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Abstract

In the paper one ill posed problem from pharmacokinetics is studied.
The human body is assumed to be a control system. The transit times of drug
molecules are considered as independent random variables with the same
distribution function. The corresponding density function is considered as a
transport function of the system.

First the parameters of the parameters of the transport function are esti-
mated given the observations on the plasma concentrations after intravenous
application of the drug. This is done in the usual way using compartment
models.

The question is how to recover the input function (absorption process)
given the observations on the plasma concentrations (output of the system)
after non intravenous application of the drug (oral, muscular, subcutaneous,
etc.).

The input function is estimated using cubic splines. The result is stabi-
lized using Tikhonov regularization.

The method is applied on data from bulgarian medicine EMOVIT.

1 Introduction

The body is assumed as a control system. The transit times of the drug molecules
are considered as i.i.d. random variables. The density functionF (t) of transit
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times characterizes the body with respect to the transport of drug, i.e.F (t) de-
termines the transport function of the control system. The output, i.e. the time
course of the plasma concentration at the exit is the result of dosage flow (input)
G(t) and the transport function:

C(t) =

t∫
0

G(t)F (t− τ)dτ. (1)

2 Compartment models

If a dose of drug is applied to the body by means of a bolus injection, the input
G(t) may be considered as aδ-impulse and all molecules enter that system (body)
at the same time. They leave the body according to the distribution of transit
times.

The functionF (t) then can be derived by application of classic compartment
modeling to the experimental plasma concentration after intravenous (i.v) input.
The data points can be fitted to sum of exponents:

Ci.v.(t) =
n∑

i=1

Aie
−αit, (2)

wheren is the number of compartments,Ci.v.(t) represents the plasma concentra-
tion at timet. Ai andαi are positive constants, which characterize the drug kinetic
(1).

Time C Delta
0.02 6.16 1.83
0.05 4.01 1.49
0.08 3.36 0.76
0.17 2.96 1.16
0.33 2.26 0.6
0.67 1.47 0.55
1 0.63 0.13
2 0.32 0.006

Table 1: Intravenous applica-
tion of EMOVIT

Concentrations measured in the blood after intra-
venous application of the drug to 10 patients.
In the third column the standard deviations of the
measurements are presented.
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Figure 1: Estimated observa-
tion using compartment models

On the picture we see the observed plasma con-
centrations and estimated transport function using
2- and 3- compartment models.
The time is on logarithmic scale.
The choice of simpler 2-compartment model was
made using F-test.

The values of estimated parameters:

A1 = 5.74 A2 = 3.12
α1 = 31.28 α2 = 1.17

Therefore, the output concentrationCi.v.(t) is directly proportional to the den-
sity functionF (t) of the transit times:

F (t) =
Ci.v.(t)

∞∫
0

Ci.v.(t)dt

=
Ci.v.(t)

n∑
i=1

Ai

αi

. (3)

3 The Problem of Unknown Input

When the application of the drug is non intravenous ( i.e. is oral, muscular, sub-
cataneous etc.), the input functionG(t) (absorption process) is unknown.

Time C Delta
0 0 0.0
0.08 1.441 1.475
0.33 1.873 0.782
0.5 2.333 0.948
1.0 2.23 0.514
1.5 1.777 0.744
2.0 1.48 0.879
3.0 0.607 0.298
6.0 0.1 0.1

Table 2: Oral application of
EMOVIT

Concentrations measured in the blood after oral ap-
plication of the drug to the same 10 patients.
In the third column the standard deviations of the
measurements are presented. They are too big.
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Figure 2: Smothed oral data

The problem is to estimate the input functionG(t)
by given:

• N data points of plasma concentrationCi =
Cnoni.v.(t), (i = 1, 2, ..., N), determined ex-
perimentally as an average value after oral
application of the drug to 10 individuals in
the momentti;

• the standard deviationδ of the individual
measurement;

• estimated from (3) body transport function
F (t).

4 Splines

For solving equation 1 an appropriate deconvolution procedure is employed. The
functionG(t) is sought in the form of cubic spline withm + 1 knots (m 6 N):

Gi(τ) = G0
i + G1

i (τ − Tj−1) + G2
i (τ − Tj−1)

2 + G3
i (τ − Tj−1)

3 , (4)

wherej=1,2,. . . ,m, Tj ∈ [0, tN ] are knots,τ ∈ [Tj−1, Tj] andGs
j , s = 0, 1, 2, 3

are unknown spline coefficients. The cubic splines (4) satisfy the following con-
ditions: ∣∣∣∣∣∣

Gj−1(Tj) = Gj(Tj),
G′

j−1(Tj) = G′
j(Tj),

G′′
j−1(Tj) = G′′

j (Tj),
(5)

wherej=2,. . . ,m andG1(0) = G′′
1(0) = 0. Then for everyti ∈ [Tl−1, Tl], i =

1, 2, ..., N, l = 1, 2, ....,m from (1) and (4) it follows:

C(ti) =
i−1∑
j=1

3∑
s=0

Gs
j

Tj∫
Tj−1

(τ − Tj)
s F (ti − τ) dτ+

3∑
s=0

Gs
l

ti∫
Tl−1

(τ − Tl−1)
s F (ti − τ) dτ.

(6)
Obviously (6) represents a linear system ofN equations with4m unknown

quantitiesg1 = G0
1, g2 = G1

1, g3 = G2
1, g4 = G3

1, g5 = G0
2, , ..., g4m = G3

m:

XG = C, (7)
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whereX is the matrix of coefficients calculated from (6) by exact computation
the integrals,G = (g1, g2, ..., g4m)′ , C = (C1, C2, ..., CN)′ , (”′”- transpose of a
matrix).

The conditions (5) in a matrix form could be written as

AG = 0, (8)

whereA is 3(m− 1)× 4m dimensional matrix.
For finding the unknown spline coefficients ofG , the least square estimation

(2) is used. They are obtained by the conditions for minimizing the functional

Φ = (C −XG)′ W (C −XG) , (9)

whereW = DRD is N × N dimensional matrix,D is a diagonal matrix, which
elements areδi andR is correlation matrix of data vectorC.

After minimization of (9) it follows

G =
(
X ′W−1X + A′A

)−1
X ′W−1C. (10)

Figure 3: No regularization

Let the experimental data are perturbed

Y(p) = C + θpδ, (p = 1, 2, ...),

whereδ = (δ1, δ2..., δN)′ andθp are random num-
bers with normal distribution,|θp| 6 1.

The solutionsG(p) of (10), where nowC is Y(p), show instability I in the sense
of Tikhonov (3).

On Fig. 1 and Fig. 2 are presented respectively the right side of (1) with
perturbations ( p = 5 ) and solutionsG(p). The estimated data pointsCi with δi

are from plasma concentrations after oral application of psycho therapeutic drug
EMOVIT.

For finding the generalized solution of (1) (quasi-solution (3)), which is stable
with respect to small perturbation of the right side of (1), the following algorithm
is proposed.

The functional

Mα[G] = Φ + αΩ(G) (11)
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is introduced, whereα > 0 is parameter of regularization ,Ω(G) is appropriate
chosen stabilizing functional. The functionG(t) is sought by the condition of
minimizing the functional (11)

Gα =
(
X ′W−1X + A′A + αΩ

)−1
X ′W−1C. (12)

In the concrete caseΩ has the form

Ω(G) =

tN∫
β

[G′′(τ)]
2
dτ, (13)

whereβ ∈ [0, tN ] is a parameter, which controls the smoothing of the splines (4).
For fixedTj−1 6 β 6 Tj (j = 1, 2, ...,m), (13) obtains the form

Ω(G) =
m∑

q=j

[
4
(
G2

q

)2
∆q + 12G2

qG
3
q (∆q)

2 + 12
(
G3

q

)2
(∆q)

3
]
, (14)

where∆q = Tq − Tq−1. The quantity ofα is determined according suggestion in
(3) by using the error estimation

ε =
1

N

√√√√ N∑
i=1

δ2
i

as follows

ρ = (XGα, C) = ε,

whereρ is the distance of Mahalanobis (4):

ρ(U, V ) =
[
(U − V )′ (U − V )

] 1
2 .

Figure 4: Full regularization

Fig.4 shows the stabilized quasi-solutionGα, ob-
tained forα = 0.06 andβ = 0.89 from experimen-
tal data of EMOVIT.
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The proposed method offers better and more stimulating information about the
drug absorption process, which is not observable and therefore shows some new
ways in pharmacokinetical investigations.

Figure 5: Some regularization
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