Discrete Linear Orderings and Fraïssé Games

V.Boutchkova

23 June 1999

Abstract

Fraïssé games are used to prove some axiomatizations of the order types $(\omega,<) \quad(\omega,<),(0, \ldots, m \quad 1,<),(\omega m,<),(\omega m+q,<)$ and $\left(\omega^{m},<\right)$.

We consider structures of the signature $((2), \emptyset, 0)$. The language \mathcal{L} that belongs to this signature has two binary relation symbols, \sqsubset and $=$, and does not have function symbols nor individual constants.

We consider formulas $\theta\left(x_{0} \ldots x_{k-1}\right)$ in \mathcal{L}, where all the free variables of θ are among $x_{0} \ldots x_{k-1}$, that we abbreviate by \vec{x}. For every x we define two mappings L_{x} and R_{x} between such formulas in a way that the formulas $L_{x}(\theta)$ and $R_{x}(\theta)$ have free variables among $x, x_{0} \ldots x_{k-1}$. Sometimes we use a second notation:

$$
\theta^{x}(x, \vec{x}) \equiv L_{x}(\theta(\vec{x})), \text { and } \theta^{x} \quad(x, \vec{x}) \equiv R_{x}(\theta(\vec{x}))
$$

If $\mathfrak{A}=(A,<)$ is a structure of the given signature, for each element $b \in A$ we define $A^{<b}$ to be the set $\{a \in A \mid a<b\}$, and $\mathfrak{A}^{<b}$ to be the structure ($A^{<b},<$) where the relation $<$ is restricted to the set $A^{<b}$. We want to have the following property:

$$
\mathfrak{A}=\theta^{x}\left[b, a_{0} \ldots a_{k-1}\right] \text { if and only if } \mathfrak{A}^{<b}=\theta\left[a_{0} \ldots a_{k-1}\right]
$$

for all $b \in A$ and for all $a_{0} \ldots a_{k-1} \in A^{<b}$. And we want the analogous property for the mapping R_{x}, i.e. if $A^{>b}=\{a \in A \mid b<a\}$ and $\mathfrak{A}^{>b}=\left(A^{>b},<\right)$, then $\mathfrak{A} \mid=$ $\theta^{x}\left[b, a_{0} \ldots a_{k-1}\right]$ if and only if $\mathfrak{A}_{b}=\theta\left[a_{0} \ldots a_{k-1}\right]$, where $b \in A$ and $a_{0} \ldots a_{k-1} \in$ $A^{>b}$.

Definition

We define the mappings L_{x} and R_{x} by induction on the formula θ :

- If θ is a basic formula or the negation of a basic formula, then $L(x, \theta) \equiv$ $R(x, \theta) \equiv \theta$.
- If $\theta(\vec{x})$ is the formula $\theta_{1}(\vec{x}) \wedge \theta_{2}(\vec{x})$, then
$L(x, \theta) \equiv L\left(x, \theta_{1}\right) \wedge L\left(x, \theta_{2}\right), \quad R(x, \theta) \equiv R\left(x, \theta_{1}\right) \wedge R\left(x, \theta_{2}\right)$.
We define in the same way the image of the disjunction: $\theta(\vec{x})$ is the formula $\theta_{1}(\vec{x}) \vee \theta_{2}(\vec{x})$.
- If $\theta(\vec{x})$ is the formula $\exists y \varphi(y, \vec{x})$, then

$$
\begin{aligned}
& L(x, \theta(\vec{x})) \equiv \exists y(y \sqsubset x \wedge L(x, \varphi(y, \vec{x}))), \\
& R(x, \theta(\vec{x})) \equiv \exists y(x \sqsubset y \wedge R(x, \varphi(y, \vec{x}))) .
\end{aligned}
$$

- If $\theta(\vec{x})$ is the formula $\forall y \varphi(y, \vec{x})$, then

$$
\begin{aligned}
& L(x, \theta(\vec{x})) \equiv \forall y(y \sqsubset x \rightarrow L(x, \varphi(y, \vec{x}))), \\
& R(x, \theta(\vec{x})) \equiv \forall y(x \sqsubset y \rightarrow R(x, \varphi(y, \vec{x}))) .
\end{aligned}
$$

Remark: The bounding of the quantifiers in the formula does not change its quantifier depth: $Q D\left(L_{x}(\theta)\right)=Q D(\theta)=Q D\left(R_{x}(\theta)\right)$.

1 The order type $(\omega,<) \oplus(\omega,<)$

The first goal is to find an axiomatization of the structure $(\mathbb{N},<) \oplus(\mathbb{N},<)$. We define the following sentence:

$$
\begin{array}{rlr}
\forall x_{0}\left(\neg\left(x_{0} \sqsubset x_{0}\right)\right) \wedge & \text { (irreflexibility) } \\
\forall x_{0} \forall x_{1} \forall x_{2}\left(x_{0} \sqsubset x_{1} \sqsubset x_{2} \rightarrow x_{0} \sqsubset x_{2}\right) \wedge & \text { (transitivity) } \\
\forall x_{0} \forall x_{1}\left(x_{0} \sqsubset x_{1} \vee x_{0}=x_{1} \vee x_{1} \sqsubset x_{0}\right) \wedge & \text { (linearity) } \\
& \forall x_{0} \exists x_{1}\left(x_{0} \sqsubset x_{1} \wedge \neg \exists x_{2}\left(x_{0} \sqsubset x_{2} \sqsubset x_{1}\right)\right) \wedge & \text { (immediate successor) } \\
& \exists x_{0} \exists x_{1}\left(\begin{array}{rl}
x_{0} \sqsubset x_{1} \wedge \neg \exists x_{2}\left(x_{2} \sqsubset x_{0}\right) \wedge \\
\left.\forall x_{2}\binom{\neg\left(x_{0}=x_{2}\right) \wedge \neg\left(x_{1}=x_{2}\right) \longleftrightarrow}{\exists x_{3}\left(x_{3} \sqsubset x_{2} \wedge \neg \exists x_{4}\left(x_{3} \sqsubset x_{4} \sqsubset x_{2}\right)\right)}\right)
\end{array}\right.
\end{array}
$$

Definition: Let $\mathfrak{A}=(A,<)$ be a structure with signature $((2), \emptyset, 0)$. We define distance between two elements of this structure as follows:
for all $a, b \in A$, such that $a<b, d(a, b)=1+$ the number of elements between a and b, i.e. $\begin{aligned} & d(a, b)=1+\|\{c \in A \mid a<c<b\}\| \quad \text {, for } a<b \\ & d(a, a)=0\end{aligned}$

Notation:

$$
\psi\left(x_{0}, x_{1}\right) \equiv\binom{x_{0} \sqsubset x_{1} \wedge \neg \exists x_{2}\left(x_{2} \sqsubset x_{0}\right) \wedge}{\forall x_{2}\binom{\neg\left(x_{0}=x_{2}\right) \wedge \neg\left(x_{1}=x_{2}\right) \longleftrightarrow}{\exists x_{3}\left(x_{3} \sqsubset x_{2} \wedge \neg \exists x_{4}\left(x_{3} \sqsubset x_{4} \sqsubset x_{2}\right)\right)}}
$$

If $\mathfrak{A} \mid=\varphi$ then $\mathfrak{A} \mid=\exists x_{0} \exists x_{1} \psi\left(x_{0}, x_{1}\right)$ and therefore there exist exactly two elements (we will denote them by $0_{0}^{\mathfrak{A}}$ and $0_{1}^{\mathfrak{A}}$) such that $\mathfrak{A} ~=\psi\left[0_{0}^{\mathfrak{A}}, 0_{1}^{\mathfrak{A}}\right]$.

Lemma

Let $\mathfrak{A}=\left(A,<_{A}\right)$ and $\mathfrak{B}=\left(B,<_{B}\right)$ be models of φ.
Let $f \in L I_{0}(\mathfrak{A}, \mathfrak{B})$ be a local isomorphism from \mathfrak{A} to \mathfrak{B}. Let us denote $a^{(0)}:=$
$\begin{cases}\min _{0_{0}^{\mathfrak{A}}}\left\{a_{i} \mid a_{i} \in \operatorname{Dom}(f)\right\} & , \text { if } f \neq \emptyset \\ & , \text { otherwise }\end{cases}$
and
$a^{(1)}:= \begin{cases}\min \left\{a_{i} \mid a_{i} \in \operatorname{Dom}(f) \& 0_{1}^{\mathfrak{A}} \leq{ }_{A} a_{i}\right\} & , \text { if } \exists a \in \operatorname{Dom}(f)\left(0_{1}^{\mathfrak{A}} \leq{ }_{A} a\right) \\ 0_{1}^{\mathfrak{A}} & , \text { otherwise }\end{cases}$
Then for every natural number $p \geq 2$,
$f \in L I_{p}(\mathfrak{A}, \mathfrak{B}) \quad$ if and only if

$$
\left(\begin{array}{c}
\forall n \leq 2^{(p-1)} \forall a_{i}, a_{j} \in \operatorname{Dom}(f) \\
\left(d\left(a_{i}, a_{j}\right)=n \Leftrightarrow d\left(f\left(a_{i}\right), f\left(a_{j}\right)\right)=n\right) \\
\& \\
\forall n \leq 2^{(p-1)}+p-2 \\
\left(a^{(0)} \in \operatorname{Dom}(f) \Rightarrow\left(d\left(0_{0}^{\mathfrak{A}}, a^{(0)}\right)=n \Leftrightarrow d\left(0_{0}^{\mathfrak{B}}, f\left(a^{(0)}\right)\right)=n\right)\right) \\
\& \\
\forall n \leq 2^{(p-1)}+p-4 \\
\left(a^{(1)} \in \operatorname{Dom}(f) \Rightarrow\left(d\left(0_{1}^{\mathfrak{A}}, a^{(1)}\right)=n \Leftrightarrow d\left(0_{1}^{\mathfrak{B}}, f\left(a^{(1)}\right)\right)=n\right)\right)
\end{array}\right)
$$

The three conjuncts of the right side formalize the following three properies:

- "to preserve distances less than or equal to $2{ }^{p-1}$ ",
- "to preserve the distances to the first element 0_{0}, which are less than or equal to $2^{(p-1)}+p-2 "$ and
- "to preserve the distances to the second zero 0_{1}, which are less than or equal to $2^{(p-1)}+p-4$ ".

We will need the direction (\Leftarrow) only.
Proof: Induction on p.
$p=2$.
$(\Rightarrow) f \in L I_{2}(\mathfrak{A}, \mathfrak{B})$

- It is easy to verify that $d\left(a_{i}, a_{j}\right)=d\left(f\left(a_{i}\right), f\left(a_{j}\right)\right)$ when one of these distances is ≤ 2.
- If $a^{(0)} \in \operatorname{Dom}(f)$ and one of $d\left(0_{0}^{\mathfrak{A}}, a^{(0)}\right)$ and $d\left(0_{0}^{\mathfrak{B}}, f\left(a^{(0)}\right)\right)$ is ≤ 2, it is easy to verify that they are equal.
- If $a^{(1)} \in \operatorname{Dom}(f)$, it is easy to verify that $a^{(1)}=0_{1}^{\mathfrak{A}}$ if and only if $f\left(a^{(1)}\right)=0_{1}^{\mathfrak{B}}:$
Assume for example that $a^{(1)}=0_{1}^{\mathfrak{A}}$ and $d\left(0_{1}^{\mathfrak{B}}, f\left(a^{(1)}\right) \neq 0\right.$. We have two cases:
If $0_{1}^{\mathfrak{B}}<f\left(0_{1}^{\mathfrak{A}}\right)$, then for $b \in B$ - the predecessor of $f\left(0_{1}^{\mathfrak{A}}\right)$, there exists $a \in A$, such that $f \cup\{(a, b)\} \in L I_{1}(\mathfrak{A}, \mathfrak{B})$ and therefore $a<0_{1}^{\mathfrak{A}}$. Then
for $S_{a} \in A$ - the successor of a, that is between a and $0_{1}^{\mathfrak{A}}$, there exists $c \in B$, such that $f \cup\{(a, b)\} \cup\left\{\left(S_{a}, c\right)\right\} \in L I_{0}(\mathfrak{A}, \mathfrak{B})$ and therefore c is between b and its successor $f\left(0_{1}^{\mathfrak{R} t}\right)$, which is a contradiction.
In the case $f\left(0_{1}^{\mathfrak{A}}\right)<0_{1}^{\mathfrak{B}}$ we take the predecessor of $f\left(0_{1}^{\mathfrak{A}}\right)$.
In the other direction the proof is similar.
(\Leftarrow) The local isomorphism f preserves the distances for $p=2$. We can prove $f \in L I_{2}(\mathfrak{A}, \mathfrak{B})$. using the fact that $f \in L I_{1}(\mathfrak{A}, \mathfrak{B})$ if and only if both $\forall n \leq$ $1\left(d\left(a_{i}, a_{j}\right)=n \Leftrightarrow d\left(f\left(a_{i}\right), f\left(a_{j}\right)\right)=n\right)$ and $f(a)=0_{0}^{\mathfrak{B}} \Leftrightarrow a=0_{0}^{\mathfrak{A}}$, where $a_{i}, a_{j}, a \in \operatorname{Dom}(f)$.
The interesting case is when we choose $a \in A$, such that $0_{0}^{\mathfrak{A}}<a<a^{(0)}$ and $d\left(a, a^{(0)}\right)>1$. Then we have to find $b \in B$, such that $0_{0}^{\mathfrak{B}}<b$ and $d\left(b, f\left(a^{(0)}\right)>1\right.$. This is possible, because otherwise $d\left(0_{0}^{\mathfrak{B}}, f\left(a^{(0)}\right)\right) \leq 2$, which is a contradiction, since $d\left(0_{0}^{\mathfrak{A}}, a^{(0)}\right)>2$.

IH - assume it is true for some $p \geq 2$. We have to prove it for $p+1$.
(\Rightarrow) Let $f \in L I_{p+1}(\mathfrak{A}, \mathfrak{B})$.

1. Suppose $d\left(a_{i}, a_{j}\right)=n \leq 2^{p}$ for some $a_{i}, a_{j} \in \operatorname{Dom}(f)$ and $n>0$, the case $n=0$ is easy.
Take an element c of A, such that $d\left(a_{i}, c\right)=\left[\frac{n}{2}\right]$. Then $d\left(c, a_{j}\right)=$ $\left[\frac{n-1}{2}\right]+1$. There exists $e \in B$, such that $f \cup\{(c, e)\} \in L I_{p}(\mathfrak{A}, \mathfrak{B})$.
Therefore $f\left(a_{i}\right) \leq e \leq f\left(a_{j}\right)$. Since $\left[\frac{n}{2}\right] \leq 2^{(p-1)}$ and $\left[\frac{n-1}{2}\right]+1 \leq$ $2^{(p-1)}+1$, from the IH it follows that $d\left(f\left(a_{i}\right), e\right)=d\left(a_{i}, c\right)$ and $d\left(e, f\left(a_{j}\right)\right)=$ $d\left(c, a_{j}\right)$ and therefore $d\left(f\left(a_{i}\right), f\left(a_{j}\right)\right)=d\left(f\left(a_{i}\right), e\right)+d\left(e, f\left(a_{j}\right)\right)=n$. In the other direction the proof is similar.
2. Suppose $a^{(0)} \in \operatorname{Dom}(f)$ and $d\left(0_{0}^{\mathfrak{A}}, a^{(0)}\right) \leq 2^{(p+1)-1}+(p+1)-2=$ $2^{p}+p-1$.
We have two subcases:

- $d\left(0_{0}^{\mathfrak{A}}, a^{(0)}\right)<2^{p}+p-1$.

Now we can choose $c \in A$, such that $d\left(c, a^{(0)}\right) \leq 2^{(p-1)}$ and $d\left(0_{0}^{\mathfrak{A}}, c\right) \leq$ $2^{(p-1)}+p-2$. There exists $e \in B$, such that $f \cup\{(c, e)\} \in L I_{p}(\mathfrak{A}, \mathfrak{B})$.
From IH it follows that $d\left(0_{0}^{\mathfrak{A}}, c\right)=d\left(0_{0}^{\mathfrak{B}}, e\right)$ and $d\left(c, a^{(0)}\right)=d\left(e, f\left(a^{(0)}\right)\right)$ and therefore $d\left(0_{0}^{\mathfrak{A}}, a^{(0)}\right)=d\left(0_{0}^{\mathfrak{B}}, f\left(a^{(0)}\right)\right)$.

- $d\left(0_{0}^{\mathfrak{R}}, a^{(0)}\right)=2^{p}+p-1$.

Assume that $d\left(0_{0}^{\mathfrak{R}}, a^{(0)}\right) \neq d\left(0_{0}^{\mathfrak{B}}, f\left(a^{(0)}\right)\right)$. Then $d\left(0_{0}^{\mathfrak{B}}, f\left(a^{(0)}\right)\right)>$ $2^{p}+p-1$. Now we can choose $e \in B$, such that $d\left(0_{0}^{\mathfrak{B}}, e\right)>2^{(p-1)}+$ $p-2$ and $d\left(e, f\left(a^{(0)}\right)\right)>2^{(p-1)}$. But there exists $c \in A$, such that $f \cup\{(c, e)\} \in L I_{p}(\mathfrak{A}, \mathfrak{B})$ and from IH it follows that $d\left(0_{0}^{\mathfrak{A}}, c\right)>$ $2^{(p-1)}+p-2$ and $d\left(c, a^{(0)}\right)>2^{(p-1)}$. Then $d\left(0_{0}^{\mathfrak{A}},\left(a^{(0)}\right)>2^{p}+p-1\right.$, which is a contradiction.
3. Suppose $a^{(1)} \in \operatorname{Dom}(f)$ and $d\left(0_{1}^{\mathfrak{A}}, a^{(1)}\right) \leq 2^{(p+1)-1}+(p+1)-4=$ $2^{p}+p-3$. The proof is similar.
(\Leftarrow) Suppose that for the local isomorphism f the distance conditions for $p+1$ hold. From IH it follows that $f \in L I_{p}(\mathfrak{A}, \mathfrak{B})$. We have to prove that $f \in$ $L I_{p+1}(\mathfrak{A}, \mathfrak{B})$. Take for example $a \in A$. We have the following cases:

- $a \in \operatorname{Dom}(f)$.

Therefore there exists $b \in B, b=f(a)$, such that $f \cup\{(a, b)\}=f \in$ $L I_{p}(\mathfrak{A}, \mathfrak{B})$.

- $a^{\prime}<a<a^{\prime \prime}$, for some $a^{\prime}, a^{\prime \prime} \in \operatorname{Dom}(f)$, s.t. between them there are no elements from $\operatorname{Dom}(f)$.
$-d\left(a^{\prime}, a\right) \leq 2^{(p-1)}$ and $d\left(a, a^{\prime}\right) \leq 2^{(p-1)}$.
Then $d\left(a^{\prime}, a^{\prime \prime}\right) \leq 2^{p}$ and we can choose $b \in B$, such that $d\left(f\left(a^{\prime}\right), b\right)=$ $d\left(a^{\prime}, a\right)$ and $d\left(b, f\left(a^{\prime \prime}\right)\right)=d\left(a, a^{\prime \prime}\right)$. From IH it follows that $f \in$ $L I_{p+1}(\mathfrak{A}, \mathfrak{B})$.
$-d\left(a^{\prime}, a\right) \leq 2^{(p-1)}$ and $d\left(a, a^{\prime \prime}\right)>2^{(p-1)}$.
We can choose $b \in B$, such that $d\left(f\left(a^{\prime}\right), b\right)=d\left(a^{\prime}, a\right)$. If $d\left(b, f\left(a^{\prime \prime}\right)\right) \leq$ $2^{(p-1)}$, then $d\left(f\left(a^{\prime}\right), f\left(a^{\prime \prime}\right)\right) \leq 2^{p}$, which is a contradiction.
$-d\left(a^{\prime}, a\right)>2^{(p-1)}$ and $d\left(a, a^{\prime \prime}\right) \leq 2^{(p-1)}$.
This case is similar to the previous, except that it is possible $a^{\prime} \leq$ $0_{1}^{\mathfrak{R}} \leq a$. Then $d\left(0_{1}^{\mathfrak{B}}\right) \geq 2^{(p-1)}$ and we can choose $b \in B$, such that $d\left(b, f\left(a^{\prime \prime}\right)\right)=d\left(a, a^{\prime \prime}\right)$. If $d\left(0_{1}^{\mathfrak{A}}, a\right) \leq 2^{(p-1)}+p-4$, then $d\left(0_{1}^{\mathfrak{A}}, a^{\prime \prime}\right) \leq$ $2^{p}+p-4<2^{p}+p-3$ and therefore $(\mathrm{IH}) d\left(0_{1}^{\mathfrak{A}}, a^{\prime \prime}\right)=d\left(0_{1}^{\mathfrak{B}}, f\left(a^{\prime \prime}\right)\right)$, then $d\left(0_{1}^{\mathfrak{A}}, a\right)=d\left(0_{1}^{\mathfrak{A}}, b\right)$ and $f \in L I_{p+1}(\mathfrak{A}, \mathfrak{B})$.
$-d\left(a^{\prime}, a\right)>2^{(p-1)}$ and $d\left(a, a^{\prime \prime}\right)>2^{(p-1)}$. Analogous.
- $0_{0}^{\mathfrak{Z}}<a<a^{(0)}$. Analogous.
- $\max \left\{a_{i} \mid a_{i} \in \operatorname{Dom}(f)\right\}<a$. This case is easy.

Notation: By $\left(\omega \cdot 2,<^{\prime}\right)$ we denote the structure $(\mathbb{N},<) \oplus(\mathbb{N},<)$ with domain $\omega \cdot 2=\mathbb{N} \cup\left\{x^{\prime} \mid x \in \mathbb{N}\right\}$ and the following relation: for all $x, y \in \mathbb{N}$, such that $x<y$,

$$
x<^{\prime} y \text { and } x^{\prime}<^{\prime} y^{\prime} \text { and } x<^{\prime} x^{\prime}
$$

Theorem: $(\mathbb{N},<) \oplus(\mathbb{N},<)$ is a prime model of φ.

Proof: Let $\mathfrak{A}=\left(A,<_{A}\right)$ be a model of φ. Define a function f from $\omega \cdot 2$ to A, as follows: $f(0):=0_{0}^{\mathfrak{A}}, f\left(0^{\prime}\right):=0_{1}^{\mathfrak{A}}$ and for each $x>0$ in $\mathbb{N}, f(x+1):=$ the $<_{A}$-successor of $f(x)$ and $f\left((x+1)^{\prime}\right):=$ the $<_{A}$-successor of $f\left(x^{\prime}\right)$.
From the Lemma it follows that every finite subset of f belongs to every $L I_{p}\left(\left(\omega \cdot 2,<^{\prime}\right.\right.$), $\mathfrak{A})$, and therefore f is an elementary embedding from $\left(N,<^{\prime}\right)$ into \mathfrak{A}.

From the last theorem it follows that for every model \mathfrak{A} of φ, for every sentence ψ, if $(\mathbb{N},<) \oplus(\mathbb{N},<) \models \psi$ then $\mathfrak{A} \mid=\psi$, and therefore φ is an axiom for the structure $(\mathbb{N},<) \oplus(\mathbb{N},<)$.

2 Finite structures $\mathfrak{A}_{m}=(\{0, \ldots, m-1\},<)$

Consider structures $\mathfrak{A}_{m}=\left(A_{m},<\right)$, where $A_{m}=\{0, \ldots, m-1\}$.
We want to prove that for all $m, n \geq 1$ and for all $p \geq 0$,

$$
\mathfrak{A}_{m} \equiv{ }_{p} \mathfrak{A}_{n} \text { if and only if }\left((m=n) \text { or }\left(m \neq n \text { and } 2^{p}-2<\min (m, n)\right)\right) .
$$

Proof:
(\Rightarrow) We want to prove that if $m<n$ and $2^{p}-2 \geq m$, then $\mathfrak{A}_{m} \not \equiv_{p} \mathfrak{A}_{n}$, finding sentence φ_{m}, with $Q D\left(\varphi_{m}\right) \leq p$ and such that $\mathfrak{A}_{n} \neq \varphi_{m}$, but $\mathfrak{A}_{m} \neq \varphi_{m}$.

We can easily define sentences DiffEl l_{m}, such that $\mathfrak{A}_{m} \vDash \neg \operatorname{DiffEl} l_{m}$ and $\mathfrak{A}_{n}=\operatorname{Diff} E l_{m}$ for all $n>m$, (DiffEl l_{m} says 'there exist at least $m+1$ different elements in the structure'):

$$
\begin{aligned}
& \text { DiffEl } E l_{0} \equiv \exists x_{0}\left(x_{0}=x_{0}\right) \\
& \text { DiffEl } E l_{m+1} \equiv \exists x_{0} \ldots \exists x_{m+1}\left(x_{0} \sqsubset x_{1} \wedge x_{1} \sqsubset x_{2} \wedge \ldots \wedge x_{m} \sqsubset x_{m+1}\right) \text {, }
\end{aligned}
$$

but $Q D\left(\operatorname{Diff} E l_{m}\right)=m+1$. It suffices to find sentences φ_{m}, such that:
(a) $Q D\left(\varphi_{m}\right)=\mu p\left[2^{p}-2 \geq m\right]$; and (b) $\mathfrak{A}_{n} \vDash \varphi_{m} \leftrightarrow \operatorname{Diff} E l_{m}$, for all n.

Now define φ_{m} by induction on m as follows:
$\varphi_{0} \equiv \psi_{0} \equiv \exists x_{0}\left(x_{0}=x_{0}\right)$ and $\varphi_{1} \equiv \psi_{1} \equiv \exists x_{0} \exists x_{1}\left(x_{0} \sqsubset x_{1}\right)$, and for $m \geq 0$,
$\varphi_{m+2} \equiv \exists x\left(\varphi_{\left[\frac{m}{2}\right]}^{x}(x) \wedge \varphi_{\left[\frac{m+1}{2}\right]}^{x}(x)\right)$, i.e.
$\varphi_{2 k+2} \equiv \exists x\left(\varphi_{k}^{x}(x) \wedge \varphi_{k}^{x}(x)\right)$
$\varphi_{2 k+3} \equiv \exists x\left(\varphi_{k}^{x}(x) \wedge \varphi_{k+1}^{x}(x)\right)$
It is easy to check (b), i.e. $\mathfrak{A}_{n}=\varphi_{m} \leftrightarrow \operatorname{DiffEl} l_{m}$, for all n.
We prove (a), i.e. $Q D\left(\varphi_{m}\right)=\mu p\left[2^{p}-2 \geq m\right]$, by induction on m :

- for $m=0$ and $m=1$,
$Q D\left(\varphi_{0}\right)=1=\mu p\left[2^{p}-2 \geq 0\right]$ and $Q D\left(\varphi_{1}\right)=2=\mu p\left[2^{p}-2 \geq 1\right]$.
- IH for smaller than $m \geq 2$.

Remark:
$Q D\left(\varphi_{m}\right) \leq Q D\left(\varphi_{m+1}\right)$.

1. $m=2 k+2$. Let $p:=Q D\left(\varphi_{2 k+2}\right)$ and $q:=Q D\left(\varphi_{k}\right)$. Then $p=q+1$. From IH it follows that $2^{q}-2 \geq k$ and therefore $2^{q} \geq k+2$, then $2^{p}=2^{q+1} \geq 2 k+2+2=m+2$, i.e. $2^{p} \geq m+2$.
It remains to prove that p is the least, i.e. $p=\mu t\left[2^{t}-2 \geq m\right]$. Assume there is smaller p^{\prime} s.t. $2^{p^{\prime}} \geq m+2$. Then $p^{\prime} \leq q$ and therefore $2^{q} \geq$ $m+2=2 k+4$, then $2^{q-1}-2 \geq k$, but from IH (for $k<m$) q is the least such that $2^{q}-2 \geq k$, contradiction.
2. $m=2 k+3$. Let $p:=Q D\left(\varphi_{2 k+3}\right)$ and $q:=Q D\left(\varphi_{k+1}\right)$. Then $p=q+1$. From IH it follows that $2^{q}-2 \geq k+1$, i.e $2^{q} \geq k+3$, then $2^{p}=$ $2^{q+1} \geq 2 k+6=m+3$, then $2^{p} \geq m+2$. Assume there is smaller p^{\prime} s.t. $2^{p^{\prime}} \geq m+2$. Again $p^{\prime} \leq q$ and therefore $2^{q} \geq m+2=2 k+5$, then $2^{q} \geq 2 k+6$, then $2^{q-1} \geq k+3$, i.e. $2^{q-1}-2 \geq k+1$, but from IH (for
$k+1<m)$ it follows that q is the least with this property, which is a contradiction.

Therefore if $m \neq n$ and $2^{p}-2 \geq \min (m, n)$ then $\mathfrak{A}_{m} \not \equiv{ }_{p} \mathfrak{A}_{n}$.
(\Leftarrow) We want to prove that if $m<n$ and $2^{p} \leq 1+m$, then $\mathfrak{A}_{m} \equiv_{p} \mathfrak{A}_{n}$, which is equivalent to $\emptyset \in L I_{p}\left(\mathfrak{A}_{m}, \mathfrak{A}_{n}\right)$. By induction on $m \geq 1$.

- $m=1$.

Since $2^{p} \leq 2,0 \leq p \leq 1$ and then $\mathfrak{A}_{1} \equiv_{p} \mathfrak{A}_{n}$, for $n>1$.

- $m>1$. IH for smaller than m.

We have to prove that:

- for all $a \in A_{m}$ there is $b \in A_{n}$, such that $\{(a, b)\} \in L I_{p-1}\left(\mathfrak{A}_{m}, \mathfrak{A}_{n}\right) ;$
- for all $b \in A_{n}$ there is $a \in A_{m}$, such that $\{(a, b)\} \in L I_{p-1}\left(\mathfrak{A}_{m}, \mathfrak{A}_{n}\right)$.

For the first we consider different cases for a :

1. for $0 \leq a \leq \frac{m-1}{2}$, take $b=a$.
$\{(a, a)\} \in L I_{p-1}^{2}\left(\mathfrak{A}_{m}, \mathfrak{A}_{n}\right)$ if and only if $\emptyset \in L I_{p-1}\left(\mathfrak{A}_{m-a-1}, \mathfrak{A}_{n-a-1}\right)$, which follows from $2^{p-1} \leq m-a$, (from IH for $m-a-1<m$).
Assume $2^{p-1}>m-a$.
Since $2^{p} \leq m+1,2^{p-1} \leq \frac{m+1}{2}=\frac{m}{2}+\frac{1}{2}$. Then $\frac{m+1}{a}>m-a$.
Therefore $m+1>2 m-2 a$, then $2 a>m-1$, then $a>\frac{m-1}{2}$, which is a contradiction.
2. for $\frac{m-1}{2} \leq a \leq m-1$, take $b=a+n-m$,
i.e. such that the distances $d(a, m-1)=d(b, n-1), b \in A_{n}$, since $0 \leq a+n-m \leq n-1$. Again $\{(a, b)\} \in L I_{p-1}\left(\mathfrak{A}_{m}, \mathfrak{A}_{n}\right)$ if and only if $\emptyset \in L I_{p-1}\left(\mathfrak{A}_{a}, \mathfrak{A}_{b}\right)$, which follows from $2^{p-1} \leq a+1$, (from IH for $a<m)$.
Assume $2^{p-1}>a+1$, then $2^{p}>2 a+2$. Since $a \geq \frac{m-1}{2}, 2 a \geq m-1$. Therefore $2^{p}>m-1+2=m+1$, which is a contradiction.

In order to prove the second, we consider cases for b :

1. for $0 \leq b \leq \frac{m-1}{2}$, take $a=b$.

The proof is the same as in the case for a.
2. for $n-1-\frac{m-1}{2} \leq b \leq n-1$, take $a=b+m-n$, i.e. such that $d(a, m-1)=d(b, n-1)$. Then $\frac{m-1}{2} \leq a \leq m-1$ and the proof is the same as in the case for a.
3. for $\frac{m-1}{2}<b<n-1-\frac{m-1}{2}$, take $a=\left[\frac{m-1}{2}\right] \in A_{m}$. Then $m-2 \leq 2 a \leq m-1, a<b$ and $m-a-1 \leq n-b-1$, $m \leq 2 b \leq 2 n-m-1$.
Therefore $\{(a, b)\} \in L I_{p-1}\left(\mathfrak{A}_{m}, \mathfrak{A}_{n}\right)$ if and only if

$$
\emptyset \in L I_{p-1}\left(\mathfrak{A}_{a}, \mathfrak{A}_{b}\right) \text { and } \emptyset \in L I_{p-1}\left(\mathfrak{A}_{m-a-1}, \mathfrak{A}_{n-b-1}\right)
$$

which follows from ($2^{p-1} \leq a+1$ and $2^{p-1} \leq m-a$),
since IH for $a+1<m$ and IH for $m-a-1<m$.
Assume $2^{p-1}>a+1$.
Then $2^{p}>2 a+2>=m$. But $2^{p} \leq m+1$, then $m+1 \geq 2^{p}>m$.
Then $2^{p}=m+1$ and $\left[\frac{m-1}{2}\right]=\frac{m-1}{2}$, then $2 a=m-1$, therefore $2^{p}>2 a+2=m+1$, which is a contradiction.
Assume $2^{p-1}>m-1$.
Then $2^{p}>2 m-2 a \geq 2 m-m+1=m+1$, i.e. $2^{p}>m+1$, but $2^{p} \leq m+1$, which is a contradiction.
Therefore $\left(2^{p-1} \leq a+1\right.$ and $\left.2^{p-1} \leq m-a\right)$.

3 The order types $\mathfrak{B}_{m}=(\omega \cdot m,<)$

Consider structures $\mathfrak{B}_{m}=\left(B_{m},<\right)$ with $m \geq 1$ and $B_{m}=\omega \cdot m=\left\{k_{i} \mid k \in \mathbb{N}\right.$ \& $0 \leq i \leq m-1\}$ and $k_{i}<l_{j} \Leftrightarrow(i<j$ or $i=j \& k<l)$.
We want to prove that for all $m, n \geq 1$ and for all $p \geq 0$,

$$
\mathfrak{B}_{m} \equiv_{p} \mathfrak{B}_{n} \text { if and only if }\left((m=n) \text { or }\left(m \neq n \text { and } 2^{p-2} \leq \min (m, n)\right)\right)
$$

Proof:
(\Rightarrow) We want to prove that if $m<n$ and $2^{p-2}>m$, then $\mathfrak{B}_{m} \not \equiv_{p} \mathfrak{B}_{n}$, finding sentence ψ_{m}, with $Q D\left(\psi_{m}\right) \leq p$ and such that $\mathfrak{B}_{n} \neq \psi_{m}$, but $\mathfrak{B}_{m} \neq \varphi_{m}$. Define a formula $W \operatorname{ip}(x)$ with $Q D(W i p)=2$, which says that the element x does not have immediate predecessor, but has a predecessor, as follows:

$$
W i p(x) \equiv \exists y(y \sqsubset x) \wedge \forall y(y \sqsubset x \rightarrow \exists z(y \sqsubset z \wedge z \sqsubset x))
$$

Again we can define sentences $\operatorname{DiffWipEl} l_{m}$, for $m \geq 1$, such that $\mathfrak{B}_{m}=\neg$ DiffWipEl l_{m} and $\mathfrak{B}_{n}=$ DiffWipEl $_{m}$ for all $n>m$, (DiffWipEl l_{m} says "there exist at least m different Wip-elements"):

$$
\operatorname{DiffWipEl} l_{m} \equiv \exists x_{0} \ldots \exists x_{m-1}\left(W i p\left(x_{0}\right) \wedge \ldots \wedge W i p\left(x_{m-1}\right) \wedge x_{0} \sqsubset \ldots \sqsubset x_{m-1}\right)
$$

$Q D\left(\right.$ DiffWipEl $\left.l_{m}\right)=m+2$. It suffices to find sentences ψ_{m}, such that (a) $Q D\left(\psi_{m}\right)=$ $\mu p\left[2^{p-2}-1 \geq m\right]$ and (b) $\mathfrak{B}_{n}=\psi_{m} \leftrightarrow$ DiffWipEl l_{m}, for all n.

We define ψ_{m} by induction on $m \geq 1$,

$$
\begin{array}{|ll}
\psi_{1} \equiv \exists x_{0} W i p\left(x_{0}\right), & Q D\left(\psi_{1}\right)=3 \\
\psi_{2} \equiv \exists x_{0} \exists x_{1}\left(x_{0} \sqsubset x_{1} \wedge W i p\left(x_{0}\right) \wedge \operatorname{Wip}\left(x_{1}\right)\right), & Q D\left(\psi_{2}\right)=4 .
\end{array}
$$

for $m>1, \varphi_{m+1} \equiv \exists\left(W i p(x) \wedge \psi_{\left[\frac{m}{2}\right]}^{x} \wedge \psi_{\left[\frac{m+1}{2}\right]}^{x}\right)$, i.e.

$$
\left\lvert\, \begin{aligned}
& \psi_{2 k+1} \equiv \exists x\left(\operatorname{Wip}(x) \wedge \psi_{k}{ }^{x}(x) \wedge \psi_{k}^{x}(x)\right) \\
& \psi_{2 k+2} \equiv \exists x\left(\operatorname{Wip}(x) \wedge \psi_{k}^{x}(x) \wedge \psi_{k+1}^{x}(x)\right)
\end{aligned} \quad\right. \text { for } k \geq 1
$$

It is easy to check (b), i.e. $\mathfrak{B}_{n} \vDash \psi_{m} \leftrightarrow$ DiffWipEl l_{m}, for all n.
We prove (a), i.e. $Q D\left(\psi_{m}\right)=\mu p\left[2^{p-2}-1 \geq m\right]$, by induction on m :

- $m=1$

$$
\mu p\left[2^{p-2}-1 \geq 1\right]=\mu p\left[2^{p-2} \geq 2\right]=\mu p[p-2 \geq 1]=3=Q D\left(\psi_{1}\right)
$$

- $m=2$
$\mu p\left[2^{p-2}-1 \geq 2\right]=\mu p\left[2^{p-2} \geq 3\right]=\mu p[p-2 \geq 2]=4=Q D\left(\psi_{2}\right)$.
- $m>2$. IH for smaller than m.

Since the function $f(p)=\mu p\left[2^{p-2} \geq m\right]$ is monotone, we have:

1. $m=2 k+1$, for $k \geq 1$.
$Q D\left(\psi_{2 k+1}\right)=1+Q D\left(\psi_{k}\right) \stackrel{I H}{=} 1+\mu q\left[2^{q-2}-1 \geq k\right]=1+\mu q\left[2^{q-2} \geq\right.$ $k+1]=\mu p\left[2^{p-3} \geq k+1\right]=\mu p\left[2^{p-2} \geq 2 k+2\right]=\mu p\left[2^{p-2}>2 k+1\right]=$ $\mu p\left[2^{p-2} \geq 2 k+1\right]$.
2. $m=2 k+2$, for $k \geq 1$.

$$
\begin{aligned}
& Q D\left(\psi_{2 k+2}\right)=1+Q D\left(\psi_{k+1}\right) \stackrel{I H}{=} 1+\mu q\left[2^{q-2}-1 \geq k+1\right]=1+\mu q\left[2^{q-2} \geq\right. \\
& k+2]=\mu p\left[2^{p-3} \geq k+2\right]=\mu p\left[2^{p-2} \geq 2 k+4\right]=\mu p\left[2^{p-2}>2 k+3\right]= \\
& \mu p\left[2^{p-2} \geq 2 k+3\right]=\mu p\left[2^{p-2} \geq m+1\right] .
\end{aligned}
$$

Therefore if $n \neq m$ and $2^{p-2}>m$, then $\mathfrak{B}_{m} \not \equiv p \mathfrak{B}_{n}$.
(\Leftarrow) We want to prove that if $m<n$ and $2^{p-2} \leq m$, then $\mathfrak{B}_{m} \equiv_{p} \mathfrak{B}_{n}$, which is equivalent to $\emptyset \in L I_{p}\left(\mathfrak{B}_{m}, \mathfrak{B}_{n}\right)$. By induction on $m \geq 1$.

- $m=1$.

Since $2^{p-2} \leq 1,0 \leq p \leq 2$ and then $\mathfrak{B}_{1} \equiv_{p} \mathfrak{B}_{n}$, for $n>1$.

- $m>1$. IH for smaller than m.

Let $2^{p-2} \leq m$. We have to prove that:

- for all $a \in \omega \cdot m$ there is $b \in \omega \cdot n$, such that $\{(a, b)\} \in L I_{p-1}\left(\mathfrak{B}_{m}, \mathfrak{B}_{n}\right)$;
- for all $b \in \omega \cdot m$ there is $a \in \omega \cdot n$, such that $\{(a, b)\} \in L I_{p-1}\left(\mathfrak{B}_{m}, \mathfrak{B}_{n}\right)$.

First we prove that for the wip-elements, $0_{i}^{\mathfrak{B}_{m}}$ and $0_{j}^{\mathfrak{B}_{n}}$, with $0<i \leq m-1$ and $0<j \leq n-1$, i.e. those elements for which $\mathfrak{B}_{m} \neq W i p\left[0_{i}^{\mathfrak{B}_{m}}\right]$. Using that, the winning strategy for the second player in p moves, for the other elements of $\omega \cdot m$ and $\omega \cdot n$ can be expressed, since:
$\left\{\left(0_{0}^{\mathfrak{B}_{m}}, 0_{0}^{\mathfrak{B}_{n}}\right)\right\} \in L I_{p-1}\left(\mathfrak{B}_{m}, \mathfrak{B}_{n}\right)$ if and only if $\emptyset \in L I_{p-1}\left(\mathfrak{B}_{m}, \mathfrak{B}_{n}\right) ;$
And for $a \in \mathfrak{B}_{m}$, such that $0_{i}^{\mathfrak{B}_{m}} \leq a<0_{i+1}^{\mathfrak{B}_{m}}$ and $b \in \mathfrak{B}_{n}$, such that $0_{j}^{\mathfrak{B}_{n}} \leq$ $a<0_{j+1}^{\mathfrak{B}_{n}}$ and $d\left(0_{i}^{\mathfrak{B}_{m}}, a\right)=d\left(0_{j}^{\mathfrak{B}_{n}}, b\right)$,
$\{(a, b)\} \in L I_{p-1}\left(\mathfrak{B}_{m}, \mathfrak{B}_{n}\right)$ if and only if $\left\{\left(0_{i}^{\mathfrak{B}_{m}}, 0_{j}^{\mathfrak{B}_{n}}\right)\right\} \in L I_{p-1}\left(\mathfrak{B}_{m}, \mathfrak{B}_{n}\right)$.

So first we consider different cases for $a=0_{i}^{\mathfrak{B}_{m}} \in \mathfrak{B}_{m}$, for which we take $b=0_{j}^{\mathfrak{B}_{n}} \in \mathfrak{B}_{n}$, as follows:

1. For $1 \leq i \leq\left[\frac{m-1}{2}\right]$, take $j=i$. We have $1 \leq 2 i \leq m-1$ and $b=0_{i}^{\mathfrak{B}_{n}}$.

Therefore $\{(a, b)\} \in L I_{p-1}\left(\mathfrak{B}_{m}, \mathfrak{B}_{n}\right)$ if and only if $\emptyset \in L I_{p-1}\left(\mathfrak{B}_{m-i}, \mathfrak{B}_{n-i}\right)$, which follows from $2^{p-3} \leq m-i$, since IH for $m-i<m$.
Assume $2^{p-3}>m-i$, i.e. $m-i+1 \leq 2^{p-3} \leq \frac{m}{2}$, then $2 m-2 i+2 \leq m$, then $m+2 \leq 2 i \leq m-1$, which is a contradiction.
2. For $\left[\frac{m-1}{2}\right]<i \leq m-1$, take $j=n-m+i$.

We have $m \leq 2 i$ and $b=0_{n-m+i}^{\mathfrak{B}_{n}}$. Therefore $\{(a, b)\} \in L I_{p-1}\left(\mathfrak{B}_{m}, \mathfrak{B}_{n}\right)$ if and only if $\emptyset \in L I_{p-1}\left(\mathfrak{B}_{i}, \mathfrak{B}_{j}\right)$, which follows from $2^{p-3} \leq i$, since IH for $i<m$.
Assume $2^{p-3}>i$, i.e. $i+1 \leq 2^{p-3}$, but $2^{p-2} \leq m$. Then $2 i+2 \leq 2^{p-2} \leq$ m, i.e. $m+2 \leq m$, contradiction.

Now consider cases for $b=0_{j}^{\mathfrak{B}_{n}} \in \mathfrak{B}_{n}$, for which we take $a=0_{i}^{\mathfrak{B}_{m}} \in \mathfrak{B}_{m}$, as follows (the proof for the first two cases is the same):

1. For $1 \leq j \leq\left[\frac{m-1}{2}\right]$, take $i=j$.
2. For $\left[\frac{m-1}{2}\right]+n-m<j \leq n-1$, take $i=j-n+m$.
3. For $\left[\frac{m-1}{2}\right]+1 \leq j \leq n-m+\left[\frac{m-1}{2}\right]$, take $i=\left[\frac{m-1}{2}\right]+1$.

Then we have $m+1 \leq 2 j \leq 2 n-m-2$ and $m \leq 2 i \leq m+1$.
$\{(a, b)\} \in L I_{p-1}\left(\mathfrak{B}_{m}, \overline{\mathfrak{B}}_{n}\right)$ if and only if

$$
\left(\emptyset \in L I_{p-1}\left(\mathfrak{B}_{i}, \mathfrak{B}_{j}\right) \text { and } \emptyset \in L I_{p-1}\left(\mathfrak{B}_{m-i}, \mathfrak{B}_{n-j}\right)\right)
$$

Since $j<n-m+\left[\frac{m-1}{2}\right]+1, j<n+i-m$. Then $m-i<n-j$. We have $i \leq j$.
It suffices to prove ($2^{p-3} \leq i$ and $\left.2^{p-3} \leq m-i\right)$, since from IH for $i<m$ and $m-i<m$ it will follow that $\emptyset \in L I_{p-1}\left(\mathfrak{B}_{m-i}, \mathfrak{B}_{n-j}\right)$.
Assume $2^{p-3}>i$, then $2^{p-2} \geq 2 i+2 \geq m+2$, but $2^{p-2} \leq m$, then $m \geq m+2$, contradiction.
Assume $2^{p-3}>m-i$. Then $2^{p-2} \geq 2 m-2 i+2 \geq m+1$. But $2^{p-2} \leq m$, then $m \geq m+1$, contradiction.

4 The order types $\mathfrak{C}_{m, q}=(\omega \cdot m+q,<)$

Consider structures $\mathfrak{C}_{m, q}=\left(C_{m, q},<\right)$, where for $m \geq 1$ and $q \geq 0$, $C_{m, q}=\omega \cdot m+q$, and $\omega \cdot m+q=(\omega \cdot m) \cup\{\omega \cdot m, \omega \cdot m+1, \ldots \omega \cdot m+(q-1)\}$. The elements of a structure $\mathfrak{C}_{m, q}$ will be denoted $k_{i}^{\mathfrak{C}_{m, q}}$ for $k_{i}^{\mathfrak{C}_{m, q}} \in \omega \cdot m$, i.e. $0 \leq i \leq m-1$, and $k^{\mathfrak{C}_{m, q}}$ for $\omega \cdot m+k$. Therefore $k_{i}^{\mathfrak{C}_{m, q}}<l_{j}^{\mathfrak{C}_{m, q}} \Leftrightarrow(i<j$ or $i=j \& k<l)$, and $k_{i}^{\mathfrak{C}_{m, q}}<k^{\mathfrak{C}_{m, q}}$, for all $k^{\mathfrak{C}_{m, q}}$ and all $k_{i}^{\mathfrak{C}_{m, q}} \in \omega \cdot m$.

Having two structures $\mathfrak{C}_{m, q}$ and $\mathfrak{C}_{n, r}$, we want to find for which $p, \mathfrak{C}_{m, q} \equiv{ }_{p} \mathfrak{C}_{n, r}$.
4.1. First consider the case $m=n$ and $q<r$. We want to prove

$$
\mathfrak{C}_{m, q} \equiv_{p} \mathfrak{C}_{m, r} \Leftrightarrow(q=0 \text { and } p \leq 1) \text { or }\left(q>0 \text { and } 2^{p}<q+5\right) .
$$

Proof:
(\Rightarrow) We will need the following formulas:
$G s t(x) \equiv \forall y(y=x \vee y \sqsubset x), " x$ is the greatest element"; $Q D(G s t)=1$.
$W_{i p}(x) \equiv \forall y(y \sqsubset x \rightarrow \exists z(y \sqsubset z \sqsubset x)), " x$ has no immediate predecessor"; $Q D\left(W i p^{*}\right)=2$.
$\operatorname{Tail}(x) \equiv \forall y\left(x \sqsubseteq y \rightarrow \neg W i p^{*}(y)\right)$, "all the elements greater than or equal to x have immediate predecessor"; $Q D($ Tail $)=3$.
$\operatorname{Diff} E l_{q}$, defined in Section 2, "there are at least $q+1$ different elements"; we have defined formulas φ_{q}, such that $\mathfrak{A}_{t}=\varphi_{q} \leftrightarrow \operatorname{DiffEl} l_{q}$, for all t, and $Q D\left(\varphi_{q}\right)=$ $\mu p\left[2^{p} \geq q+2\right]$. But still $\mathfrak{C}_{s, t}=\varphi_{q} \leftrightarrow \operatorname{DiffEl} l_{q}$, for all s and t, so here we may assume that

$$
Q D\left(D i f f E l_{q}\right)=\mu p\left[2^{p} \geq q+2\right]
$$

We define formulas Ψ_{q} by induction on q as follows:

$$
\begin{array}{lll}
\Psi_{0} \equiv \exists x G \operatorname{st}(x), & Q D\left(\Psi_{0}\right)=2 \\
\Psi_{q} \equiv \forall x\left(\text { Wip }^{*}(x) \rightarrow \operatorname{DiffEl_{q-1}^{x}(x)),}\right. & \text { for } 1 \leq q \leq 3, & Q D\left(\Psi_{q}\right)=3 \\
\Psi_{q} \equiv \exists x\left(\Psi_{\left[\frac{q}{2}\right]-2}^{x}(x) \wedge \operatorname{DiffEl_{[\frac {q+1}{2}]}^{x}(x)\wedge \operatorname {Tail}(x)),}\right. & \text { for } q>3
\end{array}
$$

For these formulas we can prove the following properties:
(i) $Q D\left(\Psi_{q}\right)=\mu p\left[2^{p} \geq q+5\right]$, for $q>0$.
(ii) $\mathfrak{C}_{m, q} \not \neq \Psi_{q}$, but for all s and all $t>q, \mathfrak{C}_{s, t} \mid=\Psi_{q}$.
(i) The proof is by induction on q, using $\left[\frac{q}{2}\right]+\left[\frac{q+1}{2}\right]=q$.

- $1 \leq q \leq 3 ; Q D\left(\Psi_{q}\right)=3$ and $\mu p\left[2^{p} \geq q+5\right]=3$ for $1 \leq q \leq 3 ;$
- $q>3$;

IH for $t<q$, i.e. for all t, such that $0<t<q, Q D\left(\Psi_{t}\right)=\mu p\left[2^{p} \geq t+5\right]$.
Therefore $Q D\left(\Psi_{q}\right)=1+\max \left\{Q D\left(\Psi_{\left[\frac{q}{2}\right]-2}\right), Q D\left(\right.\right.$ DiffEl $\left._{\left[\frac{q+1}{2}\right]}\right), Q D($ Tail $\left.)\right\}$.
For $q>3,0 \leq\left[\frac{q}{2}\right]-2<q$. Therefore
(for $q=4$ we cannot apply the IH , but the following equalities are still valid)

$$
\begin{aligned}
Q D\left(\Psi_{q}\right) & =1+\max \left\{\mu p\left[2^{p} \geq\left[\frac{q}{2}\right]+3\right], \mu p\left[2^{p} \geq\left[\frac{q+1}{2}\right]+2\right], 3\right\}= \\
& =1+\mu p\left[2^{p} \geq\left[\frac{q}{2}\right]+3\right]=\mu p\left[2^{p-1} \geq\left[\frac{q}{2}\right]+3\right]= \\
& =\mu p\left[2^{p} \geq 2 \cdot\left[\frac{q}{2}\right]+6\right]=\mu p\left[2^{p} \geq 2\left[\frac{q}{2}\right]+5\right]= \\
& =\mu p\left[2^{p} \geq q+5\right] .
\end{aligned}
$$

(ii) The proof is by induction on q.
(\Leftarrow) The case $q=0$ and $p \leq 1$ is easy to check.
If $q>0$ and $2^{p} \leq q+4$ we have to prove that $\emptyset \in L I_{p}\left(\mathfrak{C}_{m, q}, \mathfrak{C}_{m, r}\right)$, i.e. there is a winning strategy for the second player for a game with p moves. The proof is by induction on q.

- $q=1$, Therefore $p \leq 2$. It is easy to check that $\emptyset \in L I_{p}\left(\mathfrak{C}_{m, q}, \mathfrak{C}_{m, r}\right)$.
- $q>1$,

IH for $t<q$, i.e. for all t, such that $0<t<q$, if $2^{p}<t+5$, then $\emptyset \in$ $L I_{p}\left(\mathfrak{C}_{m, t}, \mathfrak{C}_{n, r}\right)$, where $m=n$ and $t<r$.
Let $2^{p} \leq q+4$.
We shall prove
(a) $\forall a \in C_{m, q} \exists b \in C_{m, r}$ s.t. $\{(a, b)\} \in L I_{p-1}\left(\mathfrak{C}_{m, q}, \mathfrak{C}_{m, r}\right)$; and
(b) $\forall b \in C_{m, r} \exists a \in C_{m, q}$ s.t. $\{(a, b)\} \in L I_{p-1}\left(\mathfrak{C}_{m, q}, \mathfrak{C}_{m, r}\right)$.

The cases $a=k_{i}^{\mathfrak{C}_{m, q}}$ where $0 \leq i \leq m-1$, and $b=k_{i}^{\mathfrak{C}_{m, r}}$ where $0 \leq i \leq$ $m-1$ for (a) and (b) resp. (the first player chooses element from the part $\omega \cdot m$ and the second player answers with the same element from the other structure) are trivial, since $\left\{\left(k_{i}^{\mathfrak{C}_{m, q}}, k_{i}^{\mathfrak{C}_{m, q}}\right)\right\} \in L I_{p-1}\left(\mathfrak{C}_{m, q}, \mathfrak{C}_{m, r}\right)$ if and only if $\emptyset \in L I_{p-1}\left(\mathfrak{C}_{m, q}, \mathfrak{C}_{m, r}\right)$.
Consider the case when the first player chooses element $\omega \cdot m+i$ from the tail, i.e. an element a from the set $\left\{0^{\mathfrak{C}_{m, q}} \ldots(q-1)^{\mathfrak{C}_{m, q}}\right\}$ or b from $\left\{0^{\mathfrak{C}_{m, r}} \ldots(r-\right.$ 1) $\left.{ }^{\mathfrak{C}_{m, r}}\right\}$.

- For $a=k^{\mathfrak{C}_{m, q}}$ such that $0 \leq k \leq\left[\frac{q}{2}\right]-2$, take $b=k^{\mathcal{C}_{m, r}} \in C_{m, r}$.

Then we have $\{(a, b)\} \in L I_{p-1}\left(\mathfrak{C}_{m, q}, \mathfrak{C}_{m, r}\right)$ if and only if $\left\{\left(k^{\mathfrak{C}_{m, q}}, k^{\mathfrak{C}_{m, r}}\right)\right\} \in L I_{p-1}\left(\mathfrak{C}_{m, q}, \mathfrak{C}_{m, r}\right)$ iff $\emptyset \in L I_{p-1}\left(\mathfrak{A}_{q-k-1}, \mathfrak{A}_{r-k-1}\right)$, where \mathfrak{A}_{l} denote the finite structures $(\{0, \ldots, l-1\},<)$, defined in Section 2 . We have proved that $\emptyset \in L I_{p-1}\left(\mathfrak{A}_{q-k-1}, \mathfrak{A}_{r-k-1}\right)$ iff $2^{p-1} \leq$ $1+(q-k-1)$, i.e. iff $2^{p-1} \leq q-k$.
Since $0 \leq k \leq\left[\frac{q}{2}\right]-2$ and $2^{p} \leq q+4$, we have $2 k \leq q-4$, then $2 q-2 k \geq q+4 \geq 2^{p}$, therefore $2^{p-1} \leq q-k$.

For $b=l^{\mathfrak{C}_{m, r}}$, such that $0 \leq l \leq\left[\frac{q}{2}\right]-2$, take $a=l^{\mathfrak{C}_{m, q}}$, and we have proved $\left\{\left(l^{\mathfrak{C}_{m, q}}, l^{\mathfrak{C}_{m, r}}\right)\right\} \in L I_{p-1}\left(\mathfrak{C}_{m, q}, \mathfrak{C}_{m, r}\right)$.

- In the cases where the distance between the chosen element and the end of the structure (the greatest element) is less than or equal to $\left[\frac{q+1}{2}\right]$, the second player chooses and element having the same distance to the greatest element.

For $a=k^{\mathfrak{C}_{m, q}}$, such that $\left[\frac{q}{2}\right]-1 \leq k \leq q-1$, take $b=l^{\mathfrak{C}_{m, q}}$, such that $l=r-q+k$. Therefore $\{(a, b)\} \in L I_{p-1}\left(\mathfrak{C}_{m, q}, \mathfrak{C}_{m, r}\right)$ if and only if $\left\{\left(k^{\mathfrak{C}_{m, q}}, l^{\mathfrak{C}_{m, r}}\right)\right\} \in L I_{p-1}\left(\mathfrak{C}_{m, q}, \mathfrak{C}_{m, r}\right)$ if and only if
$\left(\emptyset \in L I_{p-1}\left(\mathfrak{C}_{m, k}, \mathfrak{C}_{m, l}\right)\right.$ and $\left.\emptyset \in L I_{p-1}\left(\mathfrak{A}_{q-k-1}, \mathfrak{A}_{r-l-1}\right)\right)$ iff $\emptyset \in L I_{p-1}\left(\mathfrak{C}_{m, k}, \mathfrak{C}_{m, l}\right)$, since $q-k-1=r-l-1$.
Since $\left[\frac{q}{2}\right]-1 \leq k \leq q-1$ and $2^{p} \leq q+4$, we have $2 k \geq q-3$, i.e. $2\left[\frac{q}{2}\right] \geq q-1$, then $2^{p} \leq q+4 \leq 2 k+7$, i.e. $2^{p} \leq 2 k+6$, then $2^{p-1} \leq$ $k+3<k+4$. Then from the IH it follows that $\emptyset \in L I_{p-1}\left(\mathfrak{C}_{m, k}, \mathfrak{C}_{m, l}\right)$.

For $b=l^{\mathfrak{C}_{m, r}}$, such that $r-\left[\frac{q+1}{2}\right]-1 \leq l \leq r-1$, take $a=k^{\mathfrak{C}_{m, q}}$, where $k=l-r+q$. Therefore $\left[\frac{q}{2}\right]-1 \leq k \leq q-1$, and we have already proved that $\left\{\left(k^{\mathfrak{C}_{m, q}}, l^{\mathfrak{C}_{m, r}}\right)\right\} \in L I_{p-1}\left(\mathfrak{C}_{m, q}, \overline{\mathfrak{C}}_{m, r}\right)$.

- For $b=l^{\mathfrak{C}_{m, r}}$, such that $\left[\frac{q}{2}\right]-1 \leq l \leq r-\left[\frac{q+1}{2}\right]-2$, take $a=k^{\mathfrak{C}_{m, q}}$, where $k=\left[\frac{q+1}{2}\right]-2$.
Therefore $\{(a, b)\} \in L I_{p-1}\left(\mathfrak{C}_{m, q}, \mathfrak{C}_{m, r}\right)$ if and only if $\left\{\left(k^{\mathfrak{C}_{m, q}}, l^{\mathfrak{C}}{ }^{m, r}\right)\right\} \in L I_{p-1}\left(\mathfrak{C}_{m, q}, \mathfrak{C}_{m, r}\right)$ if and only if
$\left(\emptyset \in L I_{p-1}\left(\mathfrak{C}_{m, k}, \mathfrak{C}_{m, l}\right)\right.$ and $\left.\emptyset \in L I_{p-1}\left(\mathfrak{A}_{q-k-1}, \mathfrak{A}_{r-l-1}\right)\right)$ iff
($2^{p-1} \leq k+4$ and $\left.2^{p-1} \leq q-k\right)$, by IH and the result in Section 2, since $k<l$ and $q-k-1<r-l-1$.

1) $2^{p-1} \leq q-k=\left[\frac{q}{2}\right]+2$ if and only if $2^{p} \leq 2\left[\frac{q}{2}\right]+4$ iff $2^{p} \leq q+4$, the latter is our assumption.
2) Since $2^{p} \leq q+4$, we have $2^{p} \leq 2\left[\frac{q+1}{2}\right]+4$, therefore $2^{p-1} \leq\left[\frac{q+1}{2}\right]+2 \leq$ $k+4$.
Therefore $\{(a, b)\} \in L I_{p-1}\left(\mathfrak{C}_{m, q}, \mathfrak{C}_{m, r}\right)$.
This is the end of the proof for the first case, where $m=n$ and $q<r$.
4.2. Now consider the case $m \leq n$ and $q=r$. We want to prove

$$
\mathfrak{C}_{m, q} \equiv_{p} \mathfrak{C}_{n, q} \Leftrightarrow\left(2^{p-2} \leq m+1 \&\left(q \leq 3 \Leftrightarrow 2^{p-2} \leq m\right)\right)
$$

Proof:
(\Rightarrow) Let $\mathfrak{C}_{m, q} \equiv_{p} \mathfrak{C}_{n, q}$, for $m<n$, and assume that $m+1<2^{p-2}$ and $\left(m<2^{p-1}\right.$ if $q \leq 3$). In order to get a contradiction we need to find formulas $\Phi_{m, q}$, such that $Q D\left(\Phi_{m, q}\right) \leq p$ and $\mathfrak{C}_{m, q} \neq \Phi_{m, q}$, but $\mathfrak{C}_{n, q}=\Phi_{m, q}$.

We have defined sentences DiffWipEl (see Section 3), such that $\mathfrak{B}_{n} \neq \psi_{m} \leftrightarrow$ DiffWipEl l_{m}, for all n, for some sentences ψ_{m} with $Q D\left(\psi_{m}\right)=\mu p\left[2^{p-2} \geq m+1\right]$. But still $\mathfrak{C}_{s, q} \neq \psi_{m} \leftrightarrow$ DiffWipEl l_{m}, for all $s \geq 1$, and we may assume that $Q D\left(\right.$ DiffWipEl $\left.l_{m}\right)=\mu p\left[2^{p-2} \geq m+1\right]$.

Define DiffWipEl $l_{m, q}^{*} \equiv$ DiffWipEl l_{m+1}, "there are at least $m+1$ different Wipelements". Therefore:
(a) $Q D\left(\right.$ DiffWipEl $\left.l_{m, q}^{*}\right)=\mu p\left[2^{p-2} \geq m+2\right]$; and
(b) $\mathfrak{C}_{m, q} \neq \operatorname{DiffWipEl} l_{m, q}^{*}$ and $\mathfrak{C}_{n, q} \neq \operatorname{DiffWipEl} l_{m, q}^{*}$, since $m<n$.

In Section 2 we defined sentences $D i f f E l_{q}$ "there are at least $q+1$ different elements" and we may assume that $Q D\left(D i f f E l_{q}\right)=\mu p\left[2^{p} \geq q+2\right]$, since they are still equivalent to formulas with this quantifier depth in the structures $\mathfrak{C}_{s, q}$, for all $s \geq 1$ and q. Now define sentences $\chi_{m, q}$, that are equivalent to $\exists x_{0} \ldots \exists x_{m-1}\left(W i p\left(x_{0}\right) \wedge\right.$ $\left.\ldots \wedge W i p\left(x_{m-1}\right) \wedge \operatorname{DiffEl} l_{q-1}^{x_{m-1}}\left(x_{m-1}\right)\right)$ in any $\mathfrak{C}_{s, t}$, i.e. saying "there are at least m different Wip-elements and at least q different elements after the last", as follows:

$$
\begin{aligned}
& \chi_{m, 0} \equiv \text { DiffWipEl }_{m-1} \\
& \chi_{1, q} \equiv \exists x(\text { Wip }(x) \wedge \operatorname{DiffEl} \\
&\left.\chi_{m-1}^{x}\left(x_{0}\right)\right), \text { for } q>0 \\
& \chi_{m+1, q} \equiv \exists x\left(W i p(x) \wedge \operatorname{DiffWipEl_{[\frac {m}{2}]}^{x}(x)\wedge \chi _{[\frac {m+1}{2}],q}^{x}(x)),\text {for}q>0}\right. \text {, }
\end{aligned}
$$

where the formula Wip is defined in Section 3 and $Q D($ Wip $)=2$.
Therefore
(c) $Q D\left(\chi_{m, q}\right)=\mu p\left[2^{p-2} \geq m+1\right]$, for $q \leq 3$; and
(d) $\mathfrak{C}_{m, q} \not \equiv \chi_{m, q}$ and $\mathfrak{C}_{n, q} \models \chi_{m, q}$, since $m<n$.

The property (c) can be proved by induction on m :

- $m=1$,
$Q D\left(\chi_{1, q}\right)=1+\max \left(2, \mu p\left[2^{p} \geq q+1\right]\right)=3$, for $q \leq 3$.
- IH for $m \geq 1$. Therefore
$Q D\left(\chi_{m+1, q}\right)=1+\max \left\{2, \mu p\left[2^{p-2} \geq\left[\frac{m}{2}\right]+1\right], Q D\left(\chi_{\left[\frac{m+1}{2}\right], q}\right)\right\}=1+\max \left(\mu p\left[2^{p-2} \geq\right.\right.$ $\left.\left.\left[\frac{m}{2}\right]+1\right], \mu p\left[2^{p-2} \geq\left[\frac{m+1}{2}\right]+1\right]\right)=1+\mu p\left[2^{p-2} \geq\left[\frac{m+1}{2}\right]+1\right]=\mu p\left[2^{p-3} \geq\right.$ $\left.\left[\frac{m+1}{2}\right]+1\right]=\mu p\left[2^{\overline{p-2}} \geq\right]$,
since $2^{p-2} \geq 2\left[\frac{m+1}{2}\right]+2 \Leftrightarrow 2^{p-2} \geq m+2$.

| Define $\Phi_{m, q}$ as follows: | $\begin{array}{l}\Phi_{m, q} \equiv \chi_{m, q}, \\ \Phi_{m, q} \equiv \text { DiffWipEl }\end{array} \quad$ for $q \leq 3 ;$ |
| :--- | :--- | :--- |
| m, q | | for $q>3 . \quad$ Therefore for $q \leq 3, Q D\left(\Phi_{m, q}\right)=\mu p\left[2^{p-2} \geq m+1\right]$ and for $q>3, Q D\left(\Phi_{m, q}\right)=\mu p\left[2^{p-2} \geq m+2\right]$, i.e. $Q D\left(\Phi_{m, q} \leq p\right.$, and $\mathfrak{C}_{m, q} \not \neq \Phi_{m, q}$, but $\mathfrak{C}_{n, q}=\Phi_{m, q}$, which is a contradiction.

(\Rightarrow) Let $2^{p-2} \leq m+1 \&\left(q \leq 3 \Leftrightarrow 2^{p-2} \leq m\right)$. We want to prove that $\mathfrak{C}_{m, q} \equiv_{p} \mathfrak{C}_{n, q}$.

If $2^{p-2} \leq m$, then (see Section 3) for any q the second player has a winning strategy for a game with p moves (for the elements from the tail chooses the correspondent elements from the tail of the other structure, and for the elements from $\omega \cdot m$ use the winning strategy, described in Section 3).

Therefore it suffices to consider the case $2^{p-2}=m+1$ and $q \geq 4$, using induction on m. We may assume that $m=2 k+1$.

It is easy to verify the statement for $m=1$, where $p=3$.
Let $m>1$ and assume (IH) the claim is true for smaller than m. We have to prove that for every $a \in C_{m, q}$ there is $b \in C_{n, q}$, (and for every $b \in C_{n, q}$ there is $\left.a \in C_{m, q}\right)$, such that $\{(a, b)\} \in L I_{p-1}\left(\mathfrak{C}_{m, q}, \mathfrak{C}_{n, q}\right)$. Consider the cases for the Wip-elements (the others are analogous), i.e. the first player chooses an element $a=0_{i}^{\mathfrak{C}_{m, q}}$ (or $b=0_{j}^{\mathfrak{C}_{n, q}}$), then the second player chooses an element $b=0_{j}^{\mathfrak{C}_{n, q}}$ (resp. $a=0_{i}^{\mathfrak{C}_{m, q}}$), depending on i :

- $1 \leq j \leq\left[\frac{m-1}{2}\right]+1$, i.e. $1 \leq j \leq k+1$.

Take $i=j$. Therefore $\left\{\left(0_{i}^{\mathfrak{C}_{m, q}}, 0_{i}^{\mathfrak{C}_{n, q}}\right)\right\} \in L I_{p-1}\left(\mathfrak{C}_{m, q}, \mathfrak{C}_{n, q}\right)$ if and only if $\emptyset \in$ $L I_{p-1}\left(\mathfrak{C}_{m-i, q}, \mathfrak{C}_{n-i, q}\right)$, which follows by the IH, if $2^{p-3} \leq m-i+1$.
Assume $2^{p-3} \geq m-i+2$, then $2^{p-2}=m+1 \geq 2 m-2 i+4$, then $2 i \geq m+3$, then $\left[\frac{m-1}{2}\right]=\bar{k}$, therefore $2 i \geq 2 k+4$, but $i \leq\left[\frac{m-1}{2}\right]+1=k+1$, contradiction.

- $n-\left[\frac{m}{2}\right]+1 \leq j \leq n-1$, i.e. $n-k+1 \leq j \leq n-1$, then $\left[\frac{m-1}{2}\right] \leq i \leq m-1$, i.e. $k \leq i \leq 2 k$.
Take $i=m-n+j$. Then $\left\{\left(0_{i}^{\mathfrak{C}_{m, q}}, 0_{i}^{\mathfrak{C}_{n, q}}\right)\right\} \in L I_{p-1}\left(\mathfrak{C}_{m, q}, \mathfrak{C}_{n, q}\right)$ if and only if $\emptyset \in L I_{p-1}\left(\mathfrak{B}_{i}, \mathfrak{B}_{j}\right)$, iff $2^{p-3} \leq i$, since $i<j$ (see Section 3). The case where the first player chooses $\left[\frac{m-1}{2}\right] \leq i \leq m-1$, is the same if the second takes $j=n-m+i$.
- $\left[\frac{m-1}{2}+2 \leq j \leq n-\left[\frac{m}{2}\right]\right]$, i.e. $k+2 \leq j \leq n-k$.

Take $i=[\mathfrak{m}-12]+1$, i.e. $i=k+1$. Therefore $\left\{\left(0_{i}^{\mathfrak{C}_{m, q}}, 0_{i}^{\mathfrak{C}_{n, q}}\right)\right\} \in L I_{p-1}\left(\mathfrak{C}_{m, q}, \mathfrak{C}_{n, q}\right)$ if and only if
(left part) $\emptyset \in L I_{p-1}\left(\mathfrak{B}_{i}, \mathfrak{B}_{j}\right)$ and (right part) $\emptyset \in L I_{p-1}\left(\mathfrak{C}_{m, q}, \mathfrak{C}_{m, q}\right)$
if and only if $2^{p-3} \leq i$ and $2^{p-3} \leq m-i+1$, which is easy to check: $2^{p-3} \leq i$ iff $2^{p-3} \leq k+1$ iff $2 k+2=2^{p-2} \leq 2 k+2$; and $2^{p-3} \leq m-i+1=k+1$ iff $2^{p-2} \leq 2 k+2$.

We have solved the problem $\omega \cdot m+q \equiv_{p} \omega \cdot n+r$ for the cases where $q=r$ or $m=n$. It remains the case where $m \neq n$ and $q \neq r$, which we do not consider here.

5 The order types $\mathfrak{N}_{m}=\left(\omega^{m},<\right)$

Consider structures $\mathfrak{N}_{m}=\left(\omega^{m},<\right)$, where
$\omega^{m}=\left\{\left(x_{0}, \ldots, x_{m-1}\right) \mid x_{0}, \ldots, x_{m-1} \in \mathbb{N}\right\}$. We want to find for which $p,\left(\omega^{m},<\right.$ $) \equiv{ }_{p}\left(\omega^{n},<\right) ?$

Here we prove only that for $m<n$,

$$
\text { If }\left(\omega^{m},<\right) \equiv_{p}\left(\omega^{n},<\right) \text { then } p \leq 2 m
$$

Proof:

Define formulas D_{m} by induction as follows:

$$
\begin{array}{ll}
D_{0}(x) & \equiv x=x \\
D_{m+1}(x) & \equiv \exists y\left(y \sqsubset x \wedge D_{m}(y)\right) \wedge \\
& \forall y\left(y \sqsubset x \wedge D_{m}(y) \rightarrow \exists z\left(y \sqsubset z \sqsubset x \wedge D_{m}(z)\right)\right) .
\end{array}
$$

Define $\varphi_{m} \equiv \exists x D_{m}(x)$.
One can prove by induction that $Q D\left(D_{m}\right)=2 m$ and
(a) $Q D\left(\varphi_{m}\right)=2 m+1$, and
(b) $\left(\omega^{m},<\right) \not \vDash \varphi_{m}$, but $\left(\omega^{n},<\right) \models \varphi_{m}$, since $n>m$.

If we assume that $\omega^{m} \equiv_{p} \omega^{n}$ and $p \geq 2 m+1$, then $Q D\left(\varphi_{m}\right) \leq p$, which is a contradiction.

The other direction, i.e. the question whether for all $m<n$ and $p \leq 2 m$, $\left(\omega^{m},<\right) \equiv_{p}\left(\omega^{n},<\right)$ remains unsolved. However $2 m$ seems to be very large upper bound.

