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Abstract
It is well known that the Maximum Likelihood Estimator (MLE) can be very

sensitive to some deviations from the assumptions, in particular to unexpected
outliers in the data. To overcome this problem many robust alternatives of the
MLE have been developed in the last decades.

Neykov and Neytchev (1990), following the definitions of the Least Median
of Squares (LMS) and Least Trimmed Squares (LTS) estimators of Rousseeuw
(1984) introduced an extension of the maximum likelihood principle in the case of
estimating the parameters of any unimodal distribution with regular density.

We are going to present here the recent results in this field.
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Introduction

Consider the multiple regression model

yi = xT
i β + εi.

where yi is an observed response, xi is a p×1–dimensional vector of explanatory variables
and β is a p×1 vector of unknown parameters. Classically εi, i = 1, . . . , n are assumed
to be i.i.d. N(0, σ2), for some σ2 > 0.
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Consider the multiple regression model

yi = xT
i β + εi.

where yi is an observed response, xi is a p×1–dimensional vector of explanatory variables
and β is a p×1 vector of unknown parameters. Classically εi, i = 1, . . . , n are assumed
to be i.i.d. N(0, σ2), for some σ2 > 0.

The LMS (Least Median of Squares) and LTS (Least Trimmed Squares) estimators
were proposed by Rousseeuw (1984) as robust alternatives of the LSE

LMS(r1, . . . , rn) = argmin
θ

med{r2i , i = 1, ..., n}, (2)

LTS(k)(r1, . . . , rn) = argmin
θ

k∑
i=1

r2ν(i,θ). (3)

2



Here ν(i, θ) is a permutation of the indices, such that r2ν(i,θ) ≤ r2ν(i+1,θ). Thus the
idea was to minimize using ”smallest residuals”only.

Neykov and Neytchev (1990) proposed to replace in these estimators the squared
residuals with − logψ(xi, θ) of the individual observations. Let the observations
x1, x2, . . . , xn be generated by an arbitrary probability density function ψ(x, θ) with
unknown vector parameter θ.
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Here ν(i, θ) is a permutation of the indices, such that r2ν(i,θ) ≤ r2ν(i+1,θ). Thus the
idea was to minimize using ”smallest residuals”only.

Neykov and Neytchev (1990) proposed to replace in these estimators the squared
residuals with − logψ(xi, θ) of the individual observations. Let the observations
x1, x2, . . . , xn be generated by an arbitrary probability density function ψ(x, θ) with
unknown vector parameter θ.

LME(k) = argmin
θ

{− logψ(xν(k,θ), θ)}, (4)

LTE(k) = argmin
θ

k∑
i=1

{− logψ(xν(i,θ), θ)}. (5)

Thus the idea was to maximize the likelihood over only k observations with ”largest
likelihood”, not over all observations.

Both estimators may be easily combined into one. However it took some time (5
years) to understand.
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Weighted Trimmed Likelihood (WTL)

WTL estimators were introduced independently by Hadi and Luceño (1997) and
Vandev and Neykov (1998). Let the observations x1, x2, . . . , xn be generated by an
arbitrary probability density function ψ(e, θ) with unknown vector parameter θ. Let the
weights wi for i = 1, . . . , n be fixed nonnegative numbers.

WTL(k)(x1, . . . , xn) = argmin
θ

k∑
i=1

{−wi logψ(xν(i,θ), θ)} (6)

where ψ(xν(i,θ), θ) ≥ ψ(xν(i+1,θ), θ) are the ordered density values and ν is a permu-
tation of the indices 1, . . . , n, which may depend on θ.

The LME(k) estimator is obtained if wi = δi,k, the LTE(k) is obtained if wi = 1 for
i = 1, . . . , n, whereas the maximum likelihood estimator is derived if k = n.
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Definition of breakdown point

The most important characteristic of any robust estimator is its breakdown point
(BP). Here is the replacement variant of the finite sample breakdown point given by
Hampel et al. (1986). Let Ω = {ωi ∈ Rp, for i = 1, . . . , n} be a sample of size n.

Definition 1. The breakdown point of an estimator T (Ω) is given by

ε∗n(T ) =
1
n

max{m : sup
Ω̃m

‖T (Ω̃m)‖ <∞}, (7)

where Ω̃m is any sample obtained from Ω by replacing any m of the points in Ω by
arbitrary values.

Thus, there is a compact set such that the estimator T remains in it even if we
replace any m elements of the sample Ω by arbitrary ones. The largest m/n for which
this property holds is the breakdown point.
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Definition of d-fullness

In order to study the breakdown properties of general estimators of the type (4) and
(5) Vandev (1993) developed a d–fullness technique. He proved that their breakdown
point is not less than (n−k)/n if k is within the range of values (n+d)/2 ≤ k ≤ (n−d)
for some constant d which depends upon the density considered. Now we present a simple
generalization of this result for the case of WTL estimators (6). First the definition
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In order to study the breakdown properties of general estimators of the type (4) and
(5) Vandev (1993) developed a d–fullness technique. He proved that their breakdown
point is not less than (n−k)/n if k is within the range of values (n+d)/2 ≤ k ≤ (n−d)
for some constant d which depends upon the density considered. Now we present a simple
generalization of this result for the case of WTL estimators (6). First the definition

Definition 2. A finite set F of n functions is called d–full, if for each subset of
cardinality d of F , the supremum of this subset is a subcompact function.

We remind that a real valued function g(θ) defined on a topological space Θ is
called subcompact, if its Lebesgue sets {θ : g(θ) ≤ C} are compact (or empty) for any
constant C.
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Let the finite set F = {fi(θ) ≥ 0, i = 1, . . . , n, for θ ∈ Θ} be d–full and Θ is a
topological space. Consider the estimator of θ

R(k) = argmin
θ

k∑
i=1

wifν(i,θ)(θ).

Here fν(i,θ)(θ) ≤ fν(i+1,θ)(θ) are the ordered values of fi at θ. The weights wi ≥
0, wk = 1. From a statistical point of view R(k) can be considered as a set of estimates
if the functions fi(θ) are appropriately chosen, e.g. depend on the observations.

Theorem. Under these conditions if n ≥ 3d and (n+ d)/2 ≤ k ≤ n− d, then the
breakdown point of the estimator R(k) is not less than (n− k)/n.



Let the finite set F = {fi(θ) ≥ 0, i = 1, . . . , n, for θ ∈ Θ} be d–full and Θ is a
topological space. Consider the estimator of θ

R(k) = argmin
θ

k∑
i=1

wifν(i,θ)(θ).

Here fν(i,θ)(θ) ≤ fν(i+1,θ)(θ) are the ordered values of fi at θ. The weights wi ≥
0, wk = 1. From a statistical point of view R(k) can be considered as a set of estimates
if the functions fi(θ) are appropriately chosen, e.g. depend on the observations.

Theorem. Under these conditions if n ≥ 3d and (n+ d)/2 ≤ k ≤ n− d, then the
breakdown point of the estimator R(k) is not less than (n− k)/n.

Thus if one knows the value of d for the set {fi(θ)}, one easily make conclusions
about the conditions on k to have appropriate BP. The value d may be interpreted as

number of observations needed to make unique guess for the estimated parameter.
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Multivariate normal distribution

Vandev and Neykov (1993) determined the value of d for the set of log-density
functions for the multivariate normal case. When estimating only the mean d = 1. When
one need to estimate the covariance matrix d = p+ 1. Let xi ∈ Rp, i = 1, . . . , n have
density

φ(x, µ, S) = (2π)−p/2(det(S))−1/2 exp(−(x− µ)′S−1(x− µ)/2).

Theorem.If n ≥ d and (n+ d)/2 ≤ k ≤ n− d, then the breakdown point of the
WTL(k) of µ and S is equal to (n− k)/n.

Later Marincheva and Vandev (1995) considered a general elliptic family. Atanasov
and Neykov (2001) calculated the fullness parameters for the Lognormal, Poisson,
Gamma, Geometric and Logarithmic series distributions and thus determined the BPs
of the WTL estimators for the corresponding Generalized Linear Models.
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The breakdown point of the linear regression estimators

Consider the class of regression estimators defined as

β̂ = argmin
β

k∑
i=1

wiρ(|r|ν(i,θ)), (8)

where ρ is strictly increasing continuous function such that ρ(0) = 0.

This class of estimators is regression, scale and affine equivariant following the rea-
soning of Rousseeuw and Leroy (1987).

Theorem.The breakdown point of the regression estimators (8) is equal to (n−k)/n
if the index k is within the bounds (n+ p+ 1)/2 ≤ k ≤ n− p− 1, n ≥ 3(p+ 1)
and the data points xi ∈ Rp for i = 1, . . . , n are in general position.

We shall remind that the observations xi ∈ Rp for i = 1, . . . , n are in general
position if the convex hull any p+ 1 of them has nonzero measure.
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The class of estimators (8) is quite general - it contains also:

• the Least Squares Estimators (LSE) if ρ(|r|(i)) = r2(i) and the Least Absolute Value

Estimator (LAV) if ρ(|r|(i)) = |r|(i) and wi ≡ 1 for i = 1, 2, . . . , n;
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The class of estimators (8) is quite general - it contains also:

• the Least Squares Estimators (LSE) if ρ(|r|(i)) = r2(i) and the Least Absolute Value

Estimator (LAV) if ρ(|r|(i)) = |r|(i) and wi ≡ 1 for i = 1, 2, . . . , n;

• the Chebishev minmax estimator if ρ(|r|(n)) = |r|(n), wn = 1 and wi = 0 for
i = 1, 2, . . . , n− 1;

• the LMS and LTS estimators of Rousseeuw (1984);

• the h-trimmed weighted Lq estimators of Müller (1995) if ρ(|r|(i)) = |r|q(i);

• the rank-based linear regression estimators proposed by Hössjer (1994), where the
weights wi are generated by a function of the residuals ranks.
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In conclusion, if k = (n+ p+ 1)/2 we easily find the highest breakdown point that
is derived by Rousseeuw and Leroy (1987) and Hössjer (1994) respectively about the
LQS and LTS, and the rank-based regression estimators. The usefulness of d–fullness is
evident:

• The breakdown point can be exemplified by the range of values of k. This allows the
statistician to choose the tuning parameter k according to the expected percent of
outliers in data. The corresponding estimator will possess breakdown point less than
the highest possible but it will be more efficient at the same time
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In conclusion, if k = (n+ p+ 1)/2 we easily find the highest breakdown point that
is derived by Rousseeuw and Leroy (1987) and Hössjer (1994) respectively about the
LQS and LTS, and the rank-based regression estimators. The usefulness of d–fullness is
evident:

• The breakdown point can be exemplified by the range of values of k. This allows the
statistician to choose the tuning parameter k according to the expected percent of
outliers in data. The corresponding estimator will possess breakdown point less than
the highest possible but it will be more efficient at the same time

• The number of observations n in the linear regression setup must be at least 3(p+1)

• It is sufficient only that the observations xi ∈ Rp to be in general position not the
pair (yi, x

T
i ) of observations for i = 1, 2, . . . , n as it is usually assumed.
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Linear regression with exponential q–th order distributions

Let the errors εi of the regression model (1) are i.i.d. with q–th power exponential
distribution, i.e. the density function of εi is given by

φ(ε, β, σ) =
q(1/2)(1+1/q)

σΓ(1/2)
exp{−1

2
|ε
σ
|q},

The Gaussian for q = 2, the Laplace for q = 1, the double exponential for 0 < q < 2,
the leptokurtic for 1 < q < 2, the platikurtic for q > 2, the rectangular for q → ∞
distributions are obtained as particular cases.

In order to obtain the breakdown properties of the WTL(k) regression estimators of
β and σ (when estimating simultaneously), we need to study the d–fullness of the set
fi(β, σ), . . . , fn(β, σ), where

f1(β, σ) = − log(φ(εi, β, σ)) =
1
2
|ri/σ|q + log(σ) + C1
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and
C1 = log(Γ(1/2))− log(q(1/2)(1+1/q)).

Theorem.The breakdown point of the WTL(k) estimators of β and scale σ in the
linear regression model with q–th order exponential distribution for any q ∈ [1,∞) is
equal to (n − k)/n if n ≥ 3(p + 1), xi ∈ Rp, i = 1, . . . , n are in general position,
the weights wi ≥ 0 for i = 1, 2, . . . , n, wk > 0, and the index k is within the bounds
(n+ p+ 1)/2 ≤ k ≤ n− p− 1.

If σ is known or treated as a nuisance parameter in fi(β, σ) the LME(k) (LTE(k))
estimators of β are equivalent to the LQS (LTS) regression estimators of Rousseeuw
(1984).
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The grouped binary regression

A high breakdown point estimator based on LQS regression estimator of Rousseeuw
(1984) for binary regression data was considered by Christmann (1994). The type of the
data under consideration has the form (yi, x

T
i ) for i = 1, . . . ,m where yi is assumed

to be binomially distributed, b(yi | ni, πi), where the group size is ni, the probability of
success is πi, xi is a p× 1–dimensional vector of covariates (explanatory variables) and
the total number of observations is n = n1 + n2 + · · ·+ nm.

We assume that πi follows the linear logistic regression model

πi = exp(xT
i β)/(1 + exp(xT

i β),

where β is a p × 1–dimensional vector of unknown parameters, but probit or other link
functions could be used.

Hereafter we shall also assume that 0 < yi < ni for each i. We study the d–fullness
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of the set {f1(β), . . . , fn(β)}, where

fi(β) = fi(yi, x
T
i , β) = − log(b(yi | ni, πi)) =

= −yi(xT
i β) + ni log(1 + exp(xT

i β))− log
(
ni

yi

)
.

Theorem.The breakdown point of the WTL(k) estimators in the grouped binary
logistic linear regression model defined above is equal to (m−k)/m if the data xi ∈ Rp

for i = 1, . . . ,m are in general position, the weights wi ≥ 0 for i = 1, 2, . . . ,m,
wk > 0 for k = max{i : wi > 0}, m ≥ 3(p+ 1) and the index k is within the bounds
(m+ p+ 1)/2 ≤ k ≤ m− p− 1.

Remark 2. Note that the meaning of breakdown point here is different from the
one given by Definition 1 (7) as we consider the triple (ni, yi, x

T
i ) as one observation.

The above results also hold in the case of a homoscedastic linear regression model
with replications.
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Algorithms

The problem of finding the minima in (6) is not easy. The objective function has
multiple local minima. Thus one has to combine methods of nonlinear and discrete
opimisation.

For calculating LME(k) (like least median of residuals and Minimum Volume Ellip-
soid) estimators of covariance matrix

• resampling techinque was proposed by (Rousseeuw and Leroy, 1987).A subset of k

(k ≥ d) observations is drawn at random and the LS estimate is calculated. This procedure is

repeated many times, and the fit with the lowest TL objective function (6) is retained.;

• iterating improvement - (Rousseeuw and Zomeren, 1989);

• An iterative approximate algorithm for finding the LTE and LME estimates was con-
sidered by Neykov and Neytchev (1990) based on the resampling techinque. They

calculated ML estimates on subsets which may be used with any kind of error
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• simulated annealing - (Todorov, 1992); Combining Branch&Bound with iterating improvement

• A Stochastic Optimisation Algorithm was proposed by Vandev (1995)in [4].
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