Обратно | java-файл: BoyerMoore.java |
(Java source code for the Boyer-Moore Algorithm)
Алгоритъм на Бойер-Мур за търсене на шаблон в текст
public class BoyerMoore {
public static final int ALPHABET_SIZE = ...;
private String text;
private String pattern;
private int[] last;
private int[] match;
private int[] suffix;
...
/**
* Searches the pattern in the text.
* returns the position of the first occurrence, if found and -1 otherwise.
*/
public int match() {
// Preprocessing
computeLast();
computeMatch();
// Searching
int i = pattern.length() - 1;
int j = pattern.length() - 1;
while (i < text.length()) {
if (pattern.charAt(j) == text.charAt(i)) {
if (j == 0) {
return i;
}
j--;
i--;
} else {
i += pattern.length() - j - 1 + Math.max(j - last[text.charAt(i)], match[j]);
j = pattern.length() - 1;
}
}
return -1;
}
/**
* Computes the function last and stores its values in the array last
.
* last(Char ch) = the index of the right-most occurrence of the character ch
* in the pattern;
* -1 if ch does not occur in the pattern.
*/
private void computeLast() {
for (int k = 0; k < last.length; k++) {
last[k] = -1;
}
for (int j = pattern.length()-1; j >= 0; j--) {
if (last[pattern.charAt(j)] < 0) {
last[pattern.charAt(j)] = j;
}
}
}
/**
* Computes the function match and stores its values in the array match
.
* match(j) = min{ s | 0 < s <= j && p[j-s]!=p[j]
* && p[j-s+1]..p[m-s-1] is suffix of p[j+1]..p[m-1] },
* if such s exists, else
* min{ s | j+1 <= s <= m
* && p[0]..p[m-s-1] is suffix of p[j+1]..p[m-1] },
* if such s exists,
* m, otherwise,
* where p is the pattern and m is its length.
*/
private void computeMatch() {
/* Phase 1 */
for (int j = 0; j < match.length; j++) {
match[j] = match.length;
} //O(m)
computeSuffix(); //O(m)
/* Phase 2 */
//Uses an auxiliary array, backwards version of the KMP failure function.
//suffix[i] = the smallest j > i s.t. p[j..m-1] is a prefix of p[i..m-1],
//if there is no such j, suffix[i] = m
//Compute the smallest shift s, such that 0 < s <= j and
//p[j-s]!=p[j] and p[j-s+1..m-s-1] is suffix of p[j+1..m-1] or j == m-1},
// if such s exists,
for (int i = 0; i < match.length - 1; i++) {
int j = suffix[i + 1] - 1; // suffix[i+1] <= suffix[i] + 1
if (suffix[i] > j) { // therefore pattern[i] != pattern[j]
match[j] = j - i;
} else {// j == suffix[i]
match[j] = Math.min(j - i + match[i], match[j]);
}
}
/* Phase 3 */
//Uses the suffix array to compute each shift s such that
//p[0..m-s-1] is a suffix of p[j+1..m-1] with j < s < m
//and stores the minimum of this shift and the previously computed one.
if (suffix[0] < pattern.length()) {
for (int j = suffix[0] - 1; j >= 0; j--) {
if (suffix[0] < match[j]) { match[j] = suffix[0]; }
}
int j = suffix[0];
for (int k = suffix[j]; k < pattern.length(); k = suffix[k]) {
while (j < k) {
if (match[j] > k) match[j] = k;
j++;
}
}
}
}
/**
* Computes the values of suffix
, which is an auxiliary array,
* backwards version of the KMP failure function.
*
* suffix[i] = the smallest j > i s.t. p[j..m-1] is a prefix of p[i..m-1],
* if there is no such j, suffix[i] = m, i.e.
* p[suffix[i]..m-1] is the longest prefix of p[i..m-1], if suffix[i] < m.
*/
private void computeSuffix() {
suffix[suffix.length-1] = suffix.length;
int j = suffix.length - 1;
for (int i = suffix.length - 2; i >= 0; i--) {
while (j < suffix.length - 1 && pattern.charAt(j) != pattern.charAt(i)) {
j = suffix[j + 1] - 1;
}
if (pattern.charAt(j) == pattern.charAt(i)) { j--; }
suffix[i] = j + 1;
}
}
...
}
Обратно | java-файл: BoyerMoore.java |
(Java source code for the Boyer-Moore Algorithm)