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Abstract We continue the study of the local theory of the structure of the ω-enumera-

tion degrees, started by Soskov and Ganchev [7]. We show that the classes of 1-high

and 1-low ω-enumeration degrees are definable. We prove that a standard model of

arithmetic is definable as well.

1 ω-enumeration degrees

In computability theory there is a vast variety of reducibility relations. Infor-
mally, the common feature among all of them is that an object A is reducible to
an object B (denoted by A ≤ B), if there is an algorithm for transforming the
information contained in B into the information contained in A. For example
A ≤1 B, if there is a one-one computable function g, such that χA = χB ◦ g,
(here χA and χB are the characteristic functions of A and B respectively). As
a second example consider Turing reducibility, for which A ≤T B, if there is a
Turing machine which transforms χB into χA. We say that A is enumeration
reducible to B (B 6= ∅), A ≤e B, if there is a Turing machine transforming every
function enumerating B into a function enumerating A. Finally, A is c.e. in B if
there is a Turing machine transforming χB into a function enumerating A.

Now let us try to define a reducibility relation between sequences of sets of
natural numbers and sets of natural numbers. This problem may be solved in
various ways thus yielding a large number of reducibilities. In this paper, we
shall be concerned with the solution proposed by Soskov in [6].

Let us denote
Sω = {A = {An}n<ω | An ⊆ N}.

Take an element A ∈ Sω and a set X ⊆ N. If we are to say that A ≤ X,
we should be able to obtain effectively the information contained in A from the
information contained in X. Note, that in order to do this, we should be able
to restore each element of the sequence and the order in which they occur. This
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is so, since A = {An}n<ω is a mapping from the set of natural numbers to the
power set 2N:

A :
0 1 2 . . . n . . .
↓ ↓ ↓ . . . ↓ . . .

A0A1A2. . . An . . .

In order to simulate this mapping we shall use the Turing jump JT . The Turing
jump is an unary operation (definable in second order arithmetic) JT : 2N → 2N,
such that for any X, X ≤ JT (X) and JT (X) 6≤ X. So, in some sense, X gives
rise to a “natural” sequence X, JT (X), J2

T (X), . . ., which may be regarded as
copy of N.

X :
X JT (X) J2

T (X) . . . JX) . . .
↑ ↑ ↑ . . . ↑ . . .
0 1 2 . . . n . . .

Combining the two mappings we arrive to the following definition:

Definition 1 Let A ∈ Sω and X ⊆ N. We shall say, that A is uniformly re-
ducible to X and write A ¹ω X, if

∀n(An c.e. in Jn
T (X) uniformly in n).

The uniformity condition is necessary, since it guarantees the existence of one
algorithm which reduces the sequence A0, A1, A2, . . . to the sequence X, JT (X),
J2

T (X),. . . (recall that the existence of one algorithm is crucial to all reducibilities
considered in computability theory).

The relation ¹ω gives a tool for comparing elements of Sω, namely

Definition 2 Let A,B ∈ Sω. We shall say that A ≤ω B, if

∀X ⊆ N(B ¹ω X =⇒ A ¹ω X).

The relation ≤ω is a preorder, so it generates a nontrivial equivalence relation
on Sω:

A ≡ω B ⇐⇒ A ≤ω B & B ≤ω A.

We call the respective equivalence classes ω-enumeration degrees and denote

dω(A) = {B ∈ Sω | A ≡ω B}.
We shall denote the collection of all ω-enumeration degrees by Dω. The

preorder ≤ω on Sω induces a partial order ≤ω on Dω, namely

a ≤ω b ⇐⇒ ∃A ∈ a∃B ∈ b(A ≤ω B).

Clearly 0ω = dω(∅, ∅, . . . , ∅, . . .) is the least degree in Dω. Also, we have that
for arbitrary A,B ∈ Sω, dω(A ⊕ B) = dω(A0 ⊕ B0, A1 ⊕ B1, . . .) is the l.u.b.
of the set {dω(A),dω(B)}. Thus Dω = (Dω,0ω,≤ω,∨) is an upper semi-lattice
with least element.

The structure Dω is first introduced by Soskov [6] and is further studied in
[1,7].



2 Basic properties of the ω-enumeration degrees

Let A be an element of Sω. We set the jump sequence of A to be the sequence
P (A) = (P0(A), P1(A), . . . , Pn(A), . . .), where the sets Pi(A) are defined by

P0(A)=A0;
Pn+1(A)=Je(Pn(A))⊕An+1,

(by Je we denote the enumeration jump). The sequences A and P (A) are closely
related, since A ≡ω P (A). Furthermore, using the jump sequences Soskov and
Kovachev [8] are able to show that the relation ≤ω is a real reducibility relation
between sequences.

Theorem 1 (Soskov, Kovachev [8])

A ≤ω B ⇐⇒ ∀n(An ≤e Pn(B) uniformly in n)

Another important role played by the jump sequences is in the definition of
a jump operation on sequences.

Definition 3 (Soskov [6]) Let A ∈ Sω. We define the jump of A to be the
sequence A′ = {P1+n(A)}n∈ω.

In other words A′ is obtained from the jump sequence of A by simply deleting
its first element. Besides the simplicity of its definition, the jump operation has
another nice property, namely:

A′ ¹ω X ⇐⇒ ∃Y ⊆ N(A ¹ω Y & JT (Y ) ≡T X),

for each A ∈ Sω and X ⊆ N. In other words, the set X “codes” the jump of the
sequence A, if and only if it is equivalent to the Turing jump of a set “coding”
A itself.

The so defined jump operation is strictly monotone, i.e.

A ≤ω B =⇒ A′ ≤ω B′.
A′ 6≤ω A;

We set
a′ = dω(A′)

for any A ∈ a. The previous properties guarantee, that this definition is unam-
biguous.

Soskov and Ganchev [7] prove that the jump operation on the ω-enumeration
degrees has a very unexpected property:

Theorem 2 (Soskov, Ganchev [7]) Let a,b ∈ Dω, be such that a(n) (the n-
th iteration of the jump operation on a) is less or equal to b. Then the set

{x ∈ Dω | a ≤ω x & x(n) = b}
has a least element. We shall denote this element by In

a (b).



Note that this theorem is neither true for the structure of the Turing degrees,
DT , nor the structure of the enumeration degrees, De. This suggests that Dω

′

(the structure of the ω-enumeration degrees augmented by the jump operation)
is rather different from the structures DT and De. Nevertheless, it turns out
that this is not quite so. First Soskov [6], shows that De

′ (the structure of the
enumeration degrees augmented by the jump operation) is embeddable in Dω

′

by the mapping κ : De → Dω, acting by the rule:

κ(de(A)) = dω(A, ∅, ∅, . . .).

Then Soskov and Ganchev [7] are able to prove, the set D1 = κ[De] is first order
definable in the theory of Dω

′, and so Th1(De
′) is interpretable within Th1(Dω).

Furthermore it is shown that that the structures De and Dω
′ have isomorphic

automorphism groups.
So, although the structures Dω and De

′ are quite different, the first being far
richer then the second one, they are closely related.

In the next section, we shall obtain some nice results for the locale theory
of the ω-enumeration degrees, using results about Σ0

2 enumeration degrees and
degrees c.e. and above a Turing degree a.

3 The local theory

Let us denote
Gω = ([0ω,0′ω],0ω,≤ω).

By local theory we mean the theory of the structure Gω. From now on we
shall restrict our considerations only to ω-enumeration degrees belonging to Gω.
Thus from now on, unless explicitly otherwise stated, by an arbitrary omega-
enumeration degree we will mean an arbitrary omega enumeration degree below
0′ω.

In the local theory the classes of the n-high and n-low degrees are of particular
interest. They are defined by

Hn={a | a(n) = 0(n+1)
ω }

Ln ={a | a(n) = 0(n)
ω }

Further more, we set H =
⋃

Hn, L =
⋃

Ln and I = [0ω,0′ω]\(L ∪ H).
The last three classes are studied in [7]. It is shown, that they have a strong
connection with the class of the, so called, almost zero degrees.

In order to define the notion of an almost zero degree for every n ∈ N set on

to be the least degree, satisfying the equality

x(n) = 0(n+1)
ω ,

i.e., on = In
0ω

(0(n+1)
ω ). Clearly, the degrees on form a strictly decreasing sequence

0′ω = o0 >ω o1 >ω o2 >ω . . .



The first natural question to ask is whether this sequence converges to 0ω,
i.e., is it true that

∀n(x ≤ω on) =⇒ x = 0ω.

The answer to this question is negative. In fact, the degrees below all on

form a countable ideal, whose elements are called almost zero (a.z.) degrees. A
remarkable property of this ideal is that it has no minimal upper bound (beneath
0′ω). In addition the a.z. degrees give a nice characterisation for the classes H
and L, namely

x ∈ H ⇐⇒ ∀a.z. y(y ≤ω x)
x ∈ L ⇐⇒ ∀a.z. y(y ∧ x = 0ω). (1)

We can reformulate (1) in the terms of the degrees on:

x ∈ H ⇐⇒ ∀y(∀n(y ≤ω on) ⇒ y ≤ω x)
x ∈ L ⇐⇒ ∀y(∀n(y ≤ω on) ⇒ y ∧ x = 0ω)

This suggests, that for every n we can use on as a parameter to obtain a first
order definition for each class Hn and Ln. Indeed, we have

x ∈ Hn ⇐⇒ on ≤ω x
x ∈ Ln ⇐⇒ on ∧ x = 0ω.

In particular
x ∈ H1 ⇐⇒ o1 ≤ω x
x ∈ L1 ⇐⇒ o1 ∧ x = 0ω.

(2)

Our next goal is to prove the following theorem:

Theorem 3 The degree o1 is definable in Gω.

Proof. We shall denote the enumeration jump of the set A by Je(A). Recall that
Je(A) = EA ⊕ EA, where EA = {〈x, i〉 | x ∈ Wi(A)}1. According to [7]

o1 = (∅, Je(∅), J2
e (∅), . . .) (3)

From here, we conclude that o1 is a non-cuppable degree, i.e.,

∀y(y ∨ o1 = 0′ω =⇒ y = 0′ω).

Furthermore, since 0′ω = dω(Je(∅), J2
e (∅), J3

e (∅) . . .), we may conclude, that for
arbitrary x the g.l.b. of x and o1 exists and is exactly I1

0ω
(x′), i.e.,

x ∧ o1 = I1
0ω

(x′). (4)

Consider the formula

K(x,a1,a2,a3)
def⇐⇒ &

1≤i<j≤3
x = (ai ∨ x) ∧ (aj ∨ x).

Kalimullin [2] shows, that for each enumeration degree u, there are enumer-
ation degrees a1, a2, and a3 such that
1 Here Wi stands for the c.e. set with Gödel index i. Furthermore, Wi(A) = {x |
〈x, u〉 ∈ Wi & Du ⊆ A}, where Du is the finite set with canonical index u.



(K1) u � a1,a2,a3;
(K2) a1,a2,a3 � u′;
(K3) u′ = a′1 = a′2 = a′3;
(K4) K(x,a1,a2,a3) is true for all x ∈ [u,u′];
(K5) u′ = a1 ∨ a2 ∨ a3

Fix enumeration degrees a1, a2 and a3 satisfying (K1) – (K5) for u = 0e and
ã1, ã2 and ã3 satisfying (K1) – (K4) for u = 0′e. Set

b1=κ(a1) ∨ I1
0ω

(κ(ã1));
b2=κ(a1) ∨ I1

0ω
(κ(ã2));

b3=κ(a1) ∨ I1
0ω

(κ(ã3)).

It is easy to see that b1, b2 and b3 satisfy (K1), (K2), (K4), (K5) for u = 0ω.
On the other hand, it is true that b′i = κ(ãi), for 1 ≤ i ≤ 3, and hence according
to (4) and (K5)

(o1 ∧ b1) ∨ (o1 ∧ b2) ∨ (o1 ∧ b3) = o1.

Now suppose that x is a non-cuppable ω-enumeration degree for which there
are degrees b̃1, b̃2 and b̃3 satisfying (K1), (K2), (K4) and (K5) for u = 0ω, such
that

(x ∧ b̃1) ∨ (x ∧ b̃2) ∨ (x ∧ b̃3) = x. (5)

Let X ∈ x and consider P0(X ). According to Cooper, Sorbi and Yi [5], every
non-trivial ∆0

2 enumeration degree is cuppable. Hence, either P0(X ) is enumer-
ation equivalent to ∅ or no non-computably enumerable ∆0

2 set is enumeration
reducible to it:

P0(X ) ≡e ∅ or ∀Y (Y ≤e P0(X ) & Y is ∆0
2 =⇒ Y ≤e ∅). (6)

Suppose that P0(X ) 6≡e ∅. Fix b̃1, b̃2 and b̃3 satisfying (K1), (K3), (K4) and
(5).

Fix B̃i ∈ b̃i, for 1 ≤ i ≤ 3, and consider de(P0(B̃1)), de(P0(B̃2)) and
de(P0(B̃3)). We may conclude the last three satisfy (K2), (K4) and (K5) for
u = 0e. Thus at least two of them are different from 0e (this is implied by (K5)).
Suppose, that these are de(P0(B̃1)) and de(P0(B̃2)). According to Kalimullin [2],
we may conclude that these two degrees are ∆0

2, so that without loss of generality
we may assume that P0(B̃1) and P0(B̃2) are ∆0

2 sets. Now from (6), for i = 1, 2

∀Y (Y ≤e P0(X ) & Y ≤e P0(B̃i) =⇒ Y ≤e ∅).

Since x = (x∧ b̃1)∨(x∧ b̃2)∨(x∧ b̃3) it must be the case that P0(X ) ≡e P0(B̃3).
Hence, P0(X̃3) 6≡e ∅. Now applying Kalimullin’s theorem once again (this time
for P0(B̃1) and P0(B̃3)) we obtain, that P0(B̃3) is ∆0

2. But this contradicts the
assumption about P0(X ) and thus P0(X ) ≡e ∅.

So, we have proved that whenever x is a non-cuppable ω-enumeration degree
for which there are degrees b̃1, b̃2 and b̃3 satisfying (5), (K1), (K2), (K4) and
(K5) for u = 0ω, it is true that for each X ∈ x, X ≡e ∅.



However o1 is the biggest degree generated by a sequence beginning with ∅.
Thus o1 is definable in the first order language of Gω.

¤

Corollary 1 The classes H1, L1 and D1 are definable by a first order formula
in Gω.

Proof. The degrees in D1 satisfy the condition:

x ∈ D1 ⇐⇒ ∀z(z ∨ o1 = x ∨ y =⇒ x ≤ω z).

¤
The last corollary will enable us to prove that there is a standard model of

arithmetic definable in Gω. Note, that this does not tell us which is the degree
of the first order theory of Gω, since it is not clear whether Gω is inerpretable in
first order arithmetic.

Theorem 4 FOA is interpretable in Gω.

Proof. Denote by Rω the collection of all degrees, that are the g.l.b. of a degree
in D1[0ω,0′ω] and o1, i.e.,

Rω = {x ∧ o1 | x ∈ D1[0ω,0′ω]}.

Since for x ≤ω 0′ω,
(x ∧ o1)′ = x′,

it turns out that

{x′ | x ∈ D1[0ω,0′ω]} = {x′ | x ∈ Rω}.

According to the results in [7] the jump operation is an isomorphism between
the intervals [0ω,o1]ω and [0′ω,0′′ω]ω. So, we obtain:

(Rω,≤ω) ∼= ({x′ | x ∈ D1[0ω,0′ω]},≤ω) ∼= ({x′ | x ∈ De[0e,0′e]},≤e).

McEvoy [3] shows that the elements in {x′ | x ∈ De[0e,0′e]} are exactly
the Π0

2 enumeration degrees above 0′e. On the other hand these are exactly the
degrees to which the c.e. in and above JT (∅) degrees are mapped by the Roger
embedding ι. Thus (Rω,≤ω) is isomorphic to the structure of the c.e. in and
above JT (∅) degrees.

Nies, Slaman and Shore [4] prove that for every Turing degree a, there is a
standard model of arithmetic definable in the degrees c.e. in and above a.

Now the theorem follows from the fact, that Rω is first order definable in Gω.
¤
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