Discrete Linear Orderings and Fraïssé Games

V.Boutchkova

23 June 1999

Abstract

Fraïssé games are used to prove some axiomatizations of the order types $(\omega, <)$ $(\omega, <)$, $(0, \ldots, m - 1, <)$, $(\omega - m, <)$, $(\omega - m + q, <)$ and $(\omega^m, <)$.

We consider structures of the signature $((2), \emptyset, 0)$. The language \mathcal{L} that belongs to this signature has two binary relation symbols, \Box and =, and does not have function symbols nor individual constants.

We consider formulas $\theta(x_0 \dots x_{k-1})$ in \mathcal{L} , where all the free variables of θ are among $x_0 \dots x_{k-1}$, that we abbreviate by \overrightarrow{x} . For every x we define two mappings L_x and R_x between such formulas in a way that the formulas $L_x(\theta)$ and $R_x(\theta)$ have free variables among $x, x_0 \dots x_{k-1}$. Sometimes we use a second notation:

$$\theta^{-x}(x, \overrightarrow{x}) \equiv L_x(\theta(\overrightarrow{x})), \text{ and } \theta^{x-x}(x, \overrightarrow{x}) \equiv R_x(\theta(\overrightarrow{x})).$$

If $\mathfrak{A} = (A, <)$ is a structure of the given signature, for each element $b \in A$ we define $A^{<b}$ to be the set $\{a \in A \mid a < b\}$, and $\mathfrak{A}^{<b}$ to be the structure $(A^{<b}, <)$ where the relation < is restricted to the set $A^{<b}$. We want to have the following property:

$$\mathfrak{A} \models \theta^{-x}[b, a_0 \dots a_{k-1}]$$
 if and only if $\mathfrak{A}^{\leq b} \models \theta[a_0 \dots a_{k-1}],$

for all $b \in A$ and for all $a_0 \ldots a_{k-1} \in A^{<b}$. And we want the analogous property for the mapping R_x , i.e. if $A^{>b} = \{a \in A \mid b < a\}$ and $\mathfrak{A}^{>b} = (A^{>b}, <)$, then $\mathfrak{A} \models \theta^x$ $[b, a_0 \ldots a_{k-1}]$ if and only if $\mathfrak{A}_b \models \theta[a_0 \ldots a_{k-1}]$, where $b \in A$ and $a_0 \ldots a_{k-1} \in A^{>b}$.

Definition

We define the mappings L_x and R_x by induction on the formula θ :

- If θ is a basic formula or the negation of a basic formula, then $L(x, \theta) \equiv R(x, \theta) \equiv \theta$.
- If $\theta(\overrightarrow{x})$ is the formula $\theta_1(\overrightarrow{x}) \wedge \theta_2(\overrightarrow{x})$, then

 $L(x,\theta) \equiv L(x,\theta_1) \wedge L(x,\theta_2), \quad R(x,\theta) \equiv R(x,\theta_1) \wedge R(x,\theta_2).$ We define in the same way the image of the disjunction: $\theta(\overrightarrow{x})$ is the formula $\theta_1(\overrightarrow{x}) \vee \theta_2(\overrightarrow{x}).$ • If $\theta(\overrightarrow{x})$ is the formula $\exists y \varphi(y, \overrightarrow{x})$, then

 $L(x,\theta(\overrightarrow{x})) \equiv \exists y(y \sqsubset x \land L(x,\varphi(y,\overrightarrow{x}))),$ $R(x,\theta(\overrightarrow{x})) \equiv \exists y(x \sqsubset y \land R(x,\varphi(y,\overrightarrow{x}))).$

• If $\theta(\overrightarrow{x})$ is the formula $\forall y \varphi(y, \overrightarrow{x})$, then

 $L(x,\theta(\overrightarrow{x})) \equiv \forall y(y \sqsubset x \to L(x,\varphi(y,\overrightarrow{x}))),$ $R(x,\theta(\overrightarrow{x})) \equiv \forall y(x \sqsubset y \to R(x,\varphi(y,\overrightarrow{x}))).$

Remark: The bounding of the quantifiers in the formula does not change its quantifier depth: $QD(L_x(\theta)) = QD(\theta) = QD(R_x(\theta))$.

1 The order type $(\omega, <) \oplus (\omega, <)$

The first goal is to find an axiomatization of the structure $(\mathbb{N}, <) \oplus (\mathbb{N}, <)$. We define the following sentence:

$$\varphi \equiv \begin{array}{c} \forall x_0 \left(\neg (x_0 \sqsubset x_0) \right) \land & \text{(irreflexibility)} \\ \forall x_0 \forall x_1 \forall x_2 (x_0 \sqsubset x_1 \sqsubset x_2 \rightarrow x_0 \sqsubset x_2) \land & \text{(transitivity)} \\ \forall x_0 \forall x_1 (x_0 \sqsubset x_1 \lor x_0 = x_1 \lor x_1 \sqsubset x_0) \land & \text{(linearity)} \\ \forall x_0 \exists x_1 (x_0 \sqsubset x_1 \land \neg \exists x_2 (x_0 \sqsubset x_2 \sqsubset x_1)) \land & \text{(immediate successor)} \\ \exists x_0 \exists x_1 \left(\begin{array}{c} x_0 \sqsubset x_1 \land \neg \exists x_2 (x_2 \sqsubset x_0) \land \\ \forall x_2 \left(\begin{array}{c} \neg (x_0 = x_2) \land \neg (x_1 = x_2) \longleftrightarrow \\ \exists x_3 (x_3 \sqsubset x_2 \land \neg \exists x_4 (x_3 \sqsubset x_4 \sqsubset x_2)) \end{array} \right) \end{array} \right) \end{array}$$

Definition: Let $\mathfrak{A} = (A, <)$ be a structure with signature $((2), \emptyset, 0)$. We define *distance* between two elements of this structure as follows:

for all $a, b \in A$, such that a < b, d(a, b) = 1 + the number of elements between a and b, i.e. $\begin{vmatrix} d(a, b) = 1 + \|\{c \in A \mid a < c < b\}\| \\ d(a, a) = 0 \end{vmatrix}$, for a < b

Notation:

$$\psi(x_0, x_1) \equiv \left(\begin{array}{c} x_0 \sqsubset x_1 \land \neg \exists x_2(x_2 \sqsubset x_0) \land \\ \forall x_2 \left(\begin{array}{c} \neg (x_0 = x_2) \land \neg (x_1 = x_2) \longleftrightarrow \\ \exists x_3 (x_3 \sqsubset x_2 \land \neg \exists x_4 (x_3 \sqsubset x_4 \sqsubset x_2)) \end{array}\right) \end{array}\right).$$

If $\mathfrak{A} \models \varphi$ then $\mathfrak{A} \models \exists x_0 \exists x_1 \psi(x_0, x_1)$ and therefore there exist exactly two elements (we will denote them by $0_0^{\mathfrak{A}}$ and $0_1^{\mathfrak{A}}$) such that $\mathfrak{A} \models \psi[0_0^{\mathfrak{A}}, 0_1^{\mathfrak{A}}]$.

Lemma

Let $\mathfrak{A} = (A, <_A)$ and $\mathfrak{B} = (B, <_B)$ be models of φ . Let $f \in LI_0(\mathfrak{A}, \mathfrak{B})$ be a local isomorphism from \mathfrak{A} to \mathfrak{B} . Let us denote $a^{(0)} :=$

$$\begin{cases} \min\{a_i \mid a_i \in Dom(f)\} &, \text{ if } f \neq \emptyset \\ 0_0^{\mathfrak{A}} &, \text{ otherwise} \\ \text{and} \\ a^{(1)} := \begin{cases} \min\{a_i \mid a_i \in Dom(f) \& 0_1^{\mathfrak{A}} \leq_A a_i\} \\ 0_1^{\mathfrak{A}} &, \text{ otherwise} \end{cases}, \text{ if } \exists a \in Dom(f)(0_1^{\mathfrak{A}} \leq_A a) \\ &, \text{ otherwise} \end{cases}$$
Then for every natural number $p > 2$,

 $f \in LI_p(\mathfrak{A}, \mathfrak{B})$ if and only if

$$\left(\begin{array}{ccc} \forall n \leq 2^{(p-1)} \ \forall a_i, a_j \in Dom(f) \\ (d(a_i, a_j) = n \Leftrightarrow d(f(a_i), f(a_j)) = n) \\ \& \\ \forall n \leq 2^{(p-1)} + p - 2 \\ (a^{(0)} \in Dom(f) \Rightarrow (d(0^{\mathfrak{A}}_0, a^{(0)}) = n \Leftrightarrow d(0^{\mathfrak{B}}_0, f(a^{(0)})) = n)) \\ \& \\ \forall n \leq 2^{(p-1)} + p - 4 \\ (a^{(1)} \in Dom(f) \Rightarrow (d(0^{\mathfrak{A}}_1, a^{(1)}) = n \Leftrightarrow d(0^{\mathfrak{B}}_1, f(a^{(1)})) = n)) \end{array} \right)$$

The three conjuncts of the right side formalize the following three properies:

- "to preserve distances less than or equal to 2^{p-1} ",
- "to preserve the distances to the first element 0_0 , which are less than or equal to $2^{(p-1)} + p 2$ " and
- "to preserve the distances to the second zero 0_1 , which are less than or equal to $2^{(p-1)} + p 4$ ".

We will need the direction (\Leftarrow) only.

Proof: Induction on p.

p = 2.

 $(\Rightarrow) f \in LI_2(\mathfrak{A}, \mathfrak{B})$

- It is easy to verify that $d(a_i, a_j) = d(f(a_i), f(a_j))$ when one of these distances is ≤ 2 .
- If $a^{(0)} \in Dom(f)$ and one of $d(0^{\mathfrak{A}}_0, a^{(0)})$ and $d(0^{\mathfrak{B}}_0, f(a^{(0)}))$ is ≤ 2 , it is easy to verify that they are equal.
- If $a^{(1)} \in Dom(f)$, it is easy to verify that $a^{(1)} = 0_1^{\mathfrak{A}}$ if and only if $f(a^{(1)}) = 0_1^{\mathfrak{B}}$:

Assume for example that $a^{(1)} = 0_1^{\mathfrak{A}}$ and $d(0_1^{\mathfrak{B}}, f(a^{(1)}) \neq 0$. We have two cases:

If $0_1^{\mathfrak{B}} < f(0_1^{\mathfrak{A}})$, then for $b \in B$ - the predecessor of $f(0_1^{\mathfrak{A}})$, there exists $a \in A$, such that $f \cup \{(a, b)\} \in LI_1(\mathfrak{A}, \mathfrak{B})$ and therefore $a < 0_1^{\mathfrak{A}}$. Then

for $S_a \in A$ - the successor of a, that is between a and $0_1^{\mathfrak{A}}$, there exists $c \in B$, such that $f \cup \{(a, b)\} \cup \{(S_a, c)\} \in LI_0(\mathfrak{A}, \mathfrak{B})$ and therefore c is between b and its successor $f(0_1^{\mathfrak{A}})$, which is a contradiction. In the case $f(0_1^{\mathfrak{A}}) < 0_1^{\mathfrak{B}}$ we take the predecessor of $f(0_1^{\mathfrak{A}})$.

In the other direction the proof is similar.

(\Leftarrow) The local isomorphism f preserves the distances for p = 2. We can prove $f \in LI_2(\mathfrak{A},\mathfrak{B})$. using the fact that $f \in LI_1(\mathfrak{A},\mathfrak{B})$ if and only if both $\forall n \leq 1 \ (d(a_i, a_j) = n \Leftrightarrow d(f(a_i), f(a_j)) = n)$ and $f(a) = 0_0^{\mathfrak{B}} \Leftrightarrow a = 0_0^{\mathfrak{A}}$, where $a_i, a_j, a \in Dom(f)$. The interesting case is when we choose $a \in A$, such that $0_0^{\mathfrak{A}} < a < a^{(0)}$ and $d(a, a^{(0)}) > 1$. Then we have to find $b \in B$, such that $0_0^{\mathfrak{B}} < b$ and $d(b, f(a^{(0)}) > 1$. This is possible, because otherwise $d(0_0^{\mathfrak{B}}, f(a^{(0)})) \leq 2$, which

is a contradiction, since $d(0_0^{\mathfrak{A}}, a^{(0)}) > 2$.

IH - assume it is true for some $p \ge 2$. We have to prove it for p + 1.

 (\Rightarrow) Let $f \in LI_{p+1}(\mathfrak{A}, \mathfrak{B}).$

- 1. Suppose $d(a_i, a_j) = n \leq 2^p$ for some $a_i, a_j \in Dom(f)$ and n > 0, the case n = 0 is easy. Take an element c of A, such that $d(a_i, c) = \left[\frac{n}{2}\right]$. Then $d(c, a_j) = \left[\frac{n-1}{2}\right] + 1$. There exists $e \in B$, such that $f \cup \{(c, e)\} \in LI_p(\mathfrak{A}, \mathfrak{B})$. Therefore $f(a_i) \leq e \leq f(a_j)$. Since $\left[\frac{n}{2}\right] \leq 2^{(p-1)}$ and $\left[\frac{n-1}{2}\right] + 1 \leq 2^{(p-1)} + 1$, from the IH it follows that $d(f(a_i), e) = d(a_i, c)$ and $d(e, f(a_j)) = d(c, a_j)$ and therefore $d(f(a_i), f(a_j)) = d(f(a_i), e) + d(e, f(a_j)) = n$. In the other direction the proof is similar.
- 2. Suppose $a^{(0)} \in Dom(f)$ and $d(0^{\mathfrak{A}}_0, a^{(0)}) \leq 2^{(p+1)-1} + (p+1) 2 = 2^p + p 1.$

We have two subcases:

- $d(0_0^{\mathfrak{A}}, a^{(0)}) < 2^p + p 1.$ Now we can choose $c \in A$, such that $d(c, a^{(0)}) \leq 2^{(p-1)}$ and $d(0_0^{\mathfrak{A}}, c) \leq 2^{(p-1)} + p - 2.$ There exists $e \in B$, such that $f \cup \{(c, e)\} \in LI_p(\mathfrak{A}, \mathfrak{B}).$ From IH it follows that $d(0_0^{\mathfrak{A}}, c) = d(0_0^{\mathfrak{B}}, e)$ and $d(c, a^{(0)}) = d(e, f(a^{(0)}))$ and therefore $d(0_0^{\mathfrak{A}}, a^{(0)}) = d(0_0^{\mathfrak{B}}, f(a^{(0)})).$
- $d(0_0^{\mathfrak{A}}, a^{(0)}) = 2^p + p 1.$ Assume that $d(0_0^{\mathfrak{A}}, a^{(0)}) \neq d(0_0^{\mathfrak{B}}, f(a^{(0)})).$ Then $d(0_0^{\mathfrak{B}}, f(a^{(0)})) > 2^p + p - 1.$ Now we can choose $e \in B$, such that $d(0_0^{\mathfrak{B}}, e) > 2^{(p-1)} + p - 2$ and $d(e, f(a^{(0)})) > 2^{(p-1)}.$ But there exists $c \in A$, such that $f \cup \{(c, e)\} \in LI_p(\mathfrak{A}, \mathfrak{B})$ and from IH it follows that $d(0_0^{\mathfrak{A}}, c) > 2^{(p-1)} + p - 2$ and $d(c, a^{(0)}) > 2^{(p-1)}.$ Then $d(0_0^{\mathfrak{A}}, (a^{(0)}) > 2^p + p - 1,$ which is a contradiction.

- 3. Suppose $a^{(1)} \in Dom(f)$ and $d(0^{\mathfrak{A}}_1, a^{(1)}) \leq 2^{(p+1)-1} + (p+1) 4 = 2^p + p 3$. The proof is similar.
- (\Leftarrow) Suppose that for the local isomorphism f the distance conditions for p+1 hold. From IH it follows that $f \in LI_p(\mathfrak{A}, \mathfrak{B})$. We have to prove that $f \in LI_{p+1}(\mathfrak{A}, \mathfrak{B})$. Take for example $a \in A$. We have the following cases:
 - $a \in Dom(f)$. Therefore there exists $b \in B$, b = f(a), such that $f \cup \{(a, b)\} = f \in LI_n(\mathfrak{A}, \mathfrak{B})$.
 - a' < a < a'', for some $a', a'' \in Dom(f)$, s.t. between them there are no elements from Dom(f).
 - $\begin{array}{l} \ d(a',a) \leq 2^{(p-1)} \ \text{and} \ d(a,a') \leq 2^{(p-1)}.\\ \text{Then} \ d(a',a'') \leq 2^p \ \text{and} \ \text{we can choose} \ b \in B, \ \text{such that} \ d(f(a'),b) = \\ d(a',a) \ \text{and} \ d(b,f(a'')) \ = \ d(a,a''). \ \text{From IH it follows that} \ f \in \\ LI_{p+1}(\mathfrak{A},\mathfrak{B}). \end{array}$
 - $\begin{array}{l} \ d(a',a) \leq 2^{(p-1)} \ \text{and} \ d(a,a'') > 2^{(p-1)}.\\ \text{We can choose } b \in B, \text{ such that } d(f(a'),b) = d(a',a). \text{ If } d(b,f(a'')) \leq 2^{(p-1)}, \text{ then } d(f(a'),f(a'')) \leq 2^p, \text{ which is a contradiction.} \end{array}$
 - $d(a', a) > 2^{(p-1)}$ and $d(a, a'') \le 2^{(p-1)}$.

This case is similar to the previous, except that it is possible $a' \leq 0_1^{\mathfrak{A}} \leq a$. Then $d(0_1^{\mathfrak{B}}) \geq 2^{(p-1)}$ and we can choose $b \in B$, such that d(b, f(a'')) = d(a, a''). If $d(0_1^{\mathfrak{A}}, a) \leq 2^{(p-1)} + p - 4$, then $d(0_1^{\mathfrak{A}}, a'') \leq 2^p + p - 4 < 2^p + p - 3$ and therefore (IH) $d(0_1^{\mathfrak{A}}, a'') = d(0_1^{\mathfrak{B}}, f(a''))$, then $d(0_1^{\mathfrak{A}}, a) = d(0_1^{\mathfrak{A}}, b)$ and $f \in LI_{p+1}(\mathfrak{A}, \mathfrak{B})$.

- $-\ d(a^\prime,a)>2^{(p-1)}$ and $d(a,a^{\prime\prime})>2^{(p-1)}.$ Analogous.
- $0_0^{\mathfrak{A}} < a < a^{(0)}$. Analogous.
- $\max\{a_i \mid a_i \in Dom(f)\} < a$. This case is easy.

Notation: By $(\omega \cdot 2, <')$ we denote the structure $(\mathbb{N}, <) \oplus (\mathbb{N}, <)$ with domain $\omega \cdot 2 = \mathbb{N} \cup \{x' \mid x \in \mathbb{N}\}$ and the following relation: for all $x, y \in \mathbb{N}$, such that x < y,

$$x <' y$$
 and $x' <' y'$ and $x <' x'$

Theorem: $(\mathbb{N}, <) \oplus (\mathbb{N}, <)$ is a prime model of φ .

Proof: Let $\mathfrak{A} = (A, <_A)$ be a model of φ . Define a function f from $\omega \cdot 2$ to A, as follows: $f(0) := 0_0^{\mathfrak{A}}, f(0') := 0_1^{\mathfrak{A}}$ and for each x > 0 in $\mathbb{N}, f(x+1) :=$ the $<_A$ -successor of f(x) and f((x+1)') := the $<_A$ -successor of f(x'). From the Lemma it follows that every finite subset of f belongs to every $LI_p((\omega \cdot 2, <'), \mathfrak{A})$, and therefore f is an elementary embedding from (N, <') into \mathfrak{A} . From the last theorem it follows that for every model \mathfrak{A} of φ , for every sentence ψ , if $(\mathbb{N}, <) \oplus (\mathbb{N}, <) \models \psi$ then $\mathfrak{A} \models \psi$, and therefore φ is an axiom for the structure $(\mathbb{N}, <) \oplus (\mathbb{N}, <)$.

2 Finite structures $\mathfrak{A}_m = (\{0, \ldots, m-1\}, <)$

Consider structures $\mathfrak{A}_m = (A_m, <)$, where $A_m = \{0, \ldots, m-1\}$. We want to prove that for all $m, n \ge 1$ and for all $p \ge 0$,

$$\mathfrak{A}_m \equiv_p \mathfrak{A}_n$$
 if and only if $((m=n) \text{ or } (m \neq n \text{ and } 2^p - 2 < \min(m, n)))$.

Proof:

(⇒) We want to prove that if m < n and $2^p - 2 \ge m$, then $\mathfrak{A}_m \not\equiv_p \mathfrak{A}_n$, finding sentence φ_m , with $QD(\varphi_m) \le p$ and such that $\mathfrak{A}_n \models \varphi_m$, but $\mathfrak{A}_m \not\models \varphi_m$.

We can easily define sentences $DiffEl_m$, such that $\mathfrak{A}_m \models \neg DiffEl_m$ and $\mathfrak{A}_n \models DiffEl_m$ for all n > m, $(DiffEl_m$ says 'there exist at least m + 1 different elements in the structure'):

 $DiffEl_0 \equiv \exists x_0 (x_0 = x_0)$

 $\begin{array}{|} DiffEl_{m+1} \equiv \exists x_0 \dots \exists x_{m+1}(x_0 \sqsubset x_1 \land x_1 \sqsubset x_2 \land \dots \land x_m \sqsubset x_{m+1}), \\ \text{but } QD(DiffEl_m) = m+1. \text{ It suffices to find sentences } \varphi_m, \text{ such that:} \\ \text{(a) } QD(\varphi_m) = \mu p[2^p - 2 \ge m]; \text{ and (b) } \mathfrak{A}_n \models \varphi_m \leftrightarrow DiffEl_m, \text{ for all } n. \end{array}$

Now define φ_m by induction on m as follows: $\varphi_0 \equiv \psi_0 \equiv \exists x_0(x_0 = x_0) \text{ and } \varphi_1 \equiv \psi_1 \equiv \exists x_0 \exists x_1(x_0 \sqsubset x_1), \text{ and for } m \ge 0,$ $\varphi_{m+2} \equiv \exists x (\varphi_{[\frac{m}{2}]}(x) \land \varphi_{[\frac{m+1}{2}]}(x)), \text{ i.e.}$ $\begin{vmatrix} \varphi_{2k+2} \equiv \exists x (\varphi_k^{-x}(x) \land \varphi_k^{x-1}(x)) \\ \varphi_{2k+3} \equiv \exists x (\varphi_k^{-x}(x) \land \varphi_{k+1}^{x-1}(x)) \end{vmatrix}$ It is easy to check (b), i.e. $\mathfrak{A}_n \models \varphi_m \leftrightarrow DiffEl_m, \text{ for all } n.$ We prove (a), i.e. $QD(\varphi_m) = \mu p[2^p - 2 \ge m],$ by induction on m:

- for m = 0 and m = 1, $QD(\varphi_0) = 1 = \mu p[2^p - 2 \ge 0]$ and $QD(\varphi_1) = 2 = \mu p[2^p - 2 \ge 1]$.
- IH for smaller than $m \ge 2$. Remark:

 $QD(\varphi_m) \le QD(\varphi_{m+1}).$

- 1. m = 2k + 2. Let $p := QD(\varphi_{2k+2})$ and $q := QD(\varphi_k)$. Then p = q + 1. From IH it follows that $2^q - 2 \ge k$ and therefore $2^q \ge k + 2$, then $2^p = 2^{q+1} \ge 2k + 2 + 2 = m + 2$, i.e. $2^p \ge m + 2$. It remains to prove that p is the least, i.e. $p = \mu t[2^t - 2 \ge m]$. Assume there is smaller p' s.t. $2^{p'} \ge m + 2$. Then $p' \le q$ and therefore $2^q \ge m + 2 = 2k + 4$, then $2^{q-1} - 2 \ge k$, but from IH (for k < m) q is the least such that $2^q - 2 \ge k$, contradiction.
- 2. m = 2k + 3. Let $p := QD(\varphi_{2k+3})$ and $q := QD(\varphi_{k+1})$. Then p = q + 1. From IH it follows that $2^q - 2 \ge k + 1$, i.e $2^q \ge k + 3$, then $2^p = 2^{q+1} \ge 2k + 6 = m + 3$, then $2^p \ge m + 2$. Assume there is smaller p's.t. $2^{p'} \ge m + 2$. Again $p' \le q$ and therefore $2^q \ge m + 2 = 2k + 5$, then $2^q \ge 2k + 6$, then $2^{q-1} \ge k + 3$, i.e. $2^{q-1} - 2 \ge k + 1$, but from IH (for

k + 1 < m) it follows that q is the least with this property, which is a contradiction.

Therefore if $m \neq n$ and $2^p - 2 \geq \min(m, n)$ then $\mathfrak{A}_m \not\equiv_p \mathfrak{A}_n$.

(\Leftarrow) We want to prove that if m < n and $2^p \leq 1 + m$, then $\mathfrak{A}_m \equiv_p \mathfrak{A}_n$, which is equivalent to $\emptyset \in LI_p(\mathfrak{A}_m, \mathfrak{A}_n)$. By induction on $m \geq 1$.

- m = 1. Since $2^p \le 2, 0 \le p \le 1$ and then $\mathfrak{A}_1 \equiv_p \mathfrak{A}_n$, for n > 1.
- m > 1. IH for smaller than m. We have to prove that:
 - for all $a \in A_m$ there is $b \in A_n$, such that $\{(a, b)\} \in LI_{p-1}(\mathfrak{A}_m, \mathfrak{A}_n);$
 - for all $b \in A_n$ there is $a \in A_m$, such that $\{(a, b)\} \in LI_{p-1}(\mathfrak{A}_m, \mathfrak{A}_n)$.

For the first we consider different cases for a:

1. for $0 \le a \le \frac{m-1}{2}$, take b = a. $\{(a, a)\} \in LI_{p-1}(\mathfrak{A}_m, \mathfrak{A}_n) \text{ if and only if } \emptyset \in LI_{p-1}(\mathfrak{A}_{m-a-1}, \mathfrak{A}_{n-a-1}),$ which follows from $2^{p-1} \le m-a$, (from IH for m-a-1 < m). Assume $2^{p-1} > m-a$. Since $2^p \le m+1, \ 2^{p-1} \le \frac{m+1}{2} = \frac{m}{2} + \frac{1}{2}$. Then $\frac{m+1}{a} > m-a$. Therefore m+1 > 2m-2a, then 2a > m-1, then $a > \frac{m-1}{2}$, which is a contradiction. 2. for $\frac{m-1}{2} \le a \le m-1$, take b = a + n - m,

i.e. such that the distances d(a, m-1) = d(b, n-1), $b \in A_n$, since $0 \leq a + n - m \leq n - 1$. Again $\{(a, b)\} \in LI_{p-1}(\mathfrak{A}_m, \mathfrak{A}_n)$ if and only if $\emptyset \in LI_{p-1}(\mathfrak{A}_a, \mathfrak{A}_b)$, which follows from $2^{p-1} \leq a+1$, (from III for a < m).

Assume $2^{p-1} > a+1$, then $2^p > 2a+2$. Since $a \ge \frac{m-1}{2}$, $2a \ge m-1$. Therefore $2^p > m-1+2=m+1$, which is a contradiction.

In order to prove the second, we consider cases for b:

1. for
$$0 \le b \le \frac{m-1}{2}$$
, take $a = b$.

The proof is the same as in the case for a.

2. for $n - 1 - \frac{m-1}{2} \le b \le n-1$, take a = b + m - n, i.e. such that d(a, m, -1) = d(b, n, -1). Then $\frac{m-1}{2} \le a \le n$.

i.e. such that d(a, m-1) = d(b, n-1). Then $\frac{m-1}{2} \le a \le m-1$ and the proof is the same as in the case for a.

3. for $\frac{m-1}{2} < b < n-1 - \frac{m-1}{2}$, take $a = \left[\frac{m-1}{2}\right] \in A_m$. Then $m-2 \leq 2a \leq m-1, a < b$ and $m-a-1 \leq n-b-1$, $m \leq 2b \leq 2n-m-1$. Therefore $\{(a,b)\} \in LI_{p-1}(\mathfrak{A}_m, \mathfrak{A}_n)$ if and only if $\emptyset \in LI_{p-1}(\mathfrak{A}_a, \mathfrak{A}_b)$ and $\emptyset \in LI_{p-1}(\mathfrak{A}_{m-a-1}, \mathfrak{A}_{n-b-1})$, which follows from $(2^{p-1} \leq a+1 \text{ and } 2^{p-1} \leq m-a)$, since IH for a+1 < m and IH for m-a-1 < m. Assume $2^{p-1} > a+1$. Then $2^p > 2a+2 > = m$. But $2^p \leq m+1$, then $m+1 \geq 2^p > m$. Then $2^p = m+1$ and $\left[\frac{m-1}{2}\right] = \frac{m-1}{2}$, then 2a = m-1, therefore $2^p > 2a+2 = m+1$, which is a contradiction. Assume $2^{p-1} > m-1$. Then $2^p > 2m-2a \geq 2m-m+1 = m+1$, i.e. $2^p > m+1$, but $2^p \leq m+1$, which is a contradiction. Therefore $(2^{p-1} \leq a+1 \text{ and } 2^{p-1} \leq m-a)$.

3 The order types $\mathfrak{B}_m = (\omega \cdot m, <)$

Consider structures $\mathfrak{B}_m = (B_m, <)$ with $m \ge 1$ and $B_m = \omega \cdot m = \{k_i \mid k \in \mathbb{N} \& 0 \le i \le m-1\}$ and $k_i < l_j \Leftrightarrow (i < j \text{ or } i = j \& k < l)$. We want to prove that for all $m, n \ge 1$ and for all $p \ge 0$,

$$\mathfrak{B}_m \equiv_p \mathfrak{B}_n$$
 if and only if $((m=n) \text{ or } (m \neq n \text{ and } 2^{p-2} \leq \min(m,n)))$.

Proof:

 (\Rightarrow) We want to prove that if m < n and $2^{p-2} > m$, then $\mathfrak{B}_m \not\equiv_p \mathfrak{B}_n$, finding sentence ψ_m , with $QD(\psi_m) \leq p$ and such that $\mathfrak{B}_n \models \psi_m$, but $\mathfrak{B}_m \not\models \varphi_m$. Define a formula Wip(x) with QD(Wip) = 2, which says that the element x does not have immediate predecessor, but has a predecessor, as follows:

$$Wip(x) \equiv \exists y(y \sqsubset x) \land \forall y(y \sqsubset x \to \exists z(y \sqsubset z \land z \sqsubset x)).$$

Again we can define sentences $DiffWipEl_m$, for $m \ge 1$, such that $\mathfrak{B}_m \models \neg DiffWipEl_m$ and $\mathfrak{B}_n \models DiffWipEl_m$ for all n > m, $(DiffWipEl_m$ says "there exist at least m different Wip-elements"):

$$DiffWipEl_m \equiv \exists x_0 \dots \exists x_{m-1} (Wip(x_0) \land \dots \land Wip(x_{m-1}) \land x_0 \sqsubset \dots \sqsubset x_{m-1}).$$

 $QD(DiffWipEl_m) = m+2$. It suffices to find sentences ψ_m , such that (a) $QD(\psi_m) = \mu p[2^{p-2} - 1 \ge m]$ and (b) $\mathfrak{B}_n \models \psi_m \leftrightarrow DiffWipEl_m$, for all n.

We define ψ_m by induction on $m \ge 1$,

$$\begin{array}{l} \psi_1 \equiv \exists x_0 W i p(x_0), & QD(\psi_1) = 3\\ \psi_2 \equiv \exists x_0 \exists x_1 (x_0 \sqsubset x_1 \land W i p(x_0) \land W i p(x_1)), & QD(\psi_2) = 4 \end{array}$$

for m > 1, $\varphi_{m+1} \equiv \exists (Wip(x) \land \psi_{\lceil \frac{m}{m} \rceil}^x \land \psi_{\lceil \frac{m+1}{m} \rceil}^x)$, i.e.

$$\psi_{2k+1} \equiv \exists x (Wip(x) \land \psi_k^x(x) \land \psi_k^x(x)) \\ \psi_{2k+2} \equiv \exists x (Wip(x) \land \psi_k^x(x) \land \psi_{k+1}^x(x)) \quad \text{for } k \ge 1.$$

It is easy to check (b), i.e. $\mathfrak{B}_n \models \psi_m \leftrightarrow DiffWipEl_m$, for all n. We prove (a), i.e. $QD(\psi_m) = \mu p[2^{p-2} - 1 \ge m]$, by induction on m:

• m = 1 $\mu p[2^{p-2} - 1 \ge 1] = \mu p[2^{p-2} \ge 2] = \mu p[p-2 \ge 1] = 3 = QD(\psi_1).$ • m = 2

$$\mu p[2^{p-2} - 1 \ge 2] = \mu p[2^{p-2} \ge 3] = \mu p[p-2 \ge 2] = 4 = QD(\psi_2).$$

• m > 2. III for smaller than m. Since the function $f(p) = \mu p[2^{p-2} \ge m]$ is monotone, we have:

1. m = 2k + 1, for $k \ge 1$. $QD(\psi_{2k+1}) = 1 + QD(\psi_k) \stackrel{IH}{=} 1 + \mu q[2^{q-2} - 1 \ge k] = 1 + \mu q[2^{q-2} \ge k + 1] = \mu p[2^{p-3} \ge k + 1] = \mu p[2^{p-2} \ge 2k + 2] = \mu p[2^{p-2} > 2k + 1] = \mu p[2^{p-2} \ge 2k + 1].$ 2. m = 2k + 2, for $k \ge 1$.

 $\begin{aligned} QD(\psi_{2k+2}) &= 1 + QD(\psi_{k+1}) \stackrel{IH}{=} 1 + \mu q [2^{q-2} - 1 \ge k+1] = 1 + \mu q [2^{q-2} \ge k+2] \\ k+2] &= \mu p [2^{p-3} \ge k+2] = \mu p [2^{p-2} \ge 2k+4] = \mu p [2^{p-2} > 2k+3] = \\ \mu p [2^{p-2} \ge 2k+3] &= \mu p [2^{p-2} \ge m+1]. \end{aligned}$

Therefore if $n \neq m$ and $2^{p-2} > m$, then $\mathfrak{B}_m \not\equiv_p \mathfrak{B}_n$.

(\Leftarrow) We want to prove that if m < n and $2^{p-2} \leq m$, then $\mathfrak{B}_m \equiv_p \mathfrak{B}_n$, which is equivalent to $\emptyset \in LI_p(\mathfrak{B}_m, \mathfrak{B}_n)$. By induction on $m \geq 1$.

- m = 1. Since $2^{p-2} \le 1$, $0 \le p \le 2$ and then $\mathfrak{B}_1 \equiv_p \mathfrak{B}_n$, for n > 1.
- m > 1. IH for smaller than m.
 Let 2^{p-2} ≤ m. We have to prove that:
 - for all $a \in \omega \cdot m$ there is $b \in \omega \cdot n$, such that $\{(a, b)\} \in LI_{p-1}(\mathfrak{B}_m, \mathfrak{B}_n);$ - for all $b \in \omega \cdot m$ there is $a \in \omega \cdot n$, such that $\{(a, b)\} \in LI_{n-1}(\mathfrak{B}_m, \mathfrak{B}_n).$

First we prove that for the wip-elements, $0_i^{\mathfrak{B}_m}$ and $0_j^{\mathfrak{B}_n}$, with $0 < i \leq m-1$ and $0 < j \leq n-1$, i.e. those elements for which $\mathfrak{B}_m \models Wip[0_i^{\mathfrak{B}_m}]$. Using that, the winning strategy for the second player in p moves, for the other elements of $\omega \cdot m$ and $\omega \cdot n$ can be expressed, since:

$$\begin{split} \{(0_0^{\mathfrak{B}_m}, 0_0^{\mathfrak{B}_n})\} &\in LI_{p-1}(\mathfrak{B}_m, \mathfrak{B}_n) \text{ if and only if } \emptyset \in LI_{p-1}(\mathfrak{B}_m, \mathfrak{B}_n);\\ \text{And for } a \in \mathfrak{B}_m, \text{ such that } 0_i^{\mathfrak{B}_m} \leq a < 0_{i+1}^{\mathfrak{B}_m} \text{ and } b \in \mathfrak{B}_n, \text{ such that } 0_j^{\mathfrak{B}_n} \leq a < 0_{j+1}^{\mathfrak{B}_m} \text{ and } d(0_i^{\mathfrak{B}_m}, a) = d(0_j^{\mathfrak{B}_n}, b),\\ \{(a, b)\} \in LI_{p-1}(\mathfrak{B}_m, \mathfrak{B}_n) \text{ if and only if } \{(0_i^{\mathfrak{B}_m}, 0_j^{\mathfrak{B}_n})\} \in LI_{p-1}(\mathfrak{B}_m, \mathfrak{B}_n). \end{split}$$

So first we consider different cases for $a = 0_i^{\mathfrak{B}_m} \in \mathfrak{B}_m$, for which we take $b = 0_i^{\mathfrak{B}_n} \in \mathfrak{B}_n$, as follows:

- 1. For $1 \leq i \leq \left[\frac{m-1}{2}\right]$, take j = i. We have $1 \leq 2i \leq m-1$ and $b = 0_i^{\mathfrak{B}_n}$. Therefore $\{(a,b)\} \in LI_{p-1}(\mathfrak{B}_m,\mathfrak{B}_n)$ if and only if $\emptyset \in LI_{p-1}(\mathfrak{B}_{m-i},\mathfrak{B}_{n-i})$, which follows from $2^{p-3} \leq m-i$, since IH for m-i < m. Assume $2^{p-3} > m-i$, i.e. $m-i+1 \leq 2^{p-3} \leq \frac{m}{2}$, then $2m-2i+2 \leq m$, then $m+2 \leq 2i \leq m-1$, which is a contradiction.
- 2. For $\left[\frac{m-1}{2}\right] < i \le m-1$, take j = n-m+i.

We have $m \leq 2i$ and $b = 0^{\mathfrak{B}_n}_{n-m+i}$. Therefore $\{(a,b)\} \in LI_{p-1}(\mathfrak{B}_m,\mathfrak{B}_n)$ if and only if $\emptyset \in LI_{p-1}(\mathfrak{B}_i,\mathfrak{B}_j)$, which follows from $2^{p-3} \leq i$, since IH for i < m.

Assume $2^{p-3} > i$, i.e. $i+1 \le 2^{p-3}$, but $2^{p-2} \le m$. Then $2i+2 \le 2^{p-2} \le m$, i.e. $m+2 \le m$, contradiction.

Now consider cases for $b = 0_j^{\mathfrak{B}_n} \in \mathfrak{B}_n$, for which we take $a = 0_i^{\mathfrak{B}_m} \in \mathfrak{B}_m$, as follows (the proof for the first two cases is the same):

1. For $1 \le j \le \left[\frac{m-1}{2}\right]$, take i = j. 2. For $\left[\frac{m-1}{2}\right] + n - m < j \le n - 1$, take i = j - n + m. 3. For $\left[\frac{m-1}{2}\right] + 1 \le j \le n - m + \left[\frac{m-1}{2}\right]$, take $i = \left[\frac{m-1}{2}\right] + 1$. Then we have $m + 1 \le 2j \le 2n - m - 2$ and $m \le 2i \le m + 1$. $\{(a,b)\} \in LI_{p-1}(\mathfrak{B}_m,\mathfrak{B}_n)$ if and only if $\left(\emptyset \in LI_{p-1}(\mathfrak{B}_i,\mathfrak{B}_j) \text{ and } \emptyset \in LI_{p-1}(\mathfrak{B}_{m-i},\mathfrak{B}_{n-j})\right)$. Since $j < n - m + \left[\frac{m-1}{2}\right] + 1$, j < n + i - m. Then m - i < n - j. We have $i \le j$.

It suffices to prove $(2^{p-3} \leq i \text{ and } 2^{p-3} \leq m-i)$, since from IH for i < mand m-i < m it will follow that $\emptyset \in LI_{p-1}(\mathfrak{B}_{m-i}, \mathfrak{B}_{n-j})$.

Assume $2^{p-3} > i$, then $2^{p-2} \ge 2i+2 \ge m+2$, but $2^{p-2} \le m$, then $m \ge m+2$, contradiction.

Assume $2^{p-3} > m-i$. Then $2^{p-2} \ge 2m-2i+2 \ge m+1$. But $2^{p-2} \le m$, then $m \ge m+1$, contradiction.

I			
I			

4 The order types $\mathfrak{C}_{m,q} = (\omega \cdot m + q, <)$

Consider structures $\mathfrak{C}_{m,q} = (C_{m,q}, <)$, where for $m \ge 1$ and $q \ge 0$,

$$\begin{split} C_{m,q} &= \omega \cdot m + q, \text{ and } \widetilde{\omega} \cdot m + q = (\omega \cdot m) \cup \{\omega \cdot m, \omega \cdot m + 1, \dots, \omega \cdot m + (q-1)\}.\\ \text{The elements of a structure } \mathfrak{C}_{m,q} \text{ will be denoted } k_i^{\mathfrak{C}_{m,q}} \text{ for } k_i^{\mathfrak{C}_{m,q}} \in \omega \cdot m, \text{ i.e.}\\ 0 &\leq i \leq m-1, \text{ and } k^{\mathfrak{C}_{m,q}} \text{ for } \omega \cdot m + k. \text{ Therefore } k_i^{\mathfrak{C}_{m,q}} < l_j^{\mathfrak{C}_{m,q}} \Leftrightarrow (i < j \text{ or } i = j \& k < l), \text{ and } k_i^{\mathfrak{C}_{m,q}} < k^{\mathfrak{C}_{m,q}}, \text{ for all } k^{\mathfrak{C}_{m,q}} \text{ and all } k_i^{\mathfrak{C}_{m,q}} \in \omega \cdot m. \end{split}$$

Having two structures $\mathfrak{C}_{m,q}$ and $\mathfrak{C}_{n,r}$, we want to find for which $p, \mathfrak{C}_{m,q} \equiv_p \mathfrak{C}_{n,r}$.

4.1. First consider the case m = n and q < r. We want to prove

$$\mathfrak{C}_{m,q} \equiv_p \mathfrak{C}_{m,r} \Leftrightarrow (q = 0 \text{ and } p \leq 1) \text{ or } (q > 0 \text{ and } 2^p < q + 5).$$

Proof:

 (\Rightarrow) We will need the following formulas:

 $Gst(x) \equiv \forall y(y = x \lor y \sqsubset x), "x \text{ is the greatest element"}; QD(Gst) = 1.$

 $Wip^*(x) \equiv \forall y (y \sqsubset x \rightarrow \exists z (y \sqsubset z \sqsubset x)), "x \text{ has no immediate predecessor"}; QD(Wip^*) = 2.$

 $Tail(x) \equiv \forall y (x \sqsubseteq y \rightarrow \neg Wip^*(y))$, "all the elements greater than or equal to x have immediate predecessor"; QD(Tail) = 3.

 $DiffEl_q$, defined in Section 2, "there are at least q + 1 different elements"; we have defined formulas φ_q , such that $\mathfrak{A}_t \models \varphi_q \leftrightarrow DiffEl_q$, for all t, and $QD(\varphi_q) = \mu p[2^p \ge q+2]$. But still $\mathfrak{C}_{s,t} \models \varphi_q \leftrightarrow DiffEl_q$, for all s and t, so here we may assume that

$$QD(DiffEl_q) = \mu p[2^p \ge q+2].$$

We define formulas Ψ_q by induction on q as follows:

$$\begin{split} \Psi_0 &\equiv \exists x Gst(x), & QD(\Psi_0) = 2, \\ \Psi_q &\equiv \forall x (Wip^*(x) \to DiffEl_{q-1}^x(x)), & \text{for } 1 \leq q \leq 3, \quad QD(\Psi_q) = 3, \\ \Psi_q &\equiv \exists x (\Psi_{[\frac{q}{2}]-2}(x) \land DiffEl_{[\frac{q+1}{2}]}^x(x) \land Tail(x)), & \text{for } q > 3. \end{split}$$

For these formulas we can prove the following properties:

(i) $QD(\Psi_q) = \mu p[2^p \ge q+5]$, for q > 0. (ii) $\mathfrak{C}_{m,q} \not\models \Psi_q$, but for all s and all t > q, $\mathfrak{C}_{s,t} \models \Psi_q$.

(i) The proof is by induction on q, using $\left[\frac{q}{2}\right] + \left[\frac{q+1}{2}\right] = q$.

•
$$1 \le q \le 3$$
; $QD(\Psi_q) = 3$ and $\mu p[2^p \ge q+5] = 3$ for $1 \le q \le 3$;

• q > 3;

IH for t < q, i.e. for all t, such that 0 < t < q, $QD(\Psi_t) = \mu p[2^p \ge t + 5]$. Therefore $QD(\Psi_q) = 1 + \max\{QD(\Psi_{[\frac{q}{2}]-2}), QD(DiffEl_{[\frac{q+1}{2}]}), QD(Tail)\}$. For $q > 3, 0 \le [\frac{q}{2}] - 2 < q$. Therefore (for q = 4 we cannot apply the IH, but the following equalities are still valid)

$$\begin{aligned} QD(\Psi_q) &= 1 + \max\left\{ \mu p \left[2^p \ge \left[\frac{q}{2} \right] + 3 \right], \mu p \left[2^p \ge \left[\frac{q+1}{2} \right] + 2 \right], 3 \right\} \\ &= 1 + \mu p \left[2^p \ge \left[\frac{q}{2} \right] + 3 \right] = \mu p \left[2^{p-1} \ge \left[\frac{q}{2} \right] + 3 \right] = \\ &= \mu p \left[2^p \ge 2 \cdot \left[\frac{q}{2} \right] + 6 \right] = \mu p \left[2^p \ge 2 \left[\frac{q}{2} \right] + 5 \right] = \\ &= \mu p \left[2^p \ge q + 5 \right]. \end{aligned}$$

(ii) The proof is by induction on q.

(\Leftarrow) The case q = 0 and $p \leq 1$ is easy to check. If q > 0 and $2^p \leq q + 4$ we have to prove that $\emptyset \in LI_p(\mathfrak{C}_{m,q}, \mathfrak{C}_{m,r})$, i.e. there is a winning strategy for the second player for a game with p moves. The proof is by induction on q.

- q = 1, Therefore $p \leq 2$. It is easy to check that $\emptyset \in LI_p(\mathfrak{C}_{m,q}, \mathfrak{C}_{m,r})$.
- q > 1, IH for t < q, i.e. for all t, such that 0 < t < q, if $2^p < t + 5$, then $\emptyset \in LI_p(\mathfrak{C}_{m,t},\mathfrak{C}_{n,r})$, where m = n and t < r. Let $2^p \leq q + 4$. We shall prove (a) $\forall a \in C_{m,q} \exists b \in C_{m,r}$ s.t. $\{(a,b)\} \in LI_{p-1}(\mathfrak{C}_{m,q},\mathfrak{C}_{m,r})$; and (b) $\forall b \in C_{m,r} \exists a \in C_{m,q}$ s.t. $\{(a,b)\} \in LI_{p-1}(\mathfrak{C}_{m,q},\mathfrak{C}_{m,r})$.

The cases $a = k_i^{\mathfrak{C}_{m,q}}$ where $0 \leq i \leq m-1$, and $b = k_i^{\mathfrak{C}_{m,r}}$ where $0 \leq i \leq m-1$ for (a) and (b) resp. (the first player chooses element from the part $\omega \cdot m$ and the second player answers with the same element from the other structure) are trivial, since $\{(k_i^{\mathfrak{C}_{m,q}}, k_i^{\mathfrak{C}_{m,q}})\} \in LI_{p-1}(\mathfrak{C}_{m,q}, \mathfrak{C}_{m,r})$ if and only if $\emptyset \in LI_{p-1}(\mathfrak{C}_{m,q}, \mathfrak{C}_{m,r})$.

Consider the case when the first player chooses element $\omega \cdot m + i$ from the tail, i.e. an element *a* from the set $\{0^{\mathfrak{C}_{m,q}} \dots (q-1)^{\mathfrak{C}_{m,q}}\}$ or *b* from $\{0^{\mathfrak{C}_{m,r}} \dots (r-1)^{\mathfrak{C}_{m,r}}\}$.

- For $a = k^{\mathfrak{C}_{m,q}}$ such that $0 \leq k \leq \left[\frac{q}{2}\right] - 2$, take $b = k^{\mathfrak{C}_{m,r}} \in C_{m,r}$. Then we have $\{(a,b)\} \in LI_{p-1}(\mathfrak{C}_{m,q},\mathfrak{C}_{m,r})$ if and only if $\{(k^{\mathfrak{C}_{m,q}}, k^{\mathfrak{C}_{m,r}})\} \in LI_{p-1}(\mathfrak{C}_{m,q}, \mathfrak{C}_{m,r})$ iff $\emptyset \in LI_{p-1}(\mathfrak{A}_{q-k-1}, \mathfrak{A}_{r-k-1})$, where \mathfrak{A}_l denote the finite structures ($\{0, \ldots, l-1\}, <$), defined in Section 2. We have proved that $\emptyset \in LI_{p-1}(\mathfrak{A}_{q-k-1}, \mathfrak{A}_{r-k-1})$ iff $2^{p-1} \leq 1 + (q-k-1)$, i.e. iff $2^{p-1} \leq q-k$. Since $0 \leq k \leq \left[\frac{q}{2}\right] - 2$ and $2^p \leq q+4$, we have $2k \leq q-4$, then $2q - 2k \geq q+4 \geq 2^p$, therefore $2^{p-1} \leq q-k$.

For $b = l^{\mathfrak{C}_{m,r}}$, such that $0 \leq l \leq [\frac{q}{2}] - 2$, take $a = l^{\mathfrak{C}_{m,q}}$, and we have proved $\{(l^{\mathfrak{C}_{m,q}}, l^{\mathfrak{C}_{m,r}})\} \in LI_{p-1}(\mathfrak{C}_{m,q}, \mathfrak{C}_{m,r}).$

- In the cases where the distance between the chosen element and the end of the structure (the greatest element) is less than or equal to $\left[\frac{q+1}{2}\right]$, the second player chooses and element having the same distance to the greatest element.

For $a = k^{\mathfrak{C}_{m,q}}$, such that $\left[\frac{q}{2}\right] - 1 \leq k \leq q-1$, take $b = l^{\mathfrak{C}_{m,q}}$, such that l = r - q + k. Therefore $\{(a,b)\} \in LI_{p-1}(\mathfrak{C}_{m,q},\mathfrak{C}_{m,r})$ if and only if $\{(k^{\mathfrak{C}_{m,q}}, l^{\mathfrak{C}_{m,r}})\} \in LI_{p-1}(\mathfrak{C}_{m,q}, \mathfrak{C}_{m,r})$ if and only if $\{\emptyset \in LI_{p-1}(\mathfrak{C}_{m,k}, \mathfrak{C}_{m,l}) \text{ and } \emptyset \in LI_{p-1}(\mathfrak{A}_{q-k-1}, \mathfrak{A}_{r-l-1})\}$ iff $\emptyset \in LI_{p-1}(\mathfrak{C}_{m,k}, \mathfrak{C}_{m,l})$, since q-k-1=r-l-1. Since $\left[\frac{q}{2}\right] - 1 \leq k \leq q-1$ and $2^p \leq q+4$, we have $2k \geq q-3$, i.e. $2\left[\frac{q}{2}\right] \geq q-1$, then $2^p \leq q+4 \leq 2k+7$, i.e. $2^p \leq 2k+6$, then $2^{p-1} \leq k+3 < k+4$. Then from the IH it follows that $\emptyset \in LI_{p-1}(\mathfrak{C}_{m,k}, \mathfrak{C}_{m,l})$.

For $b = l^{\mathfrak{C}_{m,r}}$, such that $r - [\frac{q+1}{2}] - 1 \leq l \leq r-1$, take $a = k^{\mathfrak{C}_{m,q}}$, where k = l-r+q. Therefore $[\frac{q}{2}] - 1 \leq k \leq q-1$, and we have already proved that $\{(k^{\mathfrak{C}_{m,q}}, l^{\mathfrak{C}_{m,r}})\} \in LI_{p-1}(\mathfrak{C}_{m,q}, \mathfrak{C}_{m,r}).$

- For $b = l^{\mathfrak{C}_{m,r}}$, such that $\left[\frac{q}{2}\right] - 1 \leq l \leq r - \left[\frac{q+1}{2}\right] - 2$, take $a = k^{\mathfrak{C}_{m,q}}$, where $k = \left[\frac{q+1}{2}\right] - 2$. Therefore $\{(a, b)\} \in LI_{p-1}(\mathfrak{C}_{m,q}, \mathfrak{C}_{m,r})$ if and only if $\{(k^{\mathfrak{C}_{m,q}}, l^{\mathfrak{C}_{m,r}})\} \in LI_{p-1}(\mathfrak{C}_{m,q}, \mathfrak{C}_{m,r})$ if and only if $(\emptyset \in LI_{p-1}(\mathfrak{C}_{m,k}, \mathfrak{C}_{m,l}) \text{ and } \emptyset \in LI_{p-1}(\mathfrak{A}_{q-k-1}, \mathfrak{A}_{r-l-1}))$ iff $(2^{p-1} \leq k+4 \text{ and } 2^{p-1} \leq q-k)$, by IH and the result in Section 2, since k < l and q - k - 1 < r - l - 1. 1) $2^{p-1} \leq q - k = \left[\frac{q}{2}\right] + 2$ if and only if $2^p \leq 2\left[\frac{q}{2}\right] + 4$ iff $2^p \leq q + 4$, the latter is our assumption. 2) Since $2^p \leq q+4$, we have $2^p \leq 2\left[\frac{q+1}{2}\right] + 4$, therefore $2^{p-1} \leq \left[\frac{q+1}{2}\right] + 2 \leq k + 4$. Therefore $\{(a, b)\} \in LI_{p-1}(\mathfrak{C}_{m,q}, \mathfrak{C}_{m,r})$.

This is the end of the proof for the first case, where m = n and q < r.

4.2. Now consider the case $m \leq n$ and q = r. We want to prove

$$\mathfrak{C}_{m,q} \equiv_p \mathfrak{C}_{n,q} \Leftrightarrow \left(2^{p-2} \le m+1 \& \left(q \le 3 \Leftrightarrow 2^{p-2} \le m\right)\right).$$

Proof:

 (\Rightarrow) Let $\mathfrak{C}_{m,q} \equiv_p \mathfrak{C}_{n,q}$, for m < n, and assume that $m + 1 < 2^{p-2}$ and $(m < 2^{p-1})$ if $q \leq 3$. In order to get a contradiction we need to find formulas $\Phi_{m,q}$, such that $QD(\Phi_{m,q}) \leq p$ and $\mathfrak{C}_{m,q} \not\models \Phi_{m,q}$, but $\mathfrak{C}_{n,q} \models \Phi_{m,q}$.

We have defined sentences $DiffWipEl_m$ (see Section 3), such that $\mathfrak{B}_n \models \psi_m \leftrightarrow DiffWipEl_m$, for all n, for some sentences ψ_m with $QD(\psi_m) = \mu p[2^{p-2} \ge m+1]$. But still $\mathfrak{C}_{s,q} \models \psi_m \leftrightarrow DiffWipEl_m$, for all $s \ge 1$, and we may assume that $QD(DiffWipEl_m) = \mu p[2^{p-2} \ge m+1]$.

Define $DiffWipEl_{m,q}^* \equiv DiffWipEl_{m+1}$, "there are at least m+1 different Wip-elements". Therefore:

- (a) $QD(DiffWipEl_{m,q}^*) = \mu p[2^{p-2} \ge m+2]$; and
- (b) $\mathfrak{C}_{m,q} \not\models DiffWipEl_{m,q}^*$ and $\mathfrak{C}_{n,q} \models DiffWipEl_{m,q}^*$, since m < n.

In Section 2 we defined sentences $DiffEl_q$ "there are at least q + 1 different elements" and we may assume that $QD(DiffEl_q) = \mu p[2^p \ge q+2]$, since they are still equivalent to formulas with this quantifier depth in the structures $\mathfrak{C}_{s,q}$, for all $s \ge 1$ and q. Now define sentences $\chi_{m,q}$, that are equivalent to $\exists x_0 \ldots \exists x_{m-1} (Wip(x_0) \land \ldots \land Wip(x_{m-1}) \land DiffEl_{q-1}^{x_{m-1}} (x_{m-1}))$ in any $\mathfrak{C}_{s,t}$, i.e. saying "there are at least m different Wip-elements and at least q different elements after the last", as follows:

$$\begin{aligned} \chi_{m,0} &\equiv DiffWipEl_{m-1}, \\ \chi_{1,q} &\equiv \exists x(Wip(x) \wedge DiffEl_{q-1}^{x}(x_{0})), \text{ for } q > 0, \\ \chi_{m+1,q} &\equiv \exists x(Wip(x) \wedge DiffWipEl_{[\frac{x}{m}]}^{x}(x) \wedge \chi_{[\frac{m+1}{2}],q}^{x}(x)), \text{ for } q > 0, \end{aligned}$$

where the formula Wip is defined in Section 3 and QD(Wip) = 2. Therefore

(c) $QD(\chi_{m,q}) = \mu p[2^{p-2} \ge m+1]$, for $q \le 3$; and (d) $\mathfrak{C}_{m,q} \not\models \chi_{m,q}$ and $\mathfrak{C}_{n,q} \models \chi_{m,q}$, since m < n. The property (c) can be proved by induction on m:

- m = 1, $QD(\chi_{1,q}) = 1 + \max(2, \mu p[2^p \ge q+1]) = 3$, for $q \le 3$.
- IH for $m \ge 1$. Therefore $QD(\chi_{m+1,q}) = 1 + \max\{2, \mu p[2^{p-2} \ge [\frac{m}{2}]+1], QD(\chi_{[\frac{m+1}{2}],q})\} = 1 + \max(\mu p[2^{p-2} \ge [\frac{m}{2}]+1], \mu p[2^{p-2} \ge [\frac{m+1}{2}]+1]) = 1 + \mu p[2^{p-2} \ge [\frac{m+1}{2}]+1] = \mu p[2^{p-3} \ge [\frac{m+1}{2}]+1] = \mu p[2^{p-2} \ge],$ since $2^{p-2} \ge 2[\frac{m+1}{2}] + 2 \Leftrightarrow 2^{p-2} \ge m + 2.$

 $\begin{array}{c|c} \text{Define } \Phi_{m,q} \text{ as follows:} & \left| \begin{array}{c} \Phi_{m,q} \equiv \chi_{m,q}, & \text{for } q \leq 3; \\ \Phi_{m,q} \equiv DiffWipEl_{m,q}^*, & \text{for } q > 3. \end{array} \right. \\ \text{Therefore for } q \leq 3, QD(\Phi_{m,q}) = \mu p[2^{p-2} \geq m+1] \text{ and for } q > 3, QD(\Phi_{m,q}) = \mu p[2^{p-2} \geq m+2], \\ \text{i.e.} QD(\Phi_{m,q} \leq p, \text{ and } \mathfrak{C}_{m,q} \not\models \Phi_{m,q}, \text{ but } \mathfrak{C}_{n,q} \models \Phi_{m,q}, \text{ which is a contradiction.} \end{array}$

$$(\Rightarrow)$$
Let $2^{p-2} \leq m+1 \& (q \leq 3 \Leftrightarrow 2^{p-2} \leq m)$. We want to prove that $\mathfrak{C}_{m,q} \equiv_p \mathfrak{C}_{n,q}$.

If $2^{p-2} \leq m$, then (see Section 3) for any q the second player has a winning strategy for a game with p moves (for the elements from the tail chooses the correspondent elements from the tail of the other structure, and for the elements from $\omega \cdot m$ use the winning strategy, described in Section 3).

Therefore it suffices to consider the case $2^{p-2} = m+1$ and $q \ge 4$, using induction on m. We may assume that m = 2k + 1.

It is easy to verify the statement for m = 1, where p = 3.

Let m > 1 and assume (IH) the claim is true for smaller than m. We have to prove that for every $a \in C_{m,q}$ there is $b \in C_{n,q}$, (and for every $b \in C_{n,q}$ there is $a \in C_{m,q}$), such that $\{(a,b)\} \in LI_{p-1}(\mathfrak{C}_{m,q},\mathfrak{C}_{n,q})$. Consider the cases for the Wip-elements (the others are analogous), i.e. the first player chooses an element $a = 0_i^{\mathfrak{C}_{m,q}}$ (or $b = 0_j^{\mathfrak{C}_{n,q}}$), then the second player chooses an element $b = 0_j^{\mathfrak{C}_{n,q}}$ (resp. $a = 0_i^{\mathfrak{C}_{m,q}}$), depending on i:

- $1 \leq j \leq \left[\frac{m-1}{2}\right] + 1$, i.e. $1 \leq j \leq k + 1$. Take i = j. Therefore $\{(0_i^{\mathfrak{C}_{m,q}}, 0_i^{\mathfrak{C}_{n,q}})\} \in LI_{p-1}(\mathfrak{C}_{m,q}, \mathfrak{C}_{n,q})$ if and only if $\emptyset \in LI_{p-1}(\mathfrak{C}_{m-i,q}, \mathfrak{C}_{n-i,q})$, which follows by the IH, if $2^{p-3} \leq m-i+1$. Assume $2^{p-3} \geq m-i+2$, then $2^{p-2} = m+1 \geq 2m-2i+4$, then $2i \geq m+3$, then $\left[\frac{m-1}{2}\right] = k$, therefore $2i \geq 2k+4$, but $i \leq \left[\frac{m-1}{2}\right] + 1 = k+1$, contradiction.
- $n \left[\frac{m}{2}\right] + 1 \le j \le n 1$, i.e. $n k + 1 \le j \le n 1$, then $\left[\frac{m-1}{2}\right] \le i \le m - 1$, i.e. $k \le i \le 2k$. Take i = m - n + j. Then $\{(0_i^{\mathfrak{C}_{m,q}}, 0_i^{\mathfrak{C}_{n,q}})\} \in LI_{p-1}(\mathfrak{C}_{m,q}, \mathfrak{C}_{n,q})$ if and only if $\emptyset \in LI_{p-1}(\mathfrak{B}_i, \mathfrak{B}_j)$, iff $2^{p-3} \le i$, since i < j (see Section 3). The case where the first player chooses $\left[\frac{m-1}{2}\right] \le i \le m - 1$, is the same if the second takes j = n - m + i.
- $\left[\frac{m-1}{2}+2\leq j\leq n-\left[\frac{m}{2}\right]\right]$, i.e. $k+2\leq j\leq n-k$. Take $i=[\mathfrak{m}-12]+1$, i.e. i=k+1. Therefore $\left\{\left(0_{i}^{\mathfrak{C}_{m,q}},0_{i}^{\mathfrak{C}_{n,q}}\right)\right\}\in LI_{p-1}(\mathfrak{C}_{m,q},\mathfrak{C}_{n,q})$ if and only if $(\text{left part}) \ \emptyset \in LI_{p-1}(\mathfrak{B}_{i},\mathfrak{B}_{j})$ and $(\text{right part}) \ \emptyset \in LI_{p-1}(\mathfrak{C}_{m,q},\mathfrak{C}_{m,q})$ if and only if $2^{p-3}\leq i$ and $2^{p-3}\leq m-i+1$, which is easy to check: $2^{p-3}\leq i \text{ iff } 2^{p-3}\leq k+1 \text{ iff } 2k+2=2^{p-2}\leq 2k+2; \text{ and } 2^{p-3}\leq m-i+1=k+1$ iff $2^{p-2}\leq 2k+2$.

We have solved the problem $\omega \cdot m + q \equiv_p \omega \cdot n + r$ for the cases where q = r or m = n. It remains the case where $m \neq n$ and $q \neq r$, which we do not consider here.

5 The order types $\mathfrak{N}_m = (\omega^m, <)$

Consider structures $\mathfrak{N}_m = (\omega^m, <)$, where $\omega^m = \{(x_0, \ldots, x_{m-1}) \mid x_0, \ldots, x_{m-1} \in \mathbb{N}\}$. We want to find for which $p, (\omega^m, <) \equiv_p (\omega^n, <)$?

Here we prove only that for m < n,

If
$$(\omega^m, <) \equiv_p (\omega^n, <)$$
 then $p \leq 2m$.

Proof:

Define formulas D_m by induction as follows:

$$\begin{array}{ll} D_0(x) &\equiv x = x \\ D_{m+1}(x) &\equiv \exists y \big(y \sqsubset x \land D_m(y) \big) \land \\ &\forall y \big(y \sqsubset x \land D_m(y) \to \exists z \big(y \sqsubset z \sqsubset x \land D_m(z) \big) \big). \end{array}$$

Define $\varphi_m \equiv \exists x D_m(x)$. One can prove by induction that $QD(D_m) = 2m$ and (a) $QD(\varphi_m) = 2m + 1$, and (b) $(\omega^m, <) \not\models \varphi_m$, but $(\omega^n, <) \models \varphi_m$, since n > m. If we assume that $\omega^m \equiv_p \omega^n$ and $p \ge 2m + 1$, then $QD(\varphi_m) \le p$, which is a contradiction.

The other direction, i.e. the question whether for all m < n and $p \leq 2m$, $(\omega^m, <) \equiv_p (\omega^n, <)$ remains unsolved. However 2m seems to be very large upper bound.