
General remarks

Huber minimax . . .

Hampel approach

Measures of robustness

Multidimensional . . .

Robustified . . .

Linear regression

References

Home Page

Title Page

JJ II

J I

Go Back

Full Screen

Close

Quit

Софийски Университет ,,Св.Климент Охридски”
Факултет по Математика и Информатика

pro-ENBIS
MII-2003 Dimitar Vandev

http://www.fmi.uni-sofia.bg
http://europa.eu.int/comm/index_en.htm
http://www.cordis.lu/ist
http://www.enbis.org/pro-enbis/
http://mathind.csd.auth.gr/


General remarks

Huber minimax . . .

Hampel approach

Measures of robustness

Multidimensional . . .

Robustified . . .

Linear regression

References

Home Page

Title Page

JJ II

J I

Go Back

Full Screen

Close

Quit

Софийски Университет ,,Св.Климент Охридски”
Факултет по Математика и Информатика

Robust Methods in Industrial Statistics

Dimitar Vandev

pro-ENBIS
MII-2003 Dimitar Vandev

http://www.fmi.uni-sofia.bg
http://europa.eu.int/comm/index_en.htm
http://www.cordis.lu/ist
http://www.enbis.org/pro-enbis/
http://mathind.csd.auth.gr/


General remarks

Huber minimax . . .

Hampel approach

Measures of robustness

Multidimensional . . .

Robustified . . .

Linear regression

References

Home Page

Title Page

JJ II

J I

Go Back

Full Screen

Close

Quit

Софийски Университет ,,Св.Климент Охридски”
Факултет по Математика и Информатика

Robust Methods in Industrial Statistics

Dimitar Vandev

University of Sofia, Faculty of Mathematics and Informatics,
Sofia 1164, J.Bourchier 5,

E-mail: vandev@fmi.uni-sofia.bg

pro-ENBIS
MII-2003 Dimitar Vandev

http://www.fmi.uni-sofia.bg
http://europa.eu.int/comm/index_en.htm
http://www.cordis.lu/ist
http://www.enbis.org/pro-enbis/
http://mathind.csd.auth.gr/


General remarks

Huber minimax . . .

Hampel approach

Measures of robustness

Multidimensional . . .

Robustified . . .

Linear regression

References

Home Page

Title Page

JJ II

J I

Go Back

Full Screen

Close

Quit

1. General remarks

The field of mathematical statistics called robust statistics

appeared due to the pioneer works of Tukey (1960), Huber

(1964), and Hampel (1968); it has been intensively developed

since the sixties and is rather definitely formed by present.

The term ‘robust’ (strong, sturdy) as applied to statistical

procedures was proposed by Box (1953).
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1. General remarks

The field of mathematical statistics called robust statistics

appeared due to the pioneer works of Tukey (1960), Huber

(1964), and Hampel (1968); it has been intensively developed

since the sixties and is rather definitely formed by present.

The term ‘robust’ (strong, sturdy) as applied to statistical

procedures was proposed by Box (1953).

A large part of this talk is based on the recent book of

Shevlyakov and Vilchevski (2002).
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The forms of data representation.

We begin with the customary forms of data representation:

(i) as a sample {x1, . . . , xn} of real numbers xi ∈ R being

the easiest form to handle;
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The forms of data representation.

We begin with the customary forms of data representation:

(i) as a sample {x1, . . . , xn} of real numbers xi ∈ R being

the easiest form to handle;

(ii) as a sample{x1, . . . , xn} of realvalued vectors xi ∈ Rm;
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The forms of data representation.

We begin with the customary forms of data representation:

(i) as a sample {x1, . . . , xn} of real numbers xi ∈ R being

the easiest form to handle;

(ii) as a sample{x1, . . . , xn} of realvalued vectors xi ∈ Rm;

(iii) as a realization x(t), t ∈ [0, T ] of a realvalued continuous

process (function);
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The forms of data representation.

We begin with the customary forms of data representation:

(i) as a sample {x1, . . . , xn} of real numbers xi ∈ R being

the easiest form to handle;

(ii) as a sample{x1, . . . , xn} of realvalued vectors xi ∈ Rm;

(iii) as a realization x(t), t ∈ [0, T ] of a realvalued continuous

process (function);

(iv) as a sample of ‘nonnumerical nature’ data representing

qualitative variables;
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The forms of data representation.

We begin with the customary forms of data representation:

(i) as a sample {x1, . . . , xn} of real numbers xi ∈ R being

the easiest form to handle;

(ii) as a sample{x1, . . . , xn} of realvalued vectors xi ∈ Rm;

(iii) as a realization x(t), t ∈ [0, T ] of a realvalued continuous

process (function);

(iv) as a sample of ‘nonnumerical nature’ data representing

qualitative variables;

(v) as semantic type data (statements, texts, pictures, etc.).
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Types of statistical characteristics

These characteristics may be classified as follows:

• the measures of location (central tendency, mean values);
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Types of statistical characteristics

These characteristics may be classified as follows:

• the measures of location (central tendency, mean values);

• the measures of spread (dispersion, scale, scatter);

MII-2003 Dimitar Vandev

http://www.fmi.uni-sofia.bg


General remarks

Huber minimax . . .

Hampel approach

Measures of robustness

Multidimensional . . .

Robustified . . .

Linear regression

References

Home Page

Title Page

JJ II

J I

Go Back

Full Screen

Close

Quit

Types of statistical characteristics

These characteristics may be classified as follows:

• the measures of location (central tendency, mean values);

• the measures of spread (dispersion, scale, scatter);

• the measures of interdependence (association, correlation);
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Types of statistical characteristics

These characteristics may be classified as follows:

• the measures of location (central tendency, mean values);

• the measures of spread (dispersion, scale, scatter);

• the measures of interdependence (association, correlation);

• the characteristics of extreme values;
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Types of statistical characteristics

These characteristics may be classified as follows:

• the measures of location (central tendency, mean values);

• the measures of spread (dispersion, scale, scatter);

• the measures of interdependence (association, correlation);

• the characteristics of extreme values;

• the characteristics of data distributions or the measures

of shape.
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The main aims of Industrial Statistics

These aims may be formulated as follows:

(A1) compact representation of data,
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The main aims of Industrial Statistics

These aims may be formulated as follows:

(A1) compact representation of data,

A human mind cannot efficiently work with large volumes

of information, since there exist natural psychological bounds

of perception. Thus it is necessary to provide a compact data

output of information: only in this case we may expect a

satisfactory final decision. Note that data processing often

begins and ends with this first item (A1).
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The main aims of Industrial Statistics

These aims may be formulated as follows:

(A1) compact representation of data,

A human mind cannot efficiently work with large volumes

of information, since there exist natural psychological bounds

of perception. Thus it is necessary to provide a compact data

output of information: only in this case we may expect a

satisfactory final decision. Note that data processing often

begins and ends with this first item (A1).

(A2) Estimation of model parameters describing mass phe-

nomena,
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The main aims of Industrial Statistics

These aims may be formulated as follows:

(A1) compact representation of data,

A human mind cannot efficiently work with large volumes

of information, since there exist natural psychological bounds

of perception. Thus it is necessary to provide a compact data

output of information: only in this case we may expect a

satisfactory final decision. Note that data processing often

begins and ends with this first item (A1).

(A2) Estimation of model parameters describing mass phe-

nomena,

The next step (A2) is to suggest an explanatory underlying

model for the observed data and phenomena. It may be a

regression model, or a distribution model, or any other, de-

sirably a simple one: an essentially multiparametric model is

usually a bad model. Parametric models refer to the first to

be considered and examined.
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(A3) Prediction and optimization.
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(A3) Prediction and optimization.

Finally, all previous aims are only the steps to the last (A3):

here we have to state that this aim remains a main challenge

to industrial statistics and to science as a whole.
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Defining a robust procedure, it is useful to answer three

main questions:

• Robustness of what? Here one defines the type of a statis-

tical procedure (point or interval estimation, hypotheses

testing, etc.);
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Defining a robust procedure, it is useful to answer three

main questions:

• Robustness of what? Here one defines the type of a statis-

tical procedure (point or interval estimation, hypotheses

testing, etc.);

• Robustness against what? Here one specifies the supermodel;
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Defining a robust procedure, it is useful to answer three

main questions:

• Robustness of what? Here one defines the type of a statis-

tical procedure (point or interval estimation, hypotheses

testing, etc.);

• Robustness against what? Here one specifies the supermodel;

• Robustness in what sense? Here the criterion of quality

of a statistical procedure and some related requirements

towards its behavior are considered.
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Defining a robust procedure, it is useful to answer three

main questions:

• Robustness of what? Here one defines the type of a statis-

tical procedure (point or interval estimation, hypotheses

testing, etc.);

• Robustness against what? Here one specifies the supermodel;

• Robustness in what sense? Here the criterion of quality

of a statistical procedure and some related requirements

towards its behavior are considered.

The wide spectrum of the problems observed in robust

statistics can be explained by the fact that there exists a va-

riety of answers to each of the above questions.
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2. Huber minimax approach

The convincing arguments for robust statistics are given in

Tukey (1960); Huber (1981); Hampel et al. (1986). Here

we only recall that the classical examples of robust and non-

robust estimators of location are given by the sample median

and sample mean, respectively.
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2. Huber minimax approach

The convincing arguments for robust statistics are given in

Tukey (1960); Huber (1981); Hampel et al. (1986). Here

we only recall that the classical examples of robust and non-

robust estimators of location are given by the sample median

and sample mean, respectively.

For description of these violations, the concrete forms of

neighborhoods of the underlying model are formed with the

use of an appropriately chosen metric, for example, the Kol-

mogorov, Prokhorov, or Lévy Hampel et al. (1986); Huber

(1981)). Hence the initial model (basic or ideal) is enlarged

up to the socalled supermodel that describes both the ideal

model and the deviations from it.
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According Bickel (1976) the main supermodels in robust

statistics are of two types: local and global.
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According Bickel (1976) the main supermodels in robust

statistics are of two types: local and global.

A local type suggests setting an ideal (basic) model, and

then the related supermodel is defined as a neighborhood of

this ideal model. A global supermodel represents some class

F of distributions with given properties that also comprises

an ideal model.
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According Bickel (1976) the main supermodels in robust

statistics are of two types: local and global.

A local type suggests setting an ideal (basic) model, and

then the related supermodel is defined as a neighborhood of

this ideal model. A global supermodel represents some class

F of distributions with given properties that also comprises

an ideal model.

For example, Hodges and Lehmann (1963) consider the

supermodel in the form of all absolutely continuous symmetric

distributions.
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According Bickel (1976) the main supermodels in robust

statistics are of two types: local and global.

A local type suggests setting an ideal (basic) model, and

then the related supermodel is defined as a neighborhood of

this ideal model. A global supermodel represents some class

F of distributions with given properties that also comprises

an ideal model.

For example, Hodges and Lehmann (1963) consider the

supermodel in the form of all absolutely continuous symmetric

distributions.

Birnbaum and Laska (1967) propose the supermodel as a fi-

nite collection of distribution functions: F = {F1, F2, . . . , Fk}.
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Various supermodels are used to study deviations from nor-

mality: the family of powerexponential distributions with the

normal, Laplace, and uniform distributions as particular cases;

the family of the Student tdistributions with the normal and

Cauchy distributions; also the influence of nonnormality can

be studied with the use of the measures of asymmetry and

kurtosis, the positive values of the latter indicate gross errors

and heavy tails.
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Various supermodels are used to study deviations from nor-

mality: the family of powerexponential distributions with the

normal, Laplace, and uniform distributions as particular cases;

the family of the Student tdistributions with the normal and

Cauchy distributions; also the influence of nonnormality can

be studied with the use of the measures of asymmetry and

kurtosis, the positive values of the latter indicate gross errors

and heavy tails.

For describing gross errors and outliers, the most popular

is the Tukey (1960) supermodel based on the Gaussean low:

F =

{
F : F (x) = (1− ε)Φ(x) + εΦ(

x− θ

k
)

}
.
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Various supermodels are used to study deviations from nor-

mality: the family of powerexponential distributions with the

normal, Laplace, and uniform distributions as particular cases;

the family of the Student tdistributions with the normal and

Cauchy distributions; also the influence of nonnormality can

be studied with the use of the measures of asymmetry and

kurtosis, the positive values of the latter indicate gross errors

and heavy tails.

For describing gross errors and outliers, the most popular

is the Tukey (1960) supermodel based on the Gaussean low:

F =

{
F : F (x) = (1− ε)Φ(x) + εΦ(

x− θ

k
)

}
. (1)

Huber (1964) considered more general model

F = {F : F (x) = (1− ε)F0(x) + εH(x)} , (2)

where F0 is some given distribution (the ideal model) and

H(x) is an arbitrary continuous distribution.
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M-estimators of location

The first general approach to robust estimation is based on the

minimax principle (Huber, 1964; Huber, 1972; Huber, 1981).

The minimax approach aims at the least favorable situation

for which it suggests the best solution.

Let x1, . . . , xn be a random sample from a distribution F

with density f (x − θ) in a convex class F , where θ is the

location parameter.
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M-estimators of location

The first general approach to robust estimation is based on the

minimax principle (Huber, 1964; Huber, 1972; Huber, 1981).

The minimax approach aims at the least favorable situation

for which it suggests the best solution.

Let x1, . . . , xn be a random sample from a distribution F

with density f (x − θ) in a convex class F , where θ is the

location parameter.

Assume that F is a symmetric unimodal distribution, hence

θ is the center of symmetry to be estimated. Then the M-

estimator θ̂n of the location parameter is defined as some

solution of the following minimization problem
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θ̂n = argmin
θ

n∑
i=1

ρ(xi − θ), (3)

where ρ(u) is an even non-negative function called the con-

trast function; ρ(xi−θ) is the measure of discrepancy between

the observation xi and the center θ.
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θ̂n = argmin
θ

n∑
i=1

ρ(xi − θ), (3)

where ρ(u) is an even non-negative function called the con-

trast function; ρ(xi−θ) is the measure of discrepancy between

the observation xi and the center θ.

• Choosing ρ(u) = u2, we have the least squares (LS)

method with the sample mean xn as an estimator;
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θ̂n = argmin
θ

n∑
i=1

ρ(xi − θ), (3)

where ρ(u) is an even non-negative function called the con-

trast function; ρ(xi−θ) is the measure of discrepancy between

the observation xi and the center θ.

• Choosing ρ(u) = u2, we have the least squares (LS)

method with the sample mean xn as an estimator;

• for ρ(u) = |u|, we have the least absolute values (LAV)

method with the sample median as the estimator;
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θ̂n = argmin
θ

n∑
i=1

ρ(xi − θ), (3)

where ρ(u) is an even non-negative function called the con-

trast function; ρ(xi−θ) is the measure of discrepancy between

the observation xi and the center θ.

• Choosing ρ(u) = u2, we have the least squares (LS)

method with the sample mean xn as an estimator;

• for ρ(u) = |u|, we have the least absolute values (LAV)

method with the sample median as the estimator;

• most important, for a given density f (x), the choice

ρ(u) = − log f (u) yields the maximum likelihood esti-

mator (MLE).

MII-2003 Dimitar Vandev

http://www.fmi.uni-sofia.bg


General remarks

Huber minimax . . .

Hampel approach

Measures of robustness

Multidimensional . . .

Robustified . . .

Linear regression

References

Home Page

Title Page

JJ II

J I

Go Back

Full Screen

Close

Quit

It is convenient to formulate the properties of M-estimators

in terms of the derivative of the contrast function ψ(u) =

ρ′(u) called the score function. In this case, the M-estimator

θ̂n is defined as a solution of the following implicit equation

n∑
i=1

ψ(xi − θ) = 0. (4)
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It is convenient to formulate the properties of M-estimators

in terms of the derivative of the contrast function ψ(u) =

ρ′(u) called the score function. In this case, the M-estimator

θ̂n is defined as a solution of the following implicit equation

n∑
i=1

ψ(xi − θ) = 0. (4)

Under rather general regularity conditions imposed on the class

of score functions Ψ and on the related class of densities F ,

M - estimators are consistent, asymptotically normal with the

asymptotic variance

VM(ψ, f )
def
= D (n1/2θ̂n) =

E Fψ
2

(E Fψ′)2
=

∫
ψ2dF

(
∫
ψ′dF )2

. (5)
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Huber minimax property

The following regularity conditions defining the classes F are

sufficient (for details Hampel et al. (1986), pp.125 - 127)):
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Huber minimax property

The following regularity conditions defining the classes F are

sufficient (for details Hampel et al. (1986), pp.125 - 127)):

F1 : f is twice continuously differentiable and satisfies f (x) >

0 for all x ∈ R,
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Huber minimax property

The following regularity conditions defining the classes F are

sufficient (for details Hampel et al. (1986), pp.125 - 127)):

F1 : f is twice continuously differentiable and satisfies f (x) >

0 for all x ∈ R,

F2 : the Fisher information for location satisfies 0 < I(f ) <

∞.
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Huber minimax property

The following regularity conditions defining the classes F are

sufficient (for details Hampel et al. (1986), pp.125 - 127)):

F1 : f is twice continuously differentiable and satisfies f (x) >

0 for all x ∈ R,

F2 : the Fisher information for location satisfies 0 < I(f ) <

∞.

Let f ∗ be the least favorable density in F :

f ∗ = argmin
f∈F

I(f ), I(f ) =

∫ [
f ′(x)

f (x)

]2

f (x)dx.
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Huber minimax property

The following regularity conditions defining the classes F are

sufficient (for details Hampel et al. (1986), pp.125 - 127)):

F1 : f is twice continuously differentiable and satisfies f (x) >

0 for all x ∈ R,

F2 : the Fisher information for location satisfies 0 < I(f ) <

∞.

Let f ∗ be the least favorable density in F :

f ∗ = argmin
f∈F

I(f ), I(f ) =

∫ [
f ′(x)

f (x)

]2

f (x)dx. (6)

Then the optimal contrast function and score function are cal-

culated by maximum likelihood method for the least favorable

density:

ρ∗ = − log f ∗, ψ∗ = f ∗′/f ∗
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Then the Huber minimax property is

VM(ψ∗, f) ≤ VM(ψ∗, f ∗) = sup
f∈F

inf
ψ∈Ψ

VM(ψ, f ).
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Then the Huber minimax property is

VM(ψ∗, f) ≤ VM(ψ∗, f ∗) = sup
f∈F

inf
ψ∈Ψ

VM(ψ, f ). (7)

Thus the main problem is to solve (6) for different classes F .
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Then the Huber minimax property is

VM(ψ∗, f) ≤ VM(ψ∗, f ∗) = sup
f∈F

inf
ψ∈Ψ

VM(ψ, f ). (7)

Thus the main problem is to solve (6) for different classes F .

For the mixture class of Huber (2) if h(x) satisfy condi-

tions (F1 ) and (F2 ) along with the additional logconvexity

condition we have:
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Then the Huber minimax property is

VM(ψ∗, f) ≤ VM(ψ∗, f ∗) = sup
f∈F

inf
ψ∈Ψ

VM(ψ, f ). (7)

Thus the main problem is to solve (6) for different classes F .

For the mixture class of Huber (2) if h(x) satisfy condi-

tions (F1 ) and (F2 ) along with the additional logconvexity

condition we have:

Figure 1: Score Function

ψ∗(x) =

{
−f ′0(x)/f0(x), |x| ≤ ∆

B sgn(x), ∆ < |x|.

f ∗(x) =

{
(1− ε)f0(x), |x| ≤ ∆

A exp(−Bx), ∆ < |x|.
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L-estimators of location

L-estimators were proposed by Daniel (1920) and forgotten

for 30 years. The linear combinations of order statistics (L-

estimators) are defined as

θ̂n =

n∑
i=1

Cix(i), (8)

where x(i) is the i-th order statistic.
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L-estimators of location

L-estimators were proposed by Daniel (1920) and forgotten

for 30 years. The linear combinations of order statistics (L-

estimators) are defined as

θ̂n =

n∑
i=1

Cix(i), (8)

where x(i) is the i-th order statistic. The trimmed mean:

xtr(k) =
1

n− 2k

n−k∑
i=k+1

x(i) (9)
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L-estimators of location

L-estimators were proposed by Daniel (1920) and forgotten

for 30 years. The linear combinations of order statistics (L-

estimators) are defined as

θ̂n =

n∑
i=1

Cix(i), (8)

where x(i) is the i-th order statistic. The trimmed mean:

xtr(k) =
1

n− 2k

n−k∑
i=k+1

x(i) (9)

and the Winsorized mean:

xW (k) =
1

n
(kx(k) +

n−k∑
i=k+1

x(i) + kx(n−k+1)) (10)

are typical representatives of this class.
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The L-estimators may be easily represented in the form:

θ̂n =
1

n

n∑
i=1

h(
i

n + 1
)x(i), (11)

where the function h is a function of bounded variation on

[0, 1], h(t) = h(1 − t) and
∫ 1

0 h(t)dt = 1.
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The L-estimators may be easily represented in the form:

θ̂n =
1

n

n∑
i=1

h(
i

n + 1
)x(i), (11)

where the function h is a function of bounded variation on

[0, 1], h(t) = h(1 − t) and
∫ 1

0 h(t)dt = 1. These conditions

on h along with the regularity conditions (F1 ) and (F2 ) on

the distribution provide consistency and asymptotic normality

of L-estimators (8) with asymptotic variance

VL(h, f )
def
= D (n1/2θ̂n) =

∫ 1

0

K2(t)dt, (12)

where

K(t) = (h(t)F−1(t)− θ), θ =

∫ 1

0

h(t)F−1(t)dt
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R-estimators of location

R-estimators proposed in Hodges and Lehmann (1963) are

based on rank tests. There are several methods of their con-

struction. Let y1, . . . , yn and z1, . . . , zn be independent sam-

ples from the distributions F (x) and F (x − θ) respectively.

For testing the hypothesis θ = 0 against the alternative θ > 0

the following statistic is used:

Wn(y1, . . . , yn, z1, . . . , zn) =

n∑
i=1

J(
si

2n + 1
) (13)

where si is the rank of yi, i = 1, . . . n, in the united sample

of size 2n.
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R-estimators of location

R-estimators proposed in Hodges and Lehmann (1963) are

based on rank tests. There are several methods of their con-

struction. Let y1, . . . , yn and z1, . . . , zn be independent sam-

ples from the distributions F (x) and F (x − θ) respectively.

For testing the hypothesis θ = 0 against the alternative θ > 0

the following statistic is used:

Wn(y1, . . . , yn, z1, . . . , zn) =

n∑
i=1

J(
si

2n + 1
) (13)

where si is the rank of yi, i = 1, . . . n, in the united sample

of size 2n.

Let J(t), 0 ≤ t ≤ 1, satisfy the following conditions:

1. J(t) is increasing;
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R-estimators of location

R-estimators proposed in Hodges and Lehmann (1963) are

based on rank tests. There are several methods of their con-

struction. Let y1, . . . , yn and z1, . . . , zn be independent sam-

ples from the distributions F (x) and F (x − θ) respectively.

For testing the hypothesis θ = 0 against the alternative θ > 0

the following statistic is used:

Wn(y1, . . . , yn, z1, . . . , zn) =

n∑
i=1

J(
si

2n + 1
) (13)

where si is the rank of yi, i = 1, . . . n, in the united sample

of size 2n.

Let J(t), 0 ≤ t ≤ 1, satisfy the following conditions:

1. J(t) is increasing;

2. J(t) + J(1− t) = 0 for all t ∈ [0, 1];
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3. the functions J ′ and f (F−1) are of bound variation on

[0, 1],

(14)
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3. the functions J ′ and f (F−1) are of bound variation on

[0, 1],

4.
∫ 1

0 J
′(t)f (F−1(t))dt 6= 0.

(14)
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3. the functions J ′ and f (F−1) are of bound variation on

[0, 1],

4.
∫ 1

0 J
′(t)f (F−1(t))dt 6= 0.

Under these conditions, Hájek and Šidák (1967) proved that

the test with the critical region Wn > c has certain optimal

in power properties.

(14)
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3. the functions J ′ and f (F−1) are of bound variation on

[0, 1],

4.
∫ 1

0 J
′(t)f (F−1(t))dt 6= 0.

Under these conditions, Hájek and Šidák (1967) proved that

the test with the critical region Wn > c has certain optimal

in power properties.

The R-estimator θ̂n based on this test is defined as a solu-

tion of the equation:

Wn(x1−θ, . . . , xn−θ,−(x1−θ), . . . ,−(xn−θ)) = 0 (14)
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Under the above conditions, θ̂n is consistent and asymptot-

ically normal with asymptotic variance

VR(J, F )
def
= D (n1/2θ̂n) =

∫ 1

0 J
2(t)dt

(
∫
J ′(F (x))f 2(x)dx)2

.
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Under the above conditions, θ̂n is consistent and asymptot-

ically normal with asymptotic variance

VR(J, F )
def
= D (n1/2θ̂n) =

∫ 1

0 J
2(t)dt

(
∫
J ′(F (x))f 2(x)dx)2

. (15)

For any fixed function F (x), it is possible to find the func-

tion J(t) minimizing asymptotic variance VR(J, F ). The test

based on such function J(t) also has optimal properties for this

F . In particular, the logistic distribution F (x) = (1 + e−x)−1

produces the well known Wilcoxon test. The corresponding

estimator of location is the Hodges-Lehmann median:

θ̂n = med

{
x(i) + x(k)

2
, 1 ≤ i < k ≤ n

}
. (16)
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Applications of measures of location

Probably the most important place is the statistical quality

control. Stromberg et al. (1998) developed Control Charts

for the Median and Iinterquartile Range.
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Applications of measures of location

Probably the most important place is the statistical quality

control. Stromberg et al. (1998) developed Control Charts

for the Median and Iinterquartile Range.

Römisch et al. (2001) tested all kinds of estimators for

Determination of the Geographical Origin of Wines from East

European Countries.
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3. Hampel approach

The main advantage of robust methods is their lower sen-

sitivity to possible variations of data statistical characteris-

tics. Thus it is necessary to have specific mathematical tools

allowing to analyze the sensitivity of estimators to outliers,

roundingoff errors, etc. On the other hand, such tools make

it possible to solve the inverse problem: to design estimators

with the required sensitivity. Now we introduce the above-

mentioned apparatus, namely the sensitivity curves and the

influence functions.

The sensitivity curve

Let {Tn} be a sequence of statistics. Let Tn(X) denote

the statistic from {Tn} on the sample X = (x1, . . . , xn),

and let Tn+1(x,X) denote the same statistic on the sample
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3. Hampel approach

The main advantage of robust methods is their lower sen-

sitivity to possible variations of data statistical characteris-

tics. Thus it is necessary to have specific mathematical tools

allowing to analyze the sensitivity of estimators to outliers,

roundingoff errors, etc. On the other hand, such tools make

it possible to solve the inverse problem: to design estimators

with the required sensitivity. Now we introduce the above-

mentioned apparatus, namely the sensitivity curves and the

influence functions.

The sensitivity curve

Let {Tn} be a sequence of statistics. Let Tn(X) denote

the statistic from {Tn} on the sample X = (x1, . . . , xn),

and let Tn+1(x,X) denote the same statistic on the sample
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(x1, . . . , xn, x).
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(x1, . . . , xn, x). Then the function

SCn(x;Tn, X) = (n + 1)[Tn+1(x,X)− Tn(X)] (17)

is called the sensitivity curve for this statistic Tukey (1977).
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In particular,

xn SCn(x;xn, X) = x− xn

med(X)
(n = 2k + 1)

SCn(x;med(X), X) =


(n + 1)(x(k) − x(k+1))/2, x ≤ x(k)

(n + 1)(x− x(k+1))/2, x(k) ≤ x ≤ x(k+2)

(n + 1)(x(k+2) − x(k+1))/2, x(k+2) ≤ x

xtr(1) SCn(x;xtr(1), X) =


x(1), x ≤ x(1)

x, x(1) ≤ x ≤ x(n)

x(n), x(n) ≤ x

Table 1: Example sensitivity curves
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In particular,

xn SCn(x;xn, X) = x− xn

med(X)
(n = 2k + 1)

SCn(x;med(X), X) =


(n + 1)(x(k) − x(k+1))/2, x ≤ x(k)

(n + 1)(x− x(k+1))/2, x(k) ≤ x ≤ x(k+2)

(n + 1)(x(k+2) − x(k+1))/2, x(k+2) ≤ x

xtr(1) SCn(x;xtr(1), X) =


x(1), x ≤ x(1)

x, x(1) ≤ x ≤ x(n)

x(n), x(n) ≤ x

Table 1: Example sensitivity curves

Figure 2: Sensitivity curves

We can see that the sensitivity curve

(a.) of the sample mean is unbounded,

hence only one extreme observation

can completely destroy the estimator.

In addition, the maximal error of the

trimmed mean (curve c.) is of order

(x(n)−x(1))/n, while this of median –

of (x(k+2) − x(k)).
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The influence function

Let F be a fixed distribution and T (F ) be a functional defined

on some set F of distributions satisfying conditions (F1 ) and

(F2 ). Let the estimator Tn be constructed in the form Tn =

T (Fn). Then we define the influence function as:

IF (x, T, F ) = lim
t→0

T ((1− t)F + tδx)− T (F )

t
. (18)
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The influence function

Let F be a fixed distribution and T (F ) be a functional defined

on some set F of distributions satisfying conditions (F1 ) and

(F2 ). Let the estimator Tn be constructed in the form Tn =

T (Fn). Then we define the influence function as:

IF (x, T, F ) = lim
t→0

T ((1− t)F + tδx)− T (F )

t
. (18)

xn IF (x, T, F ) = x− T (F ) = x−
∫

xdF (x)
med(X) T (F ) = F−1(1/2), IF (x, T, F ) = sgn(x)/(2f(0))

xtr(k)
α = k/n

IF (x, T, F ) =


F−1(α)/(1− 2α), x ≤ F−1(α)
x/(1− 2α), F−1(α) ≤ x ≤ F−1(1− α)
F−1(α)/(1− 2α), F−1(1− α) ≤ x

Table 2: Example influence functions
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Figure 3: Influence functions

Comparing Fig.2 and Fig.3, we see

that the forms of influence and sen-

sitivity curves are similar. In fact

SCn(x;T, F ) → IF (x;T, F ) as n→
∞.
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Figure 3: Influence functions

Comparing Fig.2 and Fig.3, we see

that the forms of influence and sen-

sitivity curves are similar. In fact

SCn(x;T, F ) → IF (x;T, F ) as n→
∞.

The influence function for the M-

estimator with the score function ψ is

of the form Hampel et al. (1986)

IF (x;ψ, F ) =
ψ∫

ψdF (x)
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Figure 3: Influence functions

Comparing Fig.2 and Fig.3, we see

that the forms of influence and sen-

sitivity curves are similar. In fact

SCn(x;T, F ) → IF (x;T, F ) as n→
∞.

The influence function for the M-

estimator with the score function ψ is

of the form Hampel et al. (1986)

IF (x;ψ, F ) =
ψ∫

ψdF (x)

Fernholz (1983) showed that Tn is asymptotically normal

with asymptotic variance

V (T, F ) =

∫
IF 2(x;T, F )dF (x). (19)
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4. Measures of robustness

Local measures of sensitivity

From the influence function, the following robustness mea-

sures can be defined (Hampel (1968); Hampel (1974)).
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4. Measures of robustness

Local measures of sensitivity

From the influence function, the following robustness mea-

sures can be defined (Hampel (1968); Hampel (1974)).

Gross-error sensitivity

γ∗(T, F ) = sup
x
|IF (x;T, F )|

is an upper bound to the

asymptotic bias of the es-

timator and measures the

worst influence of an in-

finitesimal contamination.

The estimators T having

finite γ∗(T, F ) are called

B-robust.
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Local-shift sensitivity

λ∗(T, F ) = sup
x 6=y

|IF (y;T, F )− IF (x;T, F )|
|y − x|

accounts the effects of

rounding-off and grouping

of the observations.
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Local-shift sensitivity

λ∗(T, F ) = sup
x 6=y

|IF (y;T, F )− IF (x;T, F )|
|y − x|

accounts the effects of

rounding-off and grouping

of the observations.

Rejection point

ρ∗(T, F ) = inf
r>0

{r : IF (x;T, F ) = 0,∀|x| > r}

defines the observations to

be rejected completely.
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Local-shift sensitivity

λ∗(T, F ) = sup
x 6=y

|IF (y;T, F )− IF (x;T, F )|
|y − x|

accounts the effects of

rounding-off and grouping

of the observations.

Rejection point

ρ∗(T, F ) = inf
r>0

{r : IF (x;T, F ) = 0,∀|x| > r}

defines the observations to

be rejected completely.

Change-of-variance function

CV F (x;T, F ) = lim
t→0

V (T, (1− t)F + tδx)− V (T, F )

t

was introduced by Hampel et al. (1986) by analogy with

the influence function IF . Here V (T, F ) is the asymptotic

variance.

MII-2003 Dimitar Vandev

http://www.fmi.uni-sofia.bg


General remarks

Huber minimax . . .

Hampel approach

Measures of robustness

Multidimensional . . .

Robustified . . .

Linear regression

References

Home Page

Title Page

JJ II

J I

Go Back

Full Screen

Close

Quit

Change-of-variance sensitivity

k∗(T, F ) = sup
x

CV F (x;F, T )

V (T, F )

The estimator Tn =

T (Fn) of the func-

tional T (F ) is called V-

robust if k∗(T, F ) <

∞.

Hence it is

desirable to have a measure of the global robustness of the es-

timator over the chosen class of distributions, in other words,

in the chosen supermodel F .
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Change-of-variance sensitivity

k∗(T, F ) = sup
x

CV F (x;F, T )

V (T, F )

The estimator Tn =

T (Fn) of the func-

tional T (F ) is called V-

robust if k∗(T, F ) <

∞.

All the above-introduced measures of robustness based on

the influence function and its derivatives are of a local char-

acter being evaluated at the model distribution F . Hence it is

desirable to have a measure of the global robustness of the es-

timator over the chosen class of distributions, in other words,

in the chosen supermodel F .
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Break-down point

Let d be a distance in the space of all distributions. The break-

down point of the estimator Tn = T (Fn) for the functional

T (F ) at F is defined by

ε∗(T,F) = sup
ε<1

{ε : sup
F :d(F,F0)<ε

|T (F )− T (F0)| <∞}.
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Break-down point

Let d be a distance in the space of all distributions. The break-

down point of the estimator Tn = T (Fn) for the functional

T (F ) at F is defined by

ε∗(T,F) = sup
ε<1

{ε : sup
F :d(F,F0)<ε

|T (F )− T (F0)| <∞}.

The breakdown point characterizes the maximal deviation from

the ideal model F0 that provides the boundedness of the esti-

mator bias.
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Break-down point

Let d be a distance in the space of all distributions. The break-

down point of the estimator Tn = T (Fn) for the functional

T (F ) at F is defined by

ε∗(T,F) = sup
ε<1

{ε : sup
F :d(F,F0)<ε

|T (F )− T (F0)| <∞}.

The breakdown point characterizes the maximal deviation from

the ideal model F0 that provides the boundedness of the esti-

mator bias.

Breakdown point as applied to the Huber supermodel

ε∗(T,F) = sup
ε<1

{ε : sup
F :F=(1−ε)F0+εH

|T (F )− T (F0)| <∞}.

(20)

MII-2003 Dimitar Vandev

http://www.fmi.uni-sofia.bg


General remarks

Huber minimax . . .

Hampel approach

Measures of robustness

Multidimensional . . .

Robustified . . .

Linear regression

References

Home Page

Title Page

JJ II

J I

Go Back

Full Screen

Close

Quit

Here is the replacement variant of the finite sample break-

down point given by Hampel et al. (1986).
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Here is the replacement variant of the finite sample break-

down point given by Hampel et al. (1986).

Let Ω = {ωi ∈ Rp, for i = 1, . . . , n} be a sample of size

n. The breakdown point of an estimator T (Ω) ∈ Rq is given

by

ε∗n(T ) =
1

n
max{m : sup

Ω̃m

‖T (Ω̃m)‖ <∞}, (21)

where Ω̃m is any sample obtained from Ω by replacing any m

of the points in Ω by arbitrary values.
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Here is the replacement variant of the finite sample break-

down point given by Hampel et al. (1986).

Let Ω = {ωi ∈ Rp, for i = 1, . . . , n} be a sample of size

n. The breakdown point of an estimator T (Ω) ∈ Rq is given

by

ε∗n(T ) =
1

n
max{m : sup

Ω̃m

‖T (Ω̃m)‖ <∞}, (21)

where Ω̃m is any sample obtained from Ω by replacing any m

of the points in Ω by arbitrary values.

In other words there should exist a compact set such that

the estimator T remains in it even if we replace any m ele-

ments of the sample Ω by arbitrary ones. The largest m/n

for which this property holds is the breakdown point.
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5. Multidimensional Statistics

All the definitions and methods can be easily extended to

multivariate and multiparametric case when one estimates

location.
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5. Multidimensional Statistics

All the definitions and methods can be easily extended to

multivariate and multiparametric case when one estimates

location.

LTS and LMS

The multiple regression is probably most used statistical pro-

cedure in the industrial statistics. Consider the model

yi = xTi β + εi.

where yi is an observed response, xi is a p × 1–dimensional

vector of explanatory variables and β is a p × 1 vector of

unknown parameters. Classically εi, i = 1, . . . , n are assumed

to be i.i.d. N(0, σ2), for some σ2 > 0.
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The LMS (Least Median of Squares) and LTS (Least

Trimmed Squares) estimators were proposed by Rousseeuw

(1984) as robust alternatives of the LSE
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The LMS (Least Median of Squares) and LTS (Least

Trimmed Squares) estimators were proposed by Rousseeuw

(1984) as robust alternatives of the LSE

LMS(r1, . . . , rn) = argmin
θ

med{r2
i , i = 1, ..., n},(22)
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The LMS (Least Median of Squares) and LTS (Least

Trimmed Squares) estimators were proposed by Rousseeuw

(1984) as robust alternatives of the LSE

LMS(r1, . . . , rn) = argmin
θ

med{r2
i , i = 1, ..., n},(22)

LTS(k)(r1, . . . , rn) = argmin
θ

k∑
i=1

r2
ν(i,θ). (23)

Here ν(i, θ) is a permutation of the indices, such that r2
ν(i,θ) ≤

r2
ν(i+1,θ). Thus the idea was to minimize the sum of squares

using ”smallest residuals” only.
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Covariance

The estimation of unknown covariance matrix of observed data

or estimated parameters turned out to be not so easy. In fact,

only two methods are used in practice and very little is known

about their properties.

Applications

We should mention here the works of Mili et al. (1991)and

Mili et al. (1994) on Power Systems.
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Covariance

The estimation of unknown covariance matrix of observed data

or estimated parameters turned out to be not so easy. In fact,

only two methods are used in practice and very little is known

about their properties. These are

• MVE - minimum volume ellipsoid;

Applications

We should mention here the works of Mili et al. (1991)and

Mili et al. (1994) on Power Systems.
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Covariance

The estimation of unknown covariance matrix of observed data

or estimated parameters turned out to be not so easy. In fact,

only two methods are used in practice and very little is known

about their properties. These are

• MVE - minimum volume ellipsoid;

• MCD - minimum covariance determinant.

Applications

We should mention here the works of Mili et al. (1991)and

Mili et al. (1994) on Power Systems.
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Covariance

The estimation of unknown covariance matrix of observed data

or estimated parameters turned out to be not so easy. In fact,

only two methods are used in practice and very little is known

about their properties. These are

• MVE - minimum volume ellipsoid;

• MCD - minimum covariance determinant.

In both cases one have to choose fixed percentage (e.g.

90% ) of observed data having corresponding optimal property.

Then the estimator is build using only these data.

Applications

We should mention here the works of Mili et al. (1991)and

Mili et al. (1994) on Power Systems.
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6. Robustified Maximum likelihood

Neykov and Neytchev (1990) proposed to replace in the LMS

and LTS estimators the squared residuals with - log likeli-

hood´s of the individual observations and thus to obtain ro-

bustified likelihood.
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6. Robustified Maximum likelihood

Neykov and Neytchev (1990) proposed to replace in the LMS

and LTS estimators the squared residuals with - log likeli-

hood´s of the individual observations and thus to obtain ro-

bustified likelihood.

Let the observations x1, x2, . . . , xn be generated by an arbi-

trary probability density function ψ(x, θ) with unknown vector

parameter θ.
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6. Robustified Maximum likelihood

Neykov and Neytchev (1990) proposed to replace in the LMS

and LTS estimators the squared residuals with - log likeli-

hood´s of the individual observations and thus to obtain ro-

bustified likelihood.

Let the observations x1, x2, . . . , xn be generated by an arbi-

trary probability density function ψ(x, θ) with unknown vector

parameter θ.

LME(k) = argmin
θ

{− logψ(xν(k,θ), θ)}, (24)
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6. Robustified Maximum likelihood

Neykov and Neytchev (1990) proposed to replace in the LMS

and LTS estimators the squared residuals with - log likeli-

hood´s of the individual observations and thus to obtain ro-

bustified likelihood.

Let the observations x1, x2, . . . , xn be generated by an arbi-

trary probability density function ψ(x, θ) with unknown vector

parameter θ.

LME(k) = argmin
θ

{− logψ(xν(k,θ), θ)}, (24)

LTE(k) = argmin
θ

k∑
i=1

{− logψ(xν(i,θ), θ)}. (25)

Thus the idea was to maximize the likelihood over the best

k observations (with ”largest likelihood”).
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6. Robustified Maximum likelihood

Neykov and Neytchev (1990) proposed to replace in the LMS

and LTS estimators the squared residuals with - log likeli-

hood´s of the individual observations and thus to obtain ro-

bustified likelihood.

Let the observations x1, x2, . . . , xn be generated by an arbi-

trary probability density function ψ(x, θ) with unknown vector

parameter θ.

LME(k) = argmin
θ

{− logψ(xν(k,θ), θ)}, (24)

LTE(k) = argmin
θ

k∑
i=1

{− logψ(xν(i,θ), θ)}. (25)

Thus the idea was to maximize the likelihood over the best

k observations (with ”largest likelihood”).

Both estimators may be easily combined into one. However

it took some time (5 years) to understand.
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Weighted Trimmed Likelihood (WTL)

WTL estimators were introduced independently by Hadi and

Luceño (1997) and Vandev and Neykov (1998).
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Weighted Trimmed Likelihood (WTL)

WTL estimators were introduced independently by Hadi and

Luceño (1997) and Vandev and Neykov (1998).

Let the observations x1, x2, . . . , xn be generated by an ar-

bitrary probability density function f (x, θ) with unknown vec-

tor parameter θ. Let the weights wi for i = 1, . . . , n be fixed

nonnegative numbers.

WTL(k)(x1, . . . , xn) = argmin
θ

k∑
i=1

{−wi log f (xν(i,θ), θ)}

(26)

where f (xν(i,θ), θ) ≥ f (xν(i+1,θ), θ) are the ordered density

values. ν is a permutation of the indices 1, . . . , n, which may

depend on θ.

• The LME(k) estimator is obtained if wi = δi,k,
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Weighted Trimmed Likelihood (WTL)

WTL estimators were introduced independently by Hadi and

Luceño (1997) and Vandev and Neykov (1998).

Let the observations x1, x2, . . . , xn be generated by an ar-

bitrary probability density function f (x, θ) with unknown vec-

tor parameter θ. Let the weights wi for i = 1, . . . , n be fixed

nonnegative numbers.

WTL(k)(x1, . . . , xn) = argmin
θ

k∑
i=1

{−wi log f (xν(i,θ), θ)}

(26)

where f (xν(i,θ), θ) ≥ f (xν(i+1,θ), θ) are the ordered density

values. ν is a permutation of the indices 1, . . . , n, which may

depend on θ.

• The LME(k) estimator is obtained if wi = δi,k,
• the LTE(k) is obtained if wi = 1 for i = 1, . . . , n,
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Weighted Trimmed Likelihood (WTL)

WTL estimators were introduced independently by Hadi and

Luceño (1997) and Vandev and Neykov (1998).

Let the observations x1, x2, . . . , xn be generated by an ar-

bitrary probability density function f (x, θ) with unknown vec-

tor parameter θ. Let the weights wi for i = 1, . . . , n be fixed

nonnegative numbers.

WTL(k)(x1, . . . , xn) = argmin
θ

k∑
i=1

{−wi log f (xν(i,θ), θ)}

(26)

where f (xν(i,θ), θ) ≥ f (xν(i+1,θ), θ) are the ordered density

values. ν is a permutation of the indices 1, . . . , n, which may

depend on θ.

• The LME(k) estimator is obtained if wi = δi,k,
• the LTE(k) is obtained if wi = 1 for i = 1, . . . , n,
• the maximum likelihood estimator – if k = n.
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Definition of d-fullness

In order to study the breakdown properties of general estima-

tors of the type (24) and (25) Vandev (1993) developed a

d–fullness technique. He proved that their breakdown point

is not less than (n − k)/n if k is within the range of values

(n+ d)/2 ≤ k ≤ (n− d) for some constant d which depends

upon the density considered.
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Definition of d-fullness

In order to study the breakdown properties of general estima-

tors of the type (24) and (25) Vandev (1993) developed a

d–fullness technique. He proved that their breakdown point

is not less than (n − k)/n if k is within the range of values

(n+ d)/2 ≤ k ≤ (n− d) for some constant d which depends

upon the density considered.

Now we present a simple generalization of this result for

the case of WTL estimators (26). First the definition
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Definition of d-fullness

In order to study the breakdown properties of general estima-

tors of the type (24) and (25) Vandev (1993) developed a

d–fullness technique. He proved that their breakdown point

is not less than (n − k)/n if k is within the range of values

(n+ d)/2 ≤ k ≤ (n− d) for some constant d which depends

upon the density considered.

Now we present a simple generalization of this result for

the case of WTL estimators (26). First the definition

Definition A finite set F of n functions is called d–full, if

for each subset of cardinality d of F , the supremum of this

subset is a subcompact function.
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Definition of d-fullness

In order to study the breakdown properties of general estima-

tors of the type (24) and (25) Vandev (1993) developed a

d–fullness technique. He proved that their breakdown point

is not less than (n − k)/n if k is within the range of values

(n+ d)/2 ≤ k ≤ (n− d) for some constant d which depends

upon the density considered.

Now we present a simple generalization of this result for

the case of WTL estimators (26). First the definition

Definition A finite set F of n functions is called d–full, if

for each subset of cardinality d of F , the supremum of this

subset is a subcompact function.

We remind that a real valued function g(θ) defined on a

topological space Θ is called subcompact, if its Lebesque sets

{θ : g(θ) ≤ C} are compact (or empty) for any constant C.
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Let the finite set F = {fi(θ) ≥ 0, i = 1, . . . , n, for θ ∈ Θ}
be d–full and Θ is a topological space. Consider the estimator

of θ

R(k) = argmin
θ

k∑
i=1

wifν(i,θ)(θ).
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Let the finite set F = {fi(θ) ≥ 0, i = 1, . . . , n, for θ ∈ Θ}
be d–full and Θ is a topological space. Consider the estimator

of θ

R(k) = argmin
θ

k∑
i=1

wifν(i,θ)(θ).

Here fν(i,θ)(θ) ≤ fν(i+1,θ)(θ) are the ordered values of fi at

θ. The weights wi ≥ 0, wk = 1. From a statistical point

of view R(k) can be considered as a set of estimates if the

functions fi(θ) are appropriately chosen, e.g. depend on the

observations.

MII-2003 Dimitar Vandev

http://www.fmi.uni-sofia.bg


General remarks

Huber minimax . . .

Hampel approach

Measures of robustness

Multidimensional . . .

Robustified . . .

Linear regression

References

Home Page

Title Page

JJ II

J I

Go Back

Full Screen

Close

Quit

Let the finite set F = {fi(θ) ≥ 0, i = 1, . . . , n, for θ ∈ Θ}
be d–full and Θ is a topological space. Consider the estimator

of θ

R(k) = argmin
θ

k∑
i=1

wifν(i,θ)(θ).

Here fν(i,θ)(θ) ≤ fν(i+1,θ)(θ) are the ordered values of fi at

θ. The weights wi ≥ 0, wk = 1. From a statistical point

of view R(k) can be considered as a set of estimates if the

functions fi(θ) are appropriately chosen, e.g. depend on the

observations.

Theorem. Under these conditions if n ≥ 3d and (n +

d)/2 ≤ k ≤ n − d, then the breakdown point of the esti-

mator R(k) is not less than (n− k)/n.
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Let the finite set F = {fi(θ) ≥ 0, i = 1, . . . , n, for θ ∈ Θ}
be d–full and Θ is a topological space. Consider the estimator

of θ

R(k) = argmin
θ

k∑
i=1

wifν(i,θ)(θ).

Here fν(i,θ)(θ) ≤ fν(i+1,θ)(θ) are the ordered values of fi at

θ. The weights wi ≥ 0, wk = 1. From a statistical point

of view R(k) can be considered as a set of estimates if the

functions fi(θ) are appropriately chosen, e.g. depend on the

observations.

Theorem. Under these conditions if n ≥ 3d and (n +

d)/2 ≤ k ≤ n − d, then the breakdown point of the esti-

mator R(k) is not less than (n− k)/n.

The value d may be interpreted as

number of observations necessary to make unique guess for

the estimated parameter.
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Multivariate normal distribution

Vandev and Neykov (1993) determined the value of d for the

set of log-density functions for the multivariate normal case.

When estimating only the mean d = 1. When one need to

estimate the covariance matrix d = p + 1. Let xi ∈ Rp, i =

1, . . . , n have density

ϕ(x, µ, S) = (2π)−p/2(det(S))−1/2 exp(−(x− µ)′S−1(x− µ)/2).
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Multivariate normal distribution

Vandev and Neykov (1993) determined the value of d for the

set of log-density functions for the multivariate normal case.

When estimating only the mean d = 1. When one need to

estimate the covariance matrix d = p + 1. Let xi ∈ Rp, i =

1, . . . , n have density

ϕ(x, µ, S) = (2π)−p/2(det(S))−1/2 exp(−(x− µ)′S−1(x− µ)/2).

Theorem.If n ≥ d and (n + d)/2 ≤ k ≤ n− d, then

the breakdown point of the WTL(k) of µ and S is equal

to (n− k)/n.
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Multivariate normal distribution

Vandev and Neykov (1993) determined the value of d for the

set of log-density functions for the multivariate normal case.

When estimating only the mean d = 1. When one need to

estimate the covariance matrix d = p + 1. Let xi ∈ Rp, i =

1, . . . , n have density

ϕ(x, µ, S) = (2π)−p/2(det(S))−1/2 exp(−(x− µ)′S−1(x− µ)/2).

Theorem.If n ≥ d and (n + d)/2 ≤ k ≤ n− d, then

the breakdown point of the WTL(k) of µ and S is equal

to (n− k)/n.

Later Marincheva and Vandev (1995) considered a general

elliptic family. Atanasov and Neykov (2001) calculated the

fullness parameters for the Lognormal, Poisson, Gamma, Ge-

ometric and Logarithmic series distributions and thus deter-

mined the BPs of the WTL estimators for the corresponding

Generalized Linear Models.
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7. Linear regression

Theory

Consider the class of regression estimators defined as

β̂ = argmin
β

k∑
i=1

wiρ(|r|ν(i,θ)), (27)

where ρ is strictly increasing continuous function such that

ρ(0) = 0.

MII-2003 Dimitar Vandev

http://www.fmi.uni-sofia.bg


General remarks

Huber minimax . . .

Hampel approach

Measures of robustness

Multidimensional . . .

Robustified . . .

Linear regression

References

Home Page

Title Page

JJ II

J I

Go Back

Full Screen

Close

Quit

7. Linear regression

Theory

Consider the class of regression estimators defined as

β̂ = argmin
β

k∑
i=1

wiρ(|r|ν(i,θ)), (27)

where ρ is strictly increasing continuous function such that

ρ(0) = 0.

This class of estimators is regression, scale and affine equiv-

ariant following the reasoning of Rousseeuw and Leroy (1987).
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7. Linear regression

Theory

Consider the class of regression estimators defined as

β̂ = argmin
β

k∑
i=1

wiρ(|r|ν(i,θ)), (27)

where ρ is strictly increasing continuous function such that

ρ(0) = 0.

This class of estimators is regression, scale and affine equiv-

ariant following the reasoning of Rousseeuw and Leroy (1987).

Theorem.The breakdown point of the regression esti-

mators (27) is equal to (n− k)/n if the index k is within

the bounds (n + p + 1)/2 ≤ k ≤ n− p− 1, n ≥ 3(p + 1)

and the data points xi ∈ Rp for i = 1, . . . , n are in general

position.
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This class of estimators (27) contains also:

• Least Squares Estimators (LSE) if ρ(|r|(i)) = r2
(i)
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This class of estimators (27) contains also:

• Least Squares Estimators (LSE) if ρ(|r|(i)) = r2
(i)

• Least Absolute Value Estimator (LAV) if ρ(|r|(i)) = |r|(i)
and wi ≡ 1 for i = 1, 2, . . . , n;
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This class of estimators (27) contains also:

• Least Squares Estimators (LSE) if ρ(|r|(i)) = r2
(i)

• Least Absolute Value Estimator (LAV) if ρ(|r|(i)) = |r|(i)
and wi ≡ 1 for i = 1, 2, . . . , n;

• Chebishev minmax estimator if ρ(|r|(n)) = |r|(n), wn = 1

and wi = 0 for i = 1, 2, . . . , n− 1;
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This class of estimators (27) contains also:

• Least Squares Estimators (LSE) if ρ(|r|(i)) = r2
(i)

• Least Absolute Value Estimator (LAV) if ρ(|r|(i)) = |r|(i)
and wi ≡ 1 for i = 1, 2, . . . , n;

• Chebishev minmax estimator if ρ(|r|(n)) = |r|(n), wn = 1

and wi = 0 for i = 1, 2, . . . , n− 1;

• LMS and LTS estimators of Rousseeuw (1984);
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This class of estimators (27) contains also:

• Least Squares Estimators (LSE) if ρ(|r|(i)) = r2
(i)

• Least Absolute Value Estimator (LAV) if ρ(|r|(i)) = |r|(i)
and wi ≡ 1 for i = 1, 2, . . . , n;

• Chebishev minmax estimator if ρ(|r|(n)) = |r|(n), wn = 1

and wi = 0 for i = 1, 2, . . . , n− 1;

• LMS and LTS estimators of Rousseeuw (1984);

• h-trimmed weighted Lq estimators of Müller (1995) if

ρ(|r|(i)) = |r|q(i),

• rank-based linear regression estimators proposed by Höss-

jer (1994), where the weights wi are generated by a func-

tion of the residual’s ranks.
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Regression depth

Rousseeuw and Hubert (1999) introduced a notion of depth

in the regression setting. It provides the ”rank” of any line

(plane), rather than ranks of observations or residuals. In

simple regression they can compute the depth of any line by

a fast algorithm. For any bivariate dataset Zn of size n there

exists a line with depth at least n = 3. The largest depth in

Zn can be used as a measure of linearity versus convexity.
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Regression depth

Rousseeuw and Hubert (1999) introduced a notion of depth

in the regression setting. It provides the ”rank” of any line

(plane), rather than ranks of observations or residuals. In

simple regression they can compute the depth of any line by

a fast algorithm. For any bivariate dataset Zn of size n there

exists a line with depth at least n = 3. The largest depth in

Zn can be used as a measure of linearity versus convexity.

In both simple and multiple regression they introduce the

deepest regression method, which generalizes the univariate

median and is equivariant for monotone transformations of

the response. Throughout, the errors may be skewed and

heteroscedastic.
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Regression depth

Rousseeuw and Hubert (1999) introduced a notion of depth

in the regression setting. It provides the ”rank” of any line

(plane), rather than ranks of observations or residuals. In

simple regression they can compute the depth of any line by

a fast algorithm. For any bivariate dataset Zn of size n there

exists a line with depth at least n = 3. The largest depth in

Zn can be used as a measure of linearity versus convexity.

In both simple and multiple regression they introduce the

deepest regression method, which generalizes the univariate

median and is equivariant for monotone transformations of

the response. Throughout, the errors may be skewed and

heteroscedastic.

They explore the analogies between depth in regression and

in location, where Tukey’s halfspace depth is a special case of

this general definition.
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Algorithms

Peña and Yohai (1999) propose a procedure for computing a

fast approximation to regression estimates based on the min-

imization of a robust scale. The procedure can be applied

with a large number of independent variables where the usual

algorithms require an unfeasible or extremely costly computer

time. Also, it can be incorporated in any high-breakdown

estimation method and may improve it with just little addi-

tional computer time. The good performance of the proce-

dure allows identification of multiple outliers, avoiding mask-

ing effects.
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Algorithms

Peña and Yohai (1999) propose a procedure for computing a

fast approximation to regression estimates based on the min-

imization of a robust scale. The procedure can be applied

with a large number of independent variables where the usual

algorithms require an unfeasible or extremely costly computer

time. Also, it can be incorporated in any high-breakdown

estimation method and may improve it with just little addi-

tional computer time. The good performance of the proce-

dure allows identification of multiple outliers, avoiding mask-

ing effects.
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