
Some Examples of Lexicographic Order Algorithms

and some Open Combinatorial Problems

Dimitar Vandev

A general reasoning based on the lexicographic order is studied. It helps to create
algorithms for generation of sets of words having some natural good properties.
Several examples are considered and the performance of proposed algorithms cal-
culated. An open combinatorial problem regarding the set of partitions arises.
Key words: Enumerating algorithms, lexicographic order

AMS subject classification: main 68E05, secondary 65C20

1. INTRODUCTION

There are numerous examples of sets of words - vectors of natural numbers,
which as one set of entities may be used for some computational purposes: sets of
all permutations, combinations and many others. In many of the cases one needs
to go across such a set and perform some computations for each member. (See [3]
for many examples in combinatorial calculations.)

The problem of the efficient generation of all elements of a class of combinatorial
configurations with given properties is considered as an important problem in the
theory of algorithms. The generation in a prescribed lexicographical order is one
of the most investigated cases, see [6],[4].

In the present paper an attempt is made to use the lexicographic order of these
words as a tool for creating enumerating (or generating) algorithms. It turns out
that the proposed scheme is useful also for calculating the performance of the
algorithms. In some cases it is possible to calculate it easily, while in others an
open problem arises.

A part of these examples were presented as a short talk at the Seminar of
Statistical Data Analysis in Varna, Bulgaria, see [9].

2. DEFINITIONS AND NOTATIONS

Let N be the set of natural numbers {0, 1, . . . , n} . Call N alphabet. Denote
by S = S(m,n) the m-times Cartesian product of the set N . The elements of the
set S are called words with a fixed length m and a common alphabet N . It is clear
what a lexicographic order in this set means. One word is called ”larger” than

1

another if its first (after the common beginning of the two words) letter is larger
than the corresponding letter of the second word. Note that the set of numbers
(with leading zeroes) with digits from N is ordered in the same manner.

For any subset W of the set S this order induces the same order for the elements
of W . To make things more formal we shall call the word formed by the first k
letters of the word w prefix and denote it by w(k). The notation w(l, k), l ≤ k will
be used to denote the set of letters in the places from l to k. For prefixes with fixed
length we have the same induced from S linear order. Formally the empty word
w(0) is the unique element of the set S(0, n). We introduce two sets of mappings
(projections preserving the order) from S onto W . If the word belongs to W these
mappings will preserve its prefix. In the following we shall consider the set W fixed.

Definition 1 For s ∈ S z = First(k, s) is the first member z ∈ W such that
z(k) ≥ s(k), if it exists. In any other case it is the first member of W .

Definition 2 For s ∈ S z = Last(k, s) is the last member z ∈ W such that
z(k) ≤ s(k), if it exists. In any other case it is the last member of W .

If w ∈ W , z = First(k,w) is the first member of W and z = Last(k, w) is
the last member of W with the same prefix z(k) = w(k). So the element w0 =
First(0, w) is the very first in W and l0 = Last(0, w) - the very last in the global
linear order.

We shall introduce also a mapping Increase(k, w), which will be used to in-
crease only the k -th letter of the word w. This mapping is not defined for all
elements of W or S. Moreover its result (when defined) is not obliged to belong to
the set W .

Definition 3 We say that Increase(k,w) equals the smallest word z ∈ S, such
that w(k) < z(k), if this word exists. In any other case it is not defined.

Obviously, not for all elements of W this definition will lead to increasing of
only and exactly the k-th letter.

3. MAIN RESULTS

First we shall prove some simple properties of these natural definitions. Then an
algorithm will be presented and a theorem about its completeness will be proved.
Then a simple theorem which helps to estimate the effectivity of the algorithm will
be stated. It will concern the mean number of steps needed to produce the next to
w word in W .

Lemma 1 Both mappings First and Last are well defined and idempotent with
fixed k: First(k,First(k, s)) = First(k, s),∀s ∈ S.

2

Proof : Denote by l0 = Last(0, s). Then the set S may be split into two subsets:
S = S1 + S2 = {s : s(k) ≤ l0(k)}+ {s : s(k) > l0(k)}.

When s ∈ S1, the image z = First(k, s) exists, because it may be represented
as intersection of non-empty subsets of W . It is unique because of the linear order.
When s ∈ S2, we have w0 = First(k, s) according to the definition. The second
statement is obvious because of the definition too. The same argument works for
the mapping Last.

Lemma 2 If z = Last(k, w) then for each i ≥ k, z = Last(i, z). If z = First(k,w)
then for each i ≥ k, z = First(i, z).

Proof Suppose that z = Last(k,w) but z < Last(i, z) for i > k. We have
w ≤ z = Last(k, z). Then Last(k, z) < Last(i, z). However the first k letters of
these two words coincide - what is a contradiction. The same reasoning works for
the dual statement.

Let fix w ∈ W and consider the set of equations w = Last(k, w). Note that
w = Last(m,w) is true for each w. According to the Lemma 2 there exists minimal
k for which this equality holds. For the last word in W we shall have k = 0. Again
the same is true for the first word in W (in this case the mapping First should
take place in the equations).

These considerations give us the possibility to construct the following algorithm
for consecutive computing of the ‘next’ to w word in the set W :

function next(word)
1 k = n;
2 while word = Last(k,word);
3 k = k − 1;
4 end while;
5 if k = 0 stop;
6 word := Increase(k,word);
7 word := First(k, word);
end

This algorithm needs some explanations. Lines 1-4 perform the search for the
largest k for which w 6= Last(k,w). As the purpose of these lines is to find the inte-
ger k, it seems natural to combine them into a function: k = Last Not Last(w).
Another reason to make this will be seen in the examples – in most cases it is easier
to calculate the function Last Not Last than the mapping Last. The number k
may be easily interpreted as the position of the first letter changing when moving
from the given word to the next one in a lexicographically ordered set W . Line
5 prevents the use of the program after the last word l0 = Last(0, w) has been
reached. Line 6 increases the k-th letter of the word to the next letter allowed
(given the prefix w(k − 1)). Line 7 simply uses the mapping First but the prefix
is now one letter longer - w(k).

3

Using of the function Last Not Last simplifies the algorithm:

function next(word)
k = Last Not Last(word);

If k = 0 stop;
word := Increase(k, word));
word := First(k,word);

end

Theorem 1 Starting with w0 = First(0, w) the above algorithm exhausts all ele-
ments of the set W , e.g. reaches l0 = Last(0, w).

Proof. The first thing is to check the possibility to define and use the mapping
Increase properly. Let k > 0. As the element w is not equal to Last(k, w) there
exist word z ∈ W such that z(k) = w(k) and w < z. Let us choose the next to w
element z ∈ W . Suppose now that k–th elements of z and w are equal. This means
that z(k) = w(k) and we have w < z but Last(k, w) = w. This is a contradiction.
Thus, there exists a word z ∈ W ⊂ S with greater k–th letter. Thus such word
exists in S. So in our algorithm we may use the function Increase when the proper
k > 0 is found.

Now we shall show that no word z ∈ W may be skipped by the algorithm.
If m = 1 the statement follows from the definitions of Increase and First. If
Increase does not produce a word from W , then this will be done by First.

The induction on m uses the fact that each part of the set W with a fixed prefix
uses the same definitions of the functions First, Last, Increase. If for any fixed
first letter the algorithm is exhaustive, it will be exhaustive for the whole set.

Comment 1. The study of this simple proof shows that the definition of
Increase may be made more complicated - not simply increase the corresponding
letter, but choose it in a such a way that the corresponding prefix ”belongs” to W .
The function First does not need be defined for any word in S. For the index k
achieved at the first step, there always exists a number in the alphabet to put at
the k-th place in the word so that First(k, w) := First(z, w) is well defined. This
situation is effectively explored in some of the examples below.

Comment 2. It is easy to see that if one defines the mapping Increase to do
nothing when k = 0, the proposed algorithm will loop infinitely across the set W
starting from the beginning again and again.

Comment 3. The same argument may be used for the statement concerning
the reverse order. The mapping First may be replaced by Last, the mapping
Increase by the correspondingly defined mapping Decrease. All the statements
above will remain true except for the order – it will become the inverse order. There
is one more formal duality in the lexicographical order – the interchanging of the
letters. The most natural interchanging is to read the word backward. Then the
first letters of the word are changed while the last are kept fixed. We shall call

4

such an order dual. With any set there are connected 4 different orderings into
the set S. The definitions above are to be changed correspondingly for any such
order. Any of these orderings may be useful to consider when an enumeration is
performed.

Theorem 2 Denote by Wk the set of all different prefixes w(k) of words in W . We
shall assume that |W0| = 1 and Wn = W . Suppose that for each k = 0, 1, 2, ..., n−1
we have |Wk|/|Wk+1| < q < 1. Then according to the uniform distribution on W
the expected number of steps to reach the address of change E(n − k) fulfils the
inequality

E(n− k) <
2

1− q
.

Proof. The set W may be presented as a graph – a tree with totally N + 1
vertices and N edges. Each vertex correspond to a fixed prefix. Then the total
way of our algorithm to generate all the members of the set is proportional to 2N .
Denote rk = |Wk|. The expected number E(n− k) may be represented in the form

E(n− k) ≤ 2N/|W | ≤ 2
rn

(r0 + r1 + r2 + ... + rn) =

= 2(
r0r1...rn−1

r1r2...rn
+

r1r2...rn−1

r2r3...rn
+ ... + 1) ≤ 2

1− qn+1

1− q
.

Comment 4. It is clear that the assumption of the theorem may be weakened
in a number of ways. For example, it is enough for k to run over the set 0, 1, ..., n−j.
Then the expectation will be limited from j + 1/(1− q).

As we shall see in the next section, despite that the assumption is not fulfilled
in many cases the average number of steps remains finite. On the other hand, the
set consisting of two words {1, 1, 1, ..., 1} and {2, 1, 1, ..., 1} will need an expected
number of steps proportional to n. An open question is what in general happens
to the expected number of steps when all the dualities mentioned in Comment 3
are explored.

4. EXAMPLES

In the next examples we shall construct the mappings First, Last, Increase
and the function Last Not Last for different subsets of S. We shall try also
to calculate the computational complexity of the algorithms. In fact one needs
only the distribution of k – ”the place of first change” in lexicographically ordered
words. It is clear that the proposed algorithm will be as effective as closer to n the
expectation of this place is situated. For that purpose one has to calculate also the

5

size of the corresponding data set and assume uniform probability on it. So the
mean effort for constructing the next element should represent the complexity of
the embedding of the data set in the given order. It will be seen that the use of
different embeddings is of primary interest.

The first two examples have been extensively studied ([4], [6]) and here they are
mentioned only to show that the idea we use leads to natural well-known algorithms.

4.1. PERMUTATIONS OF N ELEMENTS

In Table 1 a part of the set of all permutations of 5 elements is shown in a
lexicographic order.

TABLE 1. Part of permutations of 5 elements

1 2 3 4 5 1 3 2 4 5 1 4 2 3 5 ...
1 2 3 5 4 1 3 2 5 4 1 4 2 5 3 ...
1 2 4 3 5 1 3 4 2 5 1 4 3 2 5 ...
1 2 4 5 3 1 3 4 5 2 1 4 3 5 2 ...
1 2 5 3 4 1 3 5 2 4 1 4 5 2 3 ...
1 2 5 4 3 1 3 5 4 2 1 4 5 3 2 ...

It is clear that the mapping Last simply orders all the elements of w after (and
including) the k-th one in a decreasing order, while for the mapping First this
order is increasing.

The function Last Not Last finds the smallest k such that after it all elements
are in a decreasing order. Denote j = n− k. Then it is clear that j runs from 1 to
n. Given k this function needs j subtractions and comparisons.

The mapping Increase is more complicated. It takes the next larger than
w(k, k) integer from the set of integers w(k, n) and should replace it with w(k, k).
The last step First is equivalent to inversion of the sequence of the last j integers.

Theorem 2 can be applied to the set of permutations with k running up to n− j
and q = 1/j!. However, it might be interesting to calculate exactly the expected
number of steps of the algorithm. This is done in [6], section 5.1, in the terms of
transpositions and comparisons. The expected number of integer calculations then
is proportional to (e− 1) and remains finite as n →∞.

4.2. SUBSETS OF M ELEMENTS OUT OF SET OF N

In Table 2 the set of all subsets of 4 elements taken from set of 6 elements, is
shown in a lexicographic order. One calls the objects combinations of n elements

6

of class 4. Here the letters are kept in an increasing order inside the word – they
should not coincide.

TABLE 2. Subsets of 4 elements out of 6

1 2 3 4 1 3 4 5 2 3 4 6
1 2 3 5 1 3 4 6 2 3 5 6
1 2 3 6 1 3 5 6 2 4 5 6
1 2 4 5 1 4 5 6 3 4 5 6
1 2 4 6 2 3 4 5

The mapping Last changes the last m−k elements of w into the largest elements
of N , while First sets these elements to the smaller ones following the k–th element
of w. The function Last Not Last finds the largest k such that w(k, k) is not equal
to n−(m−k). The mapping Increase simply adds 1 to the corresponding element
of w. This is also well-known algorithm [6], section 5.2.2.

The number of combinations of n elements class m is
(

n
m

)
. In a similar way like

in permutations we find the number of calculations as a function of j = m − k to
be about 4j. The distribution of j is also easy to construct:

pj =

(
n−m−1−j

j

)(
n
m

) .

So we come to even stronger result namely that with the growth of n − m the
expected number of calculations decreases.

Here the application of the theorem 2 is also possible – |Wk| =
(
n−(m−k)

k

)
.

4.3. PARTITIONS OF AN INTEGER I

To generate the set W of all partitions of a given integer n into a sum of number
integers is an easy problem for this algorithm. In Table 3 all partitions of 10 into
sum of up to 4 numbers are given (except the trivial 000 10). This presentation
allows to split easily W into partitions into of exactly 2,3 and 4 non-zero numbers.
These subsets follow consecutively. In the next examples other presentations will
be used.

TABLE 3. Partitions of 10 into up to 4 members

0 0 1 9 0 1 3 6 1 1 2 6
0 0 2 8 0 1 4 5 1 1 3 5
0 0 3 7 0 2 2 6 1 1 4 4
0 0 4 6 0 2 3 5 1 2 2 5
0 0 5 5 0 2 4 4 1 2 3 3
0 1 1 8 0 3 3 4 2 2 2 4
0 1 2 7 1 1 1 7 2 2 3 3

The mapping Last distributes the remaining portion of n into maximum equal
portions among the remaining numbers after k-th one. The mapping First states

7

all these numbers to w(k, k) and the remainder from m is added to the last number.
The function Last Not Last finds the largest k such that w(m,m)−w(k, k) ≥ 2.
The mapping Increase simply increase by 1 the corresponding element of w. This
algorithm is due to Hindenburg (see [1], section 14.3) .

In order to apply the theorem, we have to calculate wk = |Wk|. This is not an
easy problem, however. Consider the unlimited case - all partitions of n will be
fixed as words of length n with non decreasing elements.

One sees that the number wk is a sum of partition numbers, subjected to two
kinds of restrictions - concerning the maximum number of elements and the size of
the largest element.

We have w0 = 1 and wk = |wk−1|+1 until n−k ≥ [n/2]. Starting from [n/2]+1
until n − k = [n/3], we have wk = wk−1 + 2 or wk = wk−1 + 3. Here the choice
depends on the remainder of the division on 3.

This example shows that in this case Theorem 2 is not applicable. Indeed,
w[n/2]+1/w[n/2] = 1 + 1/n and tends to one as n increases. Nevertheless, we hope
that the average number of steps is finite in this presentation also. The exact
statement remains an open problem.

4.4. PARTITIONS OF AN INTEGER II

Here we use the presentation which follows from the formula

n∑
i=1

ini = n.

Here the numbers ni represent the number of members of size i in a particular
partition. The number of members in each partition is

∑n
i=1 ni. It is clear how to

convert one representation into another. Table 4 contains the set of all partitions
of 10 into members less then 8, but in another lexicographical order according to
the new presentation. Instead of the restriction on the number of members we now
pose a restriction on the maximal member of the partition.

Here we shall exploit the dual order and present the same partitions in an order
with a fixed suffix. In this order it is easy to add the additional restriction on the
maximum member of the partition - say, it is equal to 7 : starting with a1 = N

8

this new algorithm produces all partitions of 10 to members not bigger than 7.

TABLE 4. All partitions of 10 into numbers up to 7

10 0 0 0 0 0 0 4 0 2 0 0 0 0 0 0 2 1 0 0 0 4 0 0 0 0 1 0
8 1 0 0 0 0 0 2 1 2 0 0 0 0 2 0 0 2 0 0 0 2 1 0 0 0 1 0
6 2 0 0 0 0 0 0 2 2 0 0 0 0 0 1 0 2 0 0 0 0 2 0 0 0 1 0
4 3 0 0 0 0 0 1 0 3 0 0 0 0 5 0 0 0 1 0 0 1 0 1 0 0 1 0
2 4 0 0 0 0 0 6 0 0 1 0 0 0 3 1 0 0 1 0 0 0 0 0 1 0 1 0
0 5 0 0 0 0 0 4 1 0 1 0 0 0 1 2 0 0 1 0 0 3 0 0 0 0 0 1
7 0 1 0 0 0 0 2 2 0 1 0 0 0 2 0 1 0 1 0 0 1 1 0 0 0 0 1
5 1 1 0 0 0 0 0 3 0 1 0 0 0 0 1 1 0 1 0 0 0 0 1 0 0 0 1
3 2 1 0 0 0 0 3 0 1 1 0 0 0 1 0 0 1 1 0 0
1 3 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 2 0 0

The function Last Not Last finds first k from the beginning such that k ≤
l =

∑k−1
i=1 i.ai. Then ak is increased by one. First nullifies all elements in the

beginning and makes a1 = l − k.
Let us try to estimate the performance of the algorithm. As usual P (n) = |W |

is the number of partitions of n. Denote by rk the number of different suffixes in
the words of set W . It is clear that rn−1 = P (n), r0 = 1, r1 = 2.

Consider now the case: 3 ≤ k ≤ n − 1. It is clear that the set Rk may be
mapped into the set Rk+1, so that the additional element (at place m = n− k) is
zero. However,it is possible to make one more mapping of the same set Rk into
elements of Rk+1 with non-zero elements at the same place m. This can be done
if every suffix is shifted left until the first non-zero element occupies the place m.
The remaining portion of the suffix is filled with zeros. The only exception for this
second mapping is the suffix consisting of zeros only. So we have the inequality

rk/rk+1 ≤ 1/2 + 1/rk+1 ≤ 5/6.

According to Theorem 2 this means that the mean number of steps is finite and
does not increase as n → ∞. The exact value of this mean as well as the exact
distribution of the number of steps remains an open problem in this presentation
also.

4.5. BELL POLYNOMIALS

For exact definitions see [3], chapter I, p.10. This example is included merely
to illustrate the use of the algorithm working in the reverse order. Consider the set
of all vectors of natural numbers satisfying the following two equalities:

∞∑
i=1

ki = m,
∞∑

i=1

iki = n.

9

The summation above is assumed to be infinite for simplicity. It is clear that
only the first n − k + 1 elements may be non-zero. This set is of some interest
in many applications. In addition to computing Bell polynomials, it is used in
the distributions of order k. Again we have partitions and the problem could be
solved using the first representation of partitions in Section 4.3 and then screening
partitions with number of members less than m. However, we shell give here an
explicit solution.

In Table 5 the solutions for n = 13 and m = 6 are shown in reverse order. The
reverse order is chosen because of the simplicity of the mapping Last in this case.

TABLE 5. Bell Polynomials n = 13 and m = 6

5 0 0 0 0 0 0 1 3 0 2 1 0 0 0 0
4 1 0 0 0 0 1 0 2 3 0 0 1 0 0 0
4 0 1 0 0 1 0 0 2 2 1 1 0 0 0 0
4 0 0 1 1 0 0 0 2 1 3 0 0 0 0 0
3 2 0 0 0 1 0 0 1 4 0 1 0 0 0 0
3 1 1 0 1 0 0 0 1 3 2 0 0 0 0 0
3 1 0 2 0 0 0 0 0 5 1 0 0 0 0 0

The reverse algorithm will be used. The mapping Decrease decreases by 1 the
corresponding element of w. The mapping Last sets all elements with indexes
greater than k to zero, then w(k + 1, k + 1) = mk − 1, and finally adds 1 to the
number in position k+nk−(k+1)∗mk. Here mk and nk are the values of the sums in
the definition of Bell polynomials, taken over indexes greater than k. The function
First Not First finds the largest k such that w(k, k) > 0 and w(k, k) ≤ max− 2.
Here max is the index of rightmost non-zero element.

In order to estimate the performance of the algorithm in this situation, we shall
point out that the representation of partitions given in Section 4.3 is much more
economical. Moreover, the additional restriction m =

∑∞
i=1 ki in this case is in

concordance with the presentation. It means that it makes no sense to use this
second representation if one needs effectivity.

4.6. PARTITIONS WITH AN ADDITIONAL RESTRICTION 1

Let us consider the algoritm for the following partition problem with the addi-
tional restriction:

l∑
i=1

ki = m,
l∑

i=1

ki
2 = n.

1The author is grateful to Prof. G. Zbaganu who mentioned this problem at the 8-th Seminar
on Statistical Data Analysis, Varna, 1992, and then helped to reformulate the algorithm.

10

By using the algorithm described in Section 4.3 and simply screening the second
equation, an easy solution could be given of this problem. As an example, the results
are presented in Table 6 for words of length 15, m = 16 and several values of n.

TABLE 6.
∑15

i=1 ki = 16,
∑15

i=1 ki
2 = n

n
18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
20 0 1 1 1 1 1 1 1 1 1 1 1 1 2 2
22 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2

0 1 1 1 1 1 1 1 1 1 1 1 1 1 3
24 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2

0 0 1 1 1 1 1 1 1 1 1 1 1 2 3
26 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2

0 0 0 1 1 1 1 1 1 1 1 1 2 2 3
28 0 0 0 0 0 1 1 1 1 2 2 2 2 2 2

0 0 0 0 1 1 1 1 1 1 1 2 2 2 3
0 0 0 1 1 1 1 1 1 1 1 1 1 3 3
0 0 1 1 1 1 1 1 1 1 1 1 1 1 4

It would be interesting to investigate the combinatorial properties of this set
and to study the properties of the algorithm in this case.

4.7. GENERALIZED FIBONACCI NUMBERS OF ORDER M

Consider the set F
(m)
n of words of fixed length n, consisting of zeroes and ones,

and having the property that they do not contain m or more than m consecutive
ones. (This example was proposed by P. Mateev.)

It may be easily proved that the cardinalities f
(m)
n of F

(m)
n satisfy the following

recurrent relation:

f (m)
n =

m∑
i=1

f
(m)
n−i .(4.1)

When m = 2, these numbers form the well-known Fibonacci sequence. For
arbitrary m and starting conditions f

(m)
0 = 0 and f

(m)
1 = 1 Gabai [2] called them

Fibonacci numbers of order M . Philippou [8] calculated them as sums of multino-
mial coefficients. For the words of zeroes and ones, however, the starting conditions
are f

(m)
0 = 1, f

(m)
1 = 1, as with the original Fibonacci numbers. For the particular

case m = 3 we have f
(3)
n = 1, 1, 2, 4, 7, 13, 24, ...;n = 0, 1, 2, In Table 7 all the

11

f
(3)
5 zero-one words are presented.

TABLE 7. Fibonacci words for n = 5 and m = 3

0 0 0 0 0 0 1 0 0 1 1 0 0 1 1
0 0 0 0 1 0 1 0 1 0 1 0 1 0 0
0 0 0 1 0 0 1 0 1 1 1 0 1 0 1
0 0 0 1 1 0 1 1 0 0 1 0 1 1 0
0 0 1 0 0 0 1 1 0 1 1 1 0 0 0
0 0 1 0 1 1 0 0 0 0 1 1 0 0 1
0 0 1 1 0 1 0 0 0 1 1 1 0 1 0
0 1 0 0 0 1 0 0 1 0 1 1 0 1 1

The algorithm for generating such n-tuples is extremely simple. The function
Last Not Last has to find the first zero preceded by less than m−1 ones, Increase
puts one at this place and First nullifies all elements with greater indexes.

Here the mean value of the needed calculations is obviously proportional to the
place j = n − k of the zero to change. Denote this mean value by jn. The above
recurrence relation then leads to a new relation for the mean values. In order to
obtain this relation, we shall use the proof of the recurrence formula (4.1). All
n-words may be divided into M disjoint subsets S1, S2, ..., Sm (we suppose that n
is large enough). The l-th subset Sl has an arbitrary prefix and last numbers are
fixed:

Sl = {w ∈ F (m)
n : (w1, w2,, wn−l, 0, 1, 1, 1, ..., 1)}.

These subsets cover the whole set F
(m)
n . The cardinalities of the sets are clearly

f
(m)
n−l . In each subset the algorithm stops at the first 0, performing exactly l steps,

or enters the prefix looking for the next available zero. In the first case the prefix
should end with exactly m numbers – zero and m − 1 ones. Its cardinality equals
to f

(m)
n−l−m. So we come to the formula:

jn =
∑m

i=1((jn−i + i)(f (m)
n−i − f

(m)
n−i−m) + if

(m)
n−i−m)∑m

i=1 f
(m)
n−i

=
m∑

i=1

wi(jn−i − jn−m−i) +
m∑

i=1

iwi.

The proportions wl = f
(m)
n−l/f

(m)
n , l = 1, 2, ...,m , are fixed as n → ∞. The

sequence jn then obviously converges to the finite number
∑m

i=1 iwi∗lim(fn+m/fn).

12

5. PERFORMANCE AND CONCLUSION

Both forms of the algorithm have quite different performances. For the first it
is quadratic in j. One hardly expects a comparison of two words of length j to be
made for shorter time. It may be expected a good performance from the second
form when the function Last Not Last , as well as the mapping First depends
linearly of j. In all examples above this was made possible.

In the case when the distribution of j has a finite mean, not depending of n,
the asymptotic properties of the algorithm are extremely nice.

We do not know the distribution of j in the case of Bell polynomials and the
performance of the presented algorithms in this case remains an open problem
which would be interesting to be solved.

It is clear that building up programs in such a way, one can hardly expect that
they will be fast without some additional efforts. However, in all cases above it
turned out that only slight modifications were needed to make the programs work
quite satisfactorly.

Another useful hint may be to try the other orders-to change the mappings
First, Last and Increase, correspondingly , and to see what will happen to the
program. It may became shorter and faster.

Acknowledgements. The author is grateful to prof. K. Manev, whose useful
comments have improved the presentation. Partially Supported by the National
Foundation of Scientific Investigations, grant M-440/94.

13

6. *

References

[1] Andrews, G.E. The theory of partitions, V. 2 Encyclopedia of Mathematics and
its Applications. Addison-Wesley, Reading, Massachusetts, 1976.

[2] Gabai, H. Generalized Fibonacci k-sequences. Fibonacci Quarterly, 8(1), 1970,
31 – 38.

[3] Kaufmann, A. Introduction á la Combinatorique en Vue des Applications.
Dunod, Paris, 1968.

[4] Lipski, W. Kombinatorika dla programistów. Wydwnictwa Naukowo-
Techniczne, Warszawa, 1982.

[5] Mehlhorn, K. Data Structures and Algorithms, V.1, Sorting and Searching.
EATCS Monographs on Theoretical Computer Science. Springer, 1984.

[6] Reingold, E.M., J. Nivergeld, N. Deo. Combinatorial Algorithm. Theory and
Practice. Prentice-Hall, Englewood Cliffs, 1977.

[7] Sachkov, V.N. Introduction to combinatorial methods of discrete optimization.
Nauka, M., 1987. (in Russian).

[8] Philippou, A.N. A note on the Fibonacci sequence of order k and multinomial
coefficients. Fibonacci Quarterly, 21(2), 1983, 82 – 86.

[9] Vandev, D.L. Alphabetical ordering - useful tool for creating algorithms. In
Statistical Data Analysis - SDA92, Proceedings, Seminar on Statistical Data
Analysis, Varna, Bulgaria, September 20 – 25 1992, 121–126.

Editorial Office Received March 28, 1997
Faculty of Mathematics and Informatics Revised
“St. Kl. Ohridski” University of Sofia
5 blvd. J. Bourchier, BG-1164 Sofia
BULGARIA
e-mail: annuaire@fmi.uni-sofia.bg

14

