts and which are defined by:

Definition 2 If −→n = a0 < a1 < a2 < . . . < an is an increasing sequence of
natural numbers and −→τ is a finite part, we say that −→τ is −→n -coding iff for all i
we have that:

ak < 〈x, k〉 < lh (τ i) =⇒ τ i(〈x, k〉) ∈ Ai
k

Now we are ready to define the modelling and forcing relations for the conditions
F k

e (the condition F k
e will be responsible for what happens to the k-th coordinate

when we apply the enumeration operator We to it). We begin with the modeling
relation since it is more natural.

Definition 3 Let
−→
f = (f0, f1, . . . , fn, . . .) be a sequence of mappings from N

into N. We define the relations
−→
f |= (¬)F k

e (x) (for each e) using induction on
k:

(i)
−→
f |= F 0

e (x) ⇐⇒ x ∈ We(Graph (f0)).
(ii)

−→
f |= ¬F 0

e (x) ⇐⇒ −→
f 6|= F 0

e (x).
(iii)

−→
f |= F k+1

e (x) if there exist u, u0 and u1 such that
(1) 〈x, u〉 ∈ We;
(2) Du = Du1 ⊕Du2 ;

(3) for each v ∈ Du1 is either true that v = 2〈ev, xv〉 and
−→
f |= F k

ev
(xv), or

v = 2〈ev, xv〉+ 1 and
−→
f |= ¬F k

ev
(xv);

(4) Du2 ⊆ Graph fk+1.

(iv)
−→
f |= ¬F k+1

e (x) ⇐⇒ −→
f 6|= F k+1

e (x).

Note that from the definition it follows that do determine whether
−→
f |=

(¬)F k
e (x) it is sufficient to know only the first k +1 elements of the sequence

−→
f ,

i.e., f0, f1,. . ., fk. Even more. The following proposition is true:

Proposition 1 Let
−→
f be a sequence of mappings from N in N. Then for each

e and each k −→
f |= F k

e (x) ⇐⇒ x ∈ We(P k(
−→
f ))



Now we will give the definition of the forcing relation.

Definition 4 Let −→n be an increasing sequence of n + 1 natural numbers and
let −→τ be an −→n -coding sequence of finite parts. We define the relations −→τ °−→n
(¬)F k

e (x) (for each e) using induction on k:

(i) −→τ °−→n F 0
e (x) ⇐⇒ x ∈ We(Graph τ0).

(ii) −→τ °−→n ¬F 0
e (x) ⇐⇒ (∀−→ρ ⊇ τ)(−→ρ is −→n -coding ⇒ −→ρ 6°−→n F 0

e (x)).
(iii) −→τ °−→n F k+1

e if there exist u, u0 and u1 such that:
(1) 〈x, u〉 ∈ We;
(2) Du = Du1 ⊕Du2 ;
(3) for each v ∈ Du1 is either true that v = 2〈ev, xv〉 and −→τ °−→n F k

ev
(xv), or

v = 2〈ev, xv〉+ 1 and −→τ °−→n ¬F k
ev

(xv);
(4) Du2 ⊆ Graph τk+1.

(iv) −→τ °−→n ¬F k+1
e (x) ⇐⇒ (∀−→ρ ⊇ τ)(−→ρ is −→n -coding ⇒ −→ρ 6°−→n F k+1

e (x)).

Again from the definition it follows that the relations −→τ °−→n (¬)F k
e (x) de-

pend only on the first k + 1 members of the sequence −→τ .
The next proposition shows that the forcing relations are monotone.

Proposition 2 Let −→m and −→n be two increasing sequences of natural numbers
of length m + 1 and n + 1 respectively. Let also −→τ and −→ρ be two finite parts.
Then the following are true:

(1) if −→τ and −→ρ are both −→n -coding and −→τ ⊆ −→ρ , then

−→τ °−→n (¬)F k
e (x) =⇒ −→ρ °−→n (¬)F k

e (x);

(2) if −→m 4 −→n and −→τ is −→n -coding, then −→τ is −→m-coding and

−→τ °−→m (¬)F k
e (x) =⇒ −→τ °−→n (¬)F k

e (x);

(3) if −→m 4 −→n and −→τ is −→m-coding, −→ρ is −→n -coding and −→τ ⊆ −→ρ , then

−→τ °−→m (¬)F k
e (x) =⇒ −→ρ °−→n (¬)F k

e (x).

Now we are ready to begin the construction. The construction of
−→
f will

be carried out by steps. At each step s we will construct a finite part −→τ s and
a monotone sequence −→s in such a way that −→τ s is −→s -coding and also that
−→τ s ⊆ −→τ s+1 and −→s 4 −−−→

s + 1. Finally we will set
−→
f =

⋃
s<ω

−→τ s and we will obtain

an infinite increasing sequence −→ω =
⋃

s<ω

−→s of natural numbers.

At step 0 we set −→τ 0 = (∅, ∅, . . . , ∅, . . .) and
−→
0 = 0.

Now suppose that −→τ s and −→s are defined. We divide the step s into three
substeps.

First substep. We build an −→s -coding finite part
−→
δ s such that −→τ s ⊆ −→

δ s and−→
δ s encodes the first elements of sets Aj

i , for i, j ≤ s, which are not encoded by−→τ s.



Second substep. We build an −→s -coding finite part −→σ s ⊇ −→
δ s such that for

each k ≤ s and each 〈e, x〉 ≤ s either −→σ °−→s F k
e (x) or −→σ °−→s ¬F k

e (x).
Third substep. We consider the sequence {Cn

s }n<ω, where

Cn
s = {x | (∃−→ρ ⊇n −→σ s)(−→ρ is −→s -coding & ρ0(lh σ0

s) ' x & −→ρ °−→s Fn
gs(n)(lh σ0

s))},

where −→ρ ⊇n −→σ s means that ρi ⊇ σi
s for 0 ≤ i ≤ n, and ρi = σi

s for i > n. The
sequence {Cn

s }n<ω is uniformly reducible to the sequence As, i.e., {Cn
s }n<ω ≤u

As and therefore {Cn
s }n<ω 6= R (for a detailed proof of an analogous statement

see [3]). Let n be such that Cn
s 6= Rn. Then there is a x such that either x ∈

Cn
s & x 6∈ Rn or x 6∈ Cn

s & x ∈ Rn.
If x ∈ Cn

s & x 6∈ Rn is the case, we take one −→ρ ⊇n −→σ s such that −→ρ is−→s -coding, ρ0(lhσ0
s) ' x and −→ρ °−→s Fn

gs(n)(lh σ0
s), and we set −→τ s+1 = −→ρ .

If x 6∈ Cn
s & x ∈ Rn then we set −→τ s+1 to be an −→s -coding finite part such

that τ0
s+1(lh σ0

s) ' x. Note that in this case is true that

(∀−→ρ ⊇n −→τ s+1)(−→ρ is −→s -coding =⇒ −→ρ 6°−→s Fn
gs(n)(lhσ0

s)).

Since the forcing relation −→ρ °−→s Fn
gs(n) depends only on the first n + 1 elements

of −→ρ , we have that

(∀−→ρ ⊇ −→τ s+1)(−→ρ is −→s -coding =⇒ −→ρ 6°−→s Fn
gs(n)(lhσ0

s)),

which means that −→τ s+1 °−→s ¬Fn
gs(i)(lh σ0

s).

Finally we set
−−−→
s + 1 = −→s ∗ max{lh τ i

s+1 | i < ω}, which concludes the con-
struction. In order to complete the proof, we have to prove three properties of−→
f .

Claim 1 An ≤u
−→
f , for each n.

Proof. Let −→ω = a0, a1, . . . , ai, . . .. Then, according to the first substep of each
step of the construction, we have that Ai

n = {fi(〈x, i〉) | 〈x, i〉 ≥ an}.
¤

Claim 2 (Truth lemma) For each e and each k

−→
f |= (¬)F k

e (x) ⇔ (∃−→m 4 −→ω )(∃−→τ ⊆ −→
f )(−→τ is −→m-coding &−→τ °−→m (¬)F k

e (x)).

Proof. This property is assured from the second substeps. We will prove it using
induction on k. First consider k = 0. The positive equivalence is obvious from the
definition of the relations |= F 0

e and °−→m F 0
e . Now we will prove the equivalence

−→
f |= ¬F 0

e (x) ⇔ (∃−→m 4 −→ω )(∃−→τ ⊆ −→
f )(−→τ is −→m-coding &−→τ °−→m ¬F 0

e (x)).

The right to left direction follows from the positive equivalence. Let us prove
the left to right direction. Suppose that

−→
f |= ¬F 0

e (x). Then consider a step



s + 1 such that s > 〈e, x〉. In the second substep we have constructed an −→s -
coding finite part −→σ s such that either −→σ s °−→s F 0

e (x) or −→σ s °−→s ¬F 0
e (x) and

−→σ s ⊆ −→τ s+1 ⊆ −→
f . If −→σ s °−→s F 0

e (x) than from the positive equivalence we obtain
that

−→
f |= F 0

e (x), which contradicts
−→
f |= F 0

e (x). Therefore −→σ s °−→s ¬F 0
e (x).

Now suppose that the statement is true for k. First we prove that

−→
f |= F k+1

e (x) ⇔ (∃−→m 4 −→ω )(∃−→τ ⊆ −→
f )(−→τ is −→m-coding &−→τ °−→m F k+1

e (x)).

For the left to right direction suppose that
−→
f |= F k+1

e (x). Then, according to
the definition we have that, there are u, u1 and u2 such that:

(1) 〈x, u〉 ∈ We;
(2) Du = Du1 ⊕Du2 ;
(3) for all v ∈ Du1 is either true that v = 2〈ev, xv〉 and

−→
f |= F k

ev
(xv), or

v = 2〈ev, xv〉+ 1 and
−→
f |= ¬F k

ev
(xv).

(4) Du2 ⊆ Graph fk+1

Consider (3). According to the induction hypothesis, for each v ∈ Du1 we
can find −→mv 4 −→ω and −→ρ v ⊆

−→
f , such that −→ρ v is −→mv-coding and

v = 2〈ev, xv〉 =⇒ −→ρ v °−→mv
F k

ev
(xv),

v = 2〈ev, xv〉+ 1 =⇒ −→ρ v °−→mv
¬F k

ev
(xv).

Since −→mv 4 −→ω and −→ρ v ⊆
−→
f , there is an −→m 4 −→ω and a −→τ ⊆ −→

f , such that
for each v, −→mv 4 −→m and −→ρ v ⊆ −→τ . Then from the monotonicity of the forcing
relation we obtain that for each v ∈ Du1

v = 2〈ev, xv〉 =⇒ −→τ °−→m F k
ev

(xv),

v = 2〈ev, xv〉+ 1 =⇒ −→τ °−→m ¬F k
ev

(xv),

which is exactly point (3) from the definition of the forcing relation °−→m F k+1
e .

We can extend the k + 2-nd element of −→τ in such a way that τk+1 ⊆ −→
f k+1 and

Du2 ⊆ Graph τk+1. Of course this extension does not afflict the forcing relations
that we have satisfied, since they depend only on the first k + 1 elements of −→τ .

Thus we obtain that −→τ ⊆ −→
f , −→τ is −→m-coding and −→τ ° F k+1

e (x).
For the opposite direction, suppose that there is an −→m 4 −→ω and a −→τ ⊆ −→

f
such that −→τ is −→m-coding and −→τ °−→m F k+1

e (x). Then we have, that there are u,
u1 and u2 such that

(1) 〈x, u〉 ∈ We;
(2) Du = Du1 ⊕Du2 ;
(3) for all v ∈ Du1 either v = 2〈ev, xv〉 and−→τ °−→m F k

ev
(xv), or v = 2〈ev, xv〉+1

and −→τ °−→m ¬F k
ev

(xv).
(4) Du2 ⊆ Graph τk+1.
Applying the induction hypothesis to (3) we obtain
(1) 〈x, u〉 ∈ We;
(2) Du = Du1 ⊕Du2 ;



(3) for all v ∈ Du1 either v = 2〈ev, xv〉 and
−→
f |= F k

ev
(xv), or v = 2〈ev, xv〉+1

and
−→
f |= ¬F k

ev
(xv);

(4) Du2 ⊆ Graph τk+1 ⊆ fk+1,
which is exactly what we have to prove. This concludes the proof of the

positive equivalence for k+1. The proof of the negative equivalence is analogous
to that for k = 0.

¤

Claim 3 R 6≤u
−→
f .

Proof. In order to obtain a contradiction assume that R ≤u
−→
f . Then the se-

quence {f0−1
(Rn)}n<ω is also uniformly reducible to

−→
f . Therefore there is a

recursive function gs such that f0−1
(Rn) = Wgs(n)(Pn(

−→
f )) for each n, which

means
x ∈ f0−1

(Rn) ⇐⇒ −→
f |= Fn

gs(n)(x)

Now consider the third substep of the s + 1-st step. There we have constructed
a finite part −→τ s+1 extending the finite part −→σ s such that for some i

−→τ s+1 °−→s (¬)F i
gs(i)(lhσ0

s) ⇐⇒ (¬)(τ0
s+1(lhσ0

s) 6∈ Ri).

Now using the Truth Lemma and that τ0
s+1 ⊆ f0 we obtain that

lh σ0
s ∈ f0−1

(Ri) ⇒ f0(lh σ0
s) ∈ Ri ⇒ ¬(f0(lhσ0

s) 6∈ Ri) ⇒ −→
f |= ¬F i

gs(i)(lhσ0
s);

lh σ0
s 6∈ f0−1

(Ri) ⇒ f0(lhσ0
s) 6∈ Ri ⇒ −→

f |= F i
gs(i)(lhσ0

s),

which is a contradiction with x ∈ f0−1(Rn) ⇐⇒ −→
f |= Fn

gs(n)(x). This means

that the assumption R ≤u
−→
f leads to a contradiction and therefore we have

that R 6≤u
−→
f .

¤
Claim 1 and Claim 3 are exactly the properties of

−→
f that we had to prove

in order to prove Theorem 3 and so this concludes its proof.
¤

We are ready to prove Theorem 1.
Proof of Theorem 1. Let a1 ≤ω a2 ≤ω · · · ≤ω an ≤ω · · · ≤ω g be an

infinite increasing sequence of ω-enumeration degrees. Fix an increasing sequence
A1 ≤u A2 ≤u · · · ≤u An ≤u · · · ≤u G of elements of S such that an = dω(An)
and g = dω(G). Since there are only countably many sequences u-reducible to G
then the set {X ∈ S | X ≤u G & ∀n(X 6≤u An)} is denumerable. Let us order its
elements into the sequence {Rk}k<ω. Now it is clear that if we take an F∗ ∈ S
as in Theorem 3, then dω(F∗) and dω(G) will be an exact pair for the sequence
{an}n<ω.

Now in order to obtain an f ∈ D1, such that g, f form an exact pair for the
sequence {ak}k<ω, we have to use the omitting theorem from [3]:



Theorem 4 (Soskov, Kovachev) Let A ∈ S and let {Rk}k<ω be a sequence
of elements of S, such that Rk 6≤u A. Then there is a sequence F = (F, ∅, ∅, . . . ,
∅, . . .), such that A ≤u F and Rk 6≤u F , for all k.

Therefore we can take a sequence F = (F, ∅, ∅, . . . , ∅, . . .), such that F∗ ≤u F
and F omits all the sequences which are under G, but are not under F∗. Now
set f = dω(F). It is clear that f ∈ D1 and that f and g form an exact pair for
the sequence {an}n<ω.

For the last part of the theorem is sufficient to prove the following

Proposition 3 Let f ,g ∈ Dω form an exact pair for the increasing sequence
{an}n<ω of ω-enumeration degrees. Then f ′ and g′ form an exact pair for the
sequence {a′n}n<ω

Proof. Let f = dω(F) and g = dω(G). Then from the definition of the jump
operation we have that

f ′ = dω({Pn+1(F)}n<ω), g′ = dω({Pn+1(G)}n<ω)

Now suppose that x ≤ω f ′,g′ and that x is the ω-enumeration degree generated
by the sequence (X1, X2, . . . , Xk, . . .). Since

(X1, X2, . . . , Xk, . . .) ≤u {Pn+1(F)}n<ω,

(X1, X2, . . . , Xk, . . .) ≤u {Pn+1(G)}n<ω

we obtain that the sequence X = (∅, X1, X2, . . . , Xk, . . .) is uniformly reducible
to the sequences F and G. Therefore X ≤ An, for some n, i.e.,

(∅, X1, X2, . . . , Xk, . . .) ≤u (P 0(An), P 1(An), P 2(An), . . . , P k(An), . . .).

Therefore

(X1, X2, . . . , Xk, . . .) ≤u (P 1(An), P 2(An), . . . , P k(An), . . .),

which in the terms of the ω-enumeration degrees means that x ≤ω an.
¤
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