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Abstract

In their short communication Neykov and Neychev (1990) have proposed a
robustified version of maximum likelihood principle – RML. It leads to two
families of robust estimators LME - the Least Median of log density values
Estimator, and LTE - the Least Trimmed log - likelihood Estimator. This
paper studies the possibility to extend the results of Vandev and Neykov (1993)
to a more general (than the multidimensional normal) elliptical family of density
functions.

1 Introduction

Neykov and Neychev (1990) proposed a robustified version of maximum likelihood
principle – RML. Some of the widely known robust estimators of multivariate loca-
tion and scatter matrix follow easily from this principle. Among them are MVE -
the Maximum Volume Ellipsoide, and MCE - the Minimum Covariance Determinant
introdused by Rousseeuw (1986). It is shown (Lopuhaa and Rousseeuw, 1991) that
in the Gaussian case they both have a breakdown point of 1/2 - the best that can be
achieved.

In this paper we focus our atterntion to a general elliptical family defined by
fixed ”shape” function ϕ(z). Vandev (1992) developed a technique for computing the
breakdown point of LME and LTE. He proved that the breakdown point is not less
than (n − k)/n, where k is a tuning constant of the estimators which can be chosen
by the user within some reasonable range of values. Vandev and Neykov (1993)
based on these results studied the connection of the finite – sample breakdown point,
dimensionality of the Gaussian distribution and the notion of d – fullness introduced
by Vandev (1992).

Our considerations as an extention of the normal case, follow the similar tecnique
when proving the statements. We obtain a high breakdown point for LME and LTE
when ϕ(z) has a ”propriate behavior”.
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The main result is that when ϕ(z) is a positive, decreasing, restricted from above
function and when ϕ(z) = O(e−αz), the set of density values for the sample form a
(p+1) – full set of function of the unknown scale parameter the matrix S. This implies
that RML - estimators LME(k) and LTE(k) have breakdown point not less than
(n− k)/n, for k - expected number of outliers being the parameter of the estimator.

2 Definitions and Notations

Let consider x1, x2, . . . , xn- a sample of n independent observations in the p-dimentional
euclidean space Ep, over a random value ξ with the following density function:

f(x, µ, S) =
Cp√
det(S)

ϕ((x− µ)′S−1(x− µ)).

Here Cp is a standardized constant, and µ and S denote the location and scale
parameters correspondingly.

Our aim is to find high breakdown point robust estimators for the unknown pa-
rameters. Vandev (1993) showed that the breakdown point of both LME(k) and
LTE(k) estimators is not less than (n − k)/n if the set of n positive functions
{− ln f(xi, µ, S), i ∈ {1, 2, . . . , n}} is d – full and (n+ d)/2 ≤ k ≤ (n− d).

In order to apply this result, it only remains to determine the conditions that the
function ϕ(x) must satisfy, as well as the value of d for the density family mentioned
above.

First of all we should recall the basic definition introdused by Neykov and Neychev
(1990) and later extended a little bit by Vandev and Neykov (1993) concerning RML.

Definition 1: The Least k-ordered of log density Estimator (LME) of θ for k > n
2

is
defined as:

LME(k)(x1, x2, . . . , xn) = argmin
θ

(− ln f(xl(k), µ, S)),

The Least Trimmed log - likelyhood Estimator (LTE) of θ is defined as:

LTE(k)(x1, x2, . . . , xn) = argmin
θ

k∑

i=1

(− ln(f(xl(i), µ, S))),

where f(xl(1), µ, S) ≥ f(xl(2), µ, S) ≥ . . . ≥ f(xl(n), µ, S) are the ordered density
values and θ denote the unknown parameter.

Definition 2: The real valued function g(z) defined on a topological space Z is called
subcompact, if its Lebesque sets L(M) = {z : g(z) ≤ M} are compact or empty for
all constants M .

Definition 3: A finite set F of n functions is called d – full, if for each subset of
cardinality d of F , the supremum of all functions in this subset is a subcompact
function.
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3 Basic results

Let F = {− ln f(x1, µ, S),− ln f(x2, µ, S), . . . ,− ln f(xn, µ, S)}.

Firstly we should determine the conditions which ϕ(x) must satisfy. In order to
apply Vandev’s results we should obtain the positivity of the functions − ln f(xi, µ, S).
For this it is necessary that ϕ(x) be a positive, decreasing, restricted from above
function.

The only restriction on parameters is that there must exist ε > 0 such that
det(S) ≥ ε.

Theorem 1 If x1, x2, . . . , xn is a sample with a density function

f(x, µ, S) =
Cp√
det(S)

ϕ((x− µ)′S−1(x− µ)),

then the finite set F form
(1) a (p+1) – full set with probability 1, if the scale parameter S is unknown,

and ϕ(x) satisfies the extra assumption ϕ(z) = O(e−αz), α ≥ 0;
(2) a 1 – full set if only the location parameter µ is unknown.

For the proof we needed the following lemmas.

Lemma 1 (a)For any (p+ 1) points in general position
I(µ, S) = maxi∈{1,2,...,p+1}(− ln f(xi, µ, S)) is subcompact in µ and S if the scale pa-
rameter S is unknown and ϕ(z) = O(e−αz);

(b) I(µ, S) = − ln f(xi, µ, S) is subcompact in µ, if only the location µ is
unknown.

Lemma 2 If λ1, λ2, . . . , λp are the eigenvalues of BS−1 where

B =
1

p+ 1

p+1∑

i=1

(xi − x)(xi − x)′,

then:

e−H ≤ λi ≤
eH

e− 1
,

where H =
∑p
i=1 λi − ln

∏p
i=1 λi

Lemma 3 (a standard fact from Linear Algebra) For αi – the eigenvalues of S, if
real constants exist α and β, such that from α ≤ αi ≤ β follows: α ≤ ‖S‖ ≤ β
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Proof of the theorem:
Let us suppose that ϕ(z) is an uninterrupted on the left lunction.
Case (2): We consider the case when only µ is an unknown parameter. Then for

an arbitrary real constant K let denote as

I(µ) = {µ : −lnf(xi, µ, S) ≤ K}
=

{
µ : ϕ((xi − µ)′S−1(xi − µ)) ≥ C

}
,

where C := eK1 = const > 0, K1 := −K − ln Cp√
detS

= const.

We must show that I(µ) is a compact function in µ.
(I) Let there exist a point z0 such that : ϕ(z0) = C. Then there exists an internal

J, such that ϕ(z) = C.

(II) Let suppose that no point z0, exists for which ϕ(z0) = C ,and denote as J
the following interval:

J := {z : ϕ(z) > C}

In these both cases because ϕ(z) is positive and decreasing it turns out that J is
an interval restricted on the right.

Therefore ∀ z ∈ J : ϕ(z) ≥ ϕ(sup(J)).
We must pay attention to the fact that the last statement is satisfied because ϕ(z)

is uninrerrupted on the left.

Now it is not hard to extend I(µ) to the set I1(µ), definited as:

I1(µ) =
{
µ : (xi − µ)′S−1(xi − µ) ≤ sup(J)

}
.

As I1(µ) is a restricted set we can make the conclusion that I(µ) is restricted as well.

In case (1) we introduce:

I(µ, S) = max
i∈{1,2,...,p+1}

{− ln f(xi, µ, S)}

= − lnCp+
1

2
ln(detS)− lnϕ( max

i∈{1,2,...,p+1}
((xi − µ)′S−1(xi − µ))).

and denote by A :

A := {(µ, S) : I(µ, S) ≤ K}
= {(µ, S) :

1

2
ln(detS)− lnϕ max

i∈{1,2,...,p+1}
((xi − µ)′S−1(xi − µ)) ≤ K1}.

where K1 = K + lnCp.
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Using the inequalities:

max
i∈{1,2,...,p+1}

((xi − µ)′S−1(xi − µ)) ≥ 1

p+ 1

p+1∑

i=1

(xi − µ)′S−1(xi − µ)

and
1

p+ 1

p+1∑

i=1

((xi − µ)′S−1(xi − µ)) ≥ 1

p+ 1

p+1∑

i=1

((xi − x)′S−1(xi − x)),

where x is the mean of x1, x2, . . . , xp+1, the set A expands to the set C, which is:

C :=



(µ, S) :

1

2
ln(detS)− lnϕ


 1

p + 1

p+1∑

i=1

(xi − x)′S−1(xi − x)


 ≤ K1



 .

Denoting by B and Z correspondingly B := 1
p+1

∑p+1
i=1 (xi − x)(xi − x)′ and Z :=

S−1, we can finally come to C := {(µ, S) :
√

(det(BZ))ϕ(Tr(BZ)) ≥ L}, with

L = e−K1.
√

(detB) = const.

Let λ1
′, λ2

′, . . . , λp
′ and α1, α2, . . . αp are the eigenvalues of BZ and S corespon-

dengly.
Let denote as: λi = λi

′

coeff
for i ∈ {1, 2, . . . , p}, where coeff is arbitrary positive.

Then C turns into:

C =

{
(µ, S) :

1

2

( p∑

i=1

λi − ln
p∏

i=1

λi

)
≤ lnϕ(coeffp.

p∑

i=1

λi +
1

2
.
p∑

i=1

λi
′ − lnL

}
.

For H :=
∑p
i=1 λi − ln

∏p
i=1 λi, we can expand C to C1 :

C1 :=

{
S : H ≤ 2.

( p∑

i=1

λi + lnϕ

(
coeffp.

p∑

i=1

λi

)
− lnL

)}

Using the extra assumption ϕ(z) = O(e−αz), finally we manage one more time to
extend C1 to C2 := {S : H ≤M −∑p

i=1 λi(1− coeffp.α)}.
Because by appropriate coeff we can make (1− coeff p.α) > 0, and obtain:

C2 ⊂ D := {S : H ≤M}.

From Lemma2 we obtain that e−M ≤ λi ≤ eM
e−1

, for i ∈ {1, 2, . . . , p} and multi-
plying all these inequalities reminding that det(S) =

∏p
i=1 αi we obtain the follwing

double inequality:
(e− 1)p.b

epMp
≤

p∏

i=1

αi ≤ epM .b,
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where detB = b = const.
Therefore there are positive constants α and β, such that α ≤ αi ≤ β ∀i ∈

{1, 2, . . . , p}, and proceeding in the same way we obtain F := {S : α ≤ αi ≤ β, i ∈
{1, 2, . . . , p}} and A ⊂ C ⊂ C1 ⊂ D ⊂ F.

From α ≤ αi ≤ β and Lemma3 we obtain that α ≤ ‖S‖ ≤ β, which is equivalent
to the fact that F and therefore A is restricted too.

Now it only remains to study that A is a closed set.
Let us consider {(µn, Sn)}, (µn, Sn) ∈ A ∀n ∈ N, where µn → µ and Sn → S when

n→∞.
We shall show that (µ, S) ∈ A.
For this it is convenient to denote as

Zn := max
i∈{1,2,...,p+1}

((xi − µn)′Sn
−1(xi − µn))

and as
Z := max

i∈{1,2,...,p+1}
((xi − µ)′S−1(xi − µ)),

where µn = µ, in case of µ – known.

Let us assume that (µ, S) /∈ A, e.g. ϕ(Z) < C and let us consider the row {Zn}.
In these conditions let us assume as well that there exist k ∈ N, such that yk > y.
After a few rows we obtain contradictions with the both assumptions, and we

finally obtain, that A is a closed set. But above we proved that A is restricted,
therefore A is a compact set.

Unfortunately it turns out that when the extra assumption: ϕ(z) = O(e−αz) is
not satisfied e.g. in the particular case when ϕ(z) = z−αz, the RML principle is not
obtainable.

The gap when ϕ(z) behaved itself between z−αz and e−αz is an open question.

We must pay attention to the fact that from a density viewpoint, the restriction
for uninterruptedness on the left for ϕ(z) is purely technical. Terefore this restriction
for ϕ(z), need not be satisfied in the sense of equivalent density functions.
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