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Abstract: The paper studies a stochastic optimization algorithm for computing of
robust estimators of location proposed by Vandev (1992). A random approzimation of the
exact solution was proposed which is much cheaper in time and easy to program.

Two examples are presented. Besides standard estimators of location like trimmed
mean also robust regressions (LMS and LTS) introduced by Rousseeuw and Leroy are
considered. MATLAB programs are included.
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1. Introduction

Many authors considered robust estimators of the covariance matrix and the location in
the multidimensional case. When a high level of contamination is expected it is appro-
priate to use estimators with high breakdown point. Such estimators are the minimum
volume ellipsoid (MVE) and the minimum covariance determinant (MCD), introduced by
Rousseeuw and Leroy [10]. On the other hand in the robust regression literature very pop-
ular is the Least Median of the squares (LME) estimator which also has high breakdown
point. Recently Neykov and Neytchev [7] proposed a robust alternative of the maximum
likelihood estimators. Namely let f(6,z) be the likelihood functions of the individual
observation x. We denote by X the finite set of all observations. Here 6 is the vector of
unknown parameters. Let A(0) = {—log(f(f,x)),z € X} be the (increasingly) ordered
set of the values of f at a fixed point 6. Denote by M (k, ) the k-smallest and by S(k, )
the sum of the k smallest numbers of the set A(#). The minimizers of these two random
functions are to be considered as estimators in statistical sense.

Vandev [12] has shown that MVE and MCD estimators may be extracted from this
robustified version in the gaussean case. The same is true for LME in regression. It was
also shown that in general all robustified maximum likelihood estimators have high break
down point.

Computationally both (trimmed and least median) problems are not easy to solve in
a conventional way because the functions involved have many local minima. Thus the
minimization turns out to be a serious combinatorial problem. Up to now mainly the
resampling technique is used for the purpose, see Rousseeuw & Leroy [10].

In this paper an algorithm is presented for approximate calculating of LME(k) and
LTE(k). Hawkins [2] used a feasible set algorithm for exact calculation of the minima.
Our proposition is based on the well known Robins-Monro [8] procedure for stochastic
optimization, which was already successfully used by Martin and Masreliez [5] in the
robust estimation. We will call the algorithm RM algorithm.
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2. Robust estimators in statistics

For modeling gross errors and outliers in the sample, the most popular is the Tukey
supermodel [11] based on the Gaussean low:

]—":{F:F(m):(1—5)®(x)+5¢>($;0), 0<5<1,1<k}. (1)
Huber [3] considered more general model
F={F:F(z)=(1—¢)Fy(z) +ecH(z)}, (2)

where Fj is some given distribution (the ideal model) and H(x) is an arbitrary continuous
distribution (contamination).

2.1. Break-down point

Since the general definition of a supermodel is based on the concept of a distance in
the space of all distributions, the same concept is involved into the construction for a
measure of the global robustness. Let d be such a distance. Then the breakdown point
of the estimator T,, = T'(F,,) for the functional T'(F') at F is defined by

e(T,F)=sup{e: sup |[T(F)—T(F)| <oo}.

e<1 F:d(F,Fy)<e

The breakdown point characterizes the maximal deviation (in the sense of a metric chosen)
from the ideal model Fj that provides the boundedness of the estimator bias.
Breakdown point as applied to the Huber supermodel

e*(T,F) = sup{e : sup |T(F) —T(Fy)| < oo}. (3)

e<1 F:F=(1—¢)Fo+eH

This notion defines the largest fraction of gross errors that still keeps the bias bounded.
Here is the replacement variant of the finite sample breakdown point given by Hampel

[1].
2.2. LMS and LTS

The multiple regression is probably most used statistical procedure in the statistics. Con-
sider the model

T
yi = x; 0+ e,

where y; is an observed response, x; is a p X 1-dimensional vector of explanatory variables

and [ is a p x 1 vector of unknown parameters. Classically ¢;, ¢ = 1,...,n are assumed

to be i.i.d. N(0,0?), for some o2 > 0.
The LM S (Least Median of Squares) and LT'S (Least Trimmed Squares) estimators
were proposed by Rousseeuw [9] as robust alternatives of the LSE

LMS(ry,...,7,) = argminmed{r?,i=1,...n}, (4)
0
k
LTS(k)(ry,...,r,) = argmin » 72, ,. 5
(B0 = amind ey )

Here v(i,0) is a permutation of the indices, such that 7"3(1.?9) < 7“12,( Thus the idea was

to minimize the sum of squares using ”smallest residuals” only.

i+1,0)°
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Theorem 1 The breakdown point of the regression estimators (4 and 5) is equal to (n —
k)/n if the index k is within the bounds (n+p+1)/2<k<n—p—1, n>3(p+1) and
the data points x; € RP fori=1,...,n are in general position.

This theorem was first proved by Rousseeuw [9] and then easily by Vandev [12] with
different technique.

2.3. Robustified Maximum Likelihood

Neykov and Neytchev [7] proposed to replace in these estimators (LMS and LTS) the
squared residuals with - log likelihood “s of the individual observations and thus to obtain
robustified likelihood.

Let the observations i, s, ...,x, be generated by an arbitrary probability density
function ¢ (x, ) with unknown vector parameter 6.
LME(k) = argmin{—log(zu(xs), 0)}, (6)
k
LTE(k) = argénin Z{—log V(xyi0),0)} (7)
i=1

Thus the idea was to maximize the likelihood over the best k observations (with
"largest likelihood”).

3. Stochastic Optimization

The famous Robins-Monro [8] procedure, later extended by Kiefer and Wolfowitz [4],
when applied to the problem of minimizing the function F'(f) consists in the following.
Let start with some 6 = 6. Let now calculate the gradient grad(F(6)) at this point. It
may be randomly disturbed by some random variable with zero expectation. At the step
1 the parameter will be changed according the following formula:

. grad(F(0;) ‘ (8)
|lgrad(F(6:))]|
The sequence {v;,i = 1,2,..} is chosen to satisfy the relations: > ° 77 < oo,
> 2,7 = oo. Here the only difference with the the standard method as described in
Wasan [6] is the normalizing of the gradient.

i1 = 0;

4. The Proposed Algorithm

Let F' be set of functions of size n defined on p-dimensional Euclidean space E. Let
A(0) = {f(0,z),2 € X} be the (increasingly) ordered set of the values of f at a fixed
point 6. Denote by M(k,0) the k-smallest number in the set A(f) and by T'(k,0) - the

sum of k smallest numbers. Denote by :
LME(k) = arg mein M(k,0) = arg mein fe(0), 9)

k

LTE(k) = arg min T(k,0) = arg meln; T (0), (10)
where fi1y(0) < fi)(0) < -+ < --- < fwy(0). As usual here the subindex denote the
element of the corresponding permutation which depends on the value of 6.
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Step 0. SET number of iterations maxi, set i=1, set \delta.
Step 1. Chose at random 10 indexes among the numbers from 1 to n.
Calculate these 10 functions. Sort their values.
Step 2. Chose the value j, such that (j/10=k/n)
and the function which produces that value (say f).
Step 3. Calculate the normalized gradient D(f) of f.
Step 4. SET B:=B - D(f)*\delta /i. Set i=i+1.
IF i < maxi THEN GOTO STEP 1.

5. MATLAB program

Here we present a MATLAB program able to handle the stochastic approximation algo-
rithm in robust statistics.

function [theta] = soaml(x,thetal,FUN,pr,delta,iter)

[n,m]=size(x); theta=thetal;

for k=1:iter
gama=delta/k; % new gama
J=round (ones (kkk,1)/2+rand(kkk,1)*n); Y% 10 random in (1:n) numbers
eval ([’ [Y,X]="> FUN ’(x(J,:),theta);’]);% residuals, gradient

[dum,list]=sort(Y); %  sort 25 values
% LME or LTE

jj=list(pr,1); % jj=list(il:pr,1);

s=X(jj,:)’; % s=sum(X(jj,:))’;

w=sqrt(s’*s);
theta=theta-s*(gama/w) ;
end

Pgm. 1: LME (and LTE) program

Note between commented lines the minor changes needed to transform this program
for work in the LTE case.

The user defined function [Y,X]=FUN(x,theta) should produce in Y the values corre-
sponding to observations in x and in X — corresponding gradients. Below we present some
examples of such functions for various estimators:

function [Y,X]=gradmea(x,a) function [Y,X]=gradreg(x,a) function [Y,X]=gradnor(x,a)

[n,m]=size(x); [n,m]=size(x); [n,dum] =size(x);

aa=a’; xx=[ones(n,1),x(:,2:m)]; mu=a(ones(n,1),1);
X=x-aa(ones(n,1),:); Y=x(:,1)-xx*a; si=exp(a(2,1));

Y= diag(X*X’); X= -2%(Y(:,ones(1,m)) .*xx); Y=(x-mu)/si;

X=-2%X.*x; Y=Y.xY; X=[-Y/(2%*si), (ones(n,1)-Y.*Y)];

Y=Y.*Y/2+ones(n,1)*a(2);

Pgm. 2: Location Pgm. 3: Regression Pgm. 4: N(u,0) in R

6. Examples of application

Here we present several simulated examples. In all cases we use 1000 observations gener-
ated and 20% contamination, when not mentioned other.



6.1. Location

The 6-dimensional mean, 100 hundred repetitions, 6/10 LME:

Table 1: LME estimate of location

True | 56.1761 0.9569 2.0455 3.0177 4.0263 4.9971
Est. | 56.1019 0.9668 2.0476 2.9981 4.0225 4.9860
Err. | 0.6054  0.0915 0.0936 0.0964 0.0870 0.0942

6.2. Simple regression

The first regression model was chosen to illustrate the robust properties of the used version
of maximum likelihood. The response Y is generated by the following model:

y=>5—2xzx+e.

Here e is a standard normal random vari-
able. The sample consists of 1000 obser-
vations. It was corrupted by destroying
30% of the observations. The algorithm
was used with number of iterations equal
to 150 and § = 10.

On Fig.1 a random solution is presented for
the estimator 6/10. For a comparison the
unique least squares solution is also plotted

Fig. 1: LME and LSQ regression in red

6.3. Multiple Regression

The model is:
Y=2—2%x1+d%xx9—D*xT3+ T4+ €.

The aim was to test the performance of different estimators of the same kind (LME)
when the percent of contamination changes.

In this case we each time generate totally new data set of 4000 uniform random
numbers for x and 1000 normal for e. Each experiment was performed 100 times in order
to estimate the variance.

The results are presented in the following table. The number of contaminated obser-
vations is shown in the first column. The form of used estimator is in the second column.
Each cell in the table contains the average (with the sample standard error below) for 100
simulated with the same model data sets. In the next 4 columns are the results for the
parameters of the model. The last column represents the obtained value of the functional.



Table 2: Simulation results for multiple regression

Cont. Est. |lag=2|a1=-2|as=5|a3=-5| LMFE

100 9/10 1.9235 | -1.9421 | 4.9492 | -4.8944 | 3.3777
.1149 1569 | .1249 1265 | 2.4862
8/10 | 1.9644 | -1.9821 | 4.9029 | -4.9164 | 1.2839
.0990 .0987 | .1401 1136 | 1512
7/10 | 1.9390 | -2.0412 | 4.9467 | -4.8380 | 1.1343
.1596 1834 | .1959 1705 | .2168
6/10 | 1.9823 | -1.9756 | 4.7355 | -4.7443 | .9773

2313 2328 | 3107 2601 | .2017

200 | 8/10 | 1.9664 | -2.0136 | 4.7889 | -4.7541 | 5.9930
.1534 1828 | .1808 .2410 | 3.7446

7/10 | 1.9103 | -1.9337 | 4.9010 | -4.8629 | 1.3670
.2338 2833 | 2781 2783 | .5853

6/10 | 1.9484 | -1.9812 | 4.8867 | -4.9113 | 1.0957
1811 2229 | .2409 1701 | .2407

300 7/10 | 1.7643 | -1.7374 | 4.4975 | -4.5186 | 7.7961
4012 3970 | .6973 7480 | 4.5630
6/10 | 1.8873 | -1.8956 | 4.8093 | -4.7899 | 1.5153
.3159 2421 | .5369 4467 | 8834

400 | 6/10 | 1.5886 | -1.6556 | 4.2696 | -4.1614 | 9.5648
.5058 4803 | .7968 9176 | 4.7157

What is easily seen in this table are the good results of 7/10 estimator for 10% con-
tamination and 6/10 estimator — for 20%.

7. Mean and covariance

The estimating of variance needs special attention because it has to be positive. In the
one-dimensional case the problem is solved using new parameter Ino (see Pgm.4). In the
multi-dimensional case however such approach is not easy. Before explaining difficulties
let us present one unsuccessful example of two-dimensional estimate of mean and the
covariance:

Table 3: Location and scale

Original mean 0.6242 2.5444
Estimated mean 0.9204 3.0970
Original Cova 37.0107 -20.4700
-20.4700  51.5504
Estimated Cova | 35.1363 -10.3004
-10.3004  43.6298

Fig. 2: Location and scale



7.1. The problem of gradient

In the simultaneous estimation of the mean and covariance the main problem consists in
calculation of the gradient of @ = —log L(z, m, >):

Q = logdet(2)2 + (z — )Y Mz — p). (11)
Let denote M = X7, Then it is easy to show that

dQ

AR G DGR DR (12)

Let us replace M = exp(L) as in the univariate case and try to use the formal relation

dQ dQ®

Consider the standard expansion of exp(L)
M=expL=1+L+L*2 +L*/3 +...

The question now is how to represent %. We tried the following approximation of

this (m x m)? tensor:
W1+ 118U + L/13)
dL

Thus we come to the result:

dq

o7 = U+ L/18) (= p)(w =) = M) (I + L/18)

Note that we are not sure how exact is this approximation.

7.2. The Simulation Results

These were obtained using 20% contamination of 1000 observations and MLE 6/10.

Table 4: Means

Original 18.0293 0.9973 -1.9745 3.0041 -6.0700 3.3209
Estimated | 18.0253 1.0166 -2.0165 2.9931 -5.9780 3.3387
S.E. 0.1845 0.1340 0.1453 0.1536 0.1419 0.1077

Table 5: Original covariance matrix

6.0332  0.4005 -0.6253 1.0875 -1.9673 1.0251
0.4005 1.0741 -0.0554 -0.0257 0.0529 0.0359
-0.6253 -0.0554 0.8846 -0.0332 0.0724 0.0294
1.0875 -0.0257 -0.0332 0.9997 -0.0110 0.0234
-1.9673 0.0529 0.0724 -0.0110 2.2645 0.0299
1.0251 0.0359 0.0294 0.0234 0.0299 0.4159




Table 6: Estimated covariance matrix

4.0793 0.2168 -0.3825 0.6135 -1.2302 0.6816
0.2168 0.6719 -0.0042 0.0088 -0.0132 0.0119
-0.3825 -0.0042 0.6703 -0.0101 0.0233 -0.0072
0.6135 0.0088 -0.0101 0.6832 -0.0281 0.0238
-1.2302 -0.0132 0.0233 -0.0281 1.4797 -0.0266
0.6816 0.0119 -0.0072 0.0238 -0.0266 0.3330

While the estimation of mean is excellent (see Table 4) the bias of the covariance is

obvious on Table 6. Thus the proposed algorithm was not successful with estimation of
covariance matrix. The reason is that the true unbiased gradient is not easy to obtain.
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