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Abstract

A generalisation of a theorem by Vandev (1993) concerning the finite sample break-
down point is given. Using this result the breakdown point properties of the LMS and
LTS estimators of Rousseeuw (1984) and the rank-based regression estimator of Hössjer
(1994) are studied. Moreover, the breakdown point properties of the weighted least
trimmed estimators of order k in the case of grouped logistic regression are investi-
gated, as well as linear regression with an exponential q-th power distribution.
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1 Introduction

It is well known that the Maximum Likelihood Estimator (MLE) can be very sensitive to
some deviations from the assumptions, in particular to unexpected outliers in the data. To
overcome this problem many robust alternatives of the MLE have been developed in the last
decades. For detailed introduction, see Huber (1981), Hampel et al. (1986), and Rousseeuw
and Leroy (1987).

Neykov and Neytchev (1990), following the definitions of the Least Median of Squares
(LMS) and Least Trimmed Squares (LTS) estimator of Rousseeuw (1984), introduced two
classes of estimators for the parameters of any unimodal distribution with regular density as
an extension of the maximum likelihood principle. This modification considers the likelihood
of individual observations as residuals and applies on them the basic idea of the LMS and
LTS estimators. The corresponding estimators are called Least Median Estimator (LME(k))
and Least Trimmed Estimator (LTE(k)), where k is tuning constant which can be chosen
by the user within some reasonable range of values, see Vandev and Neykov (1993).

In order to study the breakdown properties of such estimators Vandev (1993) developed
a d–fullness technique. He proved that their breakdown point is not less than (n − k)/n if
k is within the range of values (n + d)/2 ≤ k ≤ (n− d) for some constant d which depends
upon the density considered. Vandev and Neykov (1993) determined the value of d for the
set of log-density functions for the multivariate normal case.

In this paper a generalisation of the theorem by Vandev (1993) concerning the finite
sample breakdown point is given. The concept of d–fullness is applied to a general class of
estimators called Weighted Least Trimmed Estimator of order k (WLTE(k)). Thus in many
cases we are able to find the exact value of the breakdown point. In particular:
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• in the linear regression setting with an arbitrary distribution of the errors it is shown
that the breakdown point of the LMS and LTS regression estimators of Rousseeuw
(1984) and the rank-based regression estimators of Hössjer (1994) is equal to (n−k)/n
if the observations xi ∈ Rp for i = 1, . . . , n are in general position and k is within the
bounds (n+ p+ 1)/2 ≤ k ≤ n− p− 1;

• further in the case of linear regression with q-th power exponential distribution for the
errors it is proved that the breakdown point of the WLTE(k) estimators for simulta-
neous estimation of the regression and scale parameters is equal to (n − k)/n if the
observations xi ∈ Rp for i = 1, . . . , n are in general position and k is within the bounds
(n + p+ 1)/2 ≤ k ≤ n− p− 1;

• in the case of grouped binary logistic regression it is shown that the breakdown point
of the WLTE(k) estimators is (m− k)/m, where (m+ p+ 1)/2 ≤ k ≤ m− p− 1, m is
the number of groups, n = n1 + n2 + . . .+ nm is the total number of the observations
and yi represents the number of responses that satisfy the inequality 0 < yi < ni for
i = 1, . . . , m.

Some of the estimators we introduce are too general to be used in practice. So an investi-
gation of their asymptotic behaviour, consistency and equivariance properties is beyond the
scope of the paper.

This paper is organised as follows. Section 2 defines the concepts of d–fullness and
breakdown point. Section 3 considers the breakdown point properties of a general class
of regression estimators in terms of d–fullness. Sections 4 and 5 establish the breakdown
point of simultaneous estimation of the scale and parameters in the linear regression model
with exponential q–th order distribution of error and the grouped binary logistic regression
respectively. The proofs of all the theorems and lemmas (except Theorem 1) are given in
Section 6.

2 Definition of breakdown point and d-fullness

We now define the replacement variant of the finite sample breakdown point given by Hampel
et al. (1986), which is closely related to the one introduced by Donoho and Huber (1983).
Let Ω = {ωi ∈ Rp, for i = 1, . . . , n} be a sample of size n.
Definition 1. The breakdown point of an estimator T at Ω is given by

ε∗n(T ) =
1

n
max{m : sup

Ω̃m

‖T (Ω̃m)‖ <∞},

where Ω̃m is any sample obtained from Ω by replacing any m of the points in Ω by arbitrary
values.

Thus, there is a compact set such that the estimator T remains in it even if we replace
any m elements of the sample Ω by arbitrary ones. The largest m/n for which this property
holds is the breakdown point.

We shall recall the basic definitions given by Vandev (1993), Vandev and Neykov (1993).
Definition 2. A real valued function g(θ) defined on a topological space Θ is called sub-
compact, if its Lebesgue sets {θ : g(θ) ≤ C} are compact for any constant C.
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This notion is useful because the minima of any subcompact function exist, since the set
of minima is an intersection of nonempty compacts.
Definition 3. A finite set F of n functions is called d–full, if for each subset of cardinality
d of F , the supremum of this subset is a subcompact function.

Let the finite set F = {fi(θ) ≥ 0, i = 1, . . . , n, for θ ∈ Θ} be d–full and Θ is a topological
space. Consider the function

D(k, θ) =

k∑

i=1

wifν(i)(θ).

Here fν(1)(θ) ≤ fν(2)(θ) ≤ . . . ≤ fν(n)(θ) are the ordered values of fi at θ, ν = (ν(1), . . . , ν(n))
is the corresponding permutation of the indices, which may depend on θ. The weights wi ≥ 0
for i = 1, . . . , n are such that there exists an index k = max(i : wi > 0).

The functions S(k, θ) and M(k, θ) of Vandev (1993) are obtained from D(k, θ) respec-
tively if wi = 1 for i = 1, . . . , k and wi = 0 otherwise and if wk = 1 and wi = 0 for
i 6= k.

The breakdown properties of the set of values of θ that minimize D(k, θ) is of primary
interest in this paper. Let us denote this set by R(k), in analogy to the sets U(k) and V (k)
that correspond with M(k, θ) and S(k, θ). From a statistical point of view these sets can
be considered as the sets of estimates if the functions fi(θ) are appropriately chosen, e.g.
depend on the observations. Vandev (1993) proves that the breakdown points of U(k) and
V (k) are not less than (n−k)/n if k is such that (n+d)/2 ≤ k ≤ n−d. The largest (n−k)/n
for which this property holds is related to the replacement version of the breakdown point
of Hampel et al. (1986).

The following theorem characterizes the breakdown properties of the set R(k) and is a
generalization of the theorem of Vandev (1993).
Theorem 1. Let F = {fi(θ) ≥ 0, for i = 1, . . . , n; θ ∈ Θ} be d-full, the constants wi ≥ 0
for i = 1, . . . , n, wk = 1 for k = max{i : wi > 0}, n ≥ 3d and (n + d)/2 ≤ k ≤ n− d. Then
the breakdown point of the set R(k) is not less than (n− k)/n.
Proof. We shall follow the proof of Vandev (1993). We shall note that the set R(k) is
nonempty compact. If k ≥ d it can be represented as the intersection of finite subsets of
compact sets of cardinality d as the set F is d–full. Let us fix θ0 ∈ R(k) and then choose the
constant

C = sup
τ

k∑

i=1

wifτ(i)(θ0),

where τ = (τ(1), τ(2), . . . , τ(n)) is any permutation of the indices 1, 2, . . . , n.
Let F ′ = {f ′i(θ) ≥ 0, for i = 1, . . . , n; θ ∈ Θ} be a perturbed version of F , which is

obtained by replacing (n− k) original elements of F with arbitrary nonnegative functions.
Obviously D(k, θ0) ≤ C. Denote by D′(k, θ0) the corresponding functional defined on

F ′. Also we have D′(k, θ0) ≤ C as there are k original elements belonging to F ′.
Denote by K(J, C) = {θ : f(θ) ≤ C, f ∈ J}, where J ⊂ F with cardinality d. Denote

by W the set of all subsets of F with cardinality d and by K =
⋃
J∈W K(J, C). As W is

finite, obviously K is a compact set. Denote by I the set of the k lowest valued functions at
the minima. The set K is nonempty and it contains K(I, C) = {θ : f(θ) ≤ C, f ∈ I} which
contains R(k), since C ≥ D(k, θ) ≥ wkfν(k)(θ) = fν(k)(θ) is true for each θ ∈ R(k).

Let θ be a point outside K. If such a point does not exist the theorem is proved (K ≡ Θ).
First we note that for any d functions in F there exists at least one that has a value bigger
than C at θ. Otherwise the point θ would belong to some K(J, C), i.e. to K.
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Suppose now that D′(k, θ) ≤ C for some perturbed set F ′. Denote by I ′ the subset of the
k lowest-valued functions in F ′. Note that there are at least k − (n− k) functions in F ∩ I ′
and this number is not less than d since (n + d)/2 ≤ k. So there exists a function in this
set with value exceeding C. This is a contradiction and hence we have that D′(k, θ) > C for
any θ outside K for any perturbed set F ′. Therefore the set

R′(k) = argmin
θ⊂Θ

D′(k, θ) ⊂ {θ : D′(k, θ) ≤ D′(k, θ0)}

⊂ {θ : D′(k, θ) ≤ C} ⊂ K. Q.E.D.

Remark 1. (i) The condition n ≥ 3d is sufficient for the existence of a positive integer k
that satisfies the inequalities (n+ d)/2 ≤ k ≤ n− d.
(ii) The requirement wk = 1 is technical as the constants wi, i = 1, . . . , n can be normalized
by dividing with the positive constant wk. This will not change R(k).
(iii) The proposed estimator R(k) that combines both types of estimators U(k) and V (k) is
defined for nonnegative functions. Therefore the result concerning the breakdown properties
of the R(k) estimator proposed in this paper could be considered as a generalization of the
main result of Vandev (1993). Vandev’s result concerning U(k) estimators remains valid
even for nonpositive functions.

3 Estimation of the parameters in the linear regression

model

Consider the multiple regression model

yi = xTi β + εi for i = 1, . . . , n, (1)

where yi is an observed response, xi is a p× 1–dimensional vector of explanatory variables
and β is a p× 1 vector of unknown parameters. Classically εi, i = 1, . . . , n are assumed to
be independent and identically distributed as N(0, σ2), for some σ2 > 0.

Consider the class of regression estimators defined as

β̂ = argmin
β

k∑

i=1

wiρ(|r(β)|(i)), (2)

where |r(β)|(1) ≤ |r(β)|(2) ≤ . . . ≤ |r(β)|(n) are the ordered absolute values of the regression
residuals ri = yi − xTi β, the weights wi are the same as in the previous section and ρ is
strictly increasing continuous function such that ρ(0) = 0.

Following the reasoning of Rousseeuw and Leroy (1987) it is easily verified that this class
of estimators is regression, scale and affine equivariant. The following theorem characterizes
their breakdown point.
Theorem 2. The breakdown point of the regression estimators (2) is equal to (n− k)/n if
wi ≥ 0 for i = 1, 2, . . . , n, wk > 0 for k = max{i : wi > 0}, the index k is within the bounds
(n + p+ 1)/2 ≤ k ≤ n− p− 1, n ≥ 3(p+ 1) and the data points xi ∈ Rp for i = 1, . . . , n
are in general position.

We shall remind that the observations xi ∈ Rp for i = 1, . . . , n are in general position if
any p of them are linearly independent. Geometrically this means that no (p+1) observations
lie in a subspace of dimension less than p.
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The class of regression estimators (2) is closely related with a class of regression estimators
proposed by Hössjer (1994), which contains the LTS regression estimator of Rousseeuw (1984)
and his rank-based regression estimator defined by wi = an(i) = h+( i

n+1
) and ρ(|r|(i)) = |r|(i)

for i = 1, 2, . . . , n, where h+ is a score generating real function mapping (0, 1) into [0,∞) that
satisfy the condition sup{u : h+(u) = α} with 0 < α ≤ 1. Hössjer proved that the breakdown
point of the proposed rank-based regression estimators is equal to min(n−k+1, k−p+1)/n
if the index k satisfies the conditions k ≥ p, k = max{i : an(i) > 0} and the observations
xi ∈ Rp are in general position. He also showed the consistency and normality under various
regularity conditions.

It is seen that the class of estimators (2) contains also: the Least Squares Estimators
(LSE) if ρ(|r|(i)) = r2

(i) and the Least Absolute Value Estimator (LAV) if ρ(|r|(i)) = |r|(i)
and wi ≡ 1 for i = 1, 2, . . . , n; the Chebishev minmax estimator if ρ(|r|(n)) = |r|(n), wn = 1
and wi = 0 for i = 1, 2, . . . , n − 1; the LMS and LTS estimators of Rousseeuw (1984); the
h-trimmed weighted Lq estimators of Müller (1995) if ρ(|r|(i)) = |r|q(i).

Coakley and Mili (1993) introduced a class of regression estimators called D-estimators.
They characterized the breakdown point of D-estimators using the exact fit notion without
the assumption that the observations are in general position and determined the optimal
value of the quantile index of the LQS and LTS estimators in order to achieve the highest
breakdown point.

Müller (1995) introduced a new definition of the breakdown point, the so called break-
down point for contamination free experimental condition in studying the breakdown point
of the h–trimmed weighted Lq estimators and derived their breakdown point for situations
with replications but without errors in the experimental conditions.

In conclusion, if k = (n+p+1)/2 we find the highest breakdown point that is derived by
Rousseeuw and Leroy (1987) and Hössjer (1994) respectively about the LQS and LTS and
rank-based regression estimators. The usefulness of d–fullness is evident: (i) The breakdown
point can be exemplified by the range of values of k. This allows the statistician to choose
the tuning parameter k according to the expected percentage of outliers in data. The corre-
sponding estimator will possess a breakdown point less than the highest possible but it will
be more efficient at the same time; (ii) The number of observations n in the linear regression
setup must be at least 3(p+ 1); (iii) It is sufficient that only the observations xi ∈ Rp are in
general position and not the pair (yi, x

T
i ) of observations for i = 1, 2, . . . , n, as it is usually

assumed.

4 Simultaneous estimation of the scale and parameters

in the linear regression model with exponential q–th

order distributions of the error

First we will propose a modification of the basic definition of Neykov and Neytchev (1990)
concerning the robustified maximum likelihood. Let the observations e1, e2, . . . , en be gen-
erated by an arbitrary unimodal probability density function ψ(e, θ) with unknown vector
parameter θ. Let the weights wi for i = 1, . . . , n be the same as in the previous paragraph.
Definition 4. The Weighted Least Trimmed log likelihood Estimator (WLTE) of θ is defined

5



as

WLTE(k)(e1, . . . , en) = argmin
θ

k∑

i=1

{−wi logψ(eν(i), θ)},

where ψ(eν(1), θ) ≥ ψ(eν(2), θ) ≥ . . . ≥ ψ(eν(n), θ) are the ordered density values and ν =
(ν(1), . . . , ν(n)) is a permutation of the indices 1, . . . , n, which may depend on θ.

It is clear that the LME(k) estimator of Neykov and Neytchev (1990) is obtained if
wi = 0 for i = 1, . . . , k − 1, k + 1, . . . , n and wk = 1, and the LTE(k) is obtained if wi = 1
for i = 1, . . . , k and wi = 0 otherwise.

From the definition of the WLTE(k) estimator it follows that its minima are achieved
over a subsample of size k, as the following equality may be shown to hold:

min
θ

k∑

i=1

{−wi logψ(eν(i), θ)} = min
τ

min
θ

k∑

i=1

{−wi logψ(eτ(i), θ)},

where τ = (τ(1), . . . , τ(n)) is any permutation of the indices 1, . . . , n.
Let us suppose that the errors εi of the regression model (1) are independent and identi-

cally distributed with q–th power exponential distribution, i.e. the density function of εi is
given by

φ(ε, β, σ) =
q(1/2)(1+1/q)

σΓ(1/2)
exp{−1

2
| ε
σ
|q},

where Γ is the gamma function. The Gaussian for q = 2, the Laplace for q = 1, the double
exponential for 0 < q < 2, the leptokurtic for 1 < q < 2, the platikurtic for q > 2, the
rectangular for q →∞ distributions are obtained as particular cases.

Now we are going to study the breakdown properties of the WLTE(k) regression estima-
tors of β and error σ (when estimating simultaneously). We need to study the d–fullness of
the set fi(β, σ), . . . , fn(β, σ), where

f1(β, σ) = − log(φ(εi, β, σ)) =
1

2
|ri/σ|q + log(σ) + C1

and
C1 = log(Γ(1/2))− log(q(1/2)(1+1/q)).

Theorem 3. The breakdown point of the WLTE(k) estimators of β and scale σ in the
linear regression model with q–th order exponential distribution for any q ∈ [1,∞) is equal
to (n−k)/n if n ≥ 3(p+ 1), xi ∈ Rp, i = 1, . . . , n are in general position, the weights wi ≥ 0
for i = 1, 2, . . . , n, wk > 0 for k = max{i : wi > 0}, and the index k is within the bounds
(n + p+ 1)/2 ≤ k ≤ n− p− 1.

As far as we are acquainted with the literature concerning the breakdown point of the
robust regression estimators there is no analogue of this Theorem.

If σ is known or treated as a nuisance parameter in fi(β, σ) the LME(k) (LTE(k)) esti-
mators of β are equivalent to the LQS (LTS) regression estimators of Rousseeuw (1984).

It is easily seen also that some robust estimators such as Minimum Volume Ellipsoid and
Minimum Covariance Determinant estimators of multivariate location and scatter introduced
by Rousseeuw (1985) can be obtained if one chooses LME(k) or LTE(k) for the multivariate
normal density function and if we specify the value of the parameter k; for details see Vandev
and Neykov (1993).
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5 The grouped binary regression

The classical logistic and probit analyses are widely used in applied statistics. For a recent
study see McCullagh and Nelder (1989). Copas (1988), Künsch, Stefanski and Carroll (1989),
Carroll and Pederson (1993) and Wang and Carroll (1995) considered different types of robust
M- and GM- estimators depending on the type of contamination in the binary regression
models. The breakdown point of these estimators is not greater than 1/(p + 1), where p
is the number of covariates. A high breakdown point estimator for binary regression data
is considered by Christmann (1994). The proposed estimator is based on LQS regression
estimator of Rousseeuw (1984), but applied on appropriately weighted data.

In this section the breakdown properties of the WLTE(k) estimators for a grouped binary
regression model are studied. The type of the data under consideration has the form (yi, x

T
i )

for i = 1, . . . , m where yi is assumed to be binomially distributed, b(yi | ni, πi), where the
group size is ni, the probability of success is πi, xi is a p×1–dimensional vector of covariates
(explanatory variables) and the total number of observations is n = n1 + n2 + · · ·+ nm.

We shall assume that πi follows the linear logistic regression model

πi = exp(xTi β)/(1 + exp(xTi β),

where β is a p×1–dimensional vector of unknown parameters. Probit or other link functions
could be used as well.

Hereafter we shall also assume that 0 < yi < ni for each i. Without this condition the
subcompactness of the respective functions is not possible to be proved. This corresponds
with the results concerning the existence, uniqueness and finiteness of the parameter estimate
of β discussed by Haberman (1977). The case of ungrouped binary (Bernoulli) regression
data thus cannot be considered here.

We need to study the d–fullness of the set {f1(β), . . . , fn(β)}, where

fi(β) = fi(yi, x
T
i , β) = − log(b(yi | ni, πi)) = −yi(xTi β) + ni log(1 + exp(xTi β))− log

(
ni
yi

)
.

Theorem 4. The breakdown point of the WLTE(k) estimators in the grouped binary
logistic linear regression model defined above is equal to (m− k)/m if the data xi ∈ Rp for
i = 1, . . . , m are in general position, the weights wi ≥ 0 for i = 1, 2, . . . , m, wk > 0 for
k = max{i : wi > 0}, m ≥ 3(p+ 1) and the index k is within the bounds (m + p + 1)/2 ≤
k ≤ m− p− 1.
Remark 2. Note that the meaning of breakdown point here is different from the one given
by Definition 1 as we consider the triple (ni, yi, x

T
i ) as one observation.

The above results also hold in the case of a homoscedastic linear regression model with
replications. It is easily shown, by analogy of the grouped binary regression model, that the
breakdown point of these estimators is equal to (m − k)/m when the parameter k belongs
to the range of values (m + p + 1)/2 ≤ k ≤ m − p− 1, since the respective set of functions
is p + 1 full if the observations xi ∈ Rp are in general position.

The results in this section show the inadequacy of both the breakdown point definition
of Donoho and Huber (1983) and the d–fullness technique of Vandev (1993) when applied
directly to the structured models with replications. The main reason is that the parameter k
of the considered estimators belongs to the interval (m+p+1)/2 ≤ k ≤ m−p−1 in this case.
These values of k may be too small in comparison with the total number of observations
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n = n1 + n2 + · · ·+ nm. This means that a large number of regular observations would not
be used, which contradicts the main goal of the robustness: the estimator should be based
on the majority of the data. In order to escape from the dependence of the breakdown point
on the sample, Coakley and Mili (1993) use the exact fit point in studying the robustness
properties of their D-estimators, and in particular the LMS and LTS estimators of Rousseeuw
(19984), in the case of linear regression with replications.

6 Appendix

The proof of Theorem 2 is based on the next lemmas and Theorem 1. We shall study the
d-fullness of the set {|r1|q, . . . , |rn|q} where q ∈ [1,∞).
Lemma 1. For any p+1 points u1, . . . , up+1 ∈ Rp in general position, and arbitrary constants
v1, . . . , vp+1, the function

I(β) = max
i∈1,...,p+1

|vi − uTi β|q

is subcompact in β when q ∈ [1,∞).
Proof of Lemma 1. Denote by V and U the vector of the constants vi and the matrix of
the points uTi for i = 1, . . . , p+ 1 respectively. We shall use the inequality:

C ≥ I(β) ≥ 1

p+ 1

p+1∑

i=1

|vi − uTi β|q.

Since any two norms in the Euclidean space Rp are equivalent it follows after simple
transformations that

C1/q ≥
(

1

p+ 1

p+1∑

i=1

|vi − uTi β|q
)1/q

≥M

(
1

p+ 1

p+1∑

i=1

(vi − uTi β)2

)1/2

,

where M is a positive constant. Therefore the following inequality holds

(1/M)2C2/q ≥ 1

p+ 1

p+1∑

i=1

(vi − uTi β)2 =
1

p+ 1
(V − Uβ)T (V − Uβ)

=
1

p+ 1
(r̂ − U(β − β̂)T (r̂ − U(β − β̂),

where β̂ = (UTU)−1UTV is the LSE and r̂ is the corresponding vector of residuals. The LSE
β̂ exists since the observations ui are in general position. By UT r̂ = 0 it follows that

(1/M)2C2/q − r̂T r̂

p+ 1
≥ 1

p+ 1
(β − β̂)TUTU(β − β̂).

Since det(UTU) is nonzero, because the observations ui are in general position, it follows that
β belongs to a bounded set, which is compact as the function I(β) is continuous. Therefore
the function I(β) is subcompact. Q.E.D.
Lemma 2. For any q ∈ [1,∞) the set {|r1|q, . . . , |rn|q} is (p + 1)–full if the points xi ∈ Rp,
i = 1, . . . , n are in general position.
Proof of Lemma 2. The proof follows directly from Lemma 1 and definition 3.
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Proof of Theorem 2. From the inequalities

C ≥ max
i∈{1,...,p+1}

ρ(|ri(β)|) ≥ ρ( max
i∈{1,...,p+1}

|ri(β)|)

it follows that

ρ−1(C) ≥ max
i∈{1,...,p+1}

|ri(β)|,

as the function ρ is strictly increasing and continuous. According to Lemma 2 the set of
functions {ρ(|ri(β)|) for i = 1, 2, . . . , n} is (p+1)–full since the points xi ∈ Rp for i = 1, . . . , n
are in general position. Therefore the breakdown point of this class of estimators is not less
than (n− k)/n according to Theorem 1.

The opposite inequality is proved easily. Let us increase the number of the contaminated
observations by one, i.e., their number becomes n−k+1. Since the estimator is defined over
a subsample of k observations, it follows that one of them is a contaminated one. So the
estimator can obtain arbitrary large values, and therefore its breakdown point is less than
(n− k)/n. The equality follows from both inequalities. Q.E.D.

The proof of Theorem 3 is based on the next lemmas and Theorem 1.
Lemma 3. For any p+1 points u1, . . . , up+1 ∈ Rp in general position, and arbitrary constants
v1, . . . , vp+1, the function

I(β, σ) = max
i∈{1,...,p+1}

fi(β, σ) = max
i∈{1,...,p+1}

1

2
|vi − uTi β|q + log(σ) + C1

is subcompact in β and σ when q ∈ [1,∞).
Proof of Lemma 3. Denote by V and U the vector of the constants vi and the matrix
of the points uTi for i = 1, . . . , p + 1 correspondingly. Denote by A = maxi |vi − uTi β| for
i ∈ {1, . . . , p + 1}. Note that A is not zero since the points ui for i = 1, . . . , p + 1 are in
general position. The function I(β, σ) for fixed β has a local minimum at σ̃ = A(q/2)1/q.
We will use the following inequalities:

C ≥ 2I(β, σ) ≥ 2I(β, σ̃) = Aq/σ̃q + 2 log(σ̃) + 2C1 = 2/q + (2/q) log(q/2) + 2 logA+ 2C1.

Denote C2 = C − 2C1 − 2/q − (2/q) log(q/2). From the inequalities

exp(C2) ≥ A2 =

(
max

i∈{1,...,p+1}
|vi − uTi β|

)2

= max
i∈{1,...,p+1}

(vi − uTi β)2 ≥ 1

p+ 1

p+1∑

i=1

(vi − uTi β)2

and by analogy with the proof of Lemma 1 it follows that β belongs to a compact set.
Let β̃ is the minimal value of the function A = maxi |vi − uTi β| for i ∈ {1, . . . , p + 1}.

Then the inequalities hold

C ≥ 2I(β, σ) ≥ 2I(β̃, σ) ≥ Ãq/σq + 2 log(σ) + 2C1.

By simple transformation after addition and subtraction of the term 2 log(Ã) on the right
side of the last inequality we obtain that

C ≥ Ãq/σq − (2/q) log(Ãq/σq) + 2 log(Ã) + 2C1.
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Denote H = C − 2C1 − 2log(Ã). Then

H ≥ Ãq/σq − (2/q) log(Ãq/σq).

Let us consider the function s(σ) = Ãq/σq − (2/q) log(Ãq/σq). It reaches its minimum at
σ̂ = Ã(q/2)1/q, and the corresponding minimum equals σ̂ = 2/q − 2/q log(2/q) , which is
nonnegative when 1 ≤ q <∞. Therefore for any q in the interval 1 ≤ q <∞

H ≥ 2/q − (2/q) log(2/q) > 0,

which implies

e−H < Ãq/σq ≤ Hq

qe− 2
.

The left inequality is obvious. The right one follows easily from the inequality

Ãq/σq ≤ H + (2/q) log(Ãq/σq) ≤ H + (2/q)(Ãq/σq)/e,

as log(x) ≤ x/e for any x > 0. By the definition of A and the last inequality it follows that
σ (which is positive) also belongs to a compact set. Therefore I(β, σ) is subcompact in β
and σ. Q.E.D.
Lemma 4. For any q ∈ [1,∞) the set of functions {f1(β, σ), . . . , fn(β, σ)} is (p + 1)–full if
the points xi ∈ Rp for i = 1, . . . , n are in general position.
Proof of Lemma 4. According to Lemma 3 the function I(β, σ) is subcompact in β and
σ for any (p + 1) points, since the points xi ∈ Rp for i = 1, . . . , n are in general position.
Therefore the set of functions {f1(β, σ), . . . , fn(β, σ)} is (p+ 1)–full. Q.E.D.
Proof of Theorem 3. According to Theorem 1 it follows that the breakdown point of
the WLTE(k) estimator is not less than (n − k)/n since the set {f1(β, σ), . . . , fn(β, σ)} is
(p+1)–full by Lemma 4. The opposite inequality is proved in the same way as in the second
part of the proof of Theorem 2. Q.E.D.
Remark 3. A large constant must be added to fi(β, σ) for i = 1, . . . , n in order to ensure
their nonnegativeness. Clearly this constant will not affect the estimator but only the value
of the corresponding loss function. It is seen that the choice of this constant depends on the
value of σ which should be bound from below by a small positive constant say δ. Therefore
the WLTE(k) estimate of σ must be obtained under the constraint σ > δ, which can be done
as the observations are in general position. As the terms |(yi−xTi β)/σ|q are nonnegative for
any i such a constant Cδ = maxiCδi can be determined for a fixed δ from the inequalities

Cδi > log
(
q(1/2)(1+1/q)

)
− log(Γ(1/q))− log(δ)− |(yi − xTi β)/δ|q, i = 1, . . . , n.

The proof of Theorem 4 is based on the following lemmas and Theorem 1.
Lemma 5. The function

I(β) = sup
i∈{1,...,p+1}

{
−yi(uTi β) + ni log(1 + exp(uTi β))− log

(
ni
ki

)}

is subcompact in β if 0 < yi < ni for i = 1, . . . , p+ 1 and the points u1, . . . , up+1 ∈ Rp are in
general position.
Proof of Lemma 5. In order to show that the set {β : I(β) ≤ C} is compact for any
constant C we shall use the inequality

C ≥ I(β) = max
i∈{1,...,p+1}

{
−yi(uTi β) + ni log(1 + exp(uTi β))− log

(
ni
ki

)}
.

10



Consider the function g(λ) = −yλ + n log(1 + exp(λ)) under the restriction 0 < y < n. It

reaches its minimum at λ̃ = log( y/n
1−y/n). It is seen that g(λ)→ +∞ when λ→ ±∞ and

g(λ) ≥ min(y, n− y){|λ− λ̃| − |λ̃|} ≥ |λ− λ̃| − |λ̃|

.
Denote by λi = uTi β and C3 = maxi∈1,...,p+1 log

(
ni
ki

)
. Then from the properties of the

function g(λi) it follows that

C + C3 ≥ max
i∈{1,...,p+1}

{
−yi(uTi β) + ni log(1 + exp(uTi β))− log

(
ni
ki

)}

= max
i∈{1,...,p+1}

g(λi) ≥ max
i∈{1,...,p+1}

{|λi − λ̃i| − |λ̃i|},

which is equivalent to

C + C3 + max
i∈{1,...,p+1}

|λ̃i| ≥ max
i∈{1,...,p+1}

|λi − λ̃i| ≥

1

p+ 1

p+1∑

i=1

|λi − λ̃i| =
1

p+ 1

p+1∑

i=1

|uTi β − log(
yi/ni

1− yi/ni
)|.

By analogy with the proof of Lemma 1 it follows that β belongs to a compact set. Q.E.D.
Lemma 6. The set of functions {f1(β), . . . , fm(β)} is (p+ 1)– full if the points xi ∈ Rp for
i = 1, . . . , m are in general position and 0 < yi < ni.
Proof of Lemma 6. As any p+1 points of the sample are in general position, the function
I(β) is subcompact in β by Lemma 5. Therefore the set {f1(β), . . . , fm(β)} is (p + 1)–full.
Q.E.D.
Proof of Theorem 4. According to Theorem 1 the breakdown point of WLTE(k) estimators
is not less than (m−k)/m since the set of functions {f1(β), . . . , fm(β)} is (p+1)–full according
Lemma 6 while the opposite inequality is proved in the same way as in the second part of
the proof of Theorem 2. Q.E.D.
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