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Comparing several methods of Discriminant Analysis on the

case of Wine Data ∗

Dimitar Vandev, Ute Römisch

Sofia University, TU - Berlin

Abstract

We shortly describe the type of data collected in WINE-DB project and the problems of
recognition which has to be solved. Then the procedures of Linear and Quadratic Discrimi-
nant analysis as well as a small improvement - mixture of both models are described.

General Discriminant Analysis is a nonparametric procedure. Support Vector Mashines
(also known as Kernel Mashines) are procedures from the field of Mashine Learning.

We test these techniques on our data and comment the results.

∗The research is supported by contracts: PRO-ENBIS: GTC1-2001-43031 and WINE DB: G6RD-CT-
2001-00646
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1. Description of data

1.1. Two data sets
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1. Description of data

1.1. Two data sets

1. East European wines: TranWein35.sta: 35 variables by 144
cases, from 5 countries:
(in German spelling) Bulgarien, Rumänien, Ungarn, Mazedonien,
Moldawien
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1. Description of data

1.1. Two data sets

1. East European wines: TranWein35.sta: 35 variables by 144
cases, from 5 countries:
(in German spelling) Bulgarien, Rumänien, Ungarn, Mazedonien,
Moldawien

2. Oversee wines: usw_tran_2.sta: 45 variables by 274 cases
from:
(in German spelling) Kalifornien, Südafrika, Australien, Chile, Ar-
gentinien

1.2. Preliminary Data Processing
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1. Description of data

1.1. Two data sets

1. East European wines: TranWein35.sta: 35 variables by 144
cases, from 5 countries:
(in German spelling) Bulgarien, Rumänien, Ungarn, Mazedonien,
Moldawien

2. Oversee wines: usw_tran_2.sta: 45 variables by 274 cases
from:
(in German spelling) Kalifornien, Südafrika, Australien, Chile, Ar-
gentinien

1.2. Preliminary Data Processing

• Transformations of some variables to normality.
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1. Description of data

1.1. Two data sets

1. East European wines: TranWein35.sta: 35 variables by 144
cases, from 5 countries:
(in German spelling) Bulgarien, Rumänien, Ungarn, Mazedonien,
Moldawien

2. Oversee wines: usw_tran_2.sta: 45 variables by 274 cases
from:
(in German spelling) Kalifornien, Südafrika, Australien, Chile, Ar-
gentinien

1.2. Preliminary Data Processing

• Transformations of some variables to normality.

• The existent missing values was filled with within groups means.
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2. Traditional Methods

2.1. Bayes Discriminant Analysis

Let us suppose that we have observed two random variables:
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2. Traditional Methods

2.1. Bayes Discriminant Analysis

Let us suppose that we have observed two random variables:

1. continuous ξ with values x ∈ Rp;

http://www.fmi.uni-sofia.bg


Description of data

Traditional Methods

Features space

Software used

Results and conclusion

Home Page

Title Page

JJ II

J I

Go Back

Full Screen

Close

Quit

2. Traditional Methods

2.1. Bayes Discriminant Analysis

Let us suppose that we have observed two random variables:

1. continuous ξ with values x ∈ Rp;

2. discrete (or categorical) η with values y ∈ {1, 2, . . . , G}.
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2. Traditional Methods

2.1. Bayes Discriminant Analysis

Let us suppose that we have observed two random variables:

1. continuous ξ with values x ∈ Rp;

2. discrete (or categorical) η with values y ∈ {1, 2, . . . , G}.

3. they have joined distribution (DA model):
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2. Traditional Methods

2.1. Bayes Discriminant Analysis

Let us suppose that we have observed two random variables:

1. continuous ξ with values x ∈ Rp;

2. discrete (or categorical) η with values y ∈ {1, 2, . . . , G}.

3. they have joined distribution (DA model):

• Pr(η = y) = py

http://www.fmi.uni-sofia.bg


Description of data

Traditional Methods

Features space

Software used

Results and conclusion

Home Page

Title Page

JJ II

J I

Go Back

Full Screen

Close

Quit

2. Traditional Methods

2.1. Bayes Discriminant Analysis

Let us suppose that we have observed two random variables:

1. continuous ξ with values x ∈ Rp;

2. discrete (or categorical) η with values y ∈ {1, 2, . . . , G}.

3. they have joined distribution (DA model):

• Pr(η = y) = py

• Conditional distribution of ξ ∈ Rp given η = y is described
by the density ϕ(x, my, Cy).

Here ϕ is the density of Gauss distribution in Rp described by two
parameters:

http://www.fmi.uni-sofia.bg


Description of data

Traditional Methods

Features space

Software used

Results and conclusion

Home Page

Title Page

JJ II

J I

Go Back

Full Screen

Close

Quit

2. Traditional Methods

2.1. Bayes Discriminant Analysis

Let us suppose that we have observed two random variables:

1. continuous ξ with values x ∈ Rp;

2. discrete (or categorical) η with values y ∈ {1, 2, . . . , G}.

3. they have joined distribution (DA model):

• Pr(η = y) = py

• Conditional distribution of ξ ∈ Rp given η = y is described
by the density ϕ(x, my, Cy).

Here ϕ is the density of Gauss distribution in Rp described by two
parameters:

• mean - my;
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2. Traditional Methods

2.1. Bayes Discriminant Analysis

Let us suppose that we have observed two random variables:

1. continuous ξ with values x ∈ Rp;

2. discrete (or categorical) η with values y ∈ {1, 2, . . . , G}.

3. they have joined distribution (DA model):

• Pr(η = y) = py

• Conditional distribution of ξ ∈ Rp given η = y is described
by the density ϕ(x, my, Cy).

Here ϕ is the density of Gauss distribution in Rp described by two
parameters:

• mean - my;

• covariance - Cy,
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Suppose we know the parameters of this model:
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Suppose we know the parameters of this model:

1. The prior probabilities - {py};
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Suppose we know the parameters of this model:

1. The prior probabilities - {py};

2. Group means - {my};
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Suppose we know the parameters of this model:

1. The prior probabilities - {py};

2. Group means - {my};

3. Within group covariance matrices - Cy;

That is, the set of numbers: {py, my, Cy, y = 1, 2, .. . . . , G}.
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Suppose we know the parameters of this model:

1. The prior probabilities - {py};

2. Group means - {my};

3. Within group covariance matrices - Cy;

That is, the set of numbers: {py, my, Cy, y = 1, 2, .. . . . , G}.
Then according of the famous formula of Bayes we may write down

the conditional probability of η = y given x:

Pr(η = y|ξ = y) = q(y|x) = c(x).py.ϕ(x, my, Cy),
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Suppose we know the parameters of this model:

1. The prior probabilities - {py};

2. Group means - {my};

3. Within group covariance matrices - Cy;

That is, the set of numbers: {py, my, Cy, y = 1, 2, .. . . . , G}.
Then according of the famous formula of Bayes we may write down

the conditional probability of η = y given x:

Pr(η = y|ξ = y) = q(y|x) = c(x).py.ϕ(x, my, Cy), (1)

where c is a normalizing constant, such that
∑

q(y|x) = 1.
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Suppose we know the parameters of this model:

1. The prior probabilities - {py};

2. Group means - {my};

3. Within group covariance matrices - Cy;

That is, the set of numbers: {py, my, Cy, y = 1, 2, .. . . . , G}.
Then according of the famous formula of Bayes we may write down

the conditional probability of η = y given x:

Pr(η = y|ξ = y) = q(y|x) = c(x).py.ϕ(x, my, Cy), (1)

where c is a normalizing constant, such that
∑

q(y|x) = 1.
We call this probability posterior and say that the observation x

belongs to the group y with probability q(y|x).
According the maximum likelihood principle the classification rule

should then be:
ŷ(x) = argmax

h
: q(h|x).
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Suppose we know the parameters of this model:

1. The prior probabilities - {py};

2. Group means - {my};

3. Within group covariance matrices - Cy;

That is, the set of numbers: {py, my, Cy, y = 1, 2, .. . . . , G}.
Then according of the famous formula of Bayes we may write down

the conditional probability of η = y given x:

Pr(η = y|ξ = y) = q(y|x) = c(x).py.ϕ(x, my, Cy), (1)

where c is a normalizing constant, such that
∑

q(y|x) = 1.
We call this probability posterior and say that the observation x

belongs to the group y with probability q(y|x).
According the maximum likelihood principle the classification rule

should then be:
ŷ(x) = argmax

h
: q(h|x). (2)
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2.2. Linear and Quadratic DA

Suppose that within group covariances C(g) are equal:

C(g) = C, (g = 1, 2, . . . , G)
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2.2. Linear and Quadratic DA

Suppose that within group covariances C(g) are equal:

C(g) = C, (g = 1, 2, . . . , G) (3)

Than the maximum likelihood rule (2) becomes a set of inequalities:

p(ĝ).f(x, m(ĝ), C) ≥ p(h).f(x, m(h), C), .
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2.2. Linear and Quadratic DA

Suppose that within group covariances C(g) are equal:

C(g) = C, (g = 1, 2, . . . , G) (3)

Than the maximum likelihood rule (2) becomes a set of inequalities:

p(ĝ).f(x, m(ĝ), C) ≥ p(h).f(x, m(h), C), . (4)

or (what is the same) to:

Lg(x) = b(ĝ)′x + a(ĝ) ≥ Lh(x) = b(h)′x + a(h), (5)

We decide that the observation x belongs to the group g, if for each
h the inequality (5) holds.
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2.2. Linear and Quadratic DA

Suppose that within group covariances C(g) are equal:

C(g) = C, (g = 1, 2, . . . , G) (3)

Than the maximum likelihood rule (2) becomes a set of inequalities:

p(ĝ).f(x, m(ĝ), C) ≥ p(h).f(x, m(h), C), . (4)

or (what is the same) to:

Lg(x) = b(ĝ)′x + a(ĝ) ≥ Lh(x) = b(h)′x + a(h), (5)

We decide that the observation x belongs to the group g, if for each
h the inequality (5) holds.The functions L are called discriminant
functions.
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When the assumption (3):C(g) = C is not appropriate, the corre-
sponding functions become quadratic.
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When the assumption (3):C(g) = C is not appropriate, the corre-
sponding functions become quadratic.

If one has equal prior probabilities p(h) = 1/G, the solution of
the classification problem (2) is equivalent to the minimization of so
called Mahalanobis distances of the observation to the group means:

h(x, g) = (x−m(g))′C−1
g (x−m(g))
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When the assumption (3):C(g) = C is not appropriate, the corre-
sponding functions become quadratic.

If one has equal prior probabilities p(h) = 1/G, the solution of
the classification problem (2) is equivalent to the minimization of so
called Mahalanobis distances of the observation to the group means:

h(x, g) = (x−m(g))′C−1
g (x−m(g)) (6)

One uses Mahalanobis distances (6) to classify the observation to the
closest group (so called nearest neighbors method):

ĝ = argmin
h

h(x, h).
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When the assumption (3):C(g) = C is not appropriate, the corre-
sponding functions become quadratic.

If one has equal prior probabilities p(h) = 1/G, the solution of
the classification problem (2) is equivalent to the minimization of so
called Mahalanobis distances of the observation to the group means:

h(x, g) = (x−m(g))′C−1
g (x−m(g)) (6)

One uses Mahalanobis distances (6) to classify the observation to the
closest group (so called nearest neighbors method):

ĝ = argmin
h

h(x, h).

In general however, the Bayes rule (1) is better if the supposition
of normal distribution is fulfilled and its parameters can be estimated.
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2.3. Nonparametric DA

One way to attempt to overcome this problem is to try to obtain an
estimation of these densities by nonparametric methods.

http://www.fmi.uni-sofia.bg


Description of data

Traditional Methods

Features space

Software used

Results and conclusion

Home Page

Title Page

JJ II

J I

Go Back

Full Screen

Close

Quit

2.3. Nonparametric DA

One way to attempt to overcome this problem is to try to obtain an
estimation of these densities by nonparametric methods.

Indeed, recently much attention has been given to the applica-
tion of nonparametric methods in the classification problem, includ-
ing methods such as neural networks (Ripley, 1994), classification and
regression trees (Breiman et al., 1984), flexible discriminant analysis
(Hastie, Tibshirani and Buja (1994)) and multivariate adaptive re-
gression splines (Friedman (1991)).
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2.3. Nonparametric DA

One way to attempt to overcome this problem is to try to obtain an
estimation of these densities by nonparametric methods.

Indeed, recently much attention has been given to the applica-
tion of nonparametric methods in the classification problem, includ-
ing methods such as neural networks (Ripley, 1994), classification and
regression trees (Breiman et al., 1984), flexible discriminant analysis
(Hastie, Tibshirani and Buja (1994)) and multivariate adaptive re-
gression splines (Friedman (1991)).

2.4. Independent Component Discriminant Analysis

(Amato, Antoniadis et al., 2002; Alfano, Amato et al., 2002) proposed
so called ICDA - a nonparametric discriminant analysis method that is
a simple generalization of the model assumed by linear and quadratic
discriminant analysis. This generalization relies upon a transformation
of the data based on independent component analysis (ICA), a sta-
tistical method for transforming an observed multivariate vector into
components that are stochastically as independent as possible from
each other. ICA was proposed in (Hyvärinen, 1997) and an algorithm
in (Hyvärinen, 1999).
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3. Features space

This section (see (Navarrete and del Solar, 2002)) is focused on the
so called features space and methods connected with its use.
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3. Features space

This section (see (Navarrete and del Solar, 2002)) is focused on the
so called features space and methods connected with its use.

3.1. Kernels approach and features space

The set of vectors ~x1, ..., ~xn ∈ Rn, (our observations) is mapped into
a feature space F by a set of functions {Φj(~x), j = 1, ...,M}.
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3. Features space

This section (see (Navarrete and del Solar, 2002)) is focused on the
so called features space and methods connected with its use.

3.1. Kernels approach and features space

The set of vectors ~x1, ..., ~xn ∈ Rn, (our observations) is mapped into
a feature space F by a set of functions {Φj(~x), j = 1, ...,M}.

It is better that these functions are eigenfunctions of a given kernel
(i.e., satisfying the Mercer’s condition).
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3. Features space

This section (see (Navarrete and del Solar, 2002)) is focused on the
so called features space and methods connected with its use.

3.1. Kernels approach and features space

The set of vectors ~x1, ..., ~xn ∈ Rn, (our observations) is mapped into
a feature space F by a set of functions {Φj(~x), j = 1, ...,M}.

It is better that these functions are eigenfunctions of a given kernel
(i.e., satisfying the Mercer’s condition).

We suppose that M > p. In fact, this is an important purpose of
kernel machines in order to give a good generalization ability to the
system (Vapnik, 1995).
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3. Features space

This section (see (Navarrete and del Solar, 2002)) is focused on the
so called features space and methods connected with its use.

3.1. Kernels approach and features space

The set of vectors ~x1, ..., ~xn ∈ Rn, (our observations) is mapped into
a feature space F by a set of functions {Φj(~x), j = 1, ...,M}.

It is better that these functions are eigenfunctions of a given kernel
(i.e., satisfying the Mercer’s condition).

We suppose that M > p. In fact, this is an important purpose of
kernel machines in order to give a good generalization ability to the
system (Vapnik, 1995).

The aim of kernel machines is to work with the set of mapped
vectors: Φ(xi). Denote by Φ the matrix composed by them Φ =
{Φ(~x1), . . . , Φ(~xn)}. Then, the correlation matrix of vectors Φ is
defined as:

R =
1

n− 1
ΦΦ′ (7)
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The Fundamental Correlation Problem (FCP) for the matrix R, in
its Primal form, consists in solving the eigensystem:

Rwk = λkwk, ||wk|| = 1, k = 1, . . . ,M (8)

However, R is an uncomputable matrix and then (8) cannot be solved.
In this situation we need to introduce the Dual form of the Funda-
mental Correlation Problem for R:

Kvk = λkvk, ||vk|| = 1, k = 1, . . . , n, (9)

where K is so called kernel matrix:

K =
1

n− 1
Φ′Φ. (10)

This can be shown by pre-multiplying (9) by Φ, and using (10).
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The Fundamental Correlation Problem (FCP) for the matrix R, in
its Primal form, consists in solving the eigensystem:

Rwk = λkwk, ||wk|| = 1, k = 1, . . . ,M (8)

However, R is an uncomputable matrix and then (8) cannot be solved.
In this situation we need to introduce the Dual form of the Funda-
mental Correlation Problem for R:

Kvk = λkvk, ||vk|| = 1, k = 1, . . . , n, (9)

where K is so called kernel matrix:

K =
1

n− 1
Φ′Φ. (10)

This can be shown by pre-multiplying (9) by Φ, and using (10).
The kernel function, k(~x, ~x′) specify an inner product in the feature

space
Φ(~x).Φ(~x′) = k(~x, ~x′).
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As we want to compute the solutions for which λk > 0, k = 1, ...,
we can go further and write the expression:

wk =
1√

λk(n− 1)
Φvk, k = 1, . . . , q. (11)

We are going to see that the solution of a general kind of kernel
machines can be written in terms of K, and then we are going to call
it the Fundamental Kernel Matrix (FKM).
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As we want to compute the solutions for which λk > 0, k = 1, ...,
we can go further and write the expression:

wk =
1√

λk(n− 1)
Φvk, k = 1, . . . , q. (11)

We are going to see that the solution of a general kind of kernel
machines can be written in terms of K, and then we are going to call
it the Fundamental Kernel Matrix (FKM).

Dual FCP is also an ill-posed problem, and requires some kind of
regularization as well. For the same reason the eigenvalues of R will
decay gradually to zero, and then we need to use some criterion in
order to determine q. An appropriate criterion is to choose q such that
the sum of the unused eigenvalues is less than some fixed percentage
(e.g. 5%) of the sum of the entire set (residual mean square error).
Then, using (11), the set of primal eigenvectors R W ∈ MM×q can
be written as:

W =
1

n− 1
ΦV Λ−1/2. (12)

Here the matrix V and the diagonal matrix Λ are correspondingly
q-truncated.
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3.2. Support Vector Classification

The support vector machine (Boser, Guyon et al., 1992; Cortes and
Vapnik, 1995), given labelled training data

D = {(~xi, yi)}n
i=1 , ~xi ∈ ~X ⊂ Rd, yi ∈ ~Y = {−1, +1},

constructs a maximal margin linear classifier in a high dimensional
feature space, Φ(~x), defined by a positive definite kernel function.
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3.2. Support Vector Classification

The support vector machine (Boser, Guyon et al., 1992; Cortes and
Vapnik, 1995), given labelled training data

D = {(~xi, yi)}n
i=1 , ~xi ∈ ~X ⊂ Rd, yi ∈ ~Y = {−1, +1},

constructs a maximal margin linear classifier in a high dimensional
feature space, Φ(~x), defined by a positive definite kernel function.

A common kernel is the Gaussian radial basis function (RBF),

k(~x, ~x′) = e−||~x−~x′||2/2σ2

.
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3.2. Support Vector Classification

The support vector machine (Boser, Guyon et al., 1992; Cortes and
Vapnik, 1995), given labelled training data

D = {(~xi, yi)}n
i=1 , ~xi ∈ ~X ⊂ Rd, yi ∈ ~Y = {−1, +1},

constructs a maximal margin linear classifier in a high dimensional
feature space, Φ(~x), defined by a positive definite kernel function.

A common kernel is the Gaussian radial basis function (RBF),

k(~x, ~x′) = e−||~x−~x′||2/2σ2

.

The function implemented by a support vector machine is given by

f(~x) =

{
n∑

i=1

αiyik(~xi, ~x)

}
− b. (13)
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That is if we consider the two classes I = {i : yi = 1} and
I = {i : yi = −1} the equation (13) may be rewritten as definition
of two functions (”densities”):

fI(~x) =

{∑
i∈I

αik(~xi, ~x)

}

fI(~x) =

∑
i∈I

αik(~xi, ~x)

 .

Thus the problem is like a nonparametric DA problem. The obser-
vation is classified into the class with higher density.
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To find the optimal coefficients, ~α, of the expansion (13) it is
sufficient to maximise the functional,

W (~α) =
n∑

i=1

αi −
1

2

n∑
i,j=1

yiyjαiαjk(~xi, ~xj), (14)

in the non-negative quadrant,

0 ≤ αi ≤ C, i = 1, . . . , n, (15)

subject to the constraint,

n∑
i=1

αiyi = 0. (16)

C is a regularisation parameter, controlling a compromise between
maximising the margin and minimising the number of training set
errors.
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The Karush-Kuhn-Tucker (KKT) conditions can be stated as fol-
lows:

αi = 0 =⇒ yif(~xi) ≥ 1, (17)

0 < αi < C =⇒ yif(~xi) = 1, (18)

αi = C =⇒ yif(~xi) ≤ 1. (19)

These conditions are satisfied for the set of feasible Lagrange multipli-
ers, ~α0 = {α0

1, α
0
2, . . . , α

0
n}, maximising the objective function given

by equation 14. The bias parameter, b, is selected to ensure that the
second KKT condition is satisfied for all input patterns corresponding
to non-bound Lagrange multipliers.
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Note that in general only a limited number of Lagrange multipliers,
~α, will have non-zero values; the corresponding input patterns are
known as support vectors. Let I be the set of indices of patterns
corresponding to non-bound Lagrange multipliers,

I = {i : 0 < α0
i < C},

and similarly, let J be the set of indices of patterns with Lagrange
multipliers at the upper bound C,

J = {i : α0
i = C}.
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Note that in general only a limited number of Lagrange multipliers,
~α, will have non-zero values; the corresponding input patterns are
known as support vectors. Let I be the set of indices of patterns
corresponding to non-bound Lagrange multipliers,

I = {i : 0 < α0
i < C},

and similarly, let J be the set of indices of patterns with Lagrange
multipliers at the upper bound C,

J = {i : α0
i = C}.

Equation 13 can then be written as an expansion over support vectors,

f(~x) =

 ∑
i∈{I,J }

α0
i yik(~xi, ~x)

− b. (20)

For a full exposition of the support vector method, see the any of the
excellent books (Vapnik, 1995; Vapnik, 1998; Cristianini and Shawe-
Taylor, 2000).
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3.2.1. Multiclass Strategies in SVM

For multiclass discriminant analysis problems there are some addi-
tional steps to be performed. One has to extend the two–class solu-
tion given above to this case.
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3.2.1. Multiclass Strategies in SVM

For multiclass discriminant analysis problems there are some addi-
tional steps to be performed. One has to extend the two–class solu-
tion given above to this case.

• One-against-all,The earliest used implementation for SVM multi-
class classication is probably the one-against-all method (for ex-
ample, (Bottou, Cortes et al., 1994)). It constructs G SVM mod-
els where G is the number of classes. The i-th SVM is trained
with all of the samples in the i-th class with positive labels, and
all other samples with negative labels.
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3.2.1. Multiclass Strategies in SVM

For multiclass discriminant analysis problems there are some addi-
tional steps to be performed. One has to extend the two–class solu-
tion given above to this case.

• One-against-all,The earliest used implementation for SVM multi-
class classication is probably the one-against-all method (for ex-
ample, (Bottou, Cortes et al., 1994)). It constructs G SVM mod-
els where G is the number of classes. The i-th SVM is trained
with all of the samples in the i-th class with positive labels, and
all other samples with negative labels.

• One-against-one For each pair of classes i and j a classification
model is created. Then for the test sample the class with largest
number of votes wins.
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4. Software used
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4. Software used

• Our program LDAgui for Linear and Quadratic DA (LQDA) ,
(D.Vandev, )
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4. Software used

• Our program LDAgui for Linear and Quadratic DA (LQDA) ,
(D.Vandev, )

• Generalised DA (GDA) (Baudat and Anouar, 2000) using PCA in
the feature space.
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4. Software used

• Our program LDAgui for Linear and Quadratic DA (LQDA) ,
(D.Vandev, )

• Generalised DA (GDA) (Baudat and Anouar, 2000) using PCA in
the feature space.

• Support Vector Machine Toolbox (SVM) with renewed QP opti-
mizer:
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4. Software used

• Our program LDAgui for Linear and Quadratic DA (LQDA) ,
(D.Vandev, )

• Generalised DA (GDA) (Baudat and Anouar, 2000) using PCA in
the feature space.

• Support Vector Machine Toolbox (SVM) with renewed QP opti-
mizer:

Version 2.0-Aug-1998, Support Vector Classification,

Steve Gunn (S.R.Gunn@ecs.soton.ac.uk)

Image Speech and Intelligent Systems Group,

University of Southampton
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4. Software used

• Our program LDAgui for Linear and Quadratic DA (LQDA) ,
(D.Vandev, )

• Generalised DA (GDA) (Baudat and Anouar, 2000) using PCA in
the feature space.

• Support Vector Machine Toolbox (SVM) with renewed QP opti-
mizer:

Version 2.0-Aug-1998, Support Vector Classification,

Steve Gunn (S.R.Gunn@ecs.soton.ac.uk)

Image Speech and Intelligent Systems Group,

University of Southampton

• LS-SVM Library (LSVM) (Chang and Lin, 2001) with One–To–
One strategy for combining outputs of binary classifying.
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All programs were feed with exactly the same training and test data
sets.
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5. Results and conclusion

All cited programs failed in comparison with QDA. When QLDA has
4-5%- errors over the test set, they achieved minimum of 17

The reason for such unexpectedly bad result may be in the fact
that the test sets were generated with a model exactly the same as
the model produced by QDA.
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