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Abstract

The paper presents a stochastic optimization algorithm for computing of least median
of squares regression (LMS) introduced by (Rousseeuw and Leroy 1986). As the exact
solution is hard to obtain a random approximation is proposed, which is much cheaper
in time and easy to program. A MATLAB program is included.
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1 Introduction

Many authors considered robust estimators of the covariance matrix and the location in the
multidimensional case. When a high level of contamination is expected it is appropriate to
use estimators with high breakdown point. Such estimators are the minimum volume ellipsoid
(MVE) and the minimum covariance determinant (MCD), introduced by Rousseeuw and Leroy
(1986). On the other hand in the robust regression literature very popular is the Least Median
of the squares (LME) estimator which also has high breakdown point. Recently Neykov
and Neytchev (1990) proposed a robust alternative of the maximum likelihood estimators.
Namely let f(θ, x) be the likelihood functions of the individual observation x. We denote
by X the finite set of all observations. Here θ is the vector of unknown parameters. Let
A(θ) = {−log(f(θ, x)), x ∈ X} be the (increasingly) ordered set of the values of f at a fixed
point θ. Denote by M(k, θ) the k-smallest and by S(k, θ) the sum of the k smallest numbers of
the set A(θ). The minimizers of these two random functions are to be considered as estimators
in statistical sense.

Vandev1 (1992) has shown that MVE and MCD estimators may be extracted from this
robustified version in the gaussean case. The same is true for LME in regression. It was also
shown that in general all robustified maximum likelihood estimators have high break down
point.

Computationally both (trimmed and least median) problems are not easy to solve in a
conventional way because the functions involved have many local minima. Thus the mini-
mization turns out to be a serious combinatorial problem. Up to now mainly the resampling
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technique is used for the purpose, see Rousseeuw & Leroy (1986). Todorov (1992) successfully
used the simulated annealing algorithm for MCD estimator.

In this paper an algorithm is presented for approximate calculating of LME(k). Hawkins
(1993) used a feasible set algorithm for exact calculation of the minima. Our proposition is
based on the well known Robins-Monro (1951) procedure for stochastic optimization, which
was already successfully used by Martin and Masreliez (1975) in the robust estimation. We
will call the algorithm RM algorithm. An early version of this paper was presented as a short
talk at the seminar of Statistical Data Analysis held in Varna (Vandev, 1992a).

2 Definitions and Notations

Let X be set of observations of size n. Let E be the p-dimensional Euclidean space and f -
function defined on E ×X. Let A(θ) = {f(θ, x), x ∈ X} be the (increasingly) ordered set of
the values of f at a fixed point θ. Denote by M(k, θ) the k-smallest number in the set A(θ).
Denote by LME(k) the set of θ which minimizes M(k, θ), i.e.:

LME(k) = arg min
θ
f(θ, x(k)) = arg min

θ
F (θ),

where f(θ, x(1)) ≤ f(θ, x(2)) ≤ ... ≤ ... ≤ f(θ, x(n)). As usual here the subindex denote the
element of the corresponding permutation which depends on the value of θ.

One easily comes to the idea to use some of the gradient methods for the case. It is clear
that the gradient of the function which is to be minimized equals ”almost everywhere” the
gradient of f(θ, x(k)) for some k. The usual minimizing of the function F (θ) simply follows
the procedure of iterative updating of the unknown parameter at the step i:

θi+1 = θi − αi ∗ grad(F (θi)).

It could work in our case. However there are two difficulties:

• We do not know which of all functions is at k-th place in the ordered set A(θ). So all
these functions are to be computed and their values sorted.

• The global function turns out to be not convex, i.e. it has multiple local minima. So
this simple procedure does not assure convergence to the global minima.

To overcome those difficulties we propose a random search of the minima. Our idea is to
calculate the gradient approximately in the sense that we will fix the function among small
number of randomly chosen functions.

We will illustrate the algorithm in the case of multiple linear regression. It is clear that
the same algorithm could be used as well in the case of joint estimation of the parameters
location and scatter.

Consider x a vector in a m-dimensional Euclidean space. In the case of multiple regression
the function f is of the form:

f(θ, x) = abs(x0 − x′θ − θ0).

Here p = m and the gradient of f may be calculated as follows:

df(θ, x)

dθ
= −sign(x0 − x′θ − θ0).(x′, 1).
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3 The RM Algorithm

The famous Robins-Monro (1951) procedure when applied to the problem of minimizing the
function F (θ) consists in the following. Let start with some θ = θ0. Let now calculate the
gradient grad(F (θ)) at this point. It may be randomly disturbed by some random variable
with zero expectation. At the step i the parameter will be changed according the following
formula:

θi+1 = θi − γi ∗
grad(F (θi))

||grad(F (θi))||
.

The sequence {γi, i = 1, 2, ...} is chosen to satisfy the relations:
∑∞
i=1 γ

2
i <∞,

∑∞
i=1 γi =∞.

Denote the iteration number by i and the estimated parameter - by B. The parameter δ
is chosen to be about p times the maximal expected absolute value of the elements of B. The
iterations are performed fixed number of times usually up to 300.

• Step 0. Set maxn, set i=1, set δ.

• Step 1. Chose at random 10 indexes among the numbers from 1 to n. Calculate these
10 functions. Sort their values.

• Step 2. Chose the value corresponding to the desired proportion (j/10 = k/n) and the
function which produces that value (say f).

• Step 3. Calculate the normalized gradient D(f) of f .

• Step 4. Set B := B −D(f).δ/i. Set i = i+ 1. If i ≤ maxn then Goto step 1.

Comments:

1. The number of calculations needed does not depend on the number of functions, i.e. the
total number of the observations does not affect the efficiency of the algorithm.

2. The number of randomly chosed functions is chosen for convenience (here it is equal to
10). In fact one need to investigate the dependence of the efficiency of the algorithm of
this number. We expect a changing (slightly increasing with the number of iterations)
value to be the optimal one.

4 The Program

Here follows the MATLAB program used to test the above algorithm in the case with LME
in the multiple linear regression:

function [b] = lmereg(x, y, prop, delta, iter)
rand(’uniform’); % init random numbers
[ n, m ] = size(x); % get size of x
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b = zeros(m,1); % starting values of b
if (nargin < 3), prop=6 ; end % default prop
if (nargin < 4), delta = 10.; end % default delta
if (nargin < 5), iter = 100; end % default iter
for k = 1 : iter

J = round(ones(10,1)/2+rand(10,1)∗n);% 10 random integers
res = y(J)–x(J, : )∗ b; % calculate residuals
ares = abs(res); % absolute values
[ xw, list ] = sort(ares); % sort
ti = x(J(j), : )′∗ sign(res(j)); % gradient
theta = sqrt(ti′∗ ti); % norm of gradient
gamma = delta / k; % new gamma
b = b + gamma ∗ ti./theta; % update b

end
end

The MATLAB version is presented here as a shortest. A FORTRAN program is available
from the author upon a request.

5 Simulated Examples

Two examples are presented of simulated simple and multiple linear regression to show the
advantages and quality of the algorithm.

5.1 Simple Linear Regression

The first model was chosen to illustrate the robust properties of the used version of maximum
likelihood. The response Y is generated by the following model:

y = 5− 2 ∗ x + e.

Here e is a standard normal random variable. The sample consists of 1000 observations.
It was corrupted by destroying 30% of the observations. A reasonable estimations is achieved
after 150 iterations despite of the large number of outliers. The algorithm was used with fixed
number of iterations equal to 150 and δ = 10.

On the fig. 1 bellow one random solution is presented for the estimator 6/10. For a
comparison the unique least squares solution is also plotted and quite obvious is far from the
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model. Thus the robust properties of the estimator are obvious.

fig.1

The further Monte - Carlo study of the same data set shows that all the local minima are
not far from the exact solution which is not shown on the picture. The statistical error of
the estimator consists of two almost independent parts: one determined by the sample, and
another of the randomness of the algorithm. Our feeling is that the first one is larger, but
this conjecture is to be investigated further.

5.2 Multiple Linear Regression

The second example serves another aim. We try to study merely the computational properties
of the proposed algorithm. The response Y is generated by the following model:

y = 2− 2 ∗ x1 + 5 ∗ x2 − 5 ∗ x3 + x4 + e.

The same estimator and the same number of observations was used as in the previous
example. In this case we use different percent of contamination and each time generate totally
new data set. A single precision FORTRAN version of the above program was used for that
purpose. The computations have taken about half hour on 12 mhz AT-286 with floating point
coprocessor. So the average time to solve one regression was about 1.8 seconds including the
simulation of the 5000 random numbers.
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The results are presented in the following table. The number of contaminated observations
is shown in the first column. The form of used estimator is in the second column. Each cell
in the table contains the average (with the sample standard error below) for 100 simulated
with the same model data sets. In the next 4 columns are the results for the parameters of
the model. The last column contains the estimated value of the functional minimized.

Cont. Est. a0 a1 a2 a3 a4

100 9/10 1.9235 -1.9421 4.9492 -4.8944 3.3777
.1149 .1569 .1249 .1265 2.4862

8/10 1.9644 -1.9821 4.9029 -4.9164 1.2839
.0990 .0987 .1401 .1136 .1512

7/10 1.9390 -2.0412 4.9467 -4.8380 1.1343
.1596 .1834 .1959 .1705 .2168

6/10 1.9823 -1.9756 4.7355 -4.7443 .9773
.2313 .2328 .3107 .2601 .2017

200 8/10 1.9664 -2.0136 4.7889 -4.7541 5.9930
.1534 .1828 .1808 .2410 3.7446

7/10 1.9103 -1.9337 4.9010 -4.8629 1.3670
.2338 .2833 .2781 .2783 .5853

6/10 1.9484 -1.9812 4.8867 -4.9113 1.0957
.1811 .2229 .2409 .1701 .2407

300 7/10 1.7643 -1.7374 4.4975 -4.5186 7.7961
.4012 .3970 .6973 .7480 4.5630

6/10 1.8873 -1.8956 4.8093 -4.7899 1.5153
.3159 .2421 .5369 .4467 .8834

400 6/10 1.5886 -1.6556 4.2696 -4.1614 9.5648
.5058 .4803 .7968 .9176 4.7157

Table 1

It is seen in this table that the solutions with smallest variance are achieved when the
ratio (k + 1)/10 is close to the number of the outliers. When it is higher, some outliers effect
the final solution. When it is lower the effectivity of the estimator falls down. Especially
sensitive to the choice of this ratio is the value of the functional been minimized (it is not
shown in the table) and it might be used to choose among the estinators. One needs additional
investigation of this phenomenon also.

Strictly speaking the proposed algorithm does not reach the global minima of the func-
tional. The estimated values of the parameters correspond to one of the local minima when
infinite number of iterations is performed.

To solve this problem we tried to use as a second step the Least Maximum of Absolute
Values regression applied to the k observations with smallest ”residuals”. In our experiments
the IMSL program RLLMV was used several times until the set of k observations with smallest
residuals remains unchanged. However this second stage approximation turned out to be more
time consuming. More over here the number of calculations depends linearly of the amount n
of the observations. It does achieve better values of the functional of course, but not so good
that one should feel obliged to use it. Again the global minima is not reached.
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Probably better solutions may be achieved when changing the form of the functional (1).
One may use sum instead maximum in order to improve the quality of the estimation. These
are so called ”trimmed mean and minimum determinant of the covariance matrix (MCD)”
estimators considered by Rousseeuw and Leroy (1986). The modifications of the algorithm
(and the program) are obvious — one needs to calculate the gradient of the sum of prop lowest
functions instead of one.

6 Conclusion

The proposed algorithm is very effective what makes it possible to be used for robust estima-
tion of covariance and mean in the multidimensional case especially as a first ”rough” step.
At this step the most outliers are detected and subsequent estimations with Reweighted Least
Squares or Least Absolute Values algorithms may use only the ”best” observations. This sec-
ond step (when performed only once) preserves the breakdown point of the original estimator
(Rousseeuw and Zomeren, 1989).
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