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Abstract

The talk aims to make a short overview of the most popular methods of

the robust statistics and to outline there place in the applications. Roughly

speaking, robustness means stability of statistical inference under the varia-

tions of the accepted distribution models.

The basic reasons of research in this field are of a general mathemati-

cal character. ’Optimality’ and ’stability’ are the mutually complementary

characteristics of any statistical procedure. It is a wellknown fact that the

behavior of many optimal decisions is rather sensible to ’small deviations’

from prior assumptions. In statistics, the remarkable example of such unsta-

ble optimal procedure is given by the least squares method: its performance

may become extremely poor under small deviations from normality.

The field of industrial statistics refers to the problems of data process-

ing in industry (electromechanical and energetic), economics and finances

(financial mathematics), defense (detection of air targets), medicine (car-

diology, pharmacokinetics), food technology (wine industry e.g.). We are

going to indicate the place of robust methods in these problems.

A large part of this talk is based on the recent book of Shevlyakov and

Vilchevski (2002).



1 General remarks

The field of mathematical statistics called robust statistics appeared due to the

pioneer works of Tukey (1960), Huber (1964), and Hampel (1968); it has been

intensively developed since the sixties and is rather definitely formed by present.

The term ‘robust’ (strong, sturdy) as applied to statistical procedures was proposed

by Box (1953).

1.1 The forms of data representation.

We begin with the customary forms of data representation:

(i) as a sample{x1, . . . , xn} of real numbersxi ∈ R being the easiest form to

handle;

(ii) as a sample{x1, . . . , xn} of realvalued vectorsxi ∈ Rm;

(iii) as a realizationx(t), t ∈ [0, T ] of a realvalued continuous process (func-

tion);

(iv) as a sample of ‘nonnumerical nature’ data representing qualitative variables;

(v) as semantic type data (statements, texts, pictures, etc.).

1.2 Types of statistical characteristics

The experience of treating various statistical problems shows that nearly all of

them are solved with the use of only a few qualitatively different types of data

statistical characteristics.

These characteristics may be classified as follows:

• the measures of location (central tendency, mean values);

• the measures of spread (dispersion, scale, scatter);



• the measures of interdependence (association, correlation);

• the characteristics of extreme values;

• the characteristics of data distributions or the measures of shape.

1.3 The main aims of Industrial Statistics

These aims may be formulated as follows:

(A1) compact representation of data,

(A2) estimation of model parameters describing mass phenomena,

(A3) prediction and optimization.

A human mind cannot efficiently work with large volumes of information,

since there exist natural psychological bounds of perception. Thus it is necessary

to provide a compact data output of information: only in this case we may expect

a satisfactory final decision. Note that data processing often begins and ends with

this first item (A1).

The next step (A2) is to suggest an explanatory underlying model for the ob-

served data and phenomena. It may be a regression model, or a distribution model,

or any other, desirably a simple one: an essentially multiparametric model is usu-

ally a bad model. Parametric models refer to the first to be considered and exam-

ined.

Finally, all previous aims are only the steps to the last (A3): here we have to

state that this aim remains a main challenge to statistics and to science as a whole.

2 Huber minimax approach

The convincing arguments for robust statistics are given in Tukey (1960); Huber

(1981); Hampel et al. (1986). Here we only recall that the classical examples of

robust and nonrobust estimators of location are given by the sample median and

sample mean, respectively.



As it was said above, robust statistics deal with the consequences of possible

deviations from the assumed statistical model and suggests the methods protect-

ing statistical procedures against such deviations. Thus the statistical models used

in robust statistics are chosen so that to account possible violations of the assump-

tions about the underlying distribution. For description of these violations, the

concrete forms of neighborhoods of the underlying model are formed with the use

of an appropriately chosen metric, for example, the Kolmogorov, Prokhorov, or

Lévy Hampel et al. (1986); Huber (1981)). Hence the initial model (basic or ideal)

is enlarged up to the socalled supermodel that describes both the ideal model and

the deviations from it.

Defining a robust procedure, it is useful to answer three main questions:

• Robustness of what? Here we one defines the type of a statistical procedure

(point or interval estimation, hypotheses testing, etc.);

• Robustness against what? Here one specifies the supermodel;

• Robustness in what sense? Here the criterion of quality of a statistical pro-

cedure and some related requirements towards its behavior are considered.

The wide spectrum of the problems observed in robust statistics can be ex-

plained by the fact that there exists a variety of answers to each of the above

questions.

According Bickel (1976) the main supermodels in robust statistics are of two

types: local and global.

A local type suggests setting an ideal (basic) model, and then the related su-

permodel is defined as a neighborhood of this ideal model. A global supermodel

represents some classF of distributions with given properties that also comprises

an ideal model.

For example, Hodges and Lehmann (1963) consider the supermodel in the

form of all absolutely continuous symmetric distributions.

Birnbaum and Laska (1967) propose the supermodel as a finite collection of

distribution functions:F = {F1, F2, . . . , Fk}.



Andrews et al. (1972) examine estimators in the supermodels containing dis-

tributions with heavier tails than the normal. In particular, they use the Tukey

supermodel based on the quantile function, the inverse to the distribution func-

tion. This supermodel comprises rather accurate approximations to the normal,

Laplace, logistic, Cauchy, and Student distributions.

Various supermodels are used to study deviations from normality: the family

of powerexponential distributions with the normal, Laplace, and uniform distribu-

tions as particular cases; the family of the Student tdistributions with the normal

and Cauchy distributions; also the influence of nonnormality can be studied with

the use of the measures of asymmetry and kurtosis, the positive values of the latter

indicate gross errors and heavy tails.

For describing gross errors and outliers, the most popular is the Tukey (1960)

supermodel based on the Gaussean low:

F =

{
F : F (x) = (1− ε)Φ(x) + εΦ(

x− θ

k
), 0 < ε < 1, 1 < k)

}
. (1)

Huber (1964) considered more general model

F = {F : F (x) = (1− ε)F0(x) + εH(x)} , (2)

whereF0 is some given distribution (the ideal model) andH(x) is an arbitrary

continuous distribution.

2.1 M-estimators of location

The first general approach to robust estimation is based on the minimax principle

(Huber, 1964; Huber, 1972; Huber, 1981). The minimax approach aims at the least

favorable situation for which it suggests the best solution. Thus, in some sense,

this approach provides a guaranteed result, perhaps too pessimistic. However,

being applied to the problem of estimation of the location parameter, it yields a

robust modification of the principle of maximum likelihood.



Letx1, . . . , xn be a random sample from a distributionF with densityf(x−θ)
in a convex classF , whereθ is the location parameter. Assume thatF is a sym-

metric unimodal distribution, henceθ is the center of symmetry to be estimated.

Then the M-estimator̂θn of the location parameter is defined as some solution of

the following minimization problem

θ̂n = argmin
θ

n∑
i=1

ρ(xi − θ), (3)

whereρ(u) is an even non-negative function called the contrast function;ρ(xi−θ)
is the measure of discrepancy between the observationxi and the centerθ.

• Choosingρ(u) = u2, we have the least squares (LS) method with the sample

meanxn as an estimator;

• for ρ(u) = |u|, we have the least absolute values (LAV) method with the

sample median as the estimator;

• most important, for a given densityf(x), the choiceρ(u) = − log f(u)

yields the maximum likelihood estimator (MLE).

It is convenient to formulate the properties of M-estimators in terms of the

derivative of the contrast functionψ(u) = ρ′(u) called the score function. In this

case, the M-estimator̂θn is defined as a solution of the following implicit equation

n∑
i=1

ψ(xi − θ) = 0. (4)

Under rather general regularity conditions imposed on the class of score functions

Ψ and on the related class of densitiesF , M - estimators are consistent, asymp-

totically normal with the asymptotic variance

VM(ψ, f)
def
= D (n1/2θ̂n) =

E Fψ
2

(E Fψ′)2
=

∫
ψ2dF

(
∫
ψ′dF )2

. (5)



2.2 Huber minimax property

The following regularity conditions defining the classesF are sufficient (for de-

tails Hampel et al. (1986), pp.125 - 127)):

F1: f is twice continuously differentiable and satisfiesf(x) > 0 for all x ∈ R,

F2: the Fisher information for location satisfies0 < I(f) <∞.

Let f ∗ be the least favorable density inF :

f ∗ = argmin
f∈F

I(f), I(f) =

∫ [
f ′(x)

f(x)

]2

f(x)dx. (6)

Then the optimal contrast function and score function are calculated by maximum

likelihood method for the least favorable density:

ρ∗ = − log f ∗, ψ∗ = f ∗′/f∗

Then the Huber minimax property is

VM(ψ∗, f) ≤ VM(ψ∗, f∗) = sup
f∈F

inf
ψ∈Ψ

VM(ψ, f). (7)

Thus the main problem is to solve (6) for different classesF .

For the mixture class of Huber (2) ifh(x) satisfy conditions (F1) and (F2)

along with the additional logconvexity condition we have:

Figure 1: Score Function

ψ∗(x) =

{
−f ′0(x)/f0(x), |x| ≤ ∆

B sgn(x), ∆ < |x|.

f ∗(x) =

{
(1− ε)f0(x), |x| ≤ ∆

A exp(−Bx), ∆ < |x|.



2.3 L-estimators of location

L-estimators were proposed by Daniel (1920) and forgotten for 30 years. The

linear combinations of order statistics (L-estimators) are defined as

θ̂n =
n∑
i=1

Cix(i), (8)

wherex(i) is the i-th order statistic. The normalization condition in 8 provides

equivariancy of L-estimators under translation. The trimmed mean:

xtr(k) =
1

n− 2k

n−k∑
i=k+1

x(i) (9)

and the Winsorized mean:

xW (k) =
1

n
(kx(k) +

n−k∑
i=k+1

x(i) + kx(n−k+1)) (10)

are typical representatives of this class.

The L-estimators may be easily represented in the form:

θ̂n =
1

n

n∑
i=1

h(
i

n+ 1
)x(i), (11)

where the functionh is a function of bounded variation on[0, 1], h(t) = h(1− t)

and
∫ 1

0
h(t)dt = 1. These conditions onh along with the regularity conditions

(F1) and (F2) on the distribution provide consistency and asymptotic normality

of L-estimators (8) with asymptotic variance

VL(h, f)
def
= D (n1/2θ̂n) =

∫ 1

0

K2(t)dt, (12)



where

K(t) = (h(t)F−1(t)− θ), θ =

∫ 1

0

h(t)F−1(t)dt

2.4 R-estimators of location

R-estimators proposed in Hodges and Lehmann (1963) are based on rank tests.

There are several methods of their construction. Lety1, . . . , yn andz1, . . . , zn be

independent samples from the distributionsF (x) andF (x − θ) respectively. For

testing the hypothesisθ = 0 against the alternativeθ > 0 the following statistic is

used:

Wn(y1, . . . , yn, z1, . . . , zn) =
n∑
i=1

J(
si

2n+ 1
) (13)

wheresi is the rank ofyi, i = 1, . . . n, in the united sample of size2n.

Let J(t), 0 ≤ t ≤ 1, satisfy the following conditions:

1. J(t) is increasing;

2. J(t) + J(1− t) = 0 for all t ∈ [0, 1];

3. the functionsJ ′ andf(F−1) are of bound variation on[0, 1],

4.
∫ 1

0
J ′(t)f(F−1(t))dt 6= 0.

Under these conditions, H́ajek andŠidák (1967) proved that the test with the

critical regionWn > c has certain optimal in power properties. The R-estimator

θ̂n based on this test is defined as a solution of the equation:

Wn(x1 − θ, . . . , xn − θ,−(x1 − θ), . . . ,−(xn − θ)) = 0 (14)

Under the above conditions,θ̂n is consistent and asymptotically normal with asymp-

totic variance

VR(J, F )
def
= D (n1/2θ̂n) =

∫ 1

0
J2(t)dt

(
∫
J ′(F (x))f 2(x)dx)2

. (15)



For any fixed functionF (x), it is possible to find the functionJ(t) min-

imizing asymptotic varianceVR(J, F ). The test based on such functionJ(t)

also has optimal properties for thisF . In particular, the logistic distribution

F (x) = (1 + e−x)−1 produces the well known Wilcoxon test. The corresponding

estimator of location is the Hodges-Lehmann median:

θ̂n = med

{
x(i) + x(k)

2
, 1 ≤ i < k ≤ n

}
. (16)

2.5 Applications of measures of location

Probably the most important place is the statistical quality control. Stromberg

et al. (1998) developed Control Charts for the Median and Iinterquartile Range.

Römisch et al. (2001) tested all kinds of estimators for Determination of the

Geographical Origin of Wines from East European Countries.

3 Hampel approach

The main advantage of robust methods is their lower sensitivity to possible vari-

ations of data statistical characteristics. Thus it is necessary to have specific

mathematical tools allowing to analyze the sensitivity of estimators to outliers,

roundingoff errors, etc. On the other hand, such tools make it possible to solve

the inverse problem: to design estimators with the required sensitivity. Now we

introduce the abovementioned apparatus, namely the sensitivity curves and the

influence functions.

3.1 The sensitivity curve

Let {Tn} be a sequence of statistics. LetTn(X) denote the statistic from{Tn} on

the sampleX = (x1, . . . , xn), and letTn+1(x,X) denote the same statistic on the



sample(x1, . . . , xn, x). Then the function

SCn(x;Tn, X) = (n+ 1)[Tn+1(x,X)− Tn(X)] (17)

is called the sensitivity curve for this statistic Tukey (1977). In particular,

xn SCn(x;xn, X) = x− xn

med(X)

(n = 2k + 1)

SCn(x;med(X), X) =


(n + 1)(x(k) − x(k+1))/2, x ≤ x(k)

(n + 1)(x− x(k+1))/2, x(k) ≤ x ≤ x(k+2)

(n + 1)(x(k+2) − x(k+1))/2, x(k+2) ≤ x

xtr(1) SCn(x;xtr(1), X) =


x(1), x ≤ x(1)

x, x(1) ≤ x ≤ x(n)

x(n), x(n) ≤ x

Table 1: Example sensitivity curves

Figure 2: Sensitivity curves

We can see that the sensitivity curve (a.) of

the sample mean is unbounded, hence only

one extreme observation can completely de-

stroy the estimator. In addition, the maximal

error of the trimmed mean (curve c.) is of or-

der (x(n) − x(1))/n, while this of median – of

(x(k+2) − x(k)).

3.2 The influence function

Let F be a fixed distribution andT (F ) be a functional defined on some setF
of distributions satisfying conditions (F1) and (F2). Let the estimatorTn be

constructed in the formTn = T (Fn). Then we define the influence function as:

IF (x, T, F ) = lim
t→0

T ((1− t)F + tδx)− T (F )

t
. (18)



xn IF (x, T, F ) = x− T (F ) = x−
∫

xdF (x)

med(X) T (F ) = F−1(1/2), IF (x, T, F ) = sgn(x)/(2f(0))

xtr(k)

α = k/n
IF (x, T, F ) =


F−1(α)/(1− 2α), x ≤ F−1(α)

x/(1− 2α), F−1(α) ≤ x ≤ F−1(1− α)

F−1(α)/(1− 2α), F−1(1− α) ≤ x

Table 2: Example influence functions

Figure 3: Influence functions

Comparing Fig.2 and Fig.3, we see that the

forms of influence and sensitivity curves are

similar. In factSCn(x;T, F ) → IF (x;T, F )

asn→∞.

The influence function for the M-estimator

with the score functionψ is of the form Ham-

pel et al. (1986)

IF (x;ψ, F ) =
ψ∫

ψdF (x)

Fernholz (1983) showed thatTn is asymptotically normal with asymptotic

variance

V (T, F ) =

∫
IF 2(x;T, F )dF (x). (19)

4 Measures of robustness

4.1 Local measures of sensitivity

From the influence function, the following robustness measures can be defined

(Hampel (1968); Hampel (1974).



Gross-error sensitivity

γ∗(T, F ) = sup
x
|IF (x;T, F )|

is an upper bound to the asymptotic bias

of the estimator and measures the worst in-

fluence of an infinitesimal contamination.

The estimatorsT having finite γ∗(T, F )

are called B-robust.

Local-shift sensitivity

λ∗(T, F ) = sup
x 6=y

|IF (y;T, F )− IF (x;T, F )|
|y − x|

accounts the effects of rounding-

off and grouping of the observa-

tions.

Rejection point

ρ∗(T, F ) = inf
r>0

{r : IF (x;T, F ) = 0,∀|x| > r}

defines the observations to be re-

jected completely.

Change-of-variance function

CV F (x;T, F ) = lim
t→0

V (T, (1− t)F + tδx)− V (T, F )
t

was introduced by Ham-

pel et al. (1986) by

analogy with the influ-

ence functionIF . Here

V (T, F ) is the asymptotic

variance.

Change-of-variance sensitivity

k∗(T, F ) = sup
x

CV F (x;F, T )

V (T, F )

The estimator Tn = T (Fn) of the

functional T (F ) is called V-robust if

k∗(T, F ) <∞.

All the above-introduced measures of robustness based on the influence func-

tion and its derivatives are of a local character being evaluated at the model dis-

tribution F . Hence it is desirable to have a measure of the global robustness of



the estimator over the chosen class of distributions, in other words, in the chosen

supermodelF .

4.2 Break-down point

Since the general definition of a supermodel is based on the concept of a distance

in the space of all distributions, the same concept is involved into the construction

for a measure of the global robustness. Letd be such a distance. Then the break-

down point of the estimatorTn = T (Fn) for the functionalT (F ) atF is defined

by

ε∗(T,F) = sup
ε<1

{ε : sup
F :d(F,F0)<ε

|T (F )− T (F0)| <∞}.

The breakdown point characterizes the maximal deviation (in the sense of a metric

chosen) from the ideal modelF0 that provides the boundedness of the estimator

bias.

Breakdown point as applied to the Huber supermodel

ε∗(T,F) = sup
ε<1

{ε : sup
F :F=(1−ε)F0+εH

|T (F )− T (F0)| <∞}. (20)

This notion defines the largest fraction of gross errors that still keeps the bias

bounded. Here is the replacement variant of the finite sample breakdown point

given by Hampel et al. (1986).

Let Ω = {ωi ∈ Rp, for i = 1, . . . , n} be a sample of sizen. The breakdown

point of an estimatorT (Ω) ∈ Rq is given by

ε∗n(T ) =
1

n
max{m : sup

Ω̃m

‖T (Ω̃m)‖ <∞}, (21)

whereΩ̃m is any sample obtained fromΩ by replacing anym of the points inΩ

by arbitrary values.In other words there should exist a compact set such that the

estimatorT remains in it even if we replace anym elements of the sampleΩ by

arbitrary ones. The largestm/n for which this property holds is the breakdown



point.

5 Multidimensional Statistics

All the definitions and methods can be easily extended to multivariate and multi-

parametric case when one estimates location.

5.1 LTS and LMS

The multiple regression is probably most used statistical procedure in the indus-

trial statistics. Consider the model

yi = xTi β + εi.

whereyi is an observed response,xi is ap× 1–dimensional vector of explanatory

variables andβ is a p × 1 vector of unknown parameters. Classicallyεi, i =

1, . . . , n are assumed to be i.i.d.N(0, σ2), for someσ2 > 0.

TheLMS (Least Median of Squares) andLTS (Least Trimmed Squares) es-

timators were proposed by Rousseeuw (1984) as robust alternatives of the LSE

LMS(r1, . . . , rn) = argmin
θ

med{r2
i , i = 1, ..., n}, (22)

LTS(k)(r1, . . . , rn) = argmin
θ

k∑
i=1

r2
ν(i,θ). (23)

Hereν(i, θ) is a permutation of the indices, such thatr2
ν(i,θ) ≤ r2

ν(i+1,θ). Thus the

idea was to minimize the sum of squares using ”smallest residuals” only.

5.2 Covariance

The estimation of unknown covariance matrix of observed data or estimated pa-

rameters turned out to be not so easy. In fact, only two methods are used in



practice and very little is known about their properties. These are

• MVE - minimum volume ellipsoid;

• MCD - minimum covariance determinant.

In both cases one have to choose fixed percentage (e.g. 90% ) of observed

data having corresponding optimal property. Then the estimator is build using

only these data.

5.3 Applications

We should mention here the works of Mili et al. (1991)and Mili et al. (1994) on

Power Systems. The abstract of the second paper:

The exact fit points of the Least Median of Squares (LMS) and the Least

Trimmed Squares (LTS) estimators in electric power systems are investigated. The

expression of the maximum possible exact fit point is derived, and the correspond-

ing quantile index of the ordered squared residual is determined. It is found that

these values hinge on the surplus of the network, defined as one less than the

smallest number of measurements whose deletion from the data set decreases the

rank of the Jacobian matrix. Based on the surplus concept, a system decompo-

sition scheme is developed; it significantly increases the number of outliers that

can be handled by the LMS and the LTS estimators. In addition, it dramatically

reduces the computing time of these estimators, opening the door to their appli-

cation in a real-time environment, even for large-scale systems.

6 Robustified Maximum likelihood

Neykov and Neytchev (1990) proposed to replace in these estimators (LMS and

LTS) the squared residuals with - log likelihood´s of the individual observations

and thus to obtain robustified likelihood.



Let the observationsx1, x2, . . . , xn be generated by an arbitrary probability

density functionψ(x, θ) with unknown vector parameterθ.

LME(k) = argmin
θ

{− logψ(xν(k,θ), θ)}, (24)

LTE(k) = argmin
θ

k∑
i=1

{− logψ(xν(i,θ), θ)}. (25)

Thus the idea was to maximize the likelihood over the bestk observations

(with ”largest likelihood”).

Both estimators may be easily combined into one. However it took some time

(5 years) to understand.

6.1 Weighted Trimmed Likelihood (WTL)

WTL estimators were introduced independently by Hadi and Luceño (1997) and

Vandev and Neykov (1998).

Let the observationsx1, x2, . . . , xn be generated by an arbitrary probability

density functionf(x, θ) with unknown vector parameterθ. Let the weightswi for

i = 1, . . . , n be fixed nonnegative numbers.

WTL(k)(x1, . . . , xn) = argmin
θ

k∑
i=1

{−wi log f(xν(i,θ), θ)} (26)

wheref(xν(i,θ), θ) ≥ f(xν(i+1,θ), θ) are the ordered density values.ν is a permu-

tation of the indices1, . . . , n, which may depend onθ.

• The LME(k) estimator is obtained ifwi = δi,k,

• the LTE(k) is obtained ifwi = 1 for i = 1, . . . , n,

• the maximum likelihood estimator – ifk = n.



6.2 Definition of d-fullness

In order to study the breakdown properties of general estimators of the type (24)

and (25) Vandev (1993) developed ad–fullness technique. He proved that their

breakdown point is not less than(n − k)/n if k is within the range of values

(n + d)/2 ≤ k ≤ (n − d) for some constantd which depends upon the density

considered.

Now we present a simple generalization of this result for the case of WTL

estimators (26). First the definition

Definition A finite setF of n functions is calledd–full, if for each subset of

cardinalityd of F , the supremum of this subset is a subcompact function.

We remind that a real valued functiong(θ) defined on a topological spaceΘ

is called subcompact, if its Lebesque sets{θ : g(θ) ≤ C} are compact (or empty)

for any constantC.

Let the finite setF = {fi(θ) ≥ 0, i = 1, . . . , n, for θ ∈ Θ} bed–full andΘ is

a topological space. Consider the estimator ofθ

R(k) = argmin
θ

k∑
i=1

wifν(i,θ)(θ).

Herefν(i,θ)(θ) ≤ fν(i+1,θ)(θ) are the ordered values offi at θ. The weightswi ≥
0, wk = 1. From a statistical point of viewR(k) can be considered as a set

of estimates if the functionsfi(θ) are appropriately chosen, e.g. depend on the

observations.

Theorem. Under these conditions ifn ≥ 3d and(n+d)/2 ≤ k ≤ n−d, then

the breakdown point of the estimatorR(k) is not less than(n− k)/n.

Thus if one knows the value ofd for the set{fi(θ)}, one easily make conclu-

sions about the conditions onk to have appropriate BP.

The valued may be interpreted as

number of observations necessary to make unique guess for the estimated param-

eter.



6.3 Multivariate normal distribution

Vandev and Neykov (1993) determined the value ofd for the set of log-density

functions for the multivariate normal case. When estimating only the meand = 1.

When one need to estimate the covariance matrixd = p + 1. Let xi ∈ Rp, i =

1, . . . , n have density

φ(x, µ, S) = (2π)−p/2(det(S))−1/2 exp(−(x− µ)′S−1(x− µ)/2).

Theorem.If n ≥ d and(n+ d)/2 ≤ k ≤ n− d, then the breakdown point of

theWTL(k) of µ andS is equal to(n− k)/n.

Later Marincheva and Vandev (1995) considered a general elliptic family.

Atanasov and Neykov (2001) calculated the fullness parameters for the Lognor-

mal, Poisson, Gamma, Geometric and Logarithmic series distributions and thus

determined the BPs of theWTL estimators for the corresponding Generalized

Linear Models.

7 Linear regression

7.1 Theory

Consider the class of regression estimators defined as

β̂ = argmin
β

k∑
i=1

wiρ(|r|ν(i,θ)), (27)

whereρ is strictly increasing continuous function such thatρ(0) = 0.

This class of estimators is regression, scale and affine equivariant following

the reasoning of Rousseeuw and Leroy (1987).

Theorem.The breakdown point of the regression estimators (27) is equal to

(n−k)/n if the indexk is within the bounds(n+ p+ 1)/2 ≤ k ≤ n− p− 1, n ≥
3(p+ 1) and the data pointsxi ∈ Rp for i = 1, . . . , n are in general position.



We should remind that the observationsxi ∈ Rp for i = 1, . . . , n are in general

position if anyp of them are linearly independent.

This class of estimators (27) contains also:

• Least Squares Estimators (LSE) ifρ(|r|(i)) = r2
(i)

• Least Absolute Value Estimator (LAV) ifρ(|r|(i)) = |r|(i) andwi ≡ 1 for

i = 1, 2, . . . , n;

• Chebishev minmax estimator ifρ(|r|(n)) = |r|(n), wn = 1 andwi = 0 for

i = 1, 2, . . . , n− 1;

• LMS and LTS estimators of Rousseeuw (1984);

• h-trimmed weightedLq estimators of M̈uller (1995) ifρ(|r|(i)) = |r|q(i),

• rank-based linear regression estimators proposed by Hössjer (1994), where

the weightswi are generated by a function of the residual’s ranks.

Rousseeuw and Hubert (1999) introduced a notion of depth in the regression

setting. It provides the ”rank” of any line (plane), rather than ranks of observations

or residuals. In simple regression they can compute the depth of any line by a fast

algorithm. For any bivariate datasetZn of sizen there exists a line with depth at

leastn = 3. The largest depth inZn can be used as a measure of linearity versus

convexity.

In both simple and multiple regression they introduce the deepest regression

method, which generalizes the univariate median and is equivariant for monotone

transformations of the response. Throughout, the errors may be skewed and het-

eroscedastic.

They also consider depth-based regression quantiles. They estimate the quan-

tiles of y givenx, as do the KoenkerBassett regression quantiles, but with the ad-

vantage of being robust to leverage outliers. They explore the analogies between

depth in regression and in location, where Tukey’s halfspace depth is a special

case of this general definition.



7.2 Algorithms

Pẽna and Yohai (1999) propose a procedure for computing a fast approximation

to regression estimates based on the minimization of a robust scale. The proce-

dure can be applied with a large number of independent variables where the usual

algorithms require an unfeasible or extremely costly computer time. Also, it can

be incorporated in any high-breakdown estimation method and may improve it

with just little additional computer time. The good performance of the procedure

allows identification of multiple outliers, avoiding masking effects.
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