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Abstract

In the paper one ill posed problem from pharmacokinetics is studied.
The human body is assumed to be a control system. The transit times of drug
molecules are considered as independent random variables with the same
distribution function. The corresponding density function is considered as a
transport function of the system.

First the parameters of the parameters of the transport function are esti-
mated given the observations on the plasma concentrations after intravenous
application of the drug. This is done in the usual way using compartment
models.

The question is how to recover the input function (absorption process)
given the observations on the plasma concentrations (output of the system)
after non intravenous application of the drug (oral, muscular, subcutaneous,
etc.).

The input function is estimated using cubic splines. The result is stabi-
lized using Tikhonov regularization.

The method is applied on data from bulgarian medicine EMOVIT.

1 Introduction

The body is assumed as a control system. The transit times of the drug molecules
are considered as i.i.d. random variables. The density funétien of transit
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times characterizes the body with respect to the transport of drugl'{#.de-
termines the transport function of the control system. The output, i.e. the time
course of the plasma concentration at the exit is the result of dosage flow (input)
G(t) and the transport function:

C(t) = / GU)F(t — )dr. (1)

2 Compartment models

If a dose of drug is applied to the body by means of a bolus injection, the input
G(t) may be considered asi@ampulse and all molecules enter that system (body)
at the same time. They leave the body according to the distribution of transit
times.

The functionF'(¢) then can be derived by application of classic compartment
modeling to the experimental plasma concentration after intravenous (i.v) input.
The data points can be fitted to sum of exponents:

CH(t) = ) A, 2
=1

wheren is the number of compartmentsi-(¢) represents the plasma concentra-
tion at timet. A; andq; are positive constants, which characterize the drug kinetic

@.

Time | C Delta Concentrations measured in the blood after intra-
0.02 | 6.16] 1.83 venous application of the drug to 10 patients.

0.05 | 4.01| 1.49 In the third column the standard deviations of the
0.08 | 3.36| 0.76 measurements are presented.

0.17 | 2.96| 1.16
0.33 | 2.26| 0.6
0.67 | 1.47| 0.55
1 0.63| 0.13
2 0.32| 0.006

Table 1: Intravenous applica-
tion of EMOVIT



On the picture we see the observed plasma con-
centrations and estimated transport function using
2- and 3- compartment models.

The time is on logarithmic scale.

The choice of simpler 2-compartment model was

made using F-test.

" The values of estimated parameters:

Figure 1: Estimated observa- A, =574 A, =312
tion using compartment models all _ 3108 &22 —117

Therefore, the output concentrati6ft®-(¢) is directly proportional to the den-
sity function F'(¢) of the transit times:

[Civ(yde Y4

0 =1

3 The Problem of Unknown Input

When the application of the drug is non intravenous ( i.e. is oral, muscular, sub-
cataneous etc.), the input functi6iit) (absorption process) is unknown.

Time | C Delta Concentrations measured in the blood after oral ap-
0 0 0.0 plication of the drug to the same 10 patients.

0.08 | 1.441| 1.475 In the third column the standard deviations of the
0.33 | 1.873| 0.782 measurements are presented. They are too big.
0.5 2.333| 0.948
1.0 2.23 | 0.514
15 1.777| 0.744
2.0 1.48 | 0.879
3.0 0.607| 0.298
6.0 0.1 0.1

Table 2: Oral application of
EMOVIT



eeeeeee — The problem is to estimate the input functi6iit)
by given:

e N data points of plasma concentratioh =
cromiv(t), (1 =1,2,..., N), determined ex-

. perimentally as an average value after oral

) —— application of the drug to 10 individuals in

the moment;;

Figure 2: Smothed oral data 4 the standard deviatiod of the individual
measurement:

¢ estimated from[(3) body transport function
F(t).
4 Splines

For solving equatioh]1 an appropriate deconvolution procedure is employed. The
functionG(t) is sought in the form of cubic spline with + 1 knots (n < N):

Gi(r) =G+ G} (1 —Tjo) + GHr = T2 + G (1 = Tj=)®, (4)

wherej=1,2,....m, T; € [0, ty] are knots;r € [T;_,T;] andG5,s = 0,1,2,3
are unknown spline coefficients. The cubic splirjgs (4) satisfy the following con-
ditions:

G;-1(Ty) = G4(T}),
G_(Ty) = G5(T}), (5)
G7_(Ty) = GY(1}),

i-1 3 1 3 b
cty =33 G / (r—T)" F (t: — 1) dr+ > G / (r =T 2) F(t— 1) dr.
7j=1 s=0 Ti s=0 T,

(6)

Obviously [6) represents a linear system/ofequations withdm unknown
quantitiesgl - G(l]a g2 = G%a gs = G%’ g4 = Gi%v g5 = Gg7 yory dm = an

XG=7C, (7)
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where X is the matrix of coefficients calculated froi (6) by exact computation
the integralsG = (91,92, ..., gam) , C = (C1,Cs, ...,Cn)’, (""" - transpose of a
matrix).

The conditions[(5) in a matrix form could be written as

AG =0, (8)
whereA is 3(m — 1) x 4m dimensional matrix.
For finding the unknown spline coefficients Gf, the least square estimation
(2) is used. They are obtained by the conditions for minimizing the functional
d=(C-XG)W([C—-XGqG), 9
wherelW = DRD is N x N dimensional matrixD is a diagonal matrix, which
elements areé; and R is correlation matrix of data vectar.
After minimization of [9) it follows
G= (XWX +AA) " XWC. (10)

Let the experimental data are perturbed

Y =C+0,5 (p=1,2,..),

wheres = (61, 05...,6x) andé, are random num-
bers with normal distributiong,| < 1.

Figure 3: No regularization
The solutiong’ ;) of (10), where now’' is Y{,, show instability | in the sense

of Tikhonov (3).

On Fig. 1 and Fig. 2 are presented respectively the right sidg] of (1) with
perturbations ( p = 5) and solutiolds,). The estimated data poin€s with J;
are from plasma concentrations after oral application of psycho therapeutic drug
EMOVIT.

For finding the generalized solution §f (1) (quasi-solut|an (3)), which is stable
with respect to small perturbation of the right side[df (1), the following algorithm
is proposed.

The functional

M®[G] = ® + aQ(G) (11)



is introduced, wherex > 0 is parameter of regularizationt}(G) is appropriate
chosen stabilizing functional. The functi@®(¢) is sought by the condition of
minimizing the functional[(11)

G = (XWX + AA+aQ) " X'WIC. (12)
In the concrete cade has the form
tN
2(c) = [ (6P 13)
B

where € [0, ¢y] is a parameter, which controls the smoothing of the splifes (4).
For fixedT;_, < 6 < T} (j =1,2,...,m), (13) obtains the form

O(G) = Y |4(G2)" A, +12G2G3 (A, +12 (G (A)°] . (14)
q=j
whereA, = T, — T,_;. The quantity of is determined according suggestion in
(3) by using the error estimation

1 N
_ 52
e= % ;

p=(XG*C)=e,

wherep is the distance of Mahalanobis (4):

as follows

pUV) = [(U -V (U-V)].

. Fig[4 shows the stabilized quasi-soluti6ft, ob-
tained fora = 0.06 and = 0.89 from experimen-
tal data of EMOVIT.

Figure 4: Full regularization



The proposed method offers better and more stimulating information about the
drug absorption process, which is not observable and therefore shows some new
ways in pharmacokinetical investigations.

Some regularisation

Figure 5: Some regularization
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