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Abstract

Fraissé games are used to prove some axiomatizations of the order types
(W, <) (W,<),(0,....,m 1,<),(w m,<), w m+g,<)and (w™,<).

We consider structures of the signature ((2),§,0). The language £ that belongs
to this signature has two binary relation symbols, C— and =, and does not have
function symbols nor individual constants.

We consider formulas (zg . ..x_1) in £, where all the free variables of f are among
Zo ... xp_1, that we abbreviate by 2. For every = we define two mappings L, and
R, between such formulas in a way that the formulas L,(#) and R, (#) have free
variables among x, xg . . . Tx—1. Sometimes we use a second notation:

0 “(z, ) = L, (9(P)), and 6 (2, @) = Ru(8(7)).

If 20 = (A, <) is a structure of the given signature, for each element b € A we define
A<’ to be the set {a € A|a < b}, and A<? to be the structure (A<?, <) where the
relation < is restricted to the set A<?. We want to have the following property:

A=6 “[bag...ar 1] if and only if A< = Bag . ..ar 1],

for all b € A and for all ag...ar_; € A<. And we want the analogous property
for the mapping R,, i.e. if A>® = {a € A|b < a} and A>? = (4>?, <), then 2 |=
0% [b,ap...ar—1] if and only if A, = O[ag . ..ag—1], where b € A and ag...ap—1 €
A>b

Definition
We define the mappings L, and R, by induction on the formula 6 :
e If # is a basic formula or the negation of a basic formula, then L(z,0) =
R(z,0) = 0.
o If §(7) is the formula 6, (7) A 65(7), then
L(z,0) = L(x,01) A L(x,62), R(z,0) = R(x,0,) A R(x,02).

We define in the same way the image of the disjunction: #(@) is the formula

0.(2) V (7).



e If () is the formula Jy ¢(y, ), then

L(z,0(%)) = Jy(y Cz A Lz, 0y, ))),
R(z,0()) = Jy(e Cy AR(z,0(y, ))).

e If §(7) is the formula Vy ¢(y, @), then

L(z,0(Z)) =Vy(y C z = L(z,0(y, 7))),
R(z,0(T)) =Vy(x Cy = Rz, 0(y, T))).

Remark: The bounding of the quantifiers in the formula does not change its
quantifier depth: QD(L,(6)) = QD(8) = QD(R.(9)).

1 The order type (v, <) ® (w, <)

The first goal is to find an axiomatization of the structure (N, <) @ (N, <).
We define the following sentence:

Vo (= (zo C 20)) A (irreflexibility)
VoV Voo (zo C o1 T @2 — 2o C @2) A (transitivity)
= VoV, (mo CxiVag=x1 Vo C CE()) A (linearity)

Vroda, (a:o Cxy A—dza(ze Czo T xl)) A (immediate successor)

xo C 1 A —Jze(z2 T 29) A
35603.’1,'1 Vi _I(Z’() = 1’2) A _1(1’1 = 1’2) —
2 dzs (xg C o A—Tzy(zs Ty C 1’2))

Definition: Let 2l = (4, <) be a structure with signature ((2),0,0). We define

distance between two elements of this structure as follows:

for all a,b € A, such that a < b, d(a,b) = 14 the number of elements between a

and b, i.c. d(a,b) =14+ |{ce Ala<ec<b}| ,fora<bd
d(a,a) =0

Notation:

xo C a1 A—Jze(z2 T x0) A
P(xo,21) = Vi —(xo = x2) A =(x1 = 12) — .
2 dzs (xg CaxoA—Tzy(zs Cxy C 1’2))

If 2L = ¢ then A |= Jzo3x1 9 (20, 1) and therefore there exist exactly two elements
(we will denote them by 03' and 03') such that 2 = [0, 03]

Lemma
Let A = (A,<4) and B = (B, <p) be models of .
Let f € LIy(A,B) be a local isomorphism from A to B. Let us denote a(® :=



03
and

a) = {

{ min{a; |a; € Dom(f)} ,if f#0

, otherwise

min{a;|a; € Dom(f) & O} <4 a;} ,if Ja € Dom(f)(0F <4 a)
0¥ , otherwise

Then for every natural number p > 2,

f€LI,(AMB) if and only if

vn < 2P~ VYa;, a; € Dom(f)

Vn <20-1) 4 p—2

vn <200 4 p—4

(d(ai,aj) = n < d(f(a), f(a;)) =n)
&

(a® € Dom(f) = (d(0,a®) = n & d(0F, f(a®)) =n))
&

(a<1> € Dom(f) = (d(0¥,aV)) =n < d(0F, f(aV)) = n))

The three conjuncts of the right side formalize the following three properies:

e ”to preserve distances less than or equal to2P~1”,

e 7to preserve the distances to the first element 0p, which are less than or equal
to 2(P=1) 4 p— 27 and

e ”to preserve the distances to the second zero 01, which are less than or equal
to 20— 4 p— 47,

We will need the direction (<) only.

Proof:
p=2.

Induction on p.

(=) f € LLL(X,B)

e It is easy to verify that d(a;,a;) = d(f(a;), f(a;)) when one of these
distances is < 2.

e If al® € Dom(f) and one of d(0F,a®) and d(0Z, f(a(?)) is < 2, it is
easy to verify that they are equal.

e If ¥ € Dom(f), it is easy to verify that o)) = 0% if and only if
f(ah) = 0% -
Assume for example that a(t) = 0¥ and d(0F, f(aV)) # 0. We have two
cases:

If 0P < £(0%), then for b € B - the predecessor of f(0}'), there exists
a € A, such that fU {(a,b)} € LI;(,B) and therefore a < 0¥. Then



for S, € A - the successor of a, that is between a and 0}, there exists
¢ € B, such that fU {(a,b)} U {(Sa,c)} € LIH(2A,B) and therefore c is
between b and its successor f(0}'), which is a contradiction.

In the case f(0F) < OF we take the predecessor of f(0F).

In the other direction the proof is similar.

(<) The local isomorphism f preserves the distances for p = 2. We can prove
f € LI,(2,B). using the fact that f € LI;(A,B) if and only if both Vn <
1 (d(ai,a;) = n & d(f(a;), f(a;)) = n) and f(a) = 0F & a = 0F, where
ai,aj,a € Dom(f).
The interesting case is when we choose a € A, such that 08 < a < a(®
and d(a,a®) > 1. Then we have to find b € B, such that 0F < b and
d(b, f(a®) > 1. This is possible, because otherwise d(0F, f(a(®)) < 2, which
is a contradiction, since d(0%,a(®)) > 2.

TH - assume it is true for some p > 2. We have to prove it for p + 1.

(=) Let f € LI)11(A,B).

1. Suppose d(a;,a;) = n < 2P for some a;,a; € Dom(f) and n > 0, the
case n = 0 is easy.

Take an element ¢ of A, such that d(a;,c) = [g] Then d(c,a;) =

_1
[" > ] + 1. There exists ¢ € B, such that f U {(c,e)} € LI,(%,B).

Therefore f(a;) < e < f(aj;). Since [g] < 2(r—1) 4nd [ 5 1] +1<

2(P=1) 11, from the TH it follows that d(f(a;),e) = d(a;,c) and d(e, f(a;)) =
d(C, a’j) and therefore d(f(a'z)a f(a’])) = d(f(az)a 6) + d(67 f(a’])) =n.In
the other direction the proof is similar.
2. Suppose a® € Dom(f) and d(0%,a®) < 2PFD-1 4 (p 4+ 1) -2 =
2P +p—1.
We have two subcases:
e d(0F,a®) <20 p—1.

Now we can choose ¢ € A, such that d(c,a(”)) < 2(P=1) and d(03', ¢) <
2(P=1) 4 p—2. There exists e € B, such that fU{(c,e)} € LI,(A,B).
From TH it follows that d(03, ¢) = d(0F,e) and d(c,a?) = d(e, f(a®))

and therefore d(O%‘, a(O)) = d(o(‘)B, f(a(O)))_

e d(0F,a®)=2° 4 p—1.
Assume that d(Og‘,a(O)) # d(O?,f(a(O))), Then d(OO%,f(a(O))) >
2P + p — 1. Now we can choose e € B, such that d(02,e) > 2(r—1) 4
p—2 and d(e, f(a'®)) > 2(>=D, But there exists ¢ € A, such that
fuU{(c,e)} € LI,(A,WB) and from IH it follows that d(0F,c) >
2= 4 p—2 and d(c,a®) > 2P~V Then d(0F, (a®) > 2P +p—1,
which is a contradiction.



3. Suppose a(!) € Dom(f) and d(0¥,aM) < 2PFD"1 4 (p + 1) — 4 =
2P + p — 3. The proof is similar.

(<) Suppose that for the local isomorphism f the distance conditions for p + 1
hold. From IH it follows that f € LI,(2,%). We have to prove that f €
LI,11(2A,9B). Take for example a € A. We have the following cases:

e a € Dom(f).
Therefore there exists b € B, b = f(a), such that f U {(a,b)} = f €
LI,(%,B).

e a' <a<ad,for some a',a" € Dom(f), s.t. between them there are no
elements from Dom(f).

— d(a',a) < 2?1 and d(a,a') < 20—1).
Then d(a’,a") < 2P and we can choose b € B, such that d(f(a'),b) =
d(a',a) and d(b, f(a'")) = d(a,a”). From IH it follows that f €
LI (21,B).

— d(a',a) < 2?1 and d(a,a") > 20—1).
We can choose b € B, such that d(f(a’),b) = d(a’,a). If d(b, f(a")) <
2(p=1) then d(f(a'), f(a")) < 27, which is a contradiction.

— d(a',a) > 2D and d(a,a") < 2P~
This case is similar to the previous, except that it is possible a’ <
0% < a. Then d(0®) > 2P~V and we can choose b € B, such that
d(b, f(a")) = d(a,a"). If d(0¥,a) < 2P~ 4 p — 4, then d(0¥,a") <
2P + p—4 < 2P + p— 3 and therefore (IH) d(0¥,a") = d(0F, f(a")),
then d(0F,a) = d(0F,b) and f € LI, 1(A,B).

— d(a',a) > 2~V and d(a,a") > 2P~Y. Analogous.

e 03 < a < al®. Analogous.

e max{a;|a; € Dom(f)} < a. This case is easy.

Notation: By (w - 2,<’) we denote the structure (N, <) & (N, <) with domain
w-2 =NU{z' |z € N} and the following relation: for all z,y € N, such that z < y,

x<'y and 2’ <"y and z < 2.

Theorem: (N, <) & (N, <) is a prime model of ¢.

Proof: Let 2 = (A,<4) be a model of ¢. Define a function f from w -2 to A,
as follows: f(0) := 0%, f(0') := 0 and for each x > 0 in N, f(z + 1) := the
< a-successor of f(x) and f((z + 1)) := the <4-successor of f(z').

From the Lemma it follows that every finite subset of f belongs to every LI, ((w-2, <’
), ), and therefore f is an elementary embedding from (N, <') into 2.



O

From the last theorem it follows that for every model 2 of ¢, for every sentence
P, if (N, <)® (N, <) | ¢ then A |= 1, and therefore ¢ is an axiom for the structure
(N, <) & (N, <).



2 Finite structures A, = ({0,...,m — 1}, <)

Consider structures 2, = (4, <), where 4,, = {0,... ,m —1}.
We want to prove that for all m,n > 1 and for all p > 0,

A, =p AU, if and only if ((m =n) or (m #n and 2° — 2 < min(m, n) ))

Proof:
(=) We want to prove that if m < n and 2P — 2 > m, then 2, #, Ay, finding
sentence @, with QD(¢,,) < p and such that 2, = ¢, but 2, V= om.

We can easily define sentences Dif fEl,,, such that ,, &= —-DiffEl,, and
A, |E Dif fEl,, for all n > m, (Dif fEl,, says 'there exist at least m + 1 different
elements in the structure’):

DfoEl[) = 31'0(1’0 = 1’0)

DfoElm+1 =dzg... E'l‘erl(l'o CrziANxy CasAN... N2y C l'erl),
but QD (Dif fEl,;,) = m + 1. It suffices to find sentences ¢,,, such that:
(a) @D(pm) = up[2P — 2 > m]; and (b) Ay, = @m < Dif fEL,, for all n.

Now define ¢,, by induction on m as follows:
Yo = ’(/J() = 33}0(5[70 = ZU()) and Y1 = 1/}1 = 35603371 (5[70 [ .Tl), and for m > 0,
Pmas = Iz (cp[m’”] (Z) N i (a:)), i.e.
2 [ 2 ]
)

Part2 = Az(py, " (2) Ny (@)
par+3 = Ao, () A iy, (7))
It is easy to check (b), i.e. ™Ay, = @m < Dif fEl,,, for all n.
We prove (a), i.e. QD(pm) = pp[2P — 2 > m], by induction on m :

e form=0and m =1,
QD(po) = 1= pp[2? —2 > 0] and QD(p1) = 2 = pp[2P — 2 > 1].

e IH for smaller than m > 2.
Remark:

QD(om) < QD(Pm+1)-

1. m = 2k + 2. Let p := QD(p2r+2) and q := QD(pg). Then p = g + 1.

From IH it follows that 27 — 2 > k and therefore 29 > k + 2, then
20 =291 > 2k 4 242 =m +2 ie. 22 >m+ 2.
It remains to prove that p is the least, i.e. p = ut[2! —2 > m]. Assume
there is smaller p’ s.t. 2¢° > m + 2. Then p' < ¢ and therefore 2¢ >
m + 2 = 2k + 4, then 2971 — 2 > k, but from IH (for k < m) ¢ is the
least such that 29 — 2 > k, contradiction.

2. m =2k +3. Let p:= QD(par+3) and g := QD(pg41). Then p =g+ 1.
From IH it follows that 29 —2 > k+ 1, i.e 27 > k + 3, then 2P =
2011 > 2k 4+ 6 = m + 3, then 27 > m + 2. Assume there is smaller p’
s.t. 2¢° > m + 2. Again p’ < ¢ and therefore 27 > m + 2 = 2k + 5, then
29 > 2k + 6, then 2971 > k + 3, i.e. 2771 —2 > k + 1, but from IH (for



k 4+ 1 < m) it follows that ¢ is the least with this property, which is a
contradiction.

Therefore if m # n and 27 — 2 > min(m,n) then A, Z, As,.

(<) We want to prove that if m < n and 2P < 1+ m, then A, =, U, which is
equivalent to ) € LI,(™Ay,,2,). By induction on m > 1.

e m=1.

Since 2P < 2,0 <p <1 and then 2; =, A, for n > 1.

e m > 1. IH for smaller than m.
We have to prove that:

— for all a € A, there is b € Ay, such that {(a,b)} € LI,—1 (A, An);

— for all b € A, thereis a € A, such that {(a,b)} € LI,_1 (A, 2Ay).

For the first we consider different cases for a :

m—1

1. for0<a< , take b = a.

{(a,a)} € LL,_1 (A, 2A,) if and only if @ € LI, (Um—a—1,An—a—1),
which follows from 2P~ <m — a, (from IH for m —a — 1 < m).
Assume 2P~ > m — a.

1
Since 27 < m + 1, 271 < m

m+1 m 1
5 —5+§. Then

-1
Therefore m +1 > 2m — 2a, then 2a > m — 1, then a > mT’ which is

> m — a.

a contradiction.
m—1
2. for 5 <a<m-—1,takeb=a+n—m,
i.e. such that the distances d(a,m — 1) = d(b,n — 1), b € A, since
0<a+n—-—m <n-—1 Again {(a,b)} € LI,_1(™A,,) if and only
if 0 € LI,_1(As,Ap), which follows from 2P~ < a + 1, (from IH for
a < m).

m—1

Assume 2P~1 > a + 1, then 27 > 2a + 2. Since a > ,2a >m—1.
Therefore 2 > m — 14+ 2 = m + 1, which is a contradiction.

In order to prove the second, we consider cases for b :

m—1

1. for0<b < , take a = b.

The proof is the same as in the case for a.



-1
2. forn—l—m

<b<n-—1,takea=b+m —n,

m—1

i.e. such that d(a,m — 1) = d(b,n — 1). Then
the proof is the same as in the case for a.

<a<m-—1and

-1 -1
m <b<n—1—m

3. for

m—-—2<2a<m-1,a<bandm-a—-1<n->b-1,
m<2b<2n-—m —1.
Therefore {(a,b)} € LI,_1 (A, 2A,) if and only if

0 e LI, 1(Ag,Ap) and 0 € LIy 1 (App—a—1,An—b-1),
which follows from (277! <a+ 1 and 277! <m —a),
since IHfora+1<mandIH form—a—1<m.
Assume 2P~ > a + 1.
Then 2P > 2a+2 >=m. But 2? <m+1,then m+ 1> 2P > m.
Then 2P = m + 1 and m2— 1 = m2— 1, then 2a = m — 1, therefore
2P > 2a + 2 =m + 1, which is a contradiction.
Assume 2°71 > m — 1.
Then 2 > 2m —2a >2m —m+1 =m+1,ie. 2P > m+ 1, but
2P < 'm + 1, which is a contradiction.
Therefore (2”_1 <a+1land 2P~ <m-— a).

, take a = mT—l] € A,,. Then




3 The order types B,, = (w-m, <)

Consider structures B, = (By,,<) with m > 1and B, =w -m = {k; |k € N&
0<i<m-—-1ltand k;<lj& (i<jori=j&k<l).
We want to prove that for all m,n > 1 and for all p > 0,

B, =p By, if and only if ((m =n) or (m # n and 2°~% < min(m,n) ))

Proof:

(=) We want to prove that if m < n and 2°~2 > m, then B,, %, B,, finding
sentence ¥,,, with QD(¢,,,) < p and such that B, |= ¥, but B, = @ Define a
formula Wip(x) with QD(Wip) = 2, which says that the element x does not have
immediate predecessor, but has a predecessor, as follows:

Wip(x) =Fyy C ) AVyly Tz = I2(yC z2A2 T x)).

Again we can define sentences Dif fWipEl,,, for m > 1, such that
B,, |E ~Dif fWipEl,, and B,, | Dif fWipEl,, for all n > m, (Dif fWipEl,,
says ”there exist at least m different Wip-elements”):

Dif fWipEl,, = 3xg ... dxm_1(Wip(xo) A .. . AWip(Xm_1) ATo T - .. C Tm—1)-

QD(Dif fWipEl,,) = m+2. It suffices to find sentences t,,,, such that (a) QD(¢,,) =
up[2P=2 —1 > m] and (b) B, |= ¥y, < Dif fWipEl,,, for all n.
We define ¢, by induction on m > 1,
1 = JxgWip(zo), QDY) =3
Yo = Fzodwy (w0 T 21 A Wip(wo) A Wip(z1)), QD(1)2) =4
form > 1, Yye1 = EI(Wip(:r) A 1/1[%””] A 1/1[@]), ie.

Vaker = 30(Wip(@) Ay *(2) A} (2)
Yokt = Jx(Wip(z) Ay, *(z) ApE, () for £ > 1.

It is easy to check (b), i.e. By, |= ¢y, & Dif fWipEl,,, for all n.
We prove (a), i.e. QD (¢y,) = up[2P~2 — 1 > m], by induction on m :
e M = ]_
pp[2P72 =1 > 1] = pp[2P7 > 2] = pp[p — 2 > 1] = 3 = QD ().
o m=2
pp[2P72 =1 > 2] = pp[2P7 > 3] = pp[p — 2 > 2] = 4 = QD (o).

e m > 2. IH for smaller than m.
Since the function f(p) = up[2P~2 > m] is monotone, we have:

1. m=2k+1, for k> 1.
QD(ars1) = L+ QD) F 1+ pgl207% — 1 > k] = 1+ pug[2072 >
k+1] = pp[2P=3 > k+ 1] = up[2P=2 > 2k + 2] = up[2P~2 > 2k + 1] =
up[2P=2 > 2k + 1].

10



2. m=2k+2, for k> 1.
QD(Papy2) = 1+ QD(Pry1) = 14pug[27 2 =1 > k+1] = 14 pg[29 2
k+2] = up[2P=3 > k + 2] = up[2P~2 > 2k + 4] = up[2P~2 > 2k + 3]
pp(2P=2 > 2k + 3] = pp[2P7 > m + 1].

v

Therefore if n # m and 2P~2 > m, then B,, Zp B

(<) We want to prove that if m < n and 2°~2 < m, then B,, =, B, which is
equivalent to @ € LI,(B,,,B,). By induction on m > 1.

e m=1.
Since 2P72 <1, 0 < p < 2 and then By =, B, for n. > 1.

e m > 1. IH for smaller than m.
Let 2P~2 < m. We have to prove that:

— for all @ € w-m there is b € w - n, such that {(a,b)} € LI,_1 (B, By);
— for all b € w-m there is a € w - n, such that {(a,b)} € LL,_1 (B, By).

First we prove that for the wip-elements, Oi%m and O;.B", with0 <i<m-—1
and 0 < j < n — 1, i.e. those elements for which 9B, = Wip[0P™]. Using
that, the winning strategy for the second player in p moves, for the other
elements of w - m and w - n can be expressed, since:

{(00 m 00 )} € LI, 1(Bp,By,) if and only if0 e Ll, 1(Bm, Bn);

And for a € 9B,,, such that 0%’" <a< OH_1 and b € B, such that Oj%" <
a <07y and d(07™,a) = (0‘%”’",1)),

{(a,b)} € LI,_1 (B, By) if and only if {(07™,07")} € LI,—1 (B, By).

So first we consider different cases for a = 0™ € B,,, for which we take
b=07" € By, as follows:

-1
1. For1<:i< mT ,takej:i.WehavelSQiSm—landb:O?".
Therefore {(a,b)} € LI,_1 (B, B,) fand only if @ € LI, 1 (Bm—i, Bn—i),
which follows from 2P~3 < m — i, since IH for m — i < m.
Assume 2773 > m —i,ie. m—i+1<2P 3 < %, then 2m —2i+2 < m,
then m + 2 < 2¢ < m — 1, which is a contradiction.
-1
2. For [mT] <i<m-—1,take j =n—m+i.

We have m < 2i and b = 02" myi Therefore {(a,b)} € LI, 1(B,,B,)
if and only if 0 € LI, 1(B;,B;), which follows from 2°~* < i, since [H
for i < m.

Assume 2P73 > i, i.e. i4+1 < 2P73 but 272 < m. Then 2i +2 < 2P72 <

m, i.e. m + 2 < m, contradiction.

11



Now consider cases for b = 0;.3" € B,,, for which we take a = Oi%m € B, as
follows (the proof for the first two cases is the same):

1. For1gjg[mT],takei:j.

-1
2. For [mT] +n—-m<j<n-—1takei =35 —n+m.

-1 -1 -1
3. For [mT F1<j<n-m+ {mT],takei: [mT} 1
Then we have m+1<25<2n—m —2and m <2 <m+ 1.

{(a,b)} € LI,_1(Bm,B,) if and only if

(m € LI, 1(%;,%B;) and 0 € LIp,l(%m,i,%n,j)).
Since j < 1 —m + {mT_} 41, <n+i—m. Thenm —i <n—j. We
have ¢ < j.
It suffices to prove (2P~2 < i and 2P~2 < m — i), since from IH for i < m
and m — i < m it will follow that O € LI,_1(Bn—i, Bn—j)-
Assume 2P~3 > i, then 2772 > 2i +2 > m + 2, but 2°-2 < m, then
m > m + 2, contradiction.
Assume 2P72 > m —i. Then 2P72 > 2m —2i+2 > m+1. But 2772 < m,
then m > m + 1, contradiction.

O
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4 The order types €, , = (w-m+¢q, <)

Consider structures €, ; = (Cpy 4, <), where for m > 1 and ¢ > 0,
Cng=w-m+qgandw-m+qg=(w-m)U{w-mw-m+1,...w-m+ (¢g—1)}.
The elements of a structure &, , will be denoted k:f’"“’ for k:i@"‘“’ € w-m, ie.
0<i<m-—1,and k®*« for w - m + k. Therefore kf’"“’ < l?’"“’ & (1 < jor
i=j&k<l),and k™ < k%, for all kS and all k™ € w - m.

Having two structures ¢, , and &, ,, we want to find for which p, &, ; =, &,y .

4.1. First consider the case m = n and ¢ < r. We want to prove
Crg =p €& (¢g=0and p<1)or(¢g>0and 2P <q+5).

Proof:
(=) We will need the following formulas:

Gst(z) =Vy(y =z Vy C z), "z is the greatest element”; QD(Gst) = 1.

Wip*(z) = Vy(y C x — J2(y C z C z)), "z has no immediate predecessor”;
QD(Wip*) = 2.

Tail(z) = Vy(z Cy — =Wip*(y)), ”all the elements greater than or equal to x
have immediate predecessor”; QD (Tail) = 3.

Dif fEl,, defined in Section 2, "there are at least ¢ + 1 different elements”; we
have defined formulas ¢,, such that ; |= ¢, <+ Dif fEl,, for all ¢, and QD(p,) =
up[2? > q + 2]. But still €, = ¢, <> Dif fEl,, for all s and ¢, so here we may
assume that

QD(Dif fEly) = upl2? > g +2).

We define formulas ¥, by induction on ¢ as follows:

Uy = JzGst(x), QD(¥o) =2,
¥, =Va(Wip*(z) = Dif fEl]_,(z)), for1<¢<3, QD(¥,) =3,

v, = Elm(\If[%ﬁ_Q(a:) A DiffEl[’”ﬁ](:r) ATail(z)), for g > 3.

For these formulas we can prove the following properties:

(i) @D(¥,) = pp[2? > g + 5], for ¢ > 0.
(ii) € g = Ty, but for all s and all t > ¢, €, = ¥,.

(i) The proof is by induction on ¢, using [%] + [%] =q.

e 1<¢<3;,QD(¥,;) =3 and up[2? > q+5]=3for 1 <q<3;

® q>3;
IH for t < g, i.e. for all ¢, such that 0 <t < ¢q, QD(¥;) = up[2P >t + 5].
Therefore QD(¥,) = 1 + max{QD(¥(g)_»), QD(Dif fEljs1)), QD(Tail)}.
For ¢ >3, 0 < [4] — 2 < ¢. Therefore
(for ¢ = 4 we cannot apply the IH, but the following equalities are still valid)

13



QD(¥,) = 1+ max{up[2 > [4] +3], up[2> > [55] +2],3} =
=1+ pup[2P >[4 +3] = w277 > [§]+3] =
= mp[20 >2- (4] +6] = up[2r > 23] +5] =

(ii) The proof is by induction on gq.

(<) The case ¢ = 0 and p < 1 is easy to check.

If ¢ > 0 and 2P < g + 4 we have to prove that ) € LI,(€y, 4,Cp, ), L. there is a
winning strategy for the second player for a game with p moves. The proof is by
induction on q.

e ¢ =1, Therefore p < 2. It is easy to check that § € LI, (€p,,q, Cinr)-

e g>1,
IH for t < ¢, i.e. for all ¢, such that 0 < ¢t < ¢, if 2 < t + 5, then () €
LI,(Ct,Cnyr), where m =n and t < r.
Let 2P < g + 4.
We shall prove
(a)Va € Cpypy3b € Cpy st {(a,0)} € LIp_1(Chy gy Cir); and
(b)Vb € CpprFa € Cry g st {(a,0)} € LI, 1 (€ gy C ).

"
Comyr

The cases a = kiﬁm’q where 0 < i <m—1,and b = k; where 0 < ¢ <
m — 1 for (a) and (b) resp. (the first player chooses element from the part
w -m and the second player answers with the same element from the other
structure) are trivial, since {(kf”’q,kf’"‘q)} € LI,—1(Cpq,Cm,r) if and only
if e Ll,_1(Cp g, Cmpr)-

Consider the case when the first player chooses element w-m +i from the tail,
i.e. an element a from the set {0%™a ... (g —1)®ma} or b from {0 ... (r —
I)Em,r }

— For a = k%9 such that 0 < k < [%] — 2, take b = k% € Cp, ..

Then we have {(a,b)} € LI,_1(Cpn ¢, Cp,r) if and only if
{(k¢m,q’k¢m,r)} € LIpfl(Q:m,qy Q:m,r) lffw € LIpfl(qufkflymrfkfl))
where 2; denote the finite structures ({0,...,l — 1}, <), defined in Sec-
tion 2. We have proved that § € LI, (Aj—g—1,Ap—g—1) iff 2P71 <
1+ (g—k—1),ie iff 2P7 < g — k.

Since 0 < k < [Z] —2 and 2P < ¢ + 4, we have 2k < ¢ — 4, then
2q — 2k > q + 4 > 2P, therefore 2P~ < ¢ — k.

For b = 1%, such that 0 < < [%] — 2, take a = [®™<, and we have
proved {(I%m9, 1% )} € LI, 1(€m gy Cmr)-

14



— In the cases where the distance between the chosen element and the end
of the structure (the greatest element) is less than or equal to [%],
the second player chooses and element having the same distance to the

greatest element.

For a = k%9, such that 2] -1 <k <qg—1, take b = [%m.q, such
that | = r — ¢+ k. Therefore {(a,b)} € LI)—1 (€ q, Cm,r) if and only if
{(k®ma 1%} € LI,_1 (€ q,Cm ) if and only if

(@ € Llp_1(¢m7k, Q:mJ) and @ € LIp—l(qu—k—lamr—l—l)) iff

0eLl, 1(Cpk,Cmy),sinceq—k—-—1=r—1-1.

Since [4] -1 < k < ¢—1and 2” < g + 4, we have 2k > ¢ — 3, i.e.
2[4] > q—1, then 2* < g+ 4 <2k + 7, i.e. 2° < 2k + 6, then 271 <
k+ 3 <k +4. Then from the IH it follows that § € LI,_1(€p i, Cnt)-

For b = [®mr, such that r — [£1] — 1 <1 <r —1, take a = k®me, where
k =1—r+q. Therefore [Z] -1 < k < ¢ — 1, and we have already proved
that {(k®ma,1%m)} € LI,—1(Cpyy

mr)-

— For b = =, such that [4] — 1 <
where k = [££1] — 2.
Therefore {(a,b)} € LI,—1(€p 4, Em,r) if and only if
{(k®ma 1)} € LI,_1(Cp g, € ) if and only if
(@ € LIpfl(Q:m,k; Q:m,l) and w € LIpfl(qufkflymrflfl)) iff
(27! <k+4and 277! <¢g—k), by IH and the result in Section 2, since
k<landgq—k—-1<r—-1-1.
1) 271 <q—k = [£] +2if and only if 2¥ < 2[%] + 4 iff 2? < g + 4, the
latter is our assumption.
2) Since 2? < g+4, we have 2P < 2[2HL L1+4, therefore 21 < [t l+2<
k+4.
Therefore {(a,b)} € LI,—1(€m,q, Em,r)-

I /\

—[QT]—Q take a = k%mq,

This is the end of the proof for the first case, where m = n and g < r.

4.2. Now consider the case m <n and g = r. We want to prove
Cong Zp Cry & (2?*2 <m+l&(g<3e 2L m)).
Proof:
(=) Let €, g =p €y g, for m < n, and assume that m +1 < 2P72 and (m < 2P~}

if ¢ < 3). In order to get a contradiction we need to find formulas ®,, 4, such that
QD(®rq) <pand €, g = P, but &, ¢ = iy g
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We have defined sentences Di f fWipEl,, (see Section 3), such that B,, &= ¢, <
Dif fWipEl,,, for all n, for some sentences v,,, with QD (t,,) = up[2P~2 > m +1].
But still €54 | ¥ <> Dif fWipEl,,, for all s > 1, and we may assume that
QD(Dif fWipEly) = pp[27=2 > m + 1],

Define Dif fWipEly, , = Dif fWipEly 1, ”there are at least m + 1 different Wip-
elements”. Therefore:

(a) QD(Dif fWipELy, ,) = pp[2°=2 > m +2; and

(b) € g ¥ Dif fWipEly, , and &, , | Dif fWipEL;, ., since m < n.
In Section 2 we defined sentences Dif f El, ”there are at least ¢ + 1 different ele-
ments” and we may assume that QD (Dif fEl,) = up[2P > q+2], since they are still
equivalent to formulas with this quantifier depth in the structures ¢, 4, forall s > 1
and ¢. Now define sentences X, 4, that are equivalent to 3zg ... Izm—1 (Wip(a:o) A
o AWip(zm—1) /\Dz'ffEquTf1 (mm,l)) in any €, ¢, i.e. saying ”there are at least
m different Wip-elements and at least q different elements after the last”, as follows:

Xm,0 = DiffWipElm—la
X1,g Jz(Wip(z) A Dif fEl;_, (o)), for ¢ >0,
Xm+1,qg EIa:(Wip(:r) A DiffWipEl[%””] () A X’[EMTHM(:U)), for ¢ > 0,

where the formula Wip is defined in Section 3 and QD (Wip) = 2.
Therefore

(¢) @QD(Xm,q) = pp[2°7% > m + 1], for ¢ < 3; and

(d) €mg & Xm,q and € ¢ = Xm,q, Since m < n.

The property (c) can be proved by induction on m :

e m=1,
@D(X1,) = 1+ max(2, up[2¥ > g+ 1]) =3, for ¢ < 3.

e IH for m > 1. Therefore
QD (Xm+1,q) = 14max{2, up[2°~2 > [F]+1], QD (X (g1 )} = 1+max(up[2P~2 >
(2] + 1), pp[2°7> > [E] 4+ 1]) = 1+ pp[207> > [H] +1] = pp[2P~° >
[P5] + 1] = pp[2P—2 >],
since 2772 > 2[EL] 4 2 5 2772 > + 2.

Pinyg = Xmoa for ¢ <3;
b = Dif fWipELy, ,, for g > 3.

q<3,QD(®p,4) = up[2P~2 > m+1] and for ¢ > 3, QD(®P,y, 4) = up[2P~2 > m+2],
1.6.QD(®p,q < p, and &€, 4 & Pryy g, but &, 4 = @4y 4, which is a contradiction.

Define ®,, , as follows: Therefore for

(=)Let 2772 <m+1& (¢ <3 & 2772 <m). We want to prove that €, =, €, .
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If 2772 < m, then (see Section 3) for any ¢ the second player has a winning
strategy for a game with p moves (for the elements from the tail chooses the corre-
spondent elements from the tail of the other structure, and for the elements from
w - m use the winning strategy, described in Section 3).

Therefore it suffices to consider the case 2P~ = m+1 and ¢ > 4, using induction
on m. We may assume that m = 2k + 1.

It is easy to verify the statement for m = 1, where p = 3.

Let m > 1 and assume (IH) the claim is true for smaller than m. We have to
prove that for every a € C), 4 there is b € C, 4, (and for every b € C, 4 there
is a € Cpq), such that {(a,b)} € LI,_1(€y 4,&n ). Consider the cases for the
Wip-elements (the others are analogous), i.e. the first player chooses an element
a= 0?”"1 (orb= 0;""1), then the second player chooses an element b = 0?"“’ (resp.

a= 0?”"1), depending on i :

e 1< <[]+ 1, ie 1<j<k+1.
Take i = j. Therefore {(OS’""’,OS""’)} € LI, 1(Cpq4,Cp,q) if and only if § €
LI,—1(Cp—ig,Cniy), which follows by the IH, if 2P73 <m —i + 1.
Assume 2P73 > m —i+2, then 272 = m 4+ 1 > 2m — 2i + 4, then 2i > m + 3,
then [2-2] = k, therefore 2i > 2k+4, but i < [2-L]+1 = k+1, contradiction.

en—[B]+1<j<n-ljien—-k+1<j<n-1,
then [2-1] <i<m—1,ie k<i<2k.
Take i = m —n + j. Then {(0;™,0;™*)} € LI, 1(€m.q,Cn.q) if and only if
0 e LI, 1(B;,B;), iff 2773 < i, since i < j (see Section 3). The case where
the first player chooses [mT_l] <4 < m — 1, is the same if the second takes
j=n—m-+i.

o [l 42<j<n—[2]],ie k+2<j<n—k.
Takei = [m — 12]+1,i.e. i = k+1. Therefore {(0;™,0;™*)} € LIp—1 (€ g, Cny)
if and only if
(left part) O € LI, 1(B;,%B;) and (right part) 0 € LI, 1(Cp g, Crmq)
if and only if 2P73 <4 and 2P~3 < m —i + 1, which is easy to check:
W3 < iff 273 < ket 1iff 242 = 272 < 2k42; and 2P 3 < m—i+1 = k+1
iff 2072 < 2k + 2.

O
We have solved the problem w-m + ¢ =, w-n + r for the cases where ¢ =r or
m = n. It remains the case where m # n and g # r, which we do not consider here.
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5 The order types M, = (W™, <)

Consider structures M, = (w™, <), where
w™ = {(xo,... ,Tm-1)|T0,... ,Tm—1 € N}. We want to find for which p, (w™, <

) =p (W, <)?
Here we prove only that for m < n,

If (W™, <) =, (W, <) then p < 2m.

Proof:

Define formulas D,,, by induction as follows:
Do(x) =z
Dyyi(z) =3 (y C 2 A Dp(y))A

Vy(y C 2 ADp(y) = 32(y C 2 C 2 A Dp(2))).

Define @,,, = 3z D,, ().
One can prove by induction that QD(D,,) = 2m and
(a) @D(pm) = 2m + 1, and
(b) (W™, <) & ©m, but (W, <) |E ©m, since n > m.
If we assume that w™ =, w™ and p > 2m + 1, then Q@D(pn) < p, which is a
contradiction.

The other direction, i.e. the question whether for all m < n and p < 2m,
(W™, <) =p (W", <) remains unsolved. However 2m seems to be very large upper
bound. O
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