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Abstract: A new version of the single–link hierarchical clustering algorithm is presented. It produces a
dendrogram which gives better graphical presentation of the proximity between the observed objects than
the standard algorithms. A definition of a perfect chain is proposed. This kind of chains are useful for
describing interesting properties of the algorithm. Some sufficient conditions for the shortest trajectory
connecting all objects are included. Another useful property of the main idea is that the dendrogram
produced by any clustering algorithm may be rearranged to get better interpretation.
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1 Introduction

Hierarchical cluster analysis attempts to group the objects of an observed set, on the basis
of similarity or dissimilarity between them, into mutually exclusive subsets (clusters) which
consist of close objects. This clusters may be grouped into larger sets and so on, until all
objects are eventually united in one cluster. The higher the level of aggregation is, the less
similar are the objects of the respective cluster.

The graphical representation hierarchical classification is a tree–like diagram called den-
drogram. The observed objects in it are terminal nodes of the tree. The sequence of joining
the clusters is visualized by fusion of two nodes into a parent node and so on until all
nodes (clusters) are united into a single node at the top of the diagram. Usually a scale is
incorporated into the dendrogram to indicate the dissimilarity level (aggregation distance)
at which the two nearest clusters are supposed to join.

The dendrogram with n nodes can be considered as one of 2n−1 binary trees. In Fig. 1
below there are four dendrograms presenting one and the same hierarchical classification.
Each one of them may be obtained from another by rotating some vertical branches. They
are indistinguishable with regard to nesting and amalgamation levels , and differ only in
the arrangement of the terminal nodes and may therefore present a slightly different visual
impression of the structure to the viewer.
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Fig. 1

There is a wide variety of methods for hierarchical cluster analysis. Different clustering
methods imply different definitions of the dissimilarities (distances) between clusters and
it is reasonable to give different hierarchical classifications for the same data sets. In all
standard hierarchical methods there are no special rules for ordering of terminal nodes in
the dendrogram as clusters are considered as usual sets of objects and to join together two
clusters means to unite two sets.
The idea of arranging the nodes of the dendrogram in order to optimize some kind of crite-
rion is not quite new. The problem has two sides: From among all possible representations
of one dendrogram obtained via given hierarchical clustering method to be chosen such
ones whose terminal node arrangement reflects in the best way the relationships between
them (the similarity or dissimilarity); The other side of the problem of optimization arises
as the simultaneous seeking of the hierarchical classification and the representation of this
classification from among a set of possible classifications and their representations which
optimize the criterion. This criterion may be the dissimilarity matrix reflecting the like-
ness or unlikeness among the objects or some external criterion (variable, order, another
hierarchy) (Brossier ,1984).

Theoretically the solution of the optimal fitting problem is always possible by enumer-
ating the 2n−1 trees and selecting the one tree whose terminal node ordering correlates
most highly with the criterion. Such approach is impractical, however, because the value
of 2n−1 is very large, even for not very large values of n. Therefore, it is of interest to find
an approach for achieving an optimal ordering in a smaller number of steps.
Gruvaeus and Wainer (1972) present an algorithm applying series of tests for local orienting
the nodes so that object displayed on the left and right edges of each cluster are adjacent to
those objects outside the cluster to which they are most similar. Their procedure of ascen-
dant hierarchy aims to obtain ordering of the terminal nodes in a chain with minimal length.
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In some consistent papers Brossier (1980,1982,1983,1984) presents a theoretical base of the
ordering problem and some algorithms for ordering of binary hierarchies. Degerman (1982)
describes a procedure for orienting the nodes of a binary tree to maximize the Kendall rank
order correlation τ between node order and a given external criterion.

In this paper we present an algorithm of ordering the terminal nodes. Our idea is
to obtain an unique dendrogram using a specific way for linking the clusters in order to
improve the visual representation of the hierarchical structure and to make them more
realistic. This algorithm is appropriate for rearranging the nodes of the dendrograms
obtained by the standard clustering methods.

2 Notations

Let X is a set of n objects {o1, o2, . . . , on}. and δ(., .) is a positive real-valued symmetric
function on XxX, whose values reflect the relative closeness (similarity) or distance (dis-
similarity) of objects to one another. Obviously, the smaller the similarity value or larger
the dissimilarity one is, the further apart the associated objects are. Frequently it is more
natural to consider dissimilarities. Of course, we can always convert a similarity matrix to
a dissimilarity one or vice versa by some non increasing transformation. For convenience we
will use the dissimilarity coefficients δij = δ(oi, oj), oi, oj ∈ X and let D is the dissimilarity
matrix. S denotes the set of all subsets of X and consists of 2n elements. Benzecri (1965)
gave the following definition of the indexed hierarchy.

Definition 2.1 Indexed hierarchy on X is a pair (H, g) where H is a collection of elements
of S and g is a function from H to R+ which satisfy:

H1. X ∈ H;

H2. ∀a ∈ X, {a} ∈ H;

H3. C
⋂

C ′ = { C, C ′, � },∀ C, C ′ ∈ H

I1. C ′ ⊂ C =⇒ g(C ′) < g(C), ∀ C, C ′ ∈ H

I2. g(C) = 0 ⇐⇒ C = {a} for some a ∈ X

The aim of the hierarchical clustering techniques is to construct an indexed hierarchy by
use of dissimilarity coefficients , satisfying above the properties. The weakest partitioning
contains n classes (clusters) and each one of them consists of one object. The strongest
clustering contains all objects united into a single class.

For each indexed hierarchy (H, g) we define one ultrametric matrix U . The elements of
this matrix have the following properties.

∀a, b ∈ X u(a, b) = min{g(C) : a ∈ C, b ∈ C, C ∈ H}.
The ultrametric matrix is a dissimilarity matrix which satisfies the following property:

∀a, b, c ∈ X we have u(a, c) ≤ max{u(a, b), u(b, c)}.
It may be shown that U is an ultrametric iff all the triangles a, b, c, ∀a, b, c ∈ X are isosceles
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with a base smaller than the sides. There exist bijection between indexed hierarchies and
ultrametrics (Benzecri, 1973).

In our algorithm we consider every cluster as an ordered set in a sense of the relative
position of the objects each to another and call it chain.In this case the union of two clusters
is not uniquely determined.

Definition 2.2 Chain is a set with defined binary order relation θ between its elements
with the properties:

(i) aθa (reflexive)

(ii) aθb and bθa ⇒ a = b (anti-symmetric)

(iii) aθb and bθc ⇒ aθc (transitive)

∀a, b, c ∈ X.

According to our considerations two chains consisting of the same objects ordered in a
inverse way are equivalent (e.g. the chains {o1, o2, o3, o4} and {o4, o3, o2, o1}).

Definition 2.3 Let D is the matrix of dissimilarity coefficients between the objects of X
and O is a chain of objects in X. O is compatible with D when

aθbθc ⇐⇒ δ(a, c) ≥ max{δ(a, b), δ(b, c)}

∀a, b, c ∈ O.

If O contains all elements of X, O will be compatible with the dissimilarity matrix D
if all of her subchains are compatible with D. The aim of the ordering algorithms is to be
found such arrangement of all elements in X compatible with the distance matrix D [3].
We should note that in general not for every dissimilarity matrix is possible to be found
a compatible order. Although, if such compatible order exists and all of the dissimilarity
coefficients are different, this order is unique [3]. There exist a class of so called Robinsonian
matrices which admit always compatible orderings. Their elements do not decrease when
moving away from the main diagonal in either direction. Robinsonian matrices appeared
with Robinson (1951) for seriation problem in the field of archaeological science.

The methods of hierarchical cluster analysis transform the dissimilarity matrix D to an
ultrametric matrix U . It is interesting to be noted that one ultrametric matrix admits 2n−1

compatible orderings (chains).

3 Principles of the Ordered Clustering algorithm

Let recall that the ascending hierarchical clustering procedures start with n distinct clusters
of a single object which are the objects of X and the dissimilarity coefficients between all
pairs of clusters are the elements of the initial intercluster dissimilarity matrix. At each
level of the clustering process the two nearest clusters are joined together. Thus the number
of clusters decreases with 1 and the dissimilarity between the new cluster and the other
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existing clusters is calculated. The various hierarchical clustering methods imply different
formulas of between cluster dissimilarity measure. The hierarchical process stops when are
reached the desirable number of clusters or mainly when all objects are grouped in a single
cluster. In the standard algorithm two clusters are united without taking into account
the possibilities for orienting them in such a way that the closest object from the different
clusters be adjacent.

In the ordering algorithms when at the level k of the hierarchical process C1 and C2 are
the two nearest chains with their respective left and right ends ol1, or1 and ol2, or2, there
are four possibilities for linking these chains without changing the mutual arrangement
of the objects in them. The order of the objects of C1 and C2 is fixed at lower levels.
In the ordering algorithms of Brossier(1980) and Gruvaeus and Winer(1982) C1 and C2

are linked at their nearest ends. This ordering rule is applicable to all the hierarchical
clustering methods. We use this principle in our algorithm for reordering the dendrograms
obtained by the standard clustering procedures of the wide known statistical packages as
BMDP and Statistica for Windows [14]. This algorithm uses as input only the n(n− 1)/2
dissimilarity coefficients of D and the amalgamation schedule of these procedures which is
two dimensional array with (n− 1) rows and three columns. The elements of the first two
columns are numbers of two objects each one from the two clusters linked at the according
level and the third column contain the respective amalgamation distances. The computer
program in Pascal is furnished by use of a binary tree data structure. As a result of applying
this reordering algorithm we obtain an ordered dendrogram which has the property that
the neighbor terminal nodes (objects) and nonterminal nodes (clusters) in it are really close
and vice versa.

Our original ordering algorithm called Ordering Single Link Algorithm (OSLA) uses a
following definition for the dissimilarity between clusters.

Definition 3.1 Let C1 and C2 be two chains with their respective left and right ends ol1, or1

and ol2, or2. The dissimilarity d between C1 and C2 is

d(C1, C2) = min(δl1l2, δl1r2, δr1l2, δr1r2),

We introduce the following rule for connecting two chains:
If δij = min(δl1l2, δl1r2, δr1l2, δr1r2) , (oi ∈ {ol1, or1}, oj ∈ {ol2, or2) the chains C1 and C2

are linked in such a way that their ends oi and oj to be adjacent in the new chain.
The advantages of the OSLCA can be summarized as follows.

(i) It uses only the n(n− 1)/2 dissimilarity coefficients for the n objects. These dissimi-
larities are required and sorted once only and a hierarchical system of agglomerative
clusters is easily constructed.

(ii) It is particularly suitable for analysis of a dissimilarity matrix with missing elements.
They are considered infinite.

(iii) Its output is a unique dendrogram. The arrangement of the terminal nodes has some
interesting mathematical and topological properties. This algorithm works fast and
effectively.
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There is a close relationship between OSLCA and the problem of the Minimum Spanning
Tree (MST). The MST algorithm given by Gower and Ross (1969) aims to construct a
connected graph which does not have any loops and contains all points(objects) and edges
joining pairs of points. The length of this graph (called a spanning tree) is equal to the sum
of the lengths of its edges and is to be minimal. When all edges of the graph are different
the minimum spanning tree is unique.
Kruskal (1956) suggested that MST problem was related to the traveling salesman problem
and Obruc̆a (1968) took up this suggestion and described a technique of manipulating
the MST solution in order to obtain a chain with length as small as possible which to be
an approximate solution of the problem. An extension is considered with regard to the
minimal wiring problem.

We will prove that under some conditions the obtained chain by the OSLCA will be a
solution of the problem for constructing an unbranched spanning subtree (chain) with a
minimal length.

4 Properties of OSLA

Let us consider an order of the observed n objects in a given chain O as a permutation
of the numbers from 1 to n and denote by A(O) the matrix of dissimilarity coefficients
corresponding to this order. A(O) is a symmetric matrix with non negative elements and
the diagonal elements equal to 0. Note that the elements ai,i+1 above the main diagonal
are the dissimilarity coefficients between the neighbor objects in the chain and its length
is equal to the sum of these elements L(O) =

∑n−1
i=1 ai,i+1. The upper half of A(O) is:

a12 a13 ... a1i a1i+1 ... a1n

a23 ... a2i a2,i+1 ... a2n

... ... ... ...
ai−1,i ai−1,i+1 ... ai−1,n

ai,i+1 ... ain

... ...
an−1,n

It is easy to note that in the rearranged dissimilarity matrix A(O) according to the order
obtained via OSLA the most similar pairs of objects tend to lie near the diagonal and the
dissimilarity between the pairs tend to increase away from the diagonal. This organization
helps to highlight the interobject relations and is very useful for examining large matrices.
In the ideal case reordered matrix is Robinsonian but in practice such cases occur not very
often. Here we consider several sets of inequalities for a dissimilarities of a chain. The
goal is to find a ”minimal” set of such inequalities which is sufficient for the chain to be of
minimal length among all chains connecting the same objects.

Definition 4.1 We will call a chain of n objects perfect if the dissimilarity coefficients
between its members fulfill the following (call them overlapping)
inequalities:

ai,i+1 ≤ aj,k, (1 ≤ j ≤ i, i + 1 ≤ k ≤ n). (1)
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Theorem 4.1 The perfect chain has a minimal length.

The proof of this theorem is given by Vandev et al.(1995b). The converse is generally false.
The perfect chains are useful because they are easy to check and have some natural nice

properties.

Theorem 4.2 Suppose there exist a perfect chain in the input dissimilarity matrix and all
its elements are different, or at least all inequalities (1) are strict. Then the shortest chain
is uniquely defined.

Proof. The proof immediately follows the proof of theorem 4.1. Q.E.D.
Let us remind that in the OSLCA each cluster is a chain and at each level of the

hierarchical process the two currently nearest chains are tied at their closest ends. Let
us suppose now that A(O) is the matrix corresponding to the order O of the objects
obtained by the OSLCA. Each element ai,i+1 is equal to one of the amalgamation levels
{∆1 < ∆2 < . . . < ∆n−1} so that min{ai,i+1, 1 ≤ i ≤ n− 1} corresponds to the clustering
level ∆1 and so on and max{ai,i+1, 1 ≤ i ≤ n − 1} corresponds to the highest clustering
level ∆n−1.

Theorem 4.3 Suppose we have two perfect chains to tie together. Suppose that

a. the closest distance between both sets of objects is between objects which are closing
elements in the both chains.

b. this distance is not less than all distances between adjacent elements in the both chains.

Then the resulting chain is perfect, i.e. has a minimal length.

Proof. The proof immediately follows by the definitions. Denote by o1, o2, ..., op the
elements of the first chain and by op+1, op+2, ..., on – the elements of the second one. So we
have for any 1 ≤ i ≤ n− 1 that

ai,i+1 ≤ ap,p+1 ≤ aj,k, 1 ≤ j ≤ p, p + 1 ≤ k ≤ n.

On the other side if 1 ≤ j, k ≤ p or p + 1 ≤ j, k ≤ n then the same inequality follows
from the perfectness of the starting chains for the corresponding values of i. Q.E.D.

Note that in an hierarchical nearest neighbor procedure the last condition of the theorem
4.3 need not to be checked – this condition is fulfilled automatically. More over the following
theorem may be stated:

Theorem 4.4 Suppose there exist a unique perfect chain in the input data. Then the
hierarchical nearest neighbor procedure in the form of OSLCA will find it.

Proof. The proof immediately follows by the fact that at given stage of the procedure
all constructed chains are subchains of the existing perfect chain. Then one has to check
the distance aj,k which comes next in the sorted array of distances. It turns out that if j
and k belong to different chains then neither of them may be ”interior” because some of
the ends of the corresponding chains are to be closer. Q.E.D.
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It is interesting the question of compatibility between dissimilarity matrix D and the
chain of terminal nodes obtained by OSLA. It is obvious that if D is a Robinsonian matrix,
i.e. admit compatible order, so OSLA will find this order and the correspondent chain is
perfect. The proof is too elementary if recall the properties of the Robinsonian matrices.
Chepoi and Fichet (1996) present an algorithm for testing if one dissimilarity matrix admit
compatible order. The opposite assertion, is not true in general. Thus the class of the
dissimilarity matrices inducing a perfect order are wider than the class of Robinsonian
matrices. Here is an example of a perfect matrix which is not Robinsonian, i.e. doesn’t
admit a compatible order.

1 7 5 9
4 8 6

3 10
2

5 Examples

Here we demonstrate two examples and compare usual dendrograms with ordered ones.
Example 1. The experiment was conducted in two adjacent years with young bulls

from four breeds during the age of 15 to 18 months, divided in nine groups. The breeds
are : Poll Hereford (PH), Native Gray cattle (NG), Black and White cattle (BW) and
cross between Poll Hereford and Native Gray cattle ( F1). The various groups of cattle
were fattened in two ways - stall (O), stall and grassing (K). The names of the groups are
PH-O1, NG-O1, BW-O1, BW-K1 of the first year and PH-O2, PH-K2, NG-02, NG-K2,
F1-K2. Thus the name PH-O1 means the cattle group of Poll Hereford, stall fattened in
the first year.
Six attributes characterizing the meat yield were measured - dressing percentage, carcass
percentage of bones, carcass percentage of total meat amount, carcass percentage of the
various meat quality. The means of these attributes were obtained for each group.

The nine groups were considered as objects for cluster-analyzing. As a dissimilarity
measure between objects is used the Euclidean distance. Table 1 contains the upper half
of the dissimilarity matrix according to the ordering obtained by OSLA:

A dissimilarity matrix for 9 objects
Breeds NG-O1 BW-K1 BW-O1 F1-K2 NG-K2 NG-O2 PH-K2 PH-02
PH-O1 3.93 4.83 6.45 9.78 9.47 7.82 7.06 7.30
NG-O1 3.68 5.97 7.33 6.86 5.86 8.23 9.28
BW-K1 2.89 6.32 6.37 5.48 6.49 6.63
BW-O1 5.10 5.67 5.80 6.89 6.50
F1-K2 1.49 3.56 7.24 7.68
NG-K2 2.61 6.70 7.87
NG-O2 4.83 6.45
PH-K2 2.49

Table 1

The Single Link (SL) clustering method is applied to the distance matrix using the
standard SL procedure of the package STATISTICA for Windows and the arranging OSL
algorithm.
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Using the hierarchical cluster-analysis we aim to ascertain whether the similarity be-
tween groups on the base of the meat performance traits is related to the breed or the way
of fattening, or to the forage quality (year).

PHO1NGO1BWO1BWK1PHO2PHK2NGO2NGK2F1K2

1.49

2.49

2.61

2.89

3.68

3.93

4.83

5.10

Fig.2

PHO1NGO1BWK1BWO1F1K2 NGK2NGO2PHK2PHO2

1.49

2.49

2.61

2.89

3.68

3.93

4.83

5.10

Fig.3

The dendrograms obtained by the two SL procedures are shown in Fig.2 and Fig.3.
Two main clusters are formed into both hierarchical schemes. The first one comprises the
cattle groups observed in the first year of the experiment and the second cluster consist
of the groups of the second yea. The conclusion from this clustering is that the cattle
fatted during the same year what means the same quality of the forages have similar meat
performance.

Other clusters consisting of comparatively close cattle groups are (PH-K2, PH-O2) and
(BW-K1,BW-O1). The conclusion is that the cattles from the same breed fattened through
the same year have similar meat performance.

Very interesting cluster is (NG-O2,NG-K2,F1-K2). The group F1-K2 of cattles crosses
between native Gray cattle and Poll Hereford show stronger influence of the mother breed
(NG) on the investigated traits which is unexpected fact. The reason for this is probably
the way of fattening - stall and grassing.

Let us compare the two dendrograms above - the first obtained by the standard SL
algorithm without taking into account the possibility of ordering the objects and the second
one is the result of the rearranging algorithm.
Although the clustering structure in both dendrograms is identical it is easy to see from
Table 1 that the order of the objects in Fig.3 gives better presentation of the relationships

9



between the investigated cattle groups. For instance the group NG-O1 is closer to BW-K1
than to BW-O1. Then the group BW-K1 is more similar to F1-K2 than to PH-O2. It
is clear that the ordered SL algorithm gives more accurate visual representation of the
dissimilarities between the observed objects.

Anoder interesting result is that the resulting via OSLA chain is perfect, i.e. it is with
minimal length (see Table 1).

Example 2. In the second example are used data from 305d lactation of Black and
White cows from three herds from the same region over the period from 1981 to 1995. The
initial data contained records of the following attributes: the number of lactation (1,2,3);
milk yield during the correspondent lactation (in kg); average percent of the milk fat,
durability of days open (in days); age of the first calving (in days). The individuals are
separated in groups according to the number of lactation and the level of milk yield. There
were nine milk yield levels formed on the base of the milk yield- the first level comprises
the individuals with milk yield to 3000kg, the adjacent levels are with increase interval of
1000kg (great than 3000 and less or equal to 4000kg and so on). In this way are obtained
20 groups. For each of them are calculated the group means of the milk fat percentage,
days open and age of the first calving.

The distance measure between cases ( 20 groups) is the Euclidean distance using stan-
dardized data. The Unweighted Pair-Group Method using arithmetic averages (UPGMA)
was applied to the distance matrix as one of the most widely used clustering methods.

The aim of the investigation is to establish to what degree the similarity between the
groups based on the reproductive performance, milk concentration and the growth of the
cows as heifers is related to the milk level or to the number of the lactation.

The results from the standard UPGMA and our reordering algorithm are visualized by
the dendrograms in the corresponding Fig. 4 and 5. Although the vertical structure of the
both dendrograms is merely identical the difference between them is in the arrangement of
the terminal nodes in them. In these dendrograms the observed groups are denoted as the
first number means the number of lactation and the second number - the milk level.

1.3 2.4 3.3 3.4 2.3 1.4 2.5 3.5 3.6 1.5 2.6 1.6 2.7 3.7 3.9 1.7 1.8 3.8 2.8 2.9

.08

.10

.18

.23

.26

.29
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3.57

Fig.4

10



2.3 3.4 3.3 1.3 2.4 1.4 2.5 3.5 3.6 1.5 2.6 3.7 1.6 2.7 3.9 2.8 1.7 1.8 3.8 2.9

.08

.10

.18

.23

.26

.29

.32

.37

.44

.45

.53

.68

.83

.89

1.11

1.24

1.34

2.28

3.57

Fig.5

The hierarchical clustering structure of the both dendrograms present two main clusters,
one of them consisting of groups with milk level from to 6000kg and various lactations and
the second one comprise groups with milk yield from 7000 to 9000 kg and various lactations.
Into each one of these main clusters are formed two subclusters in which are united groups
with milk yield to 4000kg, from 5000kg to 6000kg, from 6000kg to 7000kg and from 8000kg
to 9000kg. The conclusion is that the similarity on the base of milk fat percentage, days
open and age of the first calving is due rather to the milk level than to the number of
lactation. The interesting exception to this trend are the groups of the first lactation.
Each one of these groups 1.3, 1.4, 1.5, 1.6, 1.7, 1.8 is included in clusters comprising groups
of second and third lactation with the same or higher milk level (e.g. 1.3 with 2.4; 1.4
with 2.5 and 3.5). This trend is better presented in by the rearranged dendrogram and has
reasonable explanation - the young cows are close to the cows with higher milk yield in a
sense of the milk fat percentage and the reproductivity. The isolated cluster 2.9 consist of
cows of the second lactation with over 8000kg milk yield.

For this research application we found relation between the obtained classification and
the milk productivity of the cows.

6 Discussion

It is clear that the OSLA produces a dendrogram which gives more accurate visual rep-
resentation of the hierarchical clustering structure and of the relationships between the
observed objects than the usual single link analysis.

Although the OSLCA yields undoubtedly good results the arrangement of the objects
in the final chain is not always perfect.

Also our algorithm does not give always an optimal solution of the minimal length
problem because of its rules for constructing of the chains (without looping and connecting
only in the ends). It is apparent that according to these restrictions some of the range
ordered dissimilarity coefficients will be skipped as their corresponding objects are internal
elements of two distinct chains or belong to the same chain. The number of such omitted
dissimilarities depends on the concrete data.
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Let nb denote the number of all skipped dissimilarities between pairs of objects belonging
to different chains where at least one of them is an internal element of a chain. Let nw

be the number of all skipped dissimilarities between pairs of objects belonging to the same
chain and ns be the number of all scanned sorted dissimilarities from the beginning to the
end of the hierarchical process. It is clear that ns = nb + nw + n − 1 where n − 1 is the
number of used dissimilarities. The value of nw does not influence on the perfectness of
the chains. As an indicator of unperfectness (UP) of the chain obtained by OSLCA, we

introduce the following proportion UP =
nb

nb + n− 1
. For the perfect chain UP is 0.

There are many ways of defining a criterion which measures if an order on X is more
or less compatible with the dissimilarity matrix D.
Let O is a chain containing N elements, T is the set of all ordered triples of O and S is a
set of all elements of T compatible with D (see Dedinition 2.3). We propose the following
criterion:

C(O,D) = |S|
|T | , where |T | =

(
N
3

)
.

For the ordering in Example 1 C(O,D)=.75.
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