
G.L. Nemhauser et al., Eds., Handbooks in OR & MS, Vol. 1
c© Elsevier Science Publishers B.V. (North-Holland) 1989

Chapter II

Linear Programming

Donald Goldfarb*
Department of Industrial Engineering and Operations Research, Columbia University,

New York, NY 10027, U.S.A.

Michael J. Todd**
School of Operations Research and Industrial Engineering, Cornell University, Ithaca,

NY 14853, U.S.A.

1. Introduction

Although the origin of linear programming as a mathematical discipline is quite
recent, linear programming is now well established as an important and very ac-
tive branch of applied mathematics. The wide applicability of linear programming
models and the rich mathematical theory underlying these models and the meth-
ods developed to solve them have been the driving forces behind the rapid and
continuing evolution of the subject.

Linear programming problems involve the optimization of a linear function,
called the objective function, subject to linear constraints, which may be either
equalities or inequalities, in the unknowns. The recognition of the importance of
linear programming models, especially in the areas of economic analysis and plan-
ning, coincided with the development of both an effective method, the ‘simplex
method’ of G.B. Dantzig, for solving linear programming problems, (Dantzig 1951)
and a means, the digital computer, for doing so. A major part of the foundation of
linear programming was laid in an amazingly short period of intense research and
development between 1947 and 1949, as the above three key factors converged.

Prior to 1947 mathematicians had studied systems of linear inequalities, start-
ing with Fourier (1826), and optimality conditions for systems with inequality
constraints within the classical theory of the calculus of variations (Bolza 1914;
Valentine 1937). For the finite dimensional case, the first general result of the latter
type appeared in a master’s thesis by Karush (1939). (See also (John 1948).) Also,
as early as 1939, L.V. Kantorovich had proposed linear programming models for
production planning and a rudimentary algorithm for their solution (Kantorovich

*This work was partially supported by NSF Grant DMS-85-12277 and ONR Contract N00014-
87-K-0214.

**This work was partially supported by NSF Grant ECS-8602534 and ONR Contract N00014-
87-K-0212.

1

2 D. Goldfarb, M.J. Todd

1939). However, Kantorovich’s work was ignored in the U.S.S.R. and remained
unknown in the West until long after linear programming had been well estab-
lished. For a thorough historical survey of linear programming see (Dantzig 1963)
and (Schrijver 1986).

In the last decade, linear programming has again become a major focus of at-
tention and an area of heightened activity. This is a result of two developments,
both of which are concerned with linear programming algorithms which differ
radically from the simplex method. The first was a proof by Khachian (1979)
that the so-called ellipsoid method of Shor (1970) and Yudin and Nemiroviskii
(1976) for convex, not necessarily differentiable, programming could solve linear
programming problems quickly in a theoretical sense. The second was the devel-
opment by Karmarkar (1984a, b) of a projective interior-point algorithm which
appears to have enormous potential for efficiently solving very large problems.

In this chapter, we present and analyze these new methods for solving linear
programs (i.e., linear programming problems) as well as providing a thorough
development of the simplex method and the basic theory of linear programming.
Our point-of-view is both algorithmic and geometric, and we discuss practical,
computational issues and give economic interpretations of several aspects of lin-
ear programming. We cover most of the standard topics found in textbooks on
linear programming. We do not, however, treat specialized applications of linear
programming such as game theory, or extensions of it such as integer or quadratic
programming. The latter two subjects are discussed in Chapters 6 and 3.

In the remainder of this section we present three standard examples of linear
programming problems and introduce several canonical forms for linear programs.
Section 2 presents the geometry of linear programming models and algebraically
characterizes relevant geometrical concepts. Basic results concerning the funda-
mental role played by the vertices of the polyhedron of feasible solutions of a
linear program are given. In Section 3 we develop the simplex method from a ge-
ometric point of view. This development produces, as a by-product, various basic
theorems concerning conditions for optimality and unboundedness, and leads in a
natural way to the so-called revised (i.e., matrix) version of the simplex method.
Degeneracy and cycling are briefly considered as are various approaches for im-
plementing the simplex method. These include the standard ‘tableau’ approach
as well as factorizations for the basis matrix in the revised version of the simplex
method. This section concludes with a discussion of the use of artificial variables
and the so-called phase I problem for obtaining an initial feasible (vertex) solution
for the simplex method.

Duality theory and sensitivity analysis are treated in Section 4. In addition to
showing that the ‘dual’ of a linear program arises naturally from the optimality
conditions for the latter problem, we show that the dual and its constraints and
variables can be given an economic interpretation. The duals of two of the linear
programming examples considered in Section 1 are presented, and an important
variant of the simplex method, the dual simplex algorithm, is derived. We conclude
Section 4 with a discussion of sensitivity (or postoptimality) analysis.

Sections 5 and 6 consider efficient application of the revised simplex method
to large and structured problems. Section 5 describes the approach of using a

II. Linear programming 3

compact (partitioned) inverse which is useful when there are special constraints
such as generalized or variable upper bounds, and illustrates the method in the
case of simple upper bounds. Efficient implementation of the simplex method for
solving network flow problems is also discussed. Section 6 addresses column gen-
eration and the use of the decomposition principle to reduce very large problems
to ones that are of manageable size. The former technique, which allows columns
(of which there may be an astronomical number) to be generated as needed, is
illustrated on the classic cutting-stock problem.

The final three sections discuss the complexity of linear programming (Sec-
tion 7), and two new methods, the ellipsoid method (Section 8) and Karmarkar’s
projective method (Section 9), which are distinguished from the simplex method
in that they have the desirable theoretical property of polynomial-time bound-
edness. For each of these methods, we describe the basic idea of the method,
provide a precise statement of the algorithm, give a sketch of the proof that the
algorithm requires only polynomial time to solve linear programming problems
and discuss some extensions and the theoretical and computational significance
of the method.

1.1. Examples of linear programming problems

Very many problems of practical interest can be formulated as linear programs.
In this section we present several well-known examples of such problems.

Example 1 (The transportation problem). A company needs to ship a product
from m locations (origins) to n destinations. Suppose that ai units of the product
are available at the i-th origin, i = 1, 2, . . . ,m, and bj units are required at the
j-th destination, j = 1, 2, . . . , n. Further suppose that the total amount available
at the origins equals the total amount required at the destinations, i.e.,

m∑

i=1

ai =
n∑

j=1

bj .

If the cost of shipping one unit of product from origin i to destination j is cij ,
i = 1, 2, . . . ,m; j = 1, 2, . . . , n, how many units of product should be shipped
between each origin-destination pair so as to minimize the total transportation
cost?

Defining xij to be the number of units of product shipped from origin i to

4 D. Goldfarb, M.J. Todd

destination j, we can formulate this problem as the linear program:

minimize
m∑

i=1

n∑

j=1

cijxij

subject to
n∑

j=1

xij = ai , i = 1, 2, . . . ,m , (1.1)

m∑

i=1

xij = bj , j = 1, 2, . . . , n , (1.2)

xij > 0 , i = 1, 2, . . . , m , j = 1, 2, . . . , n .

The objective function that is being minimized is clearly equal to the total
shipping cost. Each of the quality constraints (1.1) represents the requirement
that the total amount of product shipped from origin i to all destinations is equal
to the amount available at the origin. Similarly the constraints (1.2) express the
requirement that the demand bj at destination j is exactly satisfied by the amounts
shipped there from all origins. Notice that the nonnegativity restrictions on the
amounts shipped are crucial since otherwise one could save money by shipping
negative quantities along some routes.

The transportation problem is a linear programming problem with a rather spe-
cial structure; all coefficients of the decision variables in the equality constraints
(1.1) and (1.2) are either zero or one. As we shall see later, the transportation
problem is a special case of a network flow problem. It also illustrates why linear
programs that are solved in practice often tend to be quite large. For example, if
both m and n are 100, then the above problem contains 200 equations in 10 000
nonnegative variables. Because of their special structure, very large transporta-
tion problems can be solved in a reasonable amount of computer time; in fact, the
solution of a problem with 63 million variables was reported several years ago.

Example 2 (The diet problem). Consider the problem of determining the most
economical diet that satisfies certain minimum daily requirements for calories and
such nutrients as proteins, calcium, iron and vitamins. Suppose there are n differ-
ent foods available and our diet must satisfy m minimum nutritional requirements.
We can also have maximum requirements on certain nutrients such as fats and
carbohydrates, but we will ignore these in our example. Let cj be the unit cost of
the j-th food, bi be the minimum daily requirement of the i-th nutrient, and aij

be the amount of nutrient i provided by a unit of food j.
If we let xj be the number of units of food j included in our diet then a

minimum cost diet can be found by solving the linear programming problem:

minimize
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj > bi , i = 1, 2, . . . ,m .

xj > 0 , j = 1, 2, . . . , n .

II. Linear programming 5

Example 3 (Product mix problem). A manufacturer is capable of producing n
different products using m different limited resources. These may be hours of
labor or operation times for various machines per week, or material availabilities.
Let cj be the profit (revenue minus cost) obtainable from each unit of product
j manufactured, bi be the amount of resource i available and aij the amount of
resource i used in the production of one unit of product j. The problem facing
the manufacturer is one of determining the product mix (i.e., production plan)
that maximizes total profit.

If we let xj be the number of units of product j manufactured, then this linear
programming problem can be formulated as:

maximize
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj 6 bi , i = 1, 2, . . . ,m ,

xj > 0 , j = 1, 2, . . . , n .

1.2. Canonical forms

Linear programs are usually expressed in either of two forms (however, see
Section 8 for an exception). These are the inequality form

minimize z = cTx

subject to Ax 6 b ,

x > 0 ,

and the standard form

minimize z = cTx

subject to Ax = b ,

x > 0 ,

where A in both cases denotes an (m × n) matrix, c ∈ Rn, b ∈ Rm and x ∈ Rn

is the n-vector of variables. These forms are completely equivalent and any linear
program can be put into either form using the following simple transformations.

A free, or unrestricted variable xj can be replaced by a pair of non-negative
variables, x′j > 0, x′′j > 0 by writing

xj = x′j − x′′j .

The sense of an inequality can be reversed by multiplying both sides of it by minus
one. Further, an inequality

n∑

j=1

aijxj 6 bi

6 D. Goldfarb, M.J. Todd

can by converted to an equality by the addition of a nonnegative slack variable

xn+i = bi −
n∑

j=1

aijxj

and an equality

n∑

j=1

aijxj = bi

can be replaced by two inequalities

n∑

j=1

aijxj S bi

Finally, maximizing the linear function cTx is equivalent to minimizing −cTx.
Observe that the first example of Section 1.1, the transportation problem, is in

standard form, while the other examples, the diet and product mix problems are
essentially in inequality form.

Slack variables can usually be given some economic or physical interpretation.
For example, if we add a slack variable xn+i to the i-th inequality in the product
mix example to make it an equality then xn+i is the amount of resource i not
used in the production of the product mix.

2. Geometric interpretation

In order to understand the theory underlying linear programming and the meth-
ods used to solve linear programming problems, it is essential to have a geometric
understanding of these problems and be able to algebraically characterize relevant
geometrical concepts. With this in mind we now give several definitions.

2.1. Definitions

Definition 2.1. A set C ⊆ Rn is convex if for any two points x′, x′′ ∈ C, all
points of the form x(λ) = λx′ + (1− λ)x′′, where 0 6 λ 6 1, are in C.

That is, for any two points in the set, the line segment between these points
must lie in the set for in to be convex (see Figure 2.1).

Definition 2.2. x is a convex combination of points x1, . . . , xN if

x =
N∑

i=1

λixi, λi > 0, all i and
N∑

i=1

λi = 1 .

Definition 2.3. A set C ⊆ Rn is a cone if for any point x ∈ C and any nonnega-
tive scalar λ, the point λx is in C. The set {x ∈ Rn : x = Aα, α > 0} is a convex
cone generated by the columns of A ∈ Rn×m. (Here, α ∈ Rm.)

II. Linear programming 7

Fig. 2.1.

Definition 2.4. An extreme point of a convex set C is a point x ∈ C which
cannot be expressed as a convex combination of (two) other points in C.

Definition 2.5. The set H = {x ∈ Rn : aTx = β} where a ∈ Rn, a 6= 0, and
β ∈ R is a hyperplane. The set H̄ = {x ∈ Rn : aTx 6 β} is a closed half-space.
The hyperplane H associated with the half-space H̄ is referred to as the bounding
hyperplane for that half-space.

The vector a in the above definition is orthogonal to the hyperplane H and is
called its normal, and it is directed towards the exterior of H̄. To see this let y,
z ∈ H and w ∈ H̄. Then

aT(y − z) = aTy − aTz = β − β = 0 ,

i.e., a is orthogonal to all vectors parallel to H, and

aT(w − z) = aTw − aTz 6 β − β = 0 ,

i.e., a makes an obtuse angle whit any vector which points towards the interior of
H̄. A hyperplane in Rn is just an (n−1)-dimensional affine set (or affine subspace
of Rn) which is defined as:

Definition 2.6. A set Sa ⊆ Rn is an affine set if for any two points x′, x′′ ∈ Sa,
all points of the form x(λ) = λx′ + (1− λ)x′′ where −∞ < λ < ∞, are in Sa.

Note that in contrast with the definition of a convex set, given any two points
in an affine set we have that the entire line passing through them lies in that set
rather than just the line segment between them. We also note that an affine set Sa

is simply a linear subspace S translated by a vector y; i.e., Sa = {y + x : x ∈ S}.
We say Sa is parallel to S.

Definition 2.7. A convex polyhedron is a set formed by the intersection of a finite
number of closed half-spaces (and hyperplanes). If it is non-empty and bounded
it is called convex polytope, or simply a polytope.

It is easy to show that hyperplanes and closed half-spaces are convex and that
the intersection of convex sets; hence, a convex polyhedron as defined above is
convex. Clearly, the set of feasible solutions of a linear programming problem,

8 D. Goldfarb, M.J. Todd

P = {x ∈ Rn : Ax 6 b, x > 0} (or P̄ = {x ∈ Rn : Ax = b, x > 0}) is a convex
polyhedron since it is the intersection of the half-spaces defined by the inequalities

aT
1 x 6 b1, . . . , aT

mx 6 bm and eT
1 x > 0, . . . , eT

nx > 0 (2.1)

where aT
i is the i-th row of A and eT

i is the i-th row of the n× n identity matrix.
Before we can define certain important features of convex polyhedra we need

the following two definitions.

Definition 2.8. The dimension of a subspace S, and any affine subspace Sa

parallel to it, is equal to the maximum number of linearly independent vectors in
S. The dimension of any subset of D ⊆ Rn is the smallest dimension of any affine
subspace which contains D.

Definition 2.9. A supporting hyperplane of a convex set C is a hyperplane H
such that H ∩ C 6= ∅ and C ⊆ H̄, one of the two closed half-spaces associated
with H.

Definition 2.10. Let P be a convex polyhedron and H be any supporting hy-
perplane of P . The intersection F = P ∩H defines a face of P .

There are three special kinds of faces.

Definition 2.11. A vertex, edge, and facet are faces of a d-dimensional convex
polyhedron of dimension zero, one, and d− 1, respectively.

If P = {x ∈ Rn : Ax 6 b, x > 0} then it is fairly obvious that every facet of
P corresponds to the intersection of P with a half-space defined by one of the
inequalities (2.1). However, not all such intersections necessarily define facets since
some of the inequalities may be redundant ; i.e., deleting them from the definition
of P does not change P .

Vertices of a convex polyhedron P are obviously extreme points of P and
we shall henceforth use these terms interchangeably. A rigorous proof of this
equivalence is left to the reader. Edges are either line segments which connect
neighboring (or adjacent) vertices or are semi-infinite lines emanating from a
vertex.

2.2. Extreme points and basic feasible solutions

It is easy to see that if a linear programming problem in two or three variables
has a finite optimal solution then it occurs at a vertex (i.e., extreme point) of
the polyhedron P of feasible solutions. As we shall prove in the next section, this
statement holds in higher dimension as well. For this reason, we now algebraically
characterize the vertices of P . For the remainder of this section we shall use P to
denote the polyhedron {x ∈ Rn : Ax = b, x > 0}.
Theorem 2.1. A point x ∈ P = {x ∈ Rn : Ax = b, x > 0} is a vertex of P if and
only if the columns of A corresponding to positive components of x are linearly
independent.

II. Linear programming 9

Proof. Without loss of generality, let us assume that the first p components of x
are positive and the last n− p components of x are zero. If we partition x so that
x =

(
x̄
0

)
, x̄ > 0, and we denote the first p columns of A by Ā, then Ax = Āx̄ = b.

Suppose that the columns of Ā are not linearly independent. Then, there exists
a vector w̄ 6= 0 such that Āw̄ = 0. Therefore, Ā(x̄± εw̄) = Āx̄ = b and for small
enough ε, (x̄± εw̄) > 0. Consequently the points

y′ =
(

x̄ + εw̄

0

)
and y′′ =

(
x̄− εw̄

0

)

are both in P . Further, since x = 1
2 (y′+y′′), x cannot be a vertex (extreme point)

of P . Thus, if x is a vertex, then the columns of Ā are linearly independent.
Now suppose that x is not a vertex. This means that x = λy′ + (1 − λ)y′′

where y′, y′′ ∈ P , y′ 6= y′′ and 0 < λ < 1. Since both x and y′ are in P ,
A(x − y′) = Ax − Ay′ = b − b = 0. Further, since both λ and 1 − λ are strictly
positive, the last n − p components of y′, and hence x − y′, must be zero, since
those components of x are zero. Therefore, it follows that the columns of Ā are
linearly dependent. Thus, if the columns of Ā are linearly independent, then x is
a vertex.

When A has full row rank, an equivalent characterization of the vertices of P
involves the concept of a basic solution.

Definition 2.12. Let B be any nonsingular m×m matrix composed of m (lin-
early independent) columns of A. If all components of x not associated with the
columns of B, called nonbasic variables, are set equal to zero and the set of lin-
ear equations Ax = b is solved for the remaining components of x, called basic
variables, then the resulting x is said to be a basic solution with respect to the
basis (matrix) B. We shall also use the term basis to refer both to the set of basic
variables and the set of indices of those variables.

Notice that if we set the nonbasic variables equal to zero, we are left with a
system of m equations in m unknowns.

BxB = b ,

which is uniquely solvable for the basic variables xB . The reason for the above
terminology is that the columns of B form a basis for the column space of A and
Ax = b can be thought of as expressing b as a linear combination of the columns
of A.

When A does not have full row rank, either the system of linear equations
Ax = b has no solution and P is the empty set, or some of the equations in the
system are redundant. In the latter case, redundant constraints can be removed
one by one to give a reduced system of equations and a constraint matrix of full
row rank.

If a basic solution x with respect to a basis B is nonnegative then it is called a
basic feasible solution, and the following corollary to Theorem 2.1 is an immediate
consequence of the above definitions.

10 D. Goldfarb, M.J. Todd

Corollary 2.1. A point x ∈ P is a vertex of P if and only if x is a basic feasible
solution corresponding to some basis B.

Corollary 2.2. The polyhedron P has only a finite number of vertices.

Proof. This follows from the previous corollary and the fact that there are only
a finite number of ways to choose m linearly independent ’basis’ columns from
the n columns of A. Clearly an upper bound on the number of vertices of P is
n!/(m!(n−m)!).

If the polyhedron P is bounded—i.e., P is a polytope—then any point in P can
be represented as a convex combination of the vertices of P . (See Corollary 2.3
below.) When P is unbounded the representation of any point in P is slightly
more complicated and requires the following definition.

Definition 2.13. A direction of P is a nonzero vector d ∈ Rn, such that for any
point x0 ∈ P the ray {x ∈ Rn : x = x0 + λd, λ > 0} lies entirely in P .

Obviously P is unbounded if and only if P has a direction. It is also easily
proved that d 6= 0 is a direction of P if and only if

Ad = 0 and d > 0 .

We can now state the following representation theorem.

Theorem 2.2 (Representation theorem). Any point x ∈ P can be repre-
sented as

x =
∑

i∈I

λivi + d ,

where {vi : i ∈ I} is the set of vertices of P ,
∑

i∈I

λi = 1 , λi > 0 for all i ∈ I,

and either d is a direction of P or d = 0.

Proof. We prove this theorem by induction on p, the number of positive compo-
nents of x. It is obviously true for p = 0 (x is a vertex). Now assume that it is
true for points with fewer than p positive components, and that x has p positive
components.

If x is a vertex, then the theorem is obviously true since x = vi for some i ∈ I.
Therefore suppose that x is not a vertex. Then there is a vector w 6= 0 with wi = 0
if xi = 0 such that Aw = 0. There are three cases to consider.

Case (a): w has components of both signs.
Consider points x(θ) = x + θw on the line through x determined by w, and

let θ′ and θ′′ be, respectively, the smallest positive, and (algebraically) largest
negative values of θ at which x(θ) has at least one more zero component than x.

II. Linear programming 11

Clearly the points x′ = x(θ′) and x′′ = x(θ′′) lie in P and can be represented as
in the statement of the theorem by the induction hypothesis. Consequently, we
can represent x, which lies on the line between x′ and x′′, as

x = µx′ + (1− µ)x′′

= µ

(∑

i∈I

λ′ivi + d′
)

+ (1− µ)

(∑

i∈I

λ′′i vi + d′′
)

=
∑

i∈I

(µλ′i + (1− µ)λ′′i) vi + µd′ + (1− µ)d′′ ,

where µ = −θ′′/(θ′ − θ′′).
Since 0 < µ < 1,

λ′i > 0 and λ′′i > 0 for all i ∈ I,
∑

i∈I

λ′i =
∑

i∈I

λ′′i = 1 ,

Ad′ = Ad′′ = 0, d′ > 0 and d′′ > 0 ,

it follows that

λi ≡ µλ′i + (1− µ)λ′′i > 0 for all i ∈ I,
∑

i∈I

λi = 1 ,

d ≡ µd′ + (1− µ)d′′ > 0 and Ad = 0 ,

and we have proved that x has the desired form.
Case (b): w 6 0.
Define x′ as in Case (a). Now x can be written as

x = x′ + θ′(−w) where θ′ > 0.

Since x′ can be represented in the desired form by induction, and (−w) is a
direction of P , x clearly has the desired form.

Case (c): w > 0.
The proof for this case is identical to case (b) with x′, θ′, and −w replaced by

x′′, −θ′′, and w, respectively.
Hence we obtain:

Corollary 2.3. If P is bounded (i.e., a polytope) then any x ∈ P can be repre-
sented as a convex combination of its vertices.

2.3. Fundamental theorems of linear programming

In this section we prove two theorems that are of fundamental importance to the
development of algorithms (and in particular the simplex algorithm) for solving
linear programs. Specifically, these theorems identify the special importance of
the vertices of P—i.e., basic feasible solutions—for such methods.

Theorem 2.3. If P is nonempty, then it has at least one vertex.

Proof. This follows immediately from Theorem 2.2 and its proof.

12 D. Goldfarb, M.J. Todd

Theorem 2.4. If P is nonempty, then the minimum value of z = cTx for x ∈ P
is attained at a vertex of P or z has no lower bound on P .

Proof. There are two cases to consider:
Case (a): P has a direction d such that cTd < 0. In this case P is unbounded

and the value of z → −∞ along the direction d.
Case (b): P has no direction d such that cTd < 0. In this case we need only

consider points that can be expressed as convex combination of the vertices vi of
P , since even if P is unbounded any point of the form x = x̂ + d, where

x̂ =
∑

i∈I

λivi,
∑

i∈I

λi = 1, and λi > 0 for all i ∈ I ,

has an objective value that is bounded below by cTx̂. But

cTx̂ = cT

[∑

i∈I

λivi

]
=

∑

i∈I

λic
Tvi > min

i∈I
{cTvi} .

Hence, the minimum of z is attained at a vertex.

This theorem is fundamental to solving linear programming problems. It shows
that we need only consider vertices of P , i.e., basic feasible solutions, as candi-
dates for the optimal solution. Also it shows that we must be on the lookout for
directions along which z → −∞.

3. The simplex method

We saw in Section 2 that to solve the linear programming problem,

minimize z = cTx
subject to Ax = b ,

x > 0 ,
(3.1)

we need only consider the vertices of the polyhedron P = {x : Ax = b, x > 0} of
feasible solutions as candidates for the optimal solution, assuming for the moment
that (3.1) has a finite optimal solution. For large m and n, determining all of
the vertices of P is impractical; P can have as many as

(
n
m

)
= n!/m!(n − m)!

basic solutions. Clearly a more systematic approach such as the simplex method
developed by George Dantzig in 1947 is required. In fact, the simplex method
has been so successful that it has become one of the best known and, in terms of
computer time, one of the most used methods in numerical computing.

3.1. Geometric motivation

The idea of the simplex method is really quite simple. First a vertex of P is
found. Then the method proceeds from vertex to vertex along edges of P that are
‘downhill’ with respect to the objective function z = cTx, generating a sequence of
vertices with strictly decreasing objective values. Consequently, once the method

II. Linear programming 13

leaves a vertex the method can never return to that vertex. Thus, in a finite
number of steps, a vertex will be reached which is optimal, or an edge will be
chosen which goes off to infinity and along which z goes to −∞.

Our task here is to convert the above geometric description of the simplex
method into an algebraic and, hence, computational form. We will consider first,
the so-called second phase (phase II) of the simplex method which assumes that
a vertex of P is given, for as we shall see later, the algorithm for this second phase
can itself by used to solve the phase I problem of finding a vertex of P if P is
nonempty. Also, we shall assume that the rows of A are linearly independent, i.e.,
the rank of A is m, and that m < n, so that our problem is not trivial. If the rank
of A is less than m, then either the equality constraints are inconsistent or some
of them are redundant and can be removed. Our assumptions ensure that there
is at least one basic solution and that a basis matrix B can be formed from the
columns of A.

For simplicity in describing a step of the simplex method, let us assume that
the components of the current vertex x are ordered so that the first m are basic.
That is, the vertex x of P corresponds to the basic feasible solution

x =
[

xB

xN

]
=

[
B−1b

0

]
(3.2)

where A is partitioned as A = [B|N]. We also partition cT as cT = [cT
B cT

N] to
conform to the above partition of x into basic and nonbasic parts.

Definition 3.1. If one or more basic variables are zero then such a basic solution
is called degenerate, otherwise, it is called nondegenerate.

If the basic feasible solution (3.2) is nondegenerate then it lies in the intersection
in Rn of the m hyperplanes corresponding to the equality constraints Ax = b and
the n − m hyperplanes corresponding to requirement that the n − m nonbasic
variables equal zero, i.e., xN = 0. Consider the matrix

M =
[

B N
0 I

]
(3.3)

whose rows are just the normals to these n hyperplanes. Since B is non-singular,
the rows of M are linearly independent, and hence M is non-singular. Thus the
vertex (3.2) is determined by the intersection of n linearly independent hyper-
planes.

If a basic feasible solution is degenerate, then some of the basic variables xB are
also equal to zero. Consequently, more than n−m of the nonnegativity constraints
xj > 0 are satisfied as equalities and the point x satisfies more than n equations.

A conceptual illustration of degeneracy is given in Figure 3.1. It might appear
from this illustration that there are always redundant constraints at a degenerate
vertex. However, this is only the case when n−m 6 2.

When a basic feasible solution x is degenerate, there can be an enormous num-
ber of bases associated with the vertex x. In fact, if x has p < m positive compo-
nents, there may be as many as(

n− p

n−m

)
=

(n− p)!
(n−m)!(m− p)!

14 D. Goldfarb, M.J. Todd

Fig. 3.1. An illustration of degeneracy.

‘different’ basic feasible solutions corresponding to x. The point x is the same in
each, but the sets of variables that we label basic and nonbasic are different. An
extreme example of degeneracy is exhibited by the so-called ‘assignment’ problem.
It can be shown that the polytope

Pk =

xij , 1 6 i, j 6 k :

k∑

j=1

xij = 1, 1 6 i 6 k;

k∑

i=1

xij = 1, 1 6 j 6 k; 0 6 xij , 1 6 i, j 6 k

}

of this rather special ‘capacitated transportation’ problem has k! vertices, and
that there are 2k−1kk−2 bases corresponding to each of these vertices. Thus, for
k = 8, each of the 40 320 vertices of P8 has 33 554 432 different bases associated
with it (Balinski and Russakoff 1972).

Let us assume for simplicity that the basic feasible solution (3.2) is nondegen-
erate. This ensures that there are exactly n−m edges (i.e., one-dimensional faces)
of P emanating from the vertex. The directions of these edges are given by the
last n −m columns of the inverse of the matrix of active constraint normals M
in (3.3). It is easily verified that

M−1 =
[

B−1 −B−1N
0 I

]
. (3.4)

Each edge direction corresponds to increasing one of the nonbasic variables while
keeping all of the remaining nonbasic variables fixed at zero. To verify the above
statements we observe that the q-th column of M−1, q > m, is orthogonal to all
rows of M other than the q-th, and hence, it is orthogonal to the normals of all of
the hyperplanes that intersect at x except the one corresponding to xq = 0. This
means that this vector ηq = M−1eq (where eq is again the q-th column of the n×n
identity matrix) is parallel to the intersection of the n − 1 linearly independent
hyperplanes corresponding to Ax = b and xk = 0, k > m, k 6= q. Also the edge
direction ηq is a feasible direction because, for small enough θ > 0, points of the
form

x(θ) = x + θηq (3.5)

II. Linear programming 15

are feasible. In fact xk(θ) = 0, k > m, k 6= q, xq(θ) = θ > 0 and

xB(θ) = xB − θB−1aq > 0 (3.6)

for θ small enough, where aq denotes the q-th column of A.
Now, the first task in an iteration of the simplex method is to find a ‘downhill’

edge. This involves computing the so-called reduced or relative costs

c̄j = cTηj = cj − cT
BB−1aj , j > m .

If c̄j < 0, then the gradient c of the objective function z = cTx makes an obtuse
angle with the edge direction ηj and z decreases as one moves along that direction,
i.e., as θ is increased. The terminology reduced cost comes from the fact that c̄j

represents the change in the objective function z per unit change in the nonbasic
variable xj , keeping all other nonbasic variable fixed, since from (3.5) with q = j,
it follows that

z(x(θ)) = cTx(θ) = cTx + θcTηj = z(x) + θc̄j .

Clearly the reduced cost c̄j is the directional derivative of z = cTx with respect
to the edge direction ηj .

Although any downhill edge will do for the simplex method, the usual rule used
in textbooks is to choose the edge corresponding to the most negative reduced
cost. (This is not the ‘steepest-edge’ with respect to the objective function z. Such
a choice ηq, corresponds to

cTηq

‖ηq‖ = min
j>m

{
cTηj

‖ηj‖
}

.

That is, the steepest edge is the one which makes the most obtuse angle φq with
c, where

φq = cos−1

(
cTηq

‖c‖ · ‖ηq‖
)

.

This pivot rule can be implemented in a practicable manner for large problems
if the quantities ‖ηj‖2 = ηT

j ηj for all of the nonbasic variables are stored and
updated from one iteration to the next. (See (Goldfarb and Reid 1977).))

Note that the reduced costs corresponding to basic variables are zero and that
those corresponding to nonbasic variables can be obtained by first computing the
vector of simplex multipliers πT = cT

BB−1 followed by ‘pricing-out’ all nonbasic
columns, i.e.,

c̄j = cj − πTaj , j > m .

The terminology used above is derived from the interpretation of the components
of π both as Lagrange multipliers and as equilibrium prices at optimality.

We now show that every point y ∈ P lies within the convex polyhedral cone
generated by a given basic feasible solution x and the ‘edge directions’ ηj ema-
nating from x determined by the basis. In the nondegenerate case these directions
are true edge directions. In the degenerate case some of them are infeasible.

16 D. Goldfarb, M.J. Todd

Lemma 3.1. Given the basic feasible solution x in (3.2), every y ∈ P can be
expressed as

y = x +
n∑

j=m+1

yjηj , yj > 0, j = m + 1, . . . , n

where ηj is the j-th column of M−1 in (3.4).

Proof. Since y ∈ P , Ay = b and y =
(

yB

yN

)
> 0. Moreover, since Ax = b and

xN = 0, it follows that

M(y − x) =
[

B N
0 I

]
(y − x) =

(
0

yN

)
,

and hence that

(y − x) = M−1

(
0

yN

)
=

[−B−1N
I

]
yN

where yN > 0.

From this lemma we have that

z(y)− z(x) = cT(y − x) =
n∑

j=m+1

(cTηj)yj =
n∑

j=m+1

c̄jyj (3.7)

for all y ∈ P . Since y is nonnegative, if the reduced costs c̄j are nonnegative, it
follows that z(y) > z(x) for all y ∈ P . Thus we have proved:

Theorem 3.1. A basic feasible solution is an optimal solution to the linear pro-
gramming problem (3.1) if all reduced costs (relative to the given basis) are non-
negative.

In the nondegenerate case the converse of this theorem is true. However a
degenerate basic feasible solution can be optimal even if some reduced costs are
negative, since the corresponding downhill edge directions may not be feasible. A
direction is infeasible at a point x where xj = 0 if its j-th component is negative.
The following corollaries are also immediate consequences of (3.7).

Corollary 3.1. A basic feasible solution x is the unique optimal solution to (3.1)
if all nonbasic reduced costs are strictly positive.

Corollary 3.2. If x given by (3.2) is an optimal basic feasible solution, with
nonbasic reduced costs c̄j1 = c̄j2 . . . = c̄jk

= 0, then any point y ∈ P of the form

y = x +
k∑

i=1

yjiηji (3.8)

is also optimal.

II. Linear programming 17

If an optimal basic feasible solution is degenerate and the reduced costs cor-
responding to some of the nonbasic variables are zero, it does not follow from
Corollary 3.2 that the optimal solution is nonunique. This is because in the de-
generate case x may be the only point of the form (3.8) that is actually in P , due
to the infeasibility of the edge directions ηji

in (3.8).
Once a downhill edge ηd has been chosen the next task in an iteration of the

simplex method involves moving along that edge to the vertex adjacent to x.
This is accomplished by increasing the nonbasic variable xq—i.e., increasing θ in
(3.5)—until one of the basic variables becomes zero.

Letting

w = B−1aq (3.9)

it follows from (3.5)and (3.6) that x(θ) > 0 if and only if xB − θw > 0 and θ > 0.
Hence we obtain:

Theorem 3.2. If c̄q is negative and w in (3.9) is nonpositive, then the linear
programming problem (3.1) is unbounded; x(θ) is feasible for all θ > 0 and
z(x(θ)) → −∞ as θ →∞. In this case, d = ηq is a direction with cTd = c̄q < 0.

If w has a positive component, the largest step θ that we can take while still
keeping x(θ) > 0, and the basic variable, say xp, which first becomes zero as we
increase θ are determined by the so-called ‘minimum ratio test’

θ = x̄q = min
{

xi

wi
: wi > 0, 1 6 i 6 m

}
=

xp

wp
. (3.10)

We have use an overbar to indicate that x̄q is the value of the q-th variable at the
new vertex. All that remains to be done in a simplex iteration is to change the
basis, making the q-th variable basic and the p-th variable nonbasic. As far as the
basic matrix B is concerned, one of its columns, ap, is replaced by the column aq,
i.e.

B̄ = B + (aq − ap)eT
p .

From (3.5)–(3.10) it follows that

x̄q = xp/wp ,
x̄i = xi − wix̄q , i = 1, . . . , m .

Summarizing the above we obtain:

Theorem 3.3. If c̄q is negative and w in (3.9) has a positive component, then x̄
given above is another basic feasible solution with cTx̄ = cTx+θc̄q strictly less than
cTx if θ in (3.10) is positive, i.e., if the basic feasible solution x is nondegenerate.

3.2. The revised simplex method

We are now ready to formally state the simplex method in algorithmic form.

18 D. Goldfarb, M.J. Todd

Simplex method

(0) Let the basic feasible solution, xB , to the linear program (3.1), correspond-
ing to the basis matrix B = [aji , . . . , ajm], be given. Let B = {j1, . . . , jm} denote
the index set of basic variables; hence xji

denotes the i-th basic variable.
(1) Compute simplex multipliers by solving

BTπ = cB

for π, and compute the reduced costs

c̄j = cj − πTaj , for all j /∈ B.

(2) Check for optimality: If c̄j > 0, for all j /∈ B, stop; the current solution is
optimal.

(3) Determine the nonbasic variable xq to enter the basis; i.e., find a downhill
edge: Choose

q ∈ V ≡ {j /∈ B : c̄j < 0} .

(4) Check for unbounded ray: Compute w by solving

Bw = aq .

If w 6 0, stop; there is a feasible ray of solutions along which z → −∞.
(5) Determine the basic variable xjp to leave the basis: Compute

xjp

wp
= min

16i6m

{
xji

wi
: wi > 0

}
.

(6) Update the solution and the basis matrix B: Set

xq ← θ = xjp/wp ,

xji ← xji − θwi, 1 6 i 6 m,

B ← B + (aq − ajp)eT
p ,

B ← B ∪ {q} \ {jp} ,

jp ← q ,

and go to step (1).

The above form of the simplex method is usually referred to as the revised
simplex method.

II. Linear programming 19

3.3. Degeneracy and cycling

Although we assumed earlier that x nondegenerate, degeneracy does not usually
cause any real difficulty for the above algorithm. All that may happen is that
in step (5) xjp

= 0, which results in a step being taken without any actual
change in x. This occurs because the ‘edge direction’ ηq immediately runs into
the constraint xjp

> 0. Although x does not change the basis does. Because x
and hence, z, do not change it is theoretically possible for the simplex method to
‘cycle’ indefinitely through a sequence of bases and corresponding basic feasible
solutions, all associated with the same vertex. In practice this is not a problem
and there are pivot rules (i.e., rules for choosing the entering and leaving basic
variable) which prevent cycling. For example, if one always chooses the entering
and leaving basic variables when there is more than one candidate as the one with
the smallest subscript, then it can be shown that the simplex method terminates
in a finite number of iterations (Bland 1977). No matter what pivot rule is used,
if every pivot is nondegenerate—i.e., θ in step (6) is strictly positive—then z
decreases on each iteration; consequently, the simplex method must terminate in
a finite number of iterations since there are only a finite number of basic feasible
solutions to problem (3.1).

3.4. Implementations

For large m it is just not practicable to solve the m×m systems of equations
BTπ = cB and Bw = aq to compute π and w at each simplex step. In most
textbooks the simplex method is described by a set of procedures for manipulating
a tableau of the form (actually a column permutation of the form):

1 0 c̄T
N −z0

0 I B−1N B−1b
(3.11)

where c̄T
N = cT

N − cT
BB−1N and z0 = cT

BB−1b.
If T is the matrix of numbers in tableau (3.11) then this tableau actually

represents the system

T

−z
xB

xN

−1

 = 0

of m + 1 linear equations in n + 1 unknowns x and z.
To implement the tableau version of the simplex method one follows the simplex

algorithm presented above except that the computation of π and c̄N in step (1)
and w in step (4) are eliminated and step (6) is replaced by a ‘pivot operation’. If
we assume that the entering leaving basic variable on a simplex pivot step are q
and p, respectively, and that the rows and columns of the current tableau T given
by (3.11) are numbered starting from zero, this pivot operation

(i) divides the p-th row of the T by tp,q, the (p, q)-th element of T , and

20 D. Goldfarb, M.J. Todd

(ii) for 0 6 i 6 m, i 6= p, subtracts tiq times this new p-th row from row i to
zero out the element in column q of that row.

This operation maintains the form of (3.11) with respect to the new basis. More-
over, the reduced costs, c̄N , basic components of the edge direction ηq, −B−1aq,
and the vector of basic variables, B−1b, required by the simplex method are all
available directly from the tableau. The tableau version of the simplex method is
often referred to simply as the simplex method since it was the form in which the
method was originally described. Although this approach is acceptable for small
‘textbook’ problems, it is not suitable for solving the large and typically sparse
problems that arise in practice. This is because pivoting in the tableau usually
destroys any sparsity that is present in A, and hence in the ‘initial’ tableau

1 cT
B cT

N 0

0 B N b

Furthermore, it generates all columns of B−1N on each iteration when only
B−1aj is needed.

In the revised simplex method given in the previous section only the information
required on each iteration is generated directly from the original data. The initial
implementations of the revised simplex method maintained an ‘explicit inverse’,
B−1, of the basis matrix, updating it after each pivot (i.e., basis change). The
required update can be expressed as

B̄−1 = EB−1

where

E = I− (w − ep)eT
p

wp
=

1 −w1/wp

. . .
...

1 −wp−1/wp

1/wp

−wp+1/wp 1
...

. . .
−wm/wp 1

↑
column p

(3.12)

and w = B−1aq.
This follows from the fact that

B̄ = BE−1 ,

II. Linear programming 21

where

E−1 =

1 w1

. . .
...

1 wp−1

wp

wp+1 1
...

. . .
wm 1

is the inverse of the matrix E in (3.12). Notice that postmultiplication of B by
E−1 leaves all columns of B unchanged except for the p-th, which is transformed
into Bw = aq, as required.

Since B itself can be formed by replacing the columns of I, one at a time, by
the appropriate columns of B, it follows that we can express any inverse basis
matrix in product form as

B−1 = EkEk−1 · · ·E1 (3.13)

where each Ei has the form (3.12). Clearly only the column of Ei that differs
from a column of the identity matrix, and its place in Ei, need to be stored.
Every now and then it is also advisable to refactorize B−1 to reduce a very long
string of elementary elimination matrices, Ei, to one of only m matrices. This
saves computational time on subsequent iterations, saves storage, and reduces the
effects of roundoff errors.

When B is refactorized it is usually worthwhile to permute its rows and columns
so that the resulting factorization is as sparse as possible. Several schemes for
doing this have been proposed, the most popular of these being the ‘preassigned
pivot procedures’ P3 and P4 of Hellerman and Rarick (1971,1972) and those which
use the Markowitz criterion (see Section 9). The procedures P3 and P4 permute B
into a block lower triangular matrix with nonzeros above the diagonal confined to
a relatively small number of spikes within each diagonal block when B is sparse.
The advantage of doing this is that when Gauss-Jordan elimination is applied to
B to produce the product form representation (3.13) or the LU factors of B (see
below), fill-in occurs only in spike columns.

Recently, the product form representation for B−1 has been replaced in large-
scale linear programming codes by a numerically stable LU factorization of B. In
this approach L−1 is stored as a sequence of elementary elimination matrices which
differ from the identity by just one nonzero below the diagonal, and permutation
matrices (for numerical stability). U is stored as a permuted upper triangular
matrix. Bartels and Golub (1969) first showed how such a factorization could be
efficiently and stably updated when a column of B was replaced by a new column.
Variants of their algorithm and the product form algorithm which take advantage
of sparsity, make it practicable today to solve truly large linear programming
problems. (For example, see (Forrest and Tomlin 1972), (Saunders 1976) and
(Reid 1982).)

22 D. Goldfarb, M.J. Todd

3.5. Artificial variables and Phase I

One nice feature of the simplex method is that it can be used to find a basic
feasible solution to problem (3.1). The application of the simplex method to this
feasibility problem is called phase I, while its application to finding the optimal
solution to (3.1) is called phase II. The feasibility problem for (3.1) can be defined
as the (artificial) minimization problem

Minimize
m∑

i=1

yi

subject to Ax + y = b (b > 0) ,
x > 0 , y > 0 .

As this problem has the obvious basic feasible solution x = 0, y = b, with basis
I, the simplex method can be immediately applied to it. The yi, i = 1, . . . ,m,
are called artificial variables and the purpose of the above minimization problem
is to drive them to zero. If the original problem has a feasible solution, then
this will be possible. In such a case the simplex method will terminate with a
basic feasible solution with all yi = 0. If this solution is degenerate, any artificial
variables remaining in the basis can be either exchanged for nonbasic x variables
or eliminated along with redundant equations so that a basic feasible solution
involving only x variables is available for the start of phase II. Specifically, if yi = 0
is the k-th basic variable and eT

k B−1aj 6= 0, yi can be replaced by the nonbasic
variable xj . If eT

k B−1aj = 0 for all j /∈ B, the original system of equations Ax = b
is redundant, and the k-th row and column can be removed from B and the k-th
row eliminated from A. If the original problem has no feasible solutions, then
phase I will terminate with a positive artificial objective function value.

Another approach is to combine phases I and II into one phase by minimizing
the objective function

z =
n∑

j=1

cjxj + M

m∑

i=1

yi

where M is chosen so large that eventually all of the artificial variables will be
driven to zero if the original problem has a feasible solution.

4. Duality and sensitivity analysis

In this section we introduce the very important and powerful concept of duality.
In particular we show that every linear program has associated with it another
linear program called the dual that is intimately related to optimality conditions
for the original problem. We provide an economic interpretation for the variables
of the dual and give several illustrations of how the entire dual problem can be
interpreted. We also develop a variant of the simplex method known as the dual
simplex method and discuss how to deal with changes that are made to a linear
program after it has been solved.

II. Linear programming 23

4.1. Duality and optimality

If a basic feasible solution x is nondegenerate then the conditions given in
Theorem 3.1 (i.e., all c̄j > 0) for x to be an optimal solution are both necessary
and sufficient, as mentioned below the statement of that theorem. This follows
from the fact that the simplex method can be used in this case to compute another
basic feasible solution with a lower value of z if and only if some relative cost c̄j is
< 0. When x is a nondegenerate basic feasible solution, we can also state necessary
and sufficient conditions for x to be optimal in a different way.

Theorem 4.1. The basic nondegenerate feasible solution

x =
[

xB

xN

]
=

[
B−1b

0

]
(4.1)

to the linear programming problem

minimize z = cTx
subject to Ax = b , x > 0 ,

(4.2)

is optimal if, and only if,

cT = (yT, w̄T)
[

B N
0 I

]
, (4.3)

where w̄ > 0.

Proof. Recall that the rows of

M =
[

B N
0 I

]

are linearly independent. Hence they form a basis for Rn implying that there is
a unique vector (yT, w̄T) that satisfies (4.3). To complete the proof we need only
observe that w̄ is the vector of nonbasic reduced costs, c̄N , since from (4.3) we
have

(
yT, w̄T

)
= cTM−1 = (cT

B , cT
N)

[
B−1 −B−1N

0 I

]

=
(
cT
BB−1, cT

N − cT
BB−1N

)
.

Note that y is the vector of simplex multipliers π computed by the revised simplex
method at optimality, and that the ‘if’ part of this theorem is true even if the
basic feasible solution (4.1) is degenerate.

Geometrically, this theorem states that at an optimal nondegenerate vertex x,
the gradient of the objective function can be expressed as a linear combination of
the normals to all equality constraints plus a nonnegative linear combination of
the inward normals to all nonnegativity constraints satisfied as equalities at x.

24 D. Goldfarb, M.J. Todd

Let us now consider a linear programming problem which is related in very
important ways to the linear program (4.2):

maximize v = bTy
subject to ATy 6 c .

(4.4)

This problem is called the dual of problem (4.2), which is now referred to as the
primal. Note that the dual problem makes use of the same data, A, b, and c, as the
primal, and that the dual is, in a sense, a transposed version of the primal, with
minimization replaced by maximization. Further, by putting (4.4) into standard
form using the techniques of Section 1.2, we can easily prove the following.

Lemma 4.1. The dual of the problem (4.4) is the primal problem (4.2).

We now show that the dual problem (4.4) arises quite naturally from the opti-
mality conditions of Theorem 4.1. Observe that these conditions can be written
as cT = yTA + wT, where wT ≡ (0, w̄T) > 0. Relaxing the requirement that the
first m components of w equal zero yields

ATy + w = c , w > 0 , (4.5)

which are just the constraints of the dual problem (4.4) put into equality form by
the introduction of nonnegative slack variables w > 0. Moreover we have:

Lemma 4.2 (Weak duality). If x is primal feasible and y is dual feasible, then
bTy 6 cTx.

Proof. Since Ax = b, yTAx = yTb for any y ∈ Rm, and since ATy 6 c and x > 0,
yTAx 6 cTx. Combining these results concludes the proof.

This lemma states that the objective value corresponding to a primal (dual)
feasible solution provides an upper (a lower) bound for the objective value for
any feasible solution including an optimal solution for the other problem. An
immediate consequence of this lemma is:

Corollary 4.1. If x is primal feasible and y is dual feasible and cTx = bTy, then
x and y are optimal solutions.

But are there feasible solutions x and y that satisfy the hypotheses of this
corollary? The answer to this question is provided by:

Theorem 4.2 (Duality theorem of linear programming). (a) If either the
primal problem or the dual problem has a finite optimal solution, then so does the
other and min cTx = max bTy.

(b) If either problem has an unbounded objective function value then the other
has no feasible solution.

II. Linear programming 25

Proof. Because of Lemma 4.1 and Corollary 4.1, to prove part (a) we need only
exhibit a (finite) primal optimal solution x and a dual feasible solution y that
satisfy cTx = bTy. Let x be an optimal basic feasible solution, say (4.1), obtained
by the simplex method and let y be the corresponding vector of simplex multipliers
π = B−1cB . Now y is dual feasible, since

c−ATy =
[

cB

cN

]
−

[
BT

NT

]
π =

[
0

c̄N

]
> 0

and

cTx = cT
BB−1b = yTb ,

which concludes the proof of part (a).
Part (b) of the theorem follows directly from weak duality (Lemma 4.2).

The proof shows that the vector of simplex multipliers corresponding to the
primal optimal solution x is a dual optimal solution y. Indeed, at any iteration of
the simplex method, the simplex multipliers form a vector y with cTx = bTy, but
unless all reduced costs are nonnegative, y is not dual feasible. So the algorithm
maintains primal feasibility and cTx = bTy, while trying to attain dual feasibility.

We note that the converse of part (b) is not necessarily true. That is, if either
the primal or dual is infeasible then it does not follow that the other problem is
unbounded; both can be infeasible.

The following well-known and useful alternative theorem for systems of equal-
ities and inequalities is easily derived from part (b) of the Duality theorem.

Theorem 4.3 (Farkas’ Lemma). The system

(I) Ax = b , x > 0 ,

is unsolvable if and only if the system

(II) yTA 6 0, bTy > 0,

is solvable.

Proof. Consider the primal-dual pair of linear programs

(P) minimize 0Tx (D) maximize bTy
subject to Ax = b , subject to yTA 6 0 .

x > 0 ,

Since (D) is feasible (y = 0 is a solution), it follows from Theorem 4.2 that (P) is
infeasible, or equivalently, (I) is unsolvable, if and only if (D) is unbounded. But
clearly (D) is unbounded if and only if (II) is solvable, completing the proof.

Farkas’ Lemma (1902) predates the development of linear programming and
is often used to prove the Duality theorem rather than the other way round.

26 D. Goldfarb, M.J. Todd

Geometrically it states that exactly one of the following is true: (I) b is in the
convex cone C generated by the columns of A; or (II) there is a vector y that
makes an acute angle with b but not with any vector in C.

Before presenting other consequences of the Duality theorem, we note that
corresponding to any linear program, there is a dual linear program, and that
the Weak duality lemma, its corollary, and the Duality theorem apply to such
primal-dual pairs. For example, the linear programs

(P) minimize cTx (D) maximize bTy
subject to Ax > b , subject to ATy 6 c ,

x > 0 , y > 0 ,
(4.6)

are a primal-dual pair. The dual (D) in (4.6) above can be derived by first con-
verting (P) into standard form, then writing down the latter problem’s dual and
simplifying. The above primal-dual pair is often referred to when discussing dual-
ity, since the pair is nicely ‘symmetric’, in that both problems involve inequalities,
in nonnegative variables with the inequalities being ‘>’ in the minimization prob-
lem and ‘6’ in the maximization problem. We now state two more theorems that
characterize the optimal solutions of this primal-dual pair of problems.

Theorem 4.4 (Complementary slackness). Let x and y be primal and dual
feasible solutions, respectively, of the primal-dual pair (4.6). Necessary and suf-
ficient conditions that they be optimal solutions for their respective problems are

(cT − yTA)x = 0 (4.7)

and

yT(Ax− b) = 0 . (4.8)

Proof. For primal feasible x and dual feasible y we have

s ≡ Ax− b > 0, x > 0, and wT ≡ cT − yTA > 0, y > 0 , (4.9)

and hence

cTx > yTAx > yTb . (4.10)

If the conditions (4.7) and (4.8) hold then equality holds throughout (4.10), and
the optimality of x and y follows from Corollary 4.1. Conversely, by the Duality
theorem if x and y are optimal then cTx = yTb, which implies that equality holds
throughout (4.10) and hence that conditions (4.7) and (4.8) are satisfied.

For the primal-dual pair of linear programs (4.2) and (4.4) only condition (4.7)
is meaningful, as (4.8) is true for all primal feasible x. Because of the nonnegativity
of the primal and dual variables x and y and slack vectors s and w (see (4.9))
conditions (4.7) and (4.8) can be stated in the following more useful form.

II. Linear programming 27

Complementary slackness conditions

wj ≡ (c−ATy)j = 0 or xj = 0 , for all j = 1, . . . , n ,
si ≡ (Ax− b)i = 0 or yi = 0 , for all i = 1, . . . ,m .

(4.11)

Using these conditions Theorem 4.4 states that feasible solutions to the primal
and dual problems (4.6) are optimal if and only if (i) a variable is zero in one of the
problems whenever the corresponding slack variable is strictly positive (i.e., the
corresponding inequality constraint is strictly satisfied) in the other problem, and
(ii) a slack variable is zero (i.e., the corresponding inequality constraint is satisfied
as an equality) in one of the problems whenever the corresponding variable is
positive in the other problem.

The so-called Kuhn-Tucker necessary conditions (Kuhn and Tucker 1951) (de-
veloped independently by Karush (1939) and John (1948)) for a solution to be
optimal to a nonlinear programming problem are easily derived from Theorem 4.4
for the special case of linear programming. Here they are also sufficient conditions.
We state them now for the standard form linear program (4.2).

Theorem 4.5 (Kuhn-Tucker conditions). x is an optimal solution to the lin-
ear program (4.2) if and only if there exist vectors y and w such that

(i) Ax = b, x > 0,
(ii) ATy + w = c, w > 0, and
(iii) wTx = 0.

A proof based upon Theorem 4.4 is obvious since condition (i) is primal feasi-
bility, (ii) is dual feasibility, and (iii) is complementary slackness. The standard
development of the Kuhn-Tucker conditions for nonlinear programs extends the
use of the so-called Lagrangian function of classical equality-constrained nonlin-
ear optimization to the inequality constrained case. In the case of Theorem 4.5
the dual variables y are classical Lagrange multipliers. The dual slacks w are also
Lagrange multipliers; however they are not classical as they correspond to inequal-
ity constraints and consequently are restricted to be nonnegative. Moreover, the
complementary slackness condition (iii) in Theorem 4.5 requires those multipliers
that correspond to inactive constraints (inequalities satisfied strictly) to be zero,
which makes sense since inactive constraints should not play any part is deciding
the optimality of a point.

4.2. Economic interpretation of duality

In the previous section we showed that the dual of a linear program arises
naturally from the optimality conditions for the primal problem. In this section
we shall show that, typically, if the primal problem has an economic interpretation,
so does its dual and the optimal values of the dual variables can be interpreted
as prices.

To demonstrate the latter, suppose that

x∗ =
(

x∗B
0

)
=

(
B−1b

0

)

28 D. Goldfarb, M.J. Todd

is a nondegenerate optimal basic feasible solution to the standard form linear
program (4.2). Since, by assumption x∗B > 0, making a small change ∆b to b will
not cause the optimal basis B to change. Hence, if b is replaced by b + ∆b, the
new optimal solution becomes

x̂∗ =
(

x̂∗B
0

)
=

[
B−1 (b + ∆b)

0

]

and the optimal value of the objective function changes by

∆z = cT
BB−1∆b = π∗T∆b,

where π∗ = B−TcB is the vector of simplex multipliers for the primal problem
(4.2) at optimality. As shown in the proof of Theorem 4.2, π∗ is the optimal
solution to the dual problem (4.4). Clearly, π∗i can be viewed as the marginal
price (or value) of the i-th resource (i.e., right hand side bi) in (4.2), since it gives
the change in the optimal objective value per unit increase in that resource. This
economic interpretation can be very useful since it indicates the maximum amount
that one should be willing to pay to increase the amount of the i-th resource. Note
that the complementary slackness conditions (4.11) imply that the marginal price
for a resource is zero if that resource is not fully utilized at optimality. Other
names for these ‘prices at optimality’ are shadow prices and equilibrium prices.

These shadow or marginal prices are also useful in determining whether or
not to engage in a new activity. For example in the diet problem of Section 1.1
suppose that a previously unavailable food can be purchased. Having obtained
a minimal cost diet without this food, should we consider adding it to our diet?
To answer this question let the amount of nutrient i provided by the new food
be aik and let the unit cost of the food be ck. Since the optimal value yi, of
the i-th dual variable can be interpreted as the marginal price of a unit of the
i-th nutrient, the nutrients provided by the new food have a value of

∑m
i=1 yiaik.

Consequently if ck is less than this value, the new food is worth purchasing and
should be considered for inclusion in the optimal diet (y is not feasible in the
new constraint); otherwise, the current optimal diet remains optimal (y remains
feasible). In the former case, if the simplex method is invoked to reoptimize, the
activity of purchasing the new food is immediately selected to enter the basis.
The above operation corresponds to the computation of the reduced cost of an
activity in the revised simplex method. The economic interpretation given above
accounts for the terminology ‘pricing-out’ used to describe the operation.

Let us consider the first two linear programming examples presented in Sec-
tion 1.1. We now show that their duals can be given economic interpretations.

Example 1 (The transportation problem). The dual of the transportation prob-
lem is:

maximize
m∑

i=1

aiui +
n∑

j=1

bjvj (4.12)

subject to ui + vj 6 cij , i = 1, . . . ,m; j = 1, . . . , n . (4.13)

II. Linear programming 29

According to the discussion above, the dual variables ui and vj correspond to the
marginal value of increasing the supply at the i-th origin and increasing the de-
mand at the j-th destination by one unit, respectively. This interpretation makes
sense from the point of view of the company that is trying to determine an op-
timal shipping schedule. An interpretation which gives economic meaning to the
dual problem, and not just the variables of that problem, is the following:

Suppose that a ‘shipping’ company proposes to the producer (i.e., the company
facing the primal problem) to remove a unit of product from origin i for a price
of ui per unit and to deliver a unit of product at destination j for a price of vj

per unit. By imposing the inequality constraints (4.13) of the dual, the shipping
company ensures that its prices are ‘competitive’ since the producer will always do
better to have its product removed and delivered by the shipping company than
to ship it directly. Assuming that the amounts, ai and bj , of a product available
at origin i and required at destination j, respectively, are known to the shipping
company, its problem is to set the prices u1, . . . , um and v1, . . . , vn so as to satisfy
(4.13) and maximize its total return (4.12).

Because of the Duality theorem, the producer will not save money by using the
shipping company instead of shipping directly. However, by having someone else
formulate and solve the dual problem, the producer is saved the task of solving
the primal problem.

Example 2 (The diet problem). The diet problem has the form of the primal (P)
in (4.6). Consequently, its dual has the form of the dual (D) in (4.6). As in the
transportation problem let us interpret the dual of the diet problem as one which
is faced by a competitor of the solver of the primal problem. Let this competitor
be a pill salesman who sells pure nutrient pills—e.g., pills containing only iron, or
only protein. In order to sell such pills to the dietician of the primal problem, this
salesman must price these pills competitively. This requires that the nonnegative
prices y1, . . . , ym satisfy

m∑

i=1

yiaij 6 cj , j = 1, . . . , n .

Recall that aij is the amount of nutrient i provided by a unit of food j and cj is
the unit cost of food j. Since the minimum daily requirement of nutrient i is bi,
the pill salesman will attempt to maximize

∑m
i=1 biyi; i.e., solve the dual problem

(D) in (4.6).
The dual of the product mix problem (Example 3 in Section 1.1) can also be

given an economic interpretation as an optimization problem faced by a competi-
tor of the manufacturer that wishes to solve the primal problem. For this and
other examples of the use of linear programming, and duality theory in partic-
ular, in economic analysis, the reader is referred to (Gale 1960) and (Dorfman,
Samuelson, and Solow 1958).

4.3. The dual simplex algorithm

Suppose that one has an infeasible basic solution to a linear programming prob-
lem which prices out optimally; i.e., whose simplex multipliers are dual feasible.

30 D. Goldfarb, M.J. Todd

Such a situation arises, for example, when an inequality constraint is added to a
linear programming problem after that problem has already been solved. If the
new inequality is satisfied by the current optimal solution, nothing needs to be
done. If the inequality is not satisfied, it can be converted to an equality by the
addition of a nonnegative slack variable and added to the constraints of the linear
program. Clearly, the optimal basis for the original problem and the new slack
variable provide a basis for the expanded problem. This basis prices out opti-
mally but is infeasible because the value of the new basic slack variable equals
the negative of the amount by which the current solution fails to satisfy the new
inequality.

The dual simplex method (Lemke 1954; Beale 1954) is designed to deal with
just such a situation. As in the (primal) simplex method, the method proceeds
from basic solution to neighboring basic solution. However, instead of maintaining
primal feasibility at each step, dual feasibility is maintained. When a dual feasible
basis is obtained that is also primal feasible, the algorithm terminates with the
optimal solution of the linear program. In this section, we will abuse nomenclature
somewhat by calling a basic (not necessarily feasible) solution of (4.2) ‘optimal’
if its basis is dual feasible.

To derive the method, let us assume that we are solving the linear program
(4.2), and that the current basis consists of the first m variables. Hence, xB =
B−1b, πT = cT

BB, and c̄T
N = cT

N−πTN > 0. If xB � 0, the point xT = (xT
B , 0) cor-

responds to an optimal but infeasible vertex of the polyhedron of feasible solutions
of (4.2); i.e., x would be an optimal vertex if we could ignore the nonnegativity
constraints to the basic variables that are negative in the current solution.

Suppose that xp < 0. Clearly, it makes sense to move to a neighboring basic
solution (feasible or infeasible vertex) that has xp = 0, by replacing xp in the basis
by a nonbasic variable xq. The selection of xq is governed by the requirement that
dual feasibility be maintained. To determine which of the n − m neighboring
vertices of the current vertex are optimal (i.e., dual feasible) we shall make use of
the following:

Lemma 4.3 (Sherman-Morrison-Woodbury modification formula). (a)
If M is an n × n nonsingular matrix and u and v are any two vectors in Rn

then M + uvT is nonsingular if and only if w ≡ 1 + vTM−1u 6= 0.
(b) Moreover, in this case, (M + uvT)−1 = M−1 − (1/w)M−1uvTM−1.

Proof. Since M + uvT = (I + uvTM−1)M , (a) follows from the fact that I +
uvTM−1 has n − 1 eigenvalues equal to one and one eigenvalue equal to 1 +
vTM−1u. The updating formula (b) is easily verified by multiplication by M+uvT.

From the proof of Theorem 4.1, we see that the simplex multipliers and nonbasic
reduced costs can be computed as

(πT, c̄T
N) = cTM−1,

II. Linear programming 31

where M is the matrix of active constraint normals (3.3), and M−1 is given by
(3.4). If on a simplex pivot the p-th basic variable (i.e., xp) is replaced by xq, this
is equivalent to replacing the q-th row of M (currently eT

q) by eT
p ; i.e., M becomes

M̄ = M + eq(ep− eq)T. Now using Lemma 4.3 and the fact that eT
q M−1 = eT

q we
have that

M̄−1 = M−1 − M−1eq

(
eT
p M−1 − eT

q

)

eT
p M−1eq

.

Premultiplying both sides of this expression by cT we obtain the following formulas
for computing the updated simplex multipliers π̄ and reduced costs ¯̄cN :

π̄ = π + γu ,

¯̄cj = c̄j − γαj , j > m , j 6= q ,

and

¯̄cp = −γ ,

where

uT = eT
p B−1 , αj = uTaj , and γ = c̄q/αq .

Note that uT is the p-th row of B−1 and αq is the so-called pivot element wp in the
primal simplex algorithm presented in Section 3. It follows from the recurrence
relations for the reduced costs, that in order for ¯̄c, the reduced cost vector at the
new basic solution, to be nonnegative we must choose q so that

0 6 −γ = −c̄q/αq 6 −c̄j/αj , for all αj < 0, j > m .

If αj > 0 for all nonbasic j, then uTA is a nonnegative vector; hence uTAx = uTb
cannot have a nonnegative solution since uTb = xp < 0. This implies that the
linear program (4.2) is infeasible. We can now give a ‘revised’ version of the dual
simplex method.

Dual simplex method

(0) Let the dual feasible basic solution xB to the linear program (4.2), corre-
sponding to the basis matrix B = [aj1 , . . . , ajm], be given. Let B = {j1, . . . , jm}
denote the index set of basic variables. Compute an initial vector of feasible dual
variables (simplex multipliers) by solving BTπ = cB , and compute c̄j = cj−πTaj ,
for all j /∈ B.

(1) Check for primal feasibility: If xB > 0, STOP; the current solution is
feasible, and hence, optimal. Otherwise, continue.

(2) Determine the basic variable xjp to leave the basis: Choose

jp ∈ V ≡ {ji ∈ B : xji < 0} .

(3) Check for infeasibility: Compute u by solving BTu = ep for u and compute
αj = uTaj , for all j /∈ B. If αj > 0 for all j /∈ B, STOP; the problem is infeasible.

32 D. Goldfarb, M.J. Todd

(4) Determine the nonbasic variable xq to enter the basis: Choose

−c̄q/αq = min {−c̄j/αj : αj < 0, j /∈ B} = −γ .

(5) Update the reduced costs: Set

c̄j ← c̄j − γαj , j /∈ B , j 6= q ,

c̄jp
← −γ .

(6) Update the solution and the basis matrix B: Compute w by solving

Bw = aq .

Set

xq ← θ = xjp
/αq ,

xji ← xji − θwi , for 1 6 i 6 m, i 6= p

B ← B + (aq − ajp)eT
p ,

B ← B ∪ {q} \ {jp} ,

jp ← q ,

and go to step (1).

By updating the reduced costs at each iteration, the above version of the dual
simplex method requires essentially the same amount of work per iteration as a
similarly implemented revised version of the primal simplex method. The principal
effort in both cases comes from one B−1 and one B−T operation, the computation
of inner products of a vector with all nonbasic columns of A, and the updating of
the representation of B−1. If we update π instead of c̄N , additional inner products
are required to compute c̄j for all j /∈ B such that αj < 0. We can also compute π
directly at each iteration but this requires an extra B−T operation. One practical
disadvantage of the dual simplex method is that all of the n−m inner products
αj = uTaj , j /∈ B, must be performed, while in the primal method, one need
only compute inner products πTaj until some specified number of columns price
out negatively or all columns have been priced out. This strategy is called partial
pricing and is commonly used in practice.

Solving the linear program (4.2) by the dual simplex method is mathematically
equivalent to solving the dual of that problem by the primal simplex method.
This is not surprising since both approaches generate basic feasible solutions to
the dual problem and maintain complementary slackness. Applying the simplex
method directly to the dual involves working with an n × n basis matrix B̂, in
contrast with the m×m basis matrix B used by the dual simplex method. This
seems to indicate that the methods are different. However, it is easy to see that
B̂ equals MT, where M is the matrix (3.3). For simplicity we are assuming that
we are using a variant of the primal simplex method that keeps all free variables
in the basis at every iteration. Because of the special form of M and M−1 (see

II. Linear programming 33

(3.4)), we only need a representation of B−1 to implement this method, and it is
easily verified that such an implementation is essentially equivalent to the dual
simplex method. This corresponds to a ‘compact inverse’ implementation of the
simplex method as described in Section 5 using the ‘working basis’ B.

Before ending our discussion of the dual simplex method we should point out
that it is extensively used in solving integer and mixed integer linear programs
using either branch-and-bound or cutting-plane approaches. (See Chapter 6.)

4.4. Sensitivity analysis

In the previous two sections we showed how to obtain the optimal solution of a
linear program after the addition of new activities and new constraints, given the
optimal solution of the original problem, without resolving the resulting modified
problems from scratch. We also explained, in Section 4.2, that the optimal simplex
multipliers (i.e., dual variables) give the changes in the optimal objective value
for small changes in the right hand sides of the constraints, in the case of a
nondegenerate optimal basic feasible solution.

We shall now investigate how more general changes in the right hand sides or
in the objective function coefficients effect a previously obtained optimal solution.
Such studies are referred to as sensitivity or post-optimality analyses.

Let us first consider changes in the objective function. In particular, consider
the one-parameter family of linear programs

minimize z(θ) = (c + θd)Tx
subject to Ax = b, x > 0 .

(4.14)

Suppose that we have an optimal basic feasible solution for θ = θ0, and we
wish to determine the interval θ 6 θ 6 θ̄ for the parameter θ for which the
current basis remains optimal. Let this basis be B and let c and d be partitioned
into basic and nonbasic parts cB , dB and cN and dN , respectively. B will be
optimal as long as the nonbasic reduced costs remain nonnegative; i.e., (cN +
θdN)T− (cB + θdB)TB−1N > 0. Defining reduced costs c̄T

N = cT
N − cT

BB−1N and
d̄T

N = dT
N − dT

BB−1N , in terms of c and d alone, the above condition becomes
θd̄T

N > −c̄T
N . Consequently, the range is

θ = max{max{−c̄j/d̄j : d̄j > 0, j /∈ B}, −∞} 6 θ

6 min{min{−c̄j/d̄j : d̄j < 0, j /∈ B}, ∞} = θ̄ . (4.15)

And, for θ 6 θ 6 θ̄, the optimal objective value is a linear function of θ; i.e.,

z∗(θ) = (cT
B + θdT

B)B−1b = z∗(θ0) + (θ − θ0)dT
BxB .

If θ0 = 0 and we choose d = ej , then [cj + θ, cj + θ̄] gives the range for the j-th
cost coefficient for which the optimal solution, corresponding to θ = 0, remains
optimal as long as all other problem data remain fixed.

The optimal solution of the parametric linear program (4.14) can be determined
for all values of the parameter θ. Given a range [θ, θ̄] of θ for a particular optimal
basic feasible solution, either there is a neighboring basic feasible solution that is

34 D. Goldfarb, M.J. Todd

optimal for values of θ in an interval [θ, θ], with −∞ < θ, or z∗(θ) is unbounded
below for all θ in (−∞, θ). This new solution and basis is obtained by performing
a simplex pivot which introduces into the basis the variable xj that yields θ =
−c̄j/d̄j ; in (4.15), and θ is determined using the new basis. If an unbounded ray
is detected while trying to execute a simplex pivot, z∗(θ) is unbounded below
for all θ < θ. An analogous procedure gives a neighboring optimal basic feasible
solution, if one exists, and range [θ̄, ¯̄θ] for θ > θ̄.

As in the simplex method, degenerate pivots can occur; however, the number
of nontrivial ranges is clearly finite, and it can be easily shown that z∗(θ) is a
piecewise linear and concave function of θ. Although the number of ranges can
be as large as 2n in pathological cases (Murty 1980), the probabilistic analysis of
variants of the simplex method based upon solving (4.14) has yielded bounds on
the expected number of iterations which are quadratic in the problem size (see
Section 7).

Consider now the right hand side parametric linear program

minimize z(θ) = cTx
subject to Ax = b + θd , x > 0 .

If B is an optimal basis for some value of θ = θ0, then the interval [θ, θ̄] for which
this basis remains feasible, and hence yields an optimal solution xT = (xT

B , xT
N) =

(b̄T + θd̄T, 0) where b̄ = B−1b and d̄ = B−1d, is clearly given by

θ = max{ max
16i6m

{−b̄i/d̄i : d̄i > 0}, −∞} 6 θ

6 min{ min
16i6m

{−b̄i/d̄i : d̄i < 0}, ∞} = θ̄ .

In this interval, although the optimal primal solution varies linearly with θ, the
basis and optimal dual solution remain fixed. Neighboring bases and ranges are
determined by dual simplex pivots if infeasibility is not detected in contrast with
the case of cost function parametrics, which involves primal simplex pivots or the
detection of unboundedness.

5.2. Network problems

Here we will outline how the simplex method can be efficiently implemented
when the problem is to find a minimum cost network flow subject to capacity and
flow conservation constraints.

Let G = (V, E) be a directed graph. Thus V is a finite set of nodes, and E a
finite set of ordered pairs of distinct nodes called arcs. If e = (i, j) ∈ E, we say e
joins its tail i = t(e) to its head j = h(e). A path P is an alternating sequence
(i0, e1, i1, . . . , el, il) of distinct nodes and distinct arcs with ek = (ik−1, ik) (a
forward arc) or ek = (ik, ik−1) (a reverse arc) for 1 6 k 6 l. It is from i0 to il,
and of length l. A sequence satisfying all these requirements except that i0 = il,
is a cycle. A graph is connected if there is a path from any node to any other
node, and acyclic if it contains no cycle. A graph H = (W,F) is a subgraph of G
if W ⊆ V and F ⊆ E; it is a spanning subgraph if W = V .

II. Linear programming 35

Suppose G = (V,E) is a connected directed graph, b̂ = (bi)i∈V is a vector of
net supplies satisfying

∑
i∈V bi = 0, and c = (ce)e∈E is a vector of costs. Then

the transshipment problem

(P) minimize
∑

e∈E

cexe

subject to
∑

e:t(e)=i

xe −
∑

e:h(e)=i

xe = bi , i ∈ V,

xe > 0 , e ∈ E ,

is that of shipping a good at minimum cost to satisfy given demands (at nodes
i with bi < 0) from given supplies (at nodes i with bi > 0). The minimum cost
network flow problem adds upper bounds (capacities) on the flows xe, but since
such problems can be solved by easy extensions of methods for transshipment
problems (corresponding to extensions of the simplex method for handling upper
bounds), we will keep the discussion simple by ignoring capacities.

Let us denote by Â the node-arc incidence matrix of G. Thus Â has a row for
each node and a column for each arc with

âie =

+1 if t(e) = i ,
−1 if h(e) = i ,

0 otherwise.

Then we can write (P) as

minimize cTx

subject to Âx = b̂ ,
x > 0 .

The reason for the carets is that this representation violates our usual assumption
that the constraint matrix has full row rank. Indeed it is clear that each column
contains one +1 and one −1 so that the sum of the rows of Â is the zero vector.
(This is why we required that the sum of the components of b̂ be zero, i.e. that
the total net supply be zero.) We shall now show that omitting any row from Â

and b̂ remedies this difficulty.
Let r be an arbitrary node of G, which we call the root. Let A and b be Â and

b̂ with the row corresponding to r deleted; then (P) is equivalent to the standard
form problem

minimize cTx
subject to Ax = b ,

x > 0 .

We will show that A has rank n − 1, where n = |V |. At the same time we will
characterize the bases or nonsingular submatrices of A of order n− 1. We require
the notion of a spanning tree.

36 D. Goldfarb, M.J. Todd

Lemma 5.2. Let H = (V, F) be a subgraph of the connected directed graph G =
(V, E) where |V | = n.Then the following are equivalent:

(i) |F | = n− 1 and H is connected;
(ii) |F | = n− 1 and H is acyclic;
(iii) H is connected and acyclic;
(iv) H is minimally connected—the removal of any arc disconnects it; and
(v) H is maximally acyclic—the addition of any arc creates a cycle.

We omit the proof of this standard result in graph theory. If any of these
equivalent conditions hold, we say H (or just F) is a spanning tree of G, and we
will often omit the adjective spanning.

We can now prove:

Theorem 5.1. Let G = (V, E) be a connected directed graph with |V | = n, let Â
be its node-arc incidence matrix, let r ∈ V be arbitrary, and let A be Â with the
row indexed by r deleted. Then A has full row rank n − 1, and if B is a square
submatrix of A of order n− 1, then B is nonsingular iff its columns are indexed
by the arcs of a spanning tree of G.

Proof. We first note that any connected graph has a spanning tree by
Lemma 5.2(iv): just keep removing arcs until the resulting subgraph is minimally
connected.

Next we show that the columns of A indexing the arcs of a cycle of G arc linearly
dependent. Indeed, if P (Q) indexes the forward (reverse) arcs of the cycle, then
it is easy to see that

∑

e∈P

ae −
∑

e∈Q

ae = 0 .

It therefore suffices to show that any submatrix B of A whose columns index
the arcs of a spanning tree is nonsingular. This follows from:

Lemma 5.3. Let H = (V, F) be a spanning tree of G, and let B be the corre-
sponding submatrix of A. Then there is an ordering of the rows and columns of
B that makes it upper triangular with nonzero diagonal entries.

Proof. By induction on n. For n = 1, B is the null matrix of order 0, which
trivially satisfies the conclusions. (If the reader objects to null matrices, the case
n = 2 is just as easy: B is the 1×1 matrix whose entry is ±1.) Suppose the lemma
is true for n < k, and consider the case n = k. Since 2n − 2 = 2|F | equals the
sum of the degrees of the nodes in H (i.e., the sum over i ∈ V of the number of
arcs e of H with h(e) or t(e) equal to i), and each node has degree at least 1 (H
is connected), we deduce that there are at least two nodes of degree 1 (these are
called leaves). Pick a leaf i ∈ V other than r and let e ∈ F be its incident arc.
Consider the graph H ′ = (V \ {i}, F \ {e}). By Lemma 5.2(ii) it is a spanning
tree of G′ = (V \ {i}, E \ {e}), and by the inductive hypothesis we can therefore
order the nodes and arcs of H ′ so that the corresponding matrix, B′, is upper

II. Linear programming 37

triangular with nonzero diagonal entries. Now add node i as the last row and arc
e as the last column, to find

B =
(

B′ u
0 ±1

)

for some vector u. Hence B has been ordered to have the desired form, proving
the inductive step.

Lemma 5.3 shows that every submatrix of A of order n − 1 has determinant
0, +1, or −1 (since the determinant of a triangular matrix is the product of its
diagonal entries). In fact, the proof of the lemma can be easily extended to show
that every square submatrix of A has determinant in {0, +1,−1}, i.e. A is totally
unimodular. Such matrices are of great interest in combinatorial optimization,
since the inverse of any nonsingular square submatrix is integer-valued. Hence for
any integer-valued b, the basic solutions of Ax = b, x > 0, are integer-valued. We
record this formally in:

Corollary 5.1. The transshipment problem (P) has the integrality property that
if the net supplies bi are all integer, every basic solution is integer-valued. More-
over, every basic solution x has xe nonzero only for e ∈ F for some spanning tree
F ⊆ E of G.

We now discuss the implementation of the primal simplex algorithm for problem
(P). We ignore problems of getting an initial basic feasible solution and resolving
degeneracy, for both of which there are special network techniques available—see
for instance Chapter 19 of Chvátal (1983). The key idea is to represent the basis
B or the corresponding tree H = (V, F) to allow the efficient solution of the linear
systems BTπ = cB and Bw = ae. Since B can be reordered to make it triangular,
these systems can be solved very fast.

Let e = (u, v) ∈ E \ F . Our proof of Theorem 5.1 shows that the solution to
Bw = ae can be obtained by finding the path from u to v in H. If P denotes
the set of forward and Q the reverse arcs in this path, then wf = +1 if f ∈ P ,
−1 if f ∈ Q, and 0 otherwise. To quickly determine such a path we store the
predecessor p(i) of i for each i ∈ V other than the root r, i.e. the next node to i
in the unique path from i to r, as well as the d(i) of i, the length of this path.
We can also use signs on p(i) to indicate whether the arc joining i and p(i) is a
forward or reverse arc of this path.

The system BTπ = cB can be written as

πi − πj = cf for f = (i, j) ∈ F,

where πr ≡ 0. We can solve for the π’s successively by traversing the nodes of the
tree starting from the root r so that p(i) is always visited before i. Such an order
is called a preorder of the tree; we let s(i) denote the successor of i in this order.

To illustrate these ideas, consider the following:

Example 5.2. Let V = {1, 2, . . . , 9} with r = 1, where H is the tree shown in
Figure 5.1. Let x35 = x94 = 1, x37 = x18 = 2, x23 = x48 = 3, and x31 = x64 = 4.
The tree is represented by the three vectors p, d and s of length |V | as in Table 5.1.

38 D. Goldfarb, M.J. Todd

Table 5.1

i 1 2 3 4 5 6 7 8 9

p(i) – +3 +1 +8 −3 +4 −3 −1 +4

d(i) 0 2 1 2 2 3 2 1 3

s(i) 3 7 5 9 2 – 8 4 6

The steps of each iteration are then performed efficiently as follows:
(1) Solve BTπ = cB , or πi − πj = cf for f = (i, j) ∈ F , where πr ≡ 0. To do

this, we calculate the π’s in preorder so that π|p(i)| is available when we compute
πi. In our example, we calculate π3, π5, π2, π7, π8, π4, π9, and then π6. (As we
shall see, it is cheaper to update π.)

(2) Check whether πi − πj 6 ce for all e = (i, j) ∈ E. This is a search as in the
revised simplex method, except that we need only look up i = h(e) and j = t(e)
instead of the column ae. If all inequalities are satisfied, the current solution is
optimal and we stop.

(3) Otherwise, choose some e = (u, v) ∈ E \ F with c̄e = ce − πu + πv < 0.
(4) Solve Bw = ae and check for unboundedness. We must find the path from

u to v in H, using p and d. If the path has no forward arcs, there is an unbounded
ray. In our example, suppose u = 7, v = 9. Since d(9) > d(7), we find p(9) = +4;
thus (9, 4) is a reverse arc of the path. Now d(7) = d(4), but 7 6= 4. So we find
p(7) = −3, p(4) = +8, and (3, 7) and (4, 8) are reverse arcs of the path. Since
3 6= 8, we find p(3) = +1, p(8) = −1, so (3, 1) and (1, 8) are forward arcs of the
path, and since the two subpaths from u and v have now coalesced, we have found
the complete path from u to v.

(5) Find the leaving arc f ; this is the forward arc in the path (wf = +1) with
minimum flow. We calculate f as we determine the path in step 4 by comparing
the flow on each forward arc found with the current minimum flow for such arcs.
In our example f = (1, 8).

Fig. 5.1.

II. Linear programming 39

(6) Update:

F → (F ∪ {e}) \ {f} .

Update x:

xe ← xf ,

xg ←

xg − xe g forward arc of path ,
xg + xe g reverse arc of path ,
xg otherwise ,

In our example, x79 ← 2, x37 ← 4, x31 ← 2, x18 ← 0, x48 ← 5 and x94 ← 3, with
others unchanged.

Update π: let f = (i, j), and assume d(i) < d(j)—analogous rules hold if
d(i) > d(j).

πj ← πj + c̄e, k ← s(j)

While d(k) > d(j),

πk ← πk + c̄e ,

k ← s(k).

In our example, we add c̄e to π8, then to π4, π9 and π6. (It is easy to see that c̄g

remains zero for arcs in the subtree hanging from node j. Also, πv increases by
c̄e so that c̄e becomes zero as required for tree arcs.)

Finally, we must update our representation of the tree, i.e., p, d, and s. While
this can be done efficiently, the rules are somewhat complicated and we refer the
reader to, e.g., Chvátal (1983). Basically, if d(i) < d(j), the subtree below j now
hangs down from the arc (u, v); a crucial role is played by the path from v to j,
called the backpath.

In our example, the result is the tree shown in Figure 5.2, with representation
given in Table 5.2.

The specialization of the primal simplex algorithm for network problems as
above is called the network simplex algorithm. While there are examples of prob-
lems for which a very large (exponential in n) number of iterations are required
using standard choices of entering arc (see (Zadeh 1973)), the method is usually

Fig. 5.2.

40 D. Goldfarb, M.J. Todd

Table 5.2

i 1 2 3 4 5 6 7 8 9

p(i) – +3 +1 −9 −3 +4 −3 −4 −7

d(i) 0 2 1 4 2 5 2 5 3

s(i) 3 7 5 6 2 8 9 – 4

very efficient in practice. For this special class of linear programming problems,
there are combinatorial algorithms available which are guaranteed to terminate in
a polynomial number of steps—see Chapter 4. Comparisons of different algorithms
can be found in the papers in (Gallo and Sandi, 1986).

6. Column generation and the decomposition principle

In this section we continue to consider the efficient application of the revised
simplex method to large-scale problems. The first problem we address is the stan-
dard form problem

minimize z = cTx
subject to Ax = b ,

x > 0 ,
(6.1)

where A is m× n and the columns of A are only known implicity (there may be
an astronomical number of them). However, the form of such columns is known,
and they can be generated as needed during the course of the algorithm—hence
the name column generation. We will discuss a classic example of such a problem,
the cutting-stock problem analyzed by Gilmore and Gomory (1961, 1963) in the
first subsection.

Next, suppose we wish to solve the linear programming problem

minimize z = cTx
subject to A0x = b0 ,

A1x = b1 ,
x > 0 ,

(6.2)

where the constraints have been partitioned into ‘general’ constraints A0x = b0

and ‘special’ constraints A1x = b1, x > 0. For example, the special constraints
could define a network problem, or could separate into several groups of con-
straints involving disjoint sets of variables. We wish to solve (6.2) efficiently, using
the fact that linear programming problems involving only the special constraints
can be solved much more easily. We shall see that this leads again to the column
generation idea; the resulting method is known as the decomposition principle of
Dantzig and Wolfe (1960). We discuss this in Subsection 6.2—note that we are
reversing chronological order for expository reasons.

II. Linear programming 41

6.1. The cutting-stock problem

Suppose that a paper company has a supply of large rolls of paper of width
W . However, customer demand is for smaller widths of paper; suppose bi rolls of
width wi, i = 1, 2, . . . , m, need to be produced. We obtain smaller rolls by slicing
a large roll using a particular pattern; for example, a large roll of width w = 70′′

can be cut into three rolls of width w1 = 17′′ and one roll of width w2 = 15′′,
with a waste of 4′′. We can (conceptually at least) consider all such patterns
and thus form a matrix A, with aij indicating how many rolls of width wi are
produced by the j-th pattern, i = 1, 2, . . . , m; j = 1, 2, . . . , n. For example, the
pattern described above yields a column (3, 1, 0, . . . , 0)T of A. If we let cj equal 1
for all j, then (6.1) is the problem of determining the minimum number of large
rolls (z =

∑
j xj) to cut to satisfy the demand for bi rolls of width wi for all i.

Actually, we would like to solve the corresponding integer programming problem
(see Chapter 6) where xj , the number of large rolls cut according to pattern j, is
also restricted to be integer-valued; however, a solution to the linear programming
problem (6.1) often provides a sufficiently accurate solution by rounding and ad
hoc procedures, at least if the demands bi are reasonably large.

Solving (6.1) itself is already a considerable computational task; even if m is
comparatively small the number of possible patterns n can be huge, so that just
forming the coefficient matrix A in full is impractical. However, as shown by
(Gilmore and Gomory 1961, 1963), the problem can be solved efficiently by the
revised simplex method, by generating columns of A as required rather than in
advance.

Finding an initial basic feasible solution is easy. Indeed, by letting pattern i
consist of [W/wi] rolls of width wi and none of any other width ([λ] denotes the
largest integer not exceeding λ), the first m columns of A yield a feasible and
diagonal basis matrix. Suppose therefore that at some iteration we have a basic
feasible solution and we wish to continue the revised simplex algorithm.

We compute the simplex multipliers π by solving BTπ = e as usual. (Here e
denotes a vector of all ones of appropriate dimension. Recall that all cj ’s are one,
so cB = e.) The next step is to compute the reduced costs

c̄j = 1− πTaj (6.3)

for all j, in order to either determine that we are currently optimal or choose a
nonbasic variable xq, with c̄q < 0, to enter the basis. This appears difficult, since
we do not know all columns aj of A. However, because of the structure of the
problem, we can perform this step implicitly.

A vector a = (α1, α2, . . . , αm)T ∈ Zm
+ (each αi is a nonnegative integer) will

be a column of A if it corresponds to a feasible pattern, i.e. if wTa 6 W , where
w = (w1, w2, . . . , wm)T. We wish to know whether the reduced cost 1 − πTa is
nonnegative for all such a, and, if not, find a feasible vector a with 1 − πTa
negative. Hence we solve the subproblem

maximize
a

πTa

subject to wTa 6 W ,
a ∈ Zm

+ .

(6.4)

42 D. Goldfarb, M.J. Todd

This is an instance of the so-called knapsack problem. (Think of πi, as the value
and wi the weight of the i-th item; we seek the most valuable knapsack of weight
at most W .) If the optimal value of (6.4) is at most 1, then all reduced costs
are nonnegative and our current basic feasible solution is optimal. Otherwise, an
optimal solution to (6.4) provides the column aq = a for a nonbasic variable to
enter the basis, and the iteration proceeds, as usual.

We have therefore demonstrated how the revised simplex method can be ap-
plied to the cutting-stock problem (6.1) without knowing all the columns of A in
advance, by generating them as needed from the subproblem (6.4). We indicate
briefly how (6.4) can be solved using a dynamic programming recursion when, as is
reasonable, W and all wi’s are integers. Let f(v) denote the optimal value of (6.4)
when the right-hand side W is replaced by v. Then f(v) = 0 for 0 6 v < wmin,
where wmin = min wi. We obtain f(W) by using the recursion

f(v) = max
16i6m
wi6v

{f(v − wi) + πi}

for v = wmin, . . . ,W . The optimal solution yielding f(W) can easily be obtained
by backtracking if a record is kept of a maximizing index at each step.

Similar column generation methods, with more complicated subproblems to
be solved at each iteration, can be used for generalized problems, for instance
in 2-dimensional cutting-stock problems or where there is a limit on the number
of knives (and hence on the number of nonzero components in a column) in a
1-dimensional problem.

6.2. Dantzig-Wolfe decomposition

We now turn to (6.2), which we rewrite as

minimize z = cTx
subject to A0x = b0 ,

x ∈ X ,
(6.5)

where

X = {x ∈ Rn : A1x = b1, x > 0}. (6.6)

We suppose A0 is m0×n and A1 is m1×n, with the vectors c, x, b0 and b1 of con-
forming dimensions. For example, (6.5) could represent a large-scale production-
distribution model, where A0x = b0 includes the scarce resource constraints from
the production side while A1x = b1 involves network constraints from the distri-
bution system. A classical example also arises from multi-divisional problems, as
we now briefly outline. Suppose a corporation consists of k divisions, indexed 1
through k we will also refer to the corporation itself as division 0. Each division
j has a vector xj of decision variables (so that x0 refers to corporate variables,
for example corresponding to ways of financing debt); it also has a vector bj of
amounts of resources available to it. Let cj denote the vector of costs correspond-
ing to xj , and let Aij be the matrix representing the use of resources of division

II. Linear programming 43

i by the variables of division j. We typically assume that Aij = 0 if i 6= j and
i > 0; thus division j uses the resources of the corporation and its own resources,
but not those of any other division. The resulting problem is

minimize cT
0 x0 + cT

1 x1 + · · ·+ cT
k xk

subject to A00x0 + A01x1 + · · · + A0kxk = b0 ,
A11x1 = b1 ,

. . .
...

Akkxk = bk ,
x0, x1, . . . , xk > 0 ,

(6.7)

whose structure is said to be primal block-angular. Similarly, the problem is called
dual block-angular if Aij = 0 for i 6= j and j > 0 (so the division j does not use the
corporate resources, but the corporate variables x0 may impinge on each division
since Ai0 can be nonzero). In this case, we say x0 is a vector of linking variables,
while the first constraints in (6.7) are called linking constraints. Finally, we can
allow both linking variables and linking constraints.

Clearly, problem (6.7) can be viewed as an instance of the general form (6.5),
by setting cT = (cT

0 , cT
1 , . . . , cT

k) and A0 = [A00, A01, . . . , A0k], and

X = {x = (xT
0 , xT

1 , . . . , xT
k)T : x0 > 0, Ajjxj = bj , xj > 0,

j = 1, . . . , k}.
We will discuss (6.7) later, but for now it will be simpler to assume that there

are no corporate variables. Then the problem becomes

minimize cT
1 x1 + · · ·+ cT

k xk

subject to A01x1 + · · · + A0kxk = b0 ,
A11x1 = b1 ,

. . .
...

Akkxk = bk ,
x1, . . . , xk > 0 .

(6.8)

Again, it is easy to put (6.8) into the form (6.5), with

X = {x = (xT
1 , . . . , xT

k)T : Ajjxj = bj , xj > 0, j = 1, . . . , k}.

Alternatively, we can consider each division separately and write (6.8) as

minimize cT
1 x1 + · · ·+ cT

k xk

subject to A01x1 + · · ·+ A0kxk = b0 ,
x1 ∈ X1, . . . , xk ∈ Xk ,

(6.9)

with Xj = {xj : Ajjxj = bj , xj > 0}.
There are several ways to motivate the decomposition idea. One which has a

strong economic interpretation is to consider the corporation as trying to decen-
tralize its decision-making by announcing prices for the corporate resources. If
no limitations are placed on division j’s use of corporate resources, but it must

44 D. Goldfarb, M.J. Todd

buy them at prices given by the vector −π0, then division j will seek to solve the
subproblem

SPj(π0) minimize (cT
j − πT

0 A0j)xj

subject to xj ∈ Xj .
(6.10)

Of course, the corporation would like to set the prices −π0 so that, when each
division solves its corresponding subproblem SPj(π0) to get an optimal solution
x̄j ,

∑
j A0j x̄j = b0. This is akin to a classical economic scenario: we wish to choose

prices so that the resulting demands (of the independently utility-maximizing
agents) sum to the total supply. We will call (π̄0, x̄1, . . . , x̄k) an equilibrium if x̄j

solves SPj(π̄0) for each j and
∑

j A0j x̄j = b0.
A major problem in economic theory is to determine conditions under which

an equilibrium exists. Here it is easy and nicely illustrates linear programming
duality:

Theorem 6.1. If (x̄1, . . . , x̄k) and (π̄0, π̄1, . . . , π̄k) are optimal primal and dual
solutions to (6.8), then (π̄0, x̄1, . . . , x̄k) is an equilibrium. Conversely, if (π̄0, x̄1,
. . . , x̄k) is an equilibrium, then (x̄1, . . . , x̄k) is an optimal primal (and π̄0 part of
an optimal dual) solution to (6.8).

Proof. Consider the first part. Clearly
∑

j A0j x̄j = b0, so we only need to establish
that x̄j is optimal in SPj(π̄0). It is obviously feasible. Now dual feasibility and
complementary slackness in (6.8) show that

AT
0j π̄0 + AT

jj π̄j 6 cj , (AT
0j π̄0 + AT

jj π̄j − cj)Tx̄j = 0 . (6.11a)

But then

AT
jj π̄j 6 (cj −AT

0j π̄0) , (AT
jj π̄j − (cj −AT

0j π̄0)Tx̄j = 0 , (6.11b)

which shows again by duality that x̄j is primal optimal (and π̄j dual optimal)
in SPj(π̄0). For the converse, let π̄j be an optimal dual solution to SPj(π̄0). By
duality, we have (6.11b), and hence (6.11a), which implies that (x̄1, . . . , x̄k) and
(π̄0, π̄1, . . . , π̄k) are optimal primal and dual solutions to (6.8).

As well as establishing the existence of equilibrium (if (6.8) has a solution),
Theorem 6.1 offers the possibility of efficient computation. If we only knew the
appropriate prices −π̄0, then it appears that we could solve (6.8) by solving k
small linear programming problems (the SPj(π̄0)) instead of one large one.

Unfortunately, two difficulties now arise. First, it is far from clear how a suitable
vector π̄0 can be found. Second, even if an appropriate π̄0 were known, obtaining
x̄1, . . . , x̄k would not be easy. Indeed, given nondegeneracy, an optimal solution
to (6.8) will have m0 +

∑
j>1 mj positive variables, where bj is an mj-vector for

each j. On the other hand, a basic optimal solution to SPj(π̄0) will have only mj

positive variables, so that putting these together will yield only
∑

j>1 mj positive
variables. The conclusion is that any equilibrium π̄0 will make at least one of
the subproblems have alternate optimal solutions, and that these may have to be
chosen suitably to clear the market of the corporate resources.

II. Linear programming 45

These difficulties are eliminated by taking another viewpoint. We will construct
a new linear programming problem so that applying the revised simplex method
will automatically generate a (finite) sequence of trial vectors π0: and we will
explicitly consider convex combinations of the vertices of Xj for the subproblems.

For notational simplicity we return now to the general problem (6.5) with a
single polyhedron X; we will consider the case of several Xj ’s, as in (6.9), later.
The key step is to present the polyhedron X in (6.6) in terms of its vertices and
(certain of its) directions, as in Theorem 2.2. We need a slight extension:

Definition 6.1. A direction d of X is extreme if it cannot be written as a non-
negative combination of two different (i.e., not proportional) directions. That is

d = µ1d1 + µ2d2, µ1 > 0, µ2 > 0,

with d1 and d2 also directions of X, implies d1 = α1d and d2 = α2d for some
α1, α2 > 0.

Theorem 6.2. Any point x ∈ X can be presented as

x =
∑

i∈I

λivi +
∑

j∈J

µjdj

where {vi : i ∈ I} is the set of vertices, and {dj : j ∈ J} is the set of extreme
directions, of X, and

∑
i∈I λi = 1, λi > 0 for all i ∈ I, µj > 0 for all j ∈ J .

Conversely, any such x lies in X. Moreover, X has only finitely many extreme
directions.

We will not prove this result; its proof is similar to that of Theorem 2.2. An
important consequence is:

Corollary 6.1. Let the columns of V and D be all vertices and extreme direc-
tions, respectively, of X. Then

X = {V λ + Dµ : eTλ = 1, λ > 0, µ > 0} .

(Recall that e denotes a vector of ones of appropriate dimension.)

By substituting for x using this representation, we see that our original problem
(6.5) is equivalent to the so-called master problem

minimize (cTV)λ + (cTD)µ

subject to (A0V)λ + (A0D)µ = b0,

eTλ = 1,

λ > 0, µ > 0.

(6.12)

The decomposition principle of Dantzig and Wolfe is to apply the revised simplex
method to the master problem (6.12). Note that, in contrast to (6.2), (6.12) has

46 D. Goldfarb, M.J. Todd

only µ0+1 constraints; to compensate, it has an astronomical number of columns,
one for each vertex and each extreme direction of X, and those are known only
implicitly. Thus we will use a column generation technique as in Subsection 6.1.

Suppose that we have a basic feasible solution to (6.12), (λ̄, µ̄), with associated
simplex multipliers π̄0 (for the first m0 constraints) and σ̄. Here λ̄i > 0 implies that
we know the corresponding vertex vi of X, and similarly for µ̄j and the extreme
direction dj . However, the set of all vertices and extreme directions is unknown to
us, so that we shall have to generate them (and the associated columns in (6.12))
as needed.

An iteration of the revised simplex method demands that we first seek a vertex
vi with reduced cost

cTvi − π̄T
0 A0vi − σ̄ < 0 (6.13)

or an extreme direction dj with reduced cost

cTdj − π̄T
0 A0dj < 0 . (6.14)

If there are none, we can conclude that the current solution (λ̄, µ̄) is optimal in
(6.12), and hence x̄ = V λ̄ + Dµ̄ optimal in (6.5).

Consider first (6.13). We wish to find a vertex vi of X so that the linear function
(cT − π̄T

0 A0)vi is smaller than σ̄. Since a linear function is minimized over a
polyhedron at a vertex (if it is not unbounded below), it is natural to consider
the subproblem

SP(π̄0) min{(cT − π̄T
0 A0)x : x ∈ X} (6.15)

(cf. (6.10)).
Let us discuss each possible outcome of solving SP(π̄0). First, if it is infeasible,

then X is empty and our original problem (6.5) is also infeasible; in this case, we
could not have a current basic feasible solution to (6.12).

Second, SP(π̄0) may be unbounded. In this case, application of the revised
simplex algorithm will generate an edge vector ηq from some vertex v of X with
v + θηq in X for all θ > 0 and (cT − π̄T

0 A0)ηq < 0. In fact ηq is of the form

ηq =
(−w

eq−m1

)
, where w = B−1

1 a1q ,

if the current basis matrix B1 consists of the first m1, columns of A1, and a1q

is the entering q-th column of A1. (See Sections 2 and 3.) It is not too hard to
see that ηq is an extreme direction of X, so that setting dj = ηq yields (6.14). Of
course ηq is not necessarily a direction of the polyhedron of feasible solutions to
(6.2), since we have ignored the constraints A0x = b0.

Finally, SP(π̄0) may have a finite optimal solution x̄. Then, by the fundamental
theorems of linear programming (see in particular Theorem 2.4 and its proof),
(cT − π̄T

0 A0)d > 0 for all directions d and x̄ can be taken to be a vertex of
X (and the revised simplex method finds such a vertex). Hence (6.14) fails for
j; no column arising from an extreme direction is a candidate for entering the

II. Linear programming 47

basis. If (cT − π̄T
0 A0)x̄ > σ̄ then, since we minimized over all X and hence all

its vertices, (6.13) fails for each i, thus no column arising from a vertex is a
candidate for entering the basis, and we conclude that (λ̄, µ̄) is optimal in (6.12)
and x∗ = V λ̄ + Dµ̄ optimal in (6.5). On the other hand, if (cT − π̄0A0)x̄ < σ̄,
then setting vi = x̄ we have (6.13).

Thus in any case, we either prove optimality or generate a column for (6.12) to
introduce into the basis, in which case the iteration of the revised simplex method
can continue as usual. Summarizing, we have:

Theorem 6.3. (a) If SP(π̄0) is unbounded, the revised simplex method applied to
it yields an extreme direction dj satisfying (6.14), so that the column

(
A0dj

0

)
with cost cTdj

is eligible to enter the current basis for the master problem (6.12).
(b) If SP(π̄0) has optimal solution vi with optimal value less than σ̄, then the

column
(

A0vi

1

)
with cost cTvi

is eligible to enter the current basis for the master problem (6.12).
(c) Finally, if SP(π̄0) has optimal value at least σ̄, with optimal dual solution

π̄1, then the current basic feasible solution (λ̄, µ̄) is optimal in (6.12) with optimal
dual solution (π̄0, σ̄) and x∗ = V λ̄ + Dµ̄ is optimal in (6.2), with optimal dual
solution (π̄0, π̄1).

Proof. We only need to show the last part. Clearly, since (6.13) and (6.14) fail for
all i ∈ I, j ∈ J , (π̄0, σ̄) is feasible in the dual of (6.12), and hence (λ̄, µ̄) and (π̄0, σ̄)
are respectively primal and dual optimal so that cTV λ̄ + cTDµ̄ = π̄T

0 b0 + σ̄. Now
x∗ is feasible in (6.2), since it satisfies A0x

∗ = b0 and lies in X by Theorem 6.2.
It has value cTx∗ = cTV λ̄ + cTDµ̄, the optimal value of (6.12). Now since π̄1 is
dual optimal in SP(π̄0), it is dual feasible:

π̄T
1 A1 6 cT − π̄T

0 A0 (6.16)

and has value

π̄T
1 b1 > σ̄ = (π̄T

0 b0 + σ̄)− π̄T
0 b0

= (cTV λ̄ + cTDµ̄)− π̄T
0 b0 (6.17)

= cTx∗ − π̄T
0 b0.

Hence (π̄0, π̄1) is feasible in the dual of (6.2) by (6.16) and has value at least
that of x∗ in the primal. Thus weak duality implies that x∗ is primal and (π̄0, π̄1)
dual optimal in (6.2) as desired.

The theorem shows that we can solve (6.5) by solving instead the master prob-
lem (6.12); finite convergence is assured since we are applying the revised simplex

48 D. Goldfarb, M.J. Todd

method to a finite problem, even though its coefficients are not all known in ad-
vance. The algorithm terminates either with an optimal solution of (6.12), and
hence one for (6.2), or with an indication of unboundedness; in the latter case,
it is easy to see that (6.2) is also unbounded. The proof also shows that, when
the algorithm terminates with an optimal solution, the optimal value of SP(π̄0)
is precisely σ̄, and, by complementary slackness, all vi, with λ̄i positive will be
alternate optimal solutions to SP(π̄0). Hence we have resolved the two difficulties
discussed below Theorem 6.1. Applying the revised simplex method to the master
problem automatically generates a sequence of vectors −π̄0 which converges to an
‘equilibrium price vector’ −π∗0 ; and the master problem explicitly considers how
to combine the optimal solutions to SP(π∗0) to get an optimal solution to (6.5),
which is likely not to be a vertex of X. Dantzig (1963) includes a discussion that
motivates from an economic viewpoint the proposed equilibrium price vectors −π̄0

that are generated in this way.
A natural question concerns the computational behavior of the decomposition

algorithm; we may hope that only a small multiple of m0 iterations are required
in (6.12) (see the next section), even though this problem has a huge number of
columns. We defer discussion of this point until we have addressed a number of
issues we have skirted so far.

First, suppose there are variables that occur only in the ‘general’ constraints
A0x = b0, but not in the ‘special’ constraints A1x = b1, like the corporate vari-
ables x0 in (6.7). It is then more natural to omit these variables from X and
carry them over unchanged into the master problem (6.12). To apply the revised
simplex algorithm to (6.12), we first check at each iteration whether any of these
x-variables is a candidate to enter the basis, and, if so, perform the pivot. Only if
no such x-variable is eligible do we form the subproblem SP(π̄0) and proceed as
above. The analysis follows the argument we have already made.

Second, we need to describe how an initial basic feasible solution to (6.12) is
found. We first find a vertex v1, of X by any method—if we discover X is empty,
(6.5) is infeasible and we stop. Then we introduce m0 artificial variables into (6.12)
so that λ1, together with these variables gives a basic feasible solution to the
modified (6.12). We now apply a phase I revised simplex method to this problem
to minimize the sum of the artificial variables, using again the decomposition
idea. If all artificial variables are eliminated, we have a basic feasible solution to
(6.12) from which we initiate phase II. We can view this phase I procedure as
applying the decomposition algorithm to a phase I version of (6.2), where the
artificial variables (in the constraints A0x = b0 only) are carried over into the
master problem as in the previous paragraph.

Third, let us reconsider the multi-divisional problem (6.7). We know now
that we can treat the variables x0 separately, but can we separate the variables
x1, x2, . . . , xk as in (6.9) rather than considering them together? The answer is yes;

II. Linear programming 49

we must apply the same idea to each polyhedron Xj . Thus the master problem is

minimize cT
0 x0 + (cT

1 V1)λ1 + (cT
1 D1)µ1 + . . . + (cT

k Vk)λk + (cT
k Dk)µk

subject to A00x0 + (A01V1)λ1 + (A01D1)µ1 + . . . + (A0kVk)λk + (A0kDk)µk = b ,
eTλ1 = 1 ,

. . .
...

eTλk = 1 ,
x0, λ1, µ1, . . . , λk, µk > 0 , (6.18)

where the columns of Vj and Dj are the vertices and extreme directions, respec-
tively, of Xj , and the components of the vectors λj and µj give the corresponding
weights. Note that (6.18) has m0 + k rows, rather than m0 + 1; but this is still a
great reduction from the number in (6.7). At any iteration, we will have simplex
multipliers π̄0, σ̄1, . . . , σ̄k. If any x0-variable is eligible to enter the basis, we make
the appropriate pivot. Otherwise, we solve SPj(π̄0) (see (6.10)) for each j. If any
such problem is unbounded, the extreme direction generated yields an eligible
column for (6.18). If not, and if the optimal value of some SPj(π̄0) is less than σ̄j ,
then the optimal vertex vji again yields an eligible column. Finally, if all optimal
values are equal to the corresponding σ̄j , then we have the optimal solution to
(6.18), and x∗0 = x̄0, x∗j = Vj λ̄j + Djµ̄j , j = 1, 2, . . . , k, is an optimal solution to
(6.7).

This idea of having several subproblems (rather than just one) is also appropri-
ate in multicommodity flow problems; for a discussion of these and various solu-
tion strategies, including primal and dual decomposition methods, see Kennington
(1978). Another important special case is where A has a staircase structure, which
arises in multiperiod models. In this case, nested decomposition approaches may
be attractive (Ho and Manne 1974). More recent developments are discussed in
Ho (1987), who also includes a summary of computational experience.

Papers and textbooks of the 60’s and 70’s generally cite poor computational re-
sults for the decomposition approach compared to applying a sophisticated revised
simplex code directly to (6.2). The folklore suggests that slow final convergence
is typical. However, there is some indication (see (Ho 1987) and the papers cited
therein) that ‘long tails’ are the fault more of numerical accuracy difficulties than
of the algorithmic approach. Here it is worth pointing out that, at any iteration
where SPj(π̄0) (or all SPj(π̄0)’s) has an optimal solution, one can obtain a feasible
dual solution to the master problem, with a duality gap equal to the difference
between σ̄ and the optimal value of SPj(π̄0). Hence one can terminate early with
a feasible solution which is guaranteed to be close to optimal. With such early ter-
mination, large-scale dynamic problems have been solved faster by sophisticated
implementations of decomposition approaches than using IBM’s MPSX simplex
code—see again (Ho 1987). For problems of more moderate size, however, say up
to 5000 rows, it seems generally preferable to use a good revised simplex code on
the original problem, ignoring its structure.

	Introduction
	Examples of linear programming problems
	Canonical forms

	Geometric interpretation
	Definitions
	Extreme points and basic feasible solutions
	Fundamental theorems of linear programming

	The simplex method
	Geometric motivation
	The revised simplex method
	Degeneracy and cycling
	Implementations
	Artificial variables and Phase I

	Duality and sensitivity analysis
	Duality and optimality
	Economic interpretation of duality
	The dual simplex algorithm
	Sensitivity analysis
	Network problems

	Column generation and the decomposition principle
	The cutting-stock problem
	Dantzig-Wolfe decomposition

