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Abstract

An attempt is made to create some statistical tests for comparing results of hier-
archical cluster analysis based on the uniform distribution over the set of all possible
dendrograms. Three different uniform distributions are considered according to the de-
gree of similarity of the dendrograms. Some distances between dendrograms are defined
and The solutions proposed are computational and are based on the embeding the sets
of equivalent dendrograms into the set of lexicographically ordered words.
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1 Introduction

Cluster analysis attempts to group the objects of an observed set, on the basis of similarity
or distance between them, into mutually exclusive subsets (clusters) which consist of close
objects. These clusters may be grouped into larger sets and so on, until all points are eventually
united in one cluster. The higher the level of aggregation is, the less similar are the objects in
the respective cluster. These methods for cluster analysis are called hierarchical. The result
of hierarchical classification can be represented graphically by a dendrogram.

An attempt is made in this paper to create some statistical tests for comparing results
of hierarchical cluster analysis based on the uniform distribution over the set of all possible
dendrograms.

The solution proposed is rather computational and is based on embedding the set of
dendrograms into the set of lexicographically ordered words.

2 Notations and definitions

Usually the output of any cluster analysis program is an tree - like structure called dendrogram.
In the computational part of the program this is a table, each row of which contains the results
of one amalgamation step. If n objects are to be clustered then the table contains exactly
n−1 rows. For example, in the table 2 the first step joins the objects 1 and 2 at distance .334
into a new object-cluster 2. At the subsequent step objects 3 and 4 are joined into object 4
and so on, until at the last we have one cluster containing all original objects. Of course when
instead of distances similarities are considered, then the numbers of the third column are in
a reverse order.
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1 1 2 .334 6 2 4 .666 11 4 17 1.134 16 17 18 1.741
2 3 4 .434 7 6 11 .823 12 11 18 1.135 17 18 20 1.871
3 5 6 .542 8 9 20 .934 13 13 20 1.334 18 7 20 2.000
4 8 9 .553 9 12 13 .942 14 16 17 1.434 19 19 20 2.001
5 10 11 .563 10 15 16 .963 15 14 20 1.443

Table 1: Cluster Analysis of 20 objects

Let now formalise the properties of such tables (dendrograms). Suppose that the number
of objects is n. Denote by mi and ni the numbers in the i-th row (first two columns) and let
Zn = {1, 2, . . . , n}. Let further suppose that the numbers in the third column are all different.

Definition 1 We say that two dendrograms are strongly equivalent if the first two columns of
the corresponding amalgamation table coincide.

Definition 2 We will call the vector of natural numbers {m1, n1, m2, n2, . . . , mn−1} ∈ R2n−3

binary dendrogram with labels (BDL) of n elements, if it fulfils following conditions:

1. 1 ≤ mi < ni ≤ n for 1 ≤ i ≤ n− 1;

2. ∀i ≤ j : mi 6= nj;

3. {m1, m2, . . . , mn−1} is a permutation of the numbers 1, 2, . . . , n− 1.

The number of all different vectors of this kind denote by On.

Theorem 1 There exists one-to-one mapping of the set of all integer vectors
Sn = {m1, n1, m2, n2, . . . , mn−1} satisfying the properties 1,2,3 above to the set of all classes
of strongly equivalent dendrograms.

Proof The proof is simple and constructive. �
Here after we will use this presentation of strongly equivalent dendrograms.

Definition 3 We say that two dendrograms are simply equivalent if the first two columns
of the corresponding amalgamation table coincide after some permutation of the rows. The
number of classes denote by Hn.

It is clear that according this definition it is not important which of the pairs 1, 2 or 3, 4 is
amalgamated first. But it remains important that these clusters will be joined together at the
next step. So row 6 should appear in the new table after rows 1 and 2. The row 19 remains
at the same place. So the permutation is not arbitrary — the result of it should be again an
BDL. Some times one calls such a structure binary hierarchy of n elements.

Definition 4 A set H of subsets of the set X is called hierarchy if it satisfies:

1. X ∈ H;
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2. {x} ∈ H, ∀x ∈ X;

3. If A,B ∈ H, then A ⊂ B or B ⊂ A or A
⋂
B = ∅.

Let take all hierarchy members containing fixed {x} ∈ X. Then there exists unique
(maximal) strictly increasing chain of members of the hierarchy:

{x} = B0 ⊂ B1 ⊂ B2 ⊂ · · · ⊂ Bk = X

. Denote it with B(x) and the length if the chain by K(x).

Definition 5 A hierarchy H of the set X is called (binary) if it satisfies:

∀x ∈ X, 1 ≤ i ≤ K(x), Bi \Bi−1 ∈ H, Bi, Bi−1 ∈ B(x).

Thus the numbers Hn represent the number of different binary hierarchies in the set of n
elements. Each dendrogram belongs to (or defines uniquely) an binary hierarchy. It is clear
that the number of dendrograms within the same hierarchy depends of this hierarchy. We
will study in the following its distribution (given uniform distribution over hierarchies). The
hierarchies are an interesting object for investigation. The following theorem gives a simple
representation of an hierarchy.

Theorem 2 There exists one-to-one mapping of the set of all integer vectors
Sn = {m1, n1, m2, n2, . . . , mn−1} satisfying the properties 1,2,3 above and the additional in-
equality

n1 ≤ n2 ≤ · · · ≤ nn−2

to the set of all hierarchies.

Proof Each node of the dendrogram represents a subset of the set of terminal nodes. Let
denote this mapping by T. It is clear that many dendrograms are mapped over the same
hierarchy. each correspond to a unique labelled binary tree. Then the rule of ”right son - root
- left son” leads to this simple modification. The dendrogram - representative of the class - is
reconstructed by reading right to left the vector {m1, n1, m2, n2, . . . , mn−1}. �
Definition 6 We say that two dendrograms are weakly equivalent if corresponding binary
hierarchies coincide after some permutation of the objects. Let denote the number of such
classes by Wn.

Again each dendrogram (and each hierarchy) belongs to unique weak class. It is clear that
the number of dendrograms (or hierarchies) within the same class depends of this class. We
will study in the following these distributions (given uniform distribution over classes).

3 The number of the dendrograms of n objects

In this section we will produce some recurrent formulas for calculating the numbers On, Hn,Wn.
This is easy and we will see that some of them are well known. We will not use in these numbers
in the statistical tests below. However, the derivation of there properties seems to be inter-
esting combinatorial problem. Here a simple proofs of the recurrence formulas are presented
for convenience. They follow the technique of [Knuth (1973)].
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3.1 Hierarchies and dendrograms

Theorem 3 The numbers On, Hn satisfy the following recurrent formulas:

Hn =
n−1∑

i=1

(
n

i

)
HiHn−i (1)

On =
1

2

n−1∑

i=1

(
n

i

)(
n− 2

i− 1

)
OiOn−i =

n!(n− 1)!

2n−1
(2)

The first several numbers are as follows:

H1 = 1, H2 = 1, H3 = 3, H4 = 15, H5 = 105

O1 = 1, O2 = 1, O3 = 3, O4 = 18, O5 = 180

Proof: Let first n = 2m + 1. Then each dendrogram may be splitted after deleting the root
into two dendrograms (or hierarchies). So

Hn =
m∑

i=1

HiHn−i

(
n

i

)
(3)

On =

m∑

i=1

OiOn−i

(
n

i

)(
n− 2

i− 1

)
=
n!(n− 1)!

2n−1
(4)

what coincides with equations 1,2. Here the therm
(
n
i

)
calculates the number of ways to choose

i objects out of n. The therm
(
n−2
i−1

)
equals to the number of ways of merging the levels of

amalgamation — i− 1 into the first branch with n− i− 1 levels into the second.
Let now n = 2m. Now the last terms (i = m) of summations 3,4 should be divided by 2,

because each splitting appears twice. Thus formulas 1,refO again are fulfilled.
The second equality in 4 is easy and straightforward. According to the definition at the

first level we choose the first pair in a
(
n2

)
ways. Then at each subsequent level the number

of objects decreases by 1. So

(
n

2

)(
n− 1

2

)
· · ·
(

2

2

)
==

n!(n− 1)!

2n−1
.

�

3.2 Unlabelled Dendrograms

Consider the number Wn of different unlabelled dendrograms. The classes of weakly equivalent
dendrograms may be looked as binary trees with 2n−1 unlabelled nodes and fixed root. These
numbers are known ([Comtet (1970)]) as Wedderburn - Etherington numbers - ”parenthesages
commutatifs”. It follows the interpretation of so called Catalan numbers for non commutative
”parenthesages”.
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Theorem 4 The numbers Wn satisfy the following recurrent formulas:

Wn =
1

2
(Wn/2 +

n−1∑

i=1

WiWn−i) (5)

(6)

The term Wn/2 is considered zero if n is odd. The first several numbers are as follows:

W1 = 1,W2 = 1,W3 = 1,W4 = 2,W5 = 3

Proof: Let first n = 2m+ 1 is odd number. Then each dendrogram may be splitted after
deleting the root into two unequal (different) dendrograms. So

Wn =

m∑

i=1

WiWn−i,

what coincides with equation 5.
Let now n = 2m. In this case when sizes of both branches coincide, pairs of the same

classes appear twice and a correction should be made to consider only the part above (and
including) the main diagonal. So the last (i = n− i = m) of the above summation in this case
should look like follows:

Wm(Wm + 1)/2

Combining these formulas we obtain the result formula 5. �
In [Comtet (1970)] the generating function p(t) of the numbers Wn is studied and it is

shown that it satisfies the following functional equality:

p(t) = t+
1

2
(p2(t) + p(t2).

Using the substitution q(t) = −1 + p(t) simplifies it to

q2(t) + q(t2) + 2t = 0.

The exact value and asymptotic behaviour of these numbers remains an open question.

4 Ordering and enumerating

4.1 Dendrograms

Let now arrange the set Sn of all classes of strictly equivalent dendrograms (BDL) in a lexico-
graphical order. Then the set Sn may be embedded as a subset of the set of words of length
2n− 3 with an alphabet the set Zn. As shown in [Vandev (1996)] there exist many different
possibilities to do this embedding.

In the table 4.1 the set of all dendrograms of 4 objects are shown in an lexicographic order.
We need this embedding in order to create an easy enumerating algorithm. This will give us
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1 2 2 3 3 1 3 3 4 2 2 3 1 4 3 3 4 1 2 2
1 2 2 4 3 1 4 2 3 3 2 3 3 4 1 3 4 1 4 2
1 2 3 4 2 1 4 2 4 3 2 4 1 3 3 3 4 2 4 1
1 3 2 3 3 1 4 3 4 2 2 4 1 4 3
1 3 2 4 3 2 3 1 3 3 2 4 3 4 1

Table 2: Dendrograms of 4 elements

the possibility to calculate ”the probability” of different events as a simple proportion of the
number of ”good” dendrograms to On = |Sn|.

According [Vandev (1996)] the enumerating algorithm may be constructed in the following
way:

function next(word)
k = Last Not Last(word);

If k = 0 stop;
word := Increase(k, word));
word := First(k, word);

end

So it is enough to construct corresponding functions in this algorithm.

1. k = Last Not Last(word) calculates the place of first change of a letter. In our case let
take the smallest i that

n. ni 6= n then k = max(2i, 0);

m. mi ≤ mi+1 then k = max(2i− 1, 0)

2. Increase(k, word) increases the k-th letter of the word. Form the subset Fk ⊂ Zn
consisting of the letter n and all letters after (and including) the k-th position. Then
Increase(k, word) puts in k-th place next available letter from the (ordered) set Fk.

3. First(k, word) states smallest possible numbers after the position k taken from the set
Fk. Numbers mi form the next available permutation, and numbers ni = max(mi +
1,minFk n).

• In last two cases if a value is assigned to mi, then this number is extracted from
the set Fk, otherwise Fk remains unchanged. The action is performed step by step
increasing the pointer k.

In order to check and simplify the algorithm we need some considerations.

Lemma 1 The set Fk contains exactly n− i elements and consists of only two parts:
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- the number n.

- the members of the permutation of the numbers (m1, m2, m3, ..., mn−1), i.e. π(1, 2, . . . , n−
1), present in the word after k − 1 position.

Proof In the definition 1 of function Last Not Last there are two cases. In the case m. the
statement is trivial. Consider case m. Let k = 2i > 0. Denote by word(k) = ni 6= n. Then
according item 2. of definition 2 we have: ∀j ≤ i : ni 6= mj. As {mi, i = 1, 2, . . . , mn−1} is
a permutation the statement follows: ∃j > i : ni = mj. �

Lemma 2 The numbers mi when put by the function First form always an strictly increasing
sequence.

Proof Because this is the first available permutation of the set Fk \ n. �

Lemma 3 When put by the function First, the numbers ni, i ≥ [k + 1/2] form always an
strictly increasing sequence.

Proof When mi is the first number to assign the statement is trivial — it is the smallest
number in Fk and after assigning is to be extracted. So ni is to be next number in Fk, mi+1 = ni
and so on. When ni is the first number to assign, it may arbitrary in Fk. So the increasing
starts from the next step. �
Comment 1. When implementing this algorithm as a program, it is convenient to form the
ordered set Fk together with the evaluating the function Last Not Last simply inserting new
elements mi in the proper position. Note that {mi} are ordered, so this is to be done only
once and in this case it is only replacement by the next element needed for performing the
function Increase.

4.2 Hierarchies

In order to enumerate the hierarchies we will choose an element of every class and use the
same presentation as for dendrograms as in theorem 2. In table 4.2 the representatives of all
hierarchies of 4 elements are presented. The empty places represent the ”missing” dendrograms
of table 4.1 for convenience.

1 2 2 3 3 1 3 3 4 2 2 3 1 4 3 ...
1 2 2 4 3 ... 2 3 3 4 1 3 4 1 4 2
1 2 3 4 2 1 4 2 4 3 ... 3 4 2 4 1
1 3 2 3 3 1 4 3 4 2 2 4 1 4 3
1 3 2 4 3 2 3 1 3 3 2 4 3 4 1

Table 3: Hierarchies of 4 elements

It is clear that the enumeration problem may be solved by the same algorithm by using
seeding of the good dendrograms — having the property ni < ni+1. However it is easy to
modify the algorithm above for enumerating hierarchies instead dendrograms. It is enough
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to specify the function First properly: the new numbers ni should be not less then the last
nonchanged number n from the prefix part of the word (and form nondecreasing sequence).

We will not consider here the effectiveness of this algorithm. It seems that this is not an
easy question. What immediately follows is that the mean number of steps down the tree
(until the place of change k is reached) does not increase infinitely when n → ∞. This is
because of the permutation part of the word. The limit generating function of the number of
steps for permutations is calculated in [Vandev (1996)].

4.3 Dual order

The ordering considered up to now is not very natural because the near dendrograms (or
hierarchies) differ in the root part. It seems interesting the consider the dual ordering when
the root remains fixed. Suppose now we consider words in the following transcription:

w = (nn, mn, mn−1, mn−1, ..., n1, m1)

.
This is according [Vandev (1996)] the exact dual order. We have then that always nn = n

and for hierarchies n’s form an nonincreasing sequence. The general algorithm works with the
following changes:

1. k = Last Not Last(word) calculates the place of first change of a letter. In our case let
take the smallest i that

m. mi ≤ mi+1 then k = max(2i− 1, 0)

n. ni 6= n then k = max(2i, 0);

2. Increase(k, word) increases the k-th letter of the word. Form the subset Fk ⊂ Zn
consisting of the letter n and all letters after (and including) the k-th position. Then
Increase(k, word) puts in k-th place next available letter from the (ordered) set Fk.

3. First(k, word) states smallest possible numbers after the position k taken from the set
Fk. Numbers mi form the next available permutation, and numbers ni = max(mi +
1,maxFk n).

• In last two cases if a value is assigned to mi, then this number is extracted from
the set Fk, otherwise Fk remains unchanged. The action is performed step by step
increasing the pointer k.

4.4 The program

Here we will use considerations of above subsections to produce a simple FORTRAN program
implementing both enumerations: of dendrograms (ind=0) and hierarchies (ind=1).
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DDNT PHRM NURS HOSPB ANIM STRCH LFEXP

1 Algeria 129 023 350 3392 21 57 35
2 Iran 329 107 290 1113 24 60 51
3 Iraq 241 081 235 1898 28 57 54
4 Jordan 284 096 241 1712 25 49 52
5 Lebanon 933 191 564 4071 35 50 60
6 Libia 338 041 612 3215 24 55 57
7 Morocco 094 026 233 1516 21 57 53
8 Syria 254 070 140 1163 13 69 52
9 Tunizia 114 339 248 2967 21 57 53
10 Tyrkey 412 057 306 1738 16 71 55
11 UAR 483 131 454 2225 15 73 54

Table 4: Health indicators

5 Distances between dendrograms

We will consider two kinds of distances. The first one is the usual Eucledian distance between
vectors representing BDL. It is clear that it is not well behaving when comparing hierarchies
or unlabelled trees.

The second distance is involved by the lexicographical order. All BDL are considered as
ordered on the real line at equal distances.

Here follows the natural definition of distance between hierarchies.

dH(H1,H2) = max(max
A∈H1

min
B∈H2

](A∆B), max
B∈H2

min
A∈H1

](A∆B)),

where ](A) means the number of objects in A.

6 Examples

The example of SLCAD is from BMDP 81 reference manual ([Dixon (1981)]). The data are
health indicators for 11 countries given in table 6. The health indicators measured are the
relative number of doctors and dentists (DDNT), of pharmacists (PHRM), of nurses (NURS)
and hospital beds (HOSPB), the percent of animal fat (ANIM) and starch (STRCH) in the
diet and life expectancy (LIFEXP).

The distance measure between cases is the Eucledian distance using standardized data.
Table 6 contains the upper half of the distance matrix:

The amalgamation order and the tree diagram of the clusters according to the classical
algorithms are given respectively in fig.1 and fig.2. The case numbers are printed below the
diagram. Each horizontally line in the tree corresponds to a cluster formed in the hierarchical
clustering process. The vertical axes provide a scale by which to measure the dissimilarity
between two merged clusters (amalgamation distances).
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2 3 4 5 6 7 8 9 10 11
1 3.97 3.84 3.82 6.83 4.07 3.52 4.40 2.99 4.30 4.75
2 1.39 1.57 5.33 3.49 2.07 2.45 2.59 2.32 2.83
3 1.21 5.10 3.11 1.73 3.01 1.85 2.78 3.54
4 5.08 3.31 2.00 3.30 2.19 3.29 3.88
5 4.44 6.48 7.10 5.82 6.09 5.33
6 3.36 4.65 2.77 3.51 3.59
7 2.37 1.50 2.50 3.82
8 2.91 2.50 2.90
9 2.68 3.62
10 1.88

Table 5: A dissimilarity matrix for 11 objects

Amalgamation order
3 4 1.21 10 11 1.88
2 4 1.39 9 11 2.32
7 9 1.50 6 11 2.77
8 10 1.60 1 11 2.99
4 9 1.73 5 11 4.44

1 6 8 10 11 7 9 3 4 2 5

1.21

1.39

1.50

1.62

1.73

1.88

2.32

2.77

2.99

4.44

Fig.1 Fig.2
Let now try to test the hypotesys H0 that this dendrogram is random against the alterna-

tive H1 that at level of amalgamation 2.00 there exist exactly 5 clusters: (2, 3, 4, 7, 9), (8, 10, 11), (1), (5), (6).
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