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Abstract

Some widely used robust estimators of location and scale are derived from two
robust modifications of the maximum likelihood principle in the multivariate normal
case.

1 Introduction

It is well known that the Maximum Likelihood Estimator (MLE) can be very sensitive to
some deviations from the assumptions, in particular to unexpected outliers in the data.
To overcome this problem many robust alternatives to the MLE have been developed in
the last decades. Some of the widely known robust estimators of multivariate location
and scatter matrix are M–estimators, Stahel – Donoho estimator, the Minimum Volume
Ellipsoid estimator (MVE), the Minimum Covariance Determinant estimator (MCD) and
S–estimators. For detailed introduction see Huber (1981), Hampel et al. (1986), and
Rousseeuw and Leroy (1987).

Neykov and Neytchev (1990), following the definitions of the Least Median of Squares
estimator (LMS) and the Least Trimmed sum of Squares (LTS) regression estimator
of Rousseeuw (1984), introduced two classes of estimators for the parameters of any
unimodal distribution with regular density function as an extension of the MLE. Vandev
(1993) developed a technique for computing the breakdown point of these estimators. He
proved that the breakdown point is not less than (n− k)/n, where k is a tuning constant
of the estimators which can be chosen by the user within some reasonable range of values.

In this paper we extend the definition of Neykov and Neytchev (1990) to the multivari-
ate normal case and illustrate the technique of Vandev (1993) concerning the breakdown
point. The basic results concerning the connection of the finite-sample breakdown point,
dimensionality of the Gaussian distribution and the notion of d–fullness introduced by
Vandev (1993) are presented in section 3 and 4. It is shown that both MVE and MCD
estimators introduced by Rousseeuw (1986) are obtained as a particular case.

2 Definitions and notations

Let x1, x2, ..., xn be a sample of n independent observations in the p-dimensional euclidean
space E. The most popular estimator of the unknown location µ and the inverse scatter
matrix S is the normal maximum likelihood estimator MLE which is defined as

argmax
µ,S

n∏

i=1

φ(xi, µ, S) = argmin
µ,S

n∑

i=1

− ln(φ(xi, µ, S)),

1Inst. of Mathematics., Bulgarian Academy of Sciences, P.O. Box 373,1113 Sofia, Bulgaria
2Inst. of Meteorology and Hydrology, Bulgarian Academy of Sciences, 66 Trakia Blvd., 1184 Sofia,

Bulgaria

1



where φ(x, µ, S) denotes the multivariate normal density,

φ(x, µ, S) = (2π)−p/2(det(S))1/2 exp(−(x− µ)′S(x− µ)/2).

In the following we shall recall the basic definition introduced by Neykov and Ney-
tchev (1990) concerning the robustified MLE estimators.

Let the observations x1, x2, .., xn be generated by an arbitrary unimodal probability
density function ψ(x, θ) with unknown vector parameter θ.
Definition 1. The Least Median of log density values Estimator (LME) of θ is defined
as

LME(x1, x2, ..., xn) = argmin
θ

med
i

(− ln ψ(xi, θ)).

The least trimmed log-likelihood estimator (LTE) of θ is defined as

LTE(k)(x1, x2, ..., xn) = argmin
θ

k∑

i=1

{− ln(ψ(x, θ))(i)},

where (ψ(x, θ))(1) ≥ (ψ(x, θ))(2), ...,≥ (ψ(x, θ))(n) are the ordered density values. Instead
of taking the median of the ordered density values we shall also consider the k-th order-
statistics (ψ(x, θ))(k), where k > n/2, and minimize − ln(ψ(x, θ))(k). This estimator will
be denoted by LME(k).

The next definition is due to Vandev (1993).
Definition 2. A finite set F of n functions is called d–full, if for each subset of cardinality
d of F , the supremum of all functions in this subset is a subcompact function.

We remined the reader that a real valued function g(z) defined on a topological space
Z is called subcompact, if its Lebesgue sets L(M) = {z : g(z) ≤ M} are compact (or
empty) for any all M . The present definition is a little bit more general than the one
given in Vandev (1993), where the positivity of the functions is required. But, note that
by Comment 2 of Vandev (1993) the estimator LME(k) does not require this positivity.

The breakdown properties of both LME(k) and LTE(k) estimators in the Gaussian
case are of primery interest in this paper. Vandev (1993) showed that the breakdown
point of both LME(k) and LTE(k) is not less than (n − k)/n if the set of n positive
functions − ln ψ(xi, θ) is d–full and (n+ d)/2 < k < (n− d). In order to apply this result,
it remains to determine the value of d for a particular family of densities.

3 Basic Result

In this section we shall study the d–fullness of the set f(x1, µ, S), ..., f(xn, µ, S), where

f(x, µ, S) = − ln(φ(x, µ, S)) = (x− µ)′S(x− µ)/2− (ln det(S))/2.

THEOREM 1. If x1, ..., xn is a Gaussian sample, then the functions {f(x1, µ, S), ..., f(xn, µ, S)}
form a (p + 1)–full set with probability one.

For the proof we need the following lemma.
LEMMA. For any p + 1 points x1, ..., xp+1 in general position, the function

I(µ, S) = max
i∈{1,...,p+1}

f(xi, µ, S)
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is subcompact in µ and S.
Proof: We will use the following inequalities:

(1) 2I(µ, S) ≥ 1

p + 1

p+1∑

i=1

(xi − µ)′S(xi − µ)− ln det(S)

≥ 1

p + 1

p+1∑

i=1

(xi − x̄)′S(xi − x̄)− ln det(S) + (µ− x̄)′S(µ− x̄).

Here x̄ is the mean of x1, ..., xp+1. We will postpone the investigation of the last term
(which is nonnegative) on the right-hand side of and work on the inequalities for the first
two terms:

2I(µ, S) ≥ 1

p + 1

p+1∑

i=1

(xi − x̄)′S(xi − x̄)− ln det(S)

≥ tr(SB)− ln det(SB) + ln det(B),

where B =
∑p+1

i=1 (xi− x̄)(xi− x̄)′/(p+1), which according to the assumption on x1, ..., xp+1

is positive definite. Denote by α1, ..., αp the eigenvalues of SB. The inequalities

H = tr(SB)− ln det(SB) ≥
p∑

i=1

(αi − ln(αi)) ≥ p

impose compactness on the elements of the positive definite matrix SB, because H ≥
αi − ln(αi) implies

e−H < αi < e.min(1, H/(e− 1)).

The left-hand inequality is obvious. The right-hand one follows easily from the simple
inequality ln(x) < 1 + (1/e)(x− e) which holds for e < x.

These bounds on the eigenvalues of SB together with our assumption involving B
show that S has eigenvalues that are bounded from below and above. Therefore, S lies
in a compact set.

Now let us come back to the second term of (1). Denote by H the minimal value of
the already estimated first two terms. Then we have the following

2I(µ, S)−H − ln det(B) ≥ (µ− x̄)′S(µ− x̄).

Since the determinant of S is nonzero it follows that µ also belongs to a compact set.
Q.E.D.
Proof (of the theorem): Consider a sample of size n. It is clear that with probability
equal to 1 any p + 1 points of the sample are in general position. By the lemma, the
function I(µ, S) is subcompact in µ, S for any p + 1 points. Q.E.D.

4 The Breakdown Point of the MVE and MCD esti-

mators

Let us recall some definitions and properties of the well known MVE and MCD estimators
introduced by Rousseeuw. For details see Rousseeuw and Leroy (1988) and Lopuhaa and
Rousseeuw (1991).
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The MVE estimator for multivariate location is defined as the center of the minimum
volume ellipsoid covering at least h points, where h = (n + p + 1)/2. The corresponding
MVE estimator of the covariance matrix is given by the same ellipsoid, multiplied by a
suitable constant to obtain asymptotic consistency for multivariate normal data.

The MCD of the location µ is defined as the mean of the h points for which the
determinant of the covariance matrix is minimal. The optimal choice for h is equal to
(n+p+1)/2. The corresponding MCD estimator of the covariance matrix is given by the
classical covariance matrix based on the selected h observations, multiplied by a suitable
constant to obtain consistency for multivariate normal data.

Both the MVE estimator and the MCD estimator possess a breakdown point of 0.5
(the best that can be achieved). Furthermore, it can be shown that the MCD is n1/2 -
consistent and asymptotically normal while the MVE is n1/3 - consistent. It is possible,
however, to construct a robust estimator that retains the high breakdown point of the
MVE and achieves n1/2 - consistency (Lopuhaa and Rousseeuw,1991).

4.1 THE MVE ESTIMATOR

Theorem 1 of this paper and the result of Vandev (1993) applied to the Gaussian case
imply that if one chooses k within the bounds, (n + p + 1)/2 < k < n − p − 1, then the
LME(k) estimator has breakdown point not less than (n− k)/n.

Let µ, S minimize the LME(k) criterion. This means that in the sample there are k
observations xl(n), xl(n−1), . . . , xl(n−k−1), such that f(xl(n), µ, S) ≤ f(xl(n−1), µ, S) ≤ ... ≤
f(xl(n−k−1), µ, S), and all other observations have values greater than f(xl(n−k−1), µ, S),
so that they will lay outside the ellipsoid with center µ and scatter R = S−1. It is clear
that with probability 1 the upper p + 1 values will be equal. It is well known that the
minimal volume ellipsoid around any simplex has an uniquely defined volume, i.e. value
of the determinant of R, and that its center coincides with the barycenter of the vertices
(see Vandev 1993). That is these p + 1 points will lay on the surface of this ellipsoid and
it will have minimal volume. This shows that the estimator LME(k) of µ and S for the
Gaussian law is, therefore constructed in the following way:

1. Find the Minimal Volume Ellipsoid containing not less than k data points. Denote
its parameters by b and R:

E(b, R) = {x : (x− b)′R(x− b) ≤ 1}.
2. The value of b is then the estimate of µ. The matrix qR is the estimate of S−1,

where q is a correction constant that gurantees asymptotic unbiasedness.

4.2 The MCD estimator

Theorem 1 of this paper and the result of Vandev (1993) applied to the Gaussian case
imply that if one chooses k within the bounds, (n + p + 1)/2 < k < n − p − 1, then the
LTE(k) estimator has breakdown point not less than (n − k)/n. Note that in this case
one should bound from below the eigenvalues of the covariance matrix in order to use the
result of Vandev.

Let {x1, x2, ..., xk} be the subset of the observations over which the LTE(k) criterion
is minimized. A simple argument, which we leave to the reader, shows that the minimum
of
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(2) J(µ, R) =
k∑

j=1

f(xj, µ, R−1)

is reached when

µ =
1

k

k∑

j=1

xj and R =
1

k

k∑

j=1

(xj − µ)(xj − µ)′.

The minimum of J(µ,R) may be represented as

min
µ,R

J(µ,R) = k.p/2 + (ln det(R))/2 + (k.p/2) ln(2π).

This shows that among all sets of observations of fixed size k the minimum of (2) is
reached when det(R) is minimal. Then the estimator LTE(k) of µ and S based on the
Gaussian law is found in the following way:

1. Find the k points with minimal determinant of R, where R denote their covariance
matrix.

2. The estimate of µ is then the average of these points and the estimate of S is
pR−1/q, where q is the correction factor.

The correction constant q for both MVE and MCD estimators can be obtained in the
same way as in Lopuhaa and Rousseeuw (1991).
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