
Discrete Linear Orderings and Fra��ss�e Games

V.Boutchkova

23 June 1999

Abstract

Fra��ss�e games are used to prove some axiomatizations of the order types

(!;<) (!;<); ( 0; : : : ; m 1 ; <); (! m;<); (! m+ q;<) and (!m; <):

We consider structures of the signature ((2),;;0). The language L that belongs

to this signature has two binary relation symbols, @ and =; and does not have

function symbols nor individual constants.

We consider formulas �(x0 : : : xk�1) in L; where all the free variables of � are among

x0 : : : xk�1; that we abbreviate by �!x : For every x we de�ne two mappings Lx and

Rx between such formulas in a way that the formulas Lx(�) and Rx(�) have free

variables among x; x0 : : : xk�1: Sometimes we use a second notation:

�

x(x;�!x ) � Lx(�(�!x )); and �x (x;�!x ) � Rx(�(
�!
x )):

If A = (A;<) is a structure of the given signature, for each element b 2 A we de�ne

A
<b to be the set fa 2 A j a < bg; and A<b to be the structure (A<b

; <) where the

relation < is restricted to the set A<b
: We want to have the following property:

A j= �

x[b; a0 : : : ak�1] if and only if A<b j= �[a0 : : : ak�1];

for all b 2 A and for all a0 : : : ak�1 2 A<b
: And we want the analogous property

for the mapping Rx; i.e. if A
>b = fa 2 A j b < ag and A>b = (A>b

; <); then A j=
�
x [b; a0 : : : ak�1] if and only if Ab j= �[a0 : : : ak�1]; where b 2 A and a0 : : : ak�1 2
A
>b
:

De�nition

We de�ne the mappings Lx and Rx by induction on the formula � :

� If � is a basic formula or the negation of a basic formula, then L(x; �) �
R(x; �) � �:

� If �(�!x ) is the formula �1(�!x ) ^ �2(�!x ); then

L(x; �) � L(x; �1) ^ L(x; �2); R(x; �) � R(x; �1) ^ R(x; �2):
We de�ne in the same way the image of the disjunction: �(�!x ) is the formula

�1(
�!
x ) _ �2(�!x ):
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� If �(�!x ) is the formula 9y '(y;�!x ); then

L(x; �(�!x )) � 9y(y @ x ^ L(x; '(y;�!x )) );

R(x; �(�!x )) � 9y(x @ y ^ R(x; '(y;�!x )) ):

� If �(�!x ) is the formula 8y '(y;�!x ); then

L(x; �(�!x )) � 8y(y @ x! L(x; '(y;�!x )) );
R(x; �(�!x )) � 8y(x @ y ! R(x; '(y;�!x )) ):

Remark: The bounding of the quanti�ers in the formula does not change its

quanti�er depth: QD(Lx(�)) = QD(�) = QD(Rx(�)):

1 The order type (!;<)� (!;<)

The �rst goal is to �nd an axiomatization of the structure (N; <) � (N; <):

We de�ne the following sentence:

' �

8x0
�
:(x0 @ x0)

�
^ (irre
exibility)

8x08x18x2
�
x0 @ x1 @ x2 ! x0 @ x2

�
^ (transitivity)

8x08x1
�
x0 @ x1 _ x0 = x1 _ x1 @ x0

�
^ (linearity)

8x09x1
�
x0 @ x1 ^ :9x2(x0 @ x2 @ x1)

�
^ (immediate successor)

9x09x1

0
@ x0 @ x1 ^ :9x2(x2 @ x0) ^

8x2

�
:(x0 = x2) ^ :(x1 = x2) !
9x3

�
x3 @ x2 ^ :9x4(x3 @ x4 @ x2)

�
�
1
A

De�nition: Let A = (A;<) be a structure with signature ((2),;;0). We de�ne

distance between two elements of this structure as follows:

for all a; b 2 A; such that a < b; d(a; b) = 1+ the number of elements between a

and b; i.e.

���� d(a; b) = 1 + kfc 2 A j a < c < bgk , for a < b

d(a; a) = 0

Notation:

 (x0; x1) �

0
@ x0 @ x1 ^ :9x2(x2 @ x0) ^

8x2

�
:(x0 = x2) ^ :(x1 = x2) !
9x3

�
x3 @ x2 ^ :9x4(x3 @ x4 @ x2)

� � 1
A
:

If A j= ' then A j= 9x09x1 (x0; x1) and therefore there exist exactly two elements

(we will denote them by 0A0 and 0A1 ) such that A j=  [0A0 ; 0
A
1 ]:

Lemma

Let A = (A;<A) and B = (B;<B) be models of ':

Let f 2 LI0(A;B) be a local isomorphism from A to B: Let us denote a(0) :=
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�
minfai j ai 2 Dom(f)g , if f 6= ;
0A0 , otherwise

and

a
(1) :=

�
minfai j ai 2 Dom(f) & 0A1 �A aig , if 9a 2 Dom(f)(0A1 �A a)

0A1 , otherwise
Then for every natural number p � 2;

f 2 LIp(A;B) if and only if

0
BBBBBBBBBBBB@

8n � 2(p�1) 8ai; aj 2 Dom(f)�
d(ai; aj) = n, d(f(ai); f(aj)) = n

�
&

8n � 2(p�1) + p� 2�
a
(0) 2 Dom(f))

�
d(0A0 ; a

(0)) = n, d(0B0 ; f(a
(0))) = n

��
&

8n � 2(p�1) + p� 4�
a
(1) 2 Dom(f))

�
d(0A1 ; a

(1)) = n, d(0B1 ; f(a
(1))) = n

��

1
CCCCCCCCCCCCA

The three conjuncts of the right side formalize the following three properies:

� "to preserve distances less than or equal to2p�1";

� "to preserve the distances to the �rst element 00; which are less than or equal

to 2(p�1) + p� 2" and

� "to preserve the distances to the second zero 01; which are less than or equal

to 2(p�1) + p� 4":

We will need the direction (() only.

Proof: Induction on p.

p = 2.

()) f 2 LI2(A;B)

� It is easy to verify that d(ai; aj) = d(f(ai); f(aj)) when one of these

distances is � 2:

� If a(0) 2 Dom(f) and one of d(0A0 ; a
(0)) and d(0B0 ; f(a

(0))) is � 2; it is

easy to verify that they are equal.

� If a(1) 2 Dom(f); it is easy to verify that a(1) = 0A1 if and only if

f(a(1)) = 0B1 :

Assume for example that a(1) = 0A1 and d(0B1 ; f(a
(1)) 6= 0: We have two

cases:

If 0B1 < f(0A1 ); then for b 2 B - the predecessor of f(0A1 ); there exists

a 2 A; such that f [ f(a; b)g 2 LI1(A;B) and therefore a < 0A1 : Then
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for Sa 2 A - the successor of a; that is between a and 0A1 ; there exists

c 2 B; such that f [ f(a; b)g [ f(Sa; c)g 2 LI0(A;B) and therefore c is

between b and its successor f(0A1 ); which is a contradiction.

In the case f(0A1 ) < 0B1 we take the predecessor of f(0A1 ):

In the other direction the proof is similar.

(() The local isomorphism f preserves the distances for p = 2: We can prove

f 2 LI2(A;B): using the fact that f 2 LI1(A;B) if and only if both 8n �
1 (d(ai; aj) = n , d(f(ai); f(aj)) = n) and f(a) = 0B0 , a = 0A0 ; where

ai; aj ; a 2 Dom(f):

The interesting case is when we choose a 2 A; such that 0A0 < a < a
(0)

and d(a; a(0)) > 1: Then we have to �nd b 2 B; such that 0B0 < b and

d(b; f(a(0)) > 1: This is possible, because otherwise d(0B0 ; f(a
(0))) � 2; which

is a contradiction, since d(0A0 ; a
(0)) > 2:

IH - assume it is true for some p � 2: We have to prove it for p+ 1:

()) Let f 2 LIp+1(A;B):

1. Suppose d(ai; aj) = n � 2p for some ai; aj 2 Dom(f) and n > 0; the

case n = 0 is easy.

Take an element c of A; such that d(ai; c) =
h
n

2

i
: Then d(c; aj) =h

n� 1

2

i
+ 1: There exists e 2 B; such that f [ f(c; e)g 2 LIp(A;B):

Therefore f(ai) � e � f(aj): Since
h
n

2

i
� 2(p�1) and

h
n� 1

2

i
+ 1 �

2(p�1)+1; from the IH it follows that d(f(ai); e) = d(ai; c) and d(e; f(aj)) =

d(c; aj) and therefore d(f(ai); f(aj)) = d(f(ai); e) + d(e; f(aj)) = n: In

the other direction the proof is similar.

2. Suppose a(0) 2 Dom(f) and d(0A0 ; a
(0)) � 2(p+1)�1 + (p + 1) � 2 =

2p + p� 1:

We have two subcases:

� d(0A0 ; a
(0)) < 2p + p� 1:

Now we can choose c 2 A; such that d(c; a(0)) � 2(p�1) and d(0A0 ; c) �
2(p�1)+p�2: There exists e 2 B; such that f[f(c; e)g 2 LIp(A;B):

From IH it follows that d(0A0 ; c) = d(0B0 ; e) and d(c; a
(0)) = d(e; f(a(0)))

and therefore d(0A0 ; a
(0)) = d(0B0 ; f(a

(0))):

� d(0A0 ; a
(0)) = 2p + p� 1:

Assume that d(0A0 ; a
(0)) 6= d(0B0 ; f(a

(0))): Then d(0B0 ; f(a
(0))) >

2p + p� 1: Now we can choose e 2 B; such that d(0B0 ; e) > 2(p�1) +

p � 2 and d(e; f(a(0))) > 2(p�1)
: But there exists c 2 A; such that

f [ f(c; e)g 2 LIp(A;B) and from IH it follows that d(0A0 ; c) >

2(p�1)+p�2 and d(c; a(0)) > 2(p�1)
: Then d(0A0 ; (a

(0)) > 2p+p�1;

which is a contradiction.
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3. Suppose a(1) 2 Dom(f) and d(0A1 ; a
(1)) � 2(p+1)�1 + (p + 1) � 4 =

2p + p� 3: The proof is similar.

(() Suppose that for the local isomorphism f the distance conditions for p + 1

hold. From IH it follows that f 2 LIp(A;B): We have to prove that f 2
LIp+1(A;B): Take for example a 2 A: We have the following cases:

� a 2 Dom(f):

Therefore there exists b 2 B; b = f(a); such that f [ f(a; b)g = f 2
LIp(A;B):

� a0 < a < a
00

; for some a0; a00 2 Dom(f); s.t. between them there are no

elements from Dom(f):

{ d(a0; a) � 2(p�1) and d(a; a0) � 2(p�1)
:

Then d(a0; a00) � 2p and we can choose b 2 B; such that d(f(a0); b) =
d(a0; a) and d(b; f(a00)) = d(a; a00): From IH it follows that f 2
LIp+1(A;B):

{ d(a0; a) � 2(p�1) and d(a; a00) > 2(p�1)
:

We can choose b 2 B; such that d(f(a0); b) = d(a0; a): If d(b; f(a00)) �
2(p�1)

; then d(f(a0); f(a00)) � 2p; which is a contradiction.

{ d(a0; a) > 2(p�1) and d(a; a00) � 2(p�1)
:

This case is similar to the previous, except that it is possible a0 �
0A1 � a: Then d(0B1 ) � 2(p�1) and we can choose b 2 B; such that

d(b; f(a00)) = d(a; a00): If d(0A1 ; a) � 2(p�1) + p� 4; then d(0A1 ; a
00) �

2p+ p� 4 < 2p+ p� 3 and therefore (IH) d(0A1 ; a
00) = d(0B1 ; f(a

00));

then d(0A1 ; a) = d(0A1 ; b) and f 2 LIp+1(A;B):

{ d(a0; a) > 2(p�1) and d(a; a00) > 2(p�1)
: Analogous.

� 0A0 < a < a
(0)
: Analogous.

� maxfai j ai 2 Dom(f)g < a: This case is easy.

Notation: By (! � 2; <0) we denote the structure (N; <) � (N; <) with domain

! � 2 = N [fx0 jx 2 Ng and the following relation: for all x; y 2 N; such that x < y;

x <

0

y and x

0

<

0

y

0 and x <

0

x

0

:

Theorem: (N; <) � (N; <) is a prime model of ':

Proof: Let A = (A;<A) be a model of ': De�ne a function f from ! � 2 to A;

as follows: f(0) := 0A0 ; f(0
0) := 0A1 and for each x > 0 in N; f(x + 1) := the

<A-successor of f(x) and f((x+ 1)0) := the <A-successor of f(x
0):

From the Lemma it follows that every �nite subset of f belongs to everyLIp((!�2; <0

);A); and therefore f is an elementary embedding from (N;<0) into A:
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�

From the last theorem it follows that for every model A of '; for every sentence

 ; if (N; <)� (N ; <) j=  then A j=  ; and therefore ' is an axiom for the structure

(N; <) � (N; <):
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2 Finite structures A
m
= (f0; : : : ;m� 1g; <)

Consider structures Am = (Am; <); where Am = f0; : : : ;m� 1g:
We want to prove that for all m;n � 1 and for all p � 0;

Am �p An if and only if
�
(m = n) or (m 6= n and 2p � 2 < min(m;n) )

�
:

Proof:

()) We want to prove that if m < n and 2p � 2 � m; then Am 6�p An; �nding
sentence 'm; with QD('m) � p and such that An j= 'm; but Am 6j= 'm:

We can easily de�ne sentences DiffElm; such that Am j= :DiffElm and

An j= DiffElm for all n > m; (DiffElm says 'there exist at least m+ 1 di�erent

elements in the structure'):���� DiffEl0 � 9x0(x0 = x0)

DiffElm+1 � 9x0 : : : 9xm+1(x0 @ x1 ^ x1 @ x2 ^ : : : ^ xm @ xm+1);

but QD(DiffElm) = m+ 1: It su�ces to �nd sentences 'm; such that:

(a) QD('m) = �p[2p � 2 � m]; and (b) An j= 'm $ DiffElm; for all n:

Now de�ne 'm by induction on m as follows:

'0 �  0 � 9x0(x0 = x0) and '1 �  1 � 9x09x1(x0 @ x1); and for m � 0;

'm+2 � 9x
�
'

x
[m
2
]
(x) ^ ' x

[m+1

2
]
(x)

�
; i.e.���� '2k+2 � 9x('

x
k (x) ^ 'xk (x))

'2k+3 � 9x('
x

k (x) ^ 'xk+1(x))

It is easy to check (b), i.e. An j= 'm $ DiffElm; for all n:

We prove (a), i.e. QD('m) = �p[2p � 2 � m]; by induction on m :

� for m = 0 and m = 1;

QD('0) = 1 = �p[2p � 2 � 0] and QD('1) = 2 = �p[2p � 2 � 1]:

� IH for smaller than m � 2:

Remark:

QD('m) � QD('m+1):

1. m = 2k + 2: Let p := QD('2k+2) and q := QD('k): Then p = q + 1:

From IH it follows that 2q � 2 � k and therefore 2q � k + 2; then

2p = 2q+1 � 2k + 2 + 2 = m+ 2; i.e. 2p � m+ 2:

It remains to prove that p is the least, i.e. p = �t[2t � 2 � m]: Assume

there is smaller p0 s.t. 2p
0

� m + 2: Then p
0 � q and therefore 2q �

m + 2 = 2k + 4; then 2q�1 � 2 � k; but from IH (for k < m) q is the

least such that 2q � 2 � k; contradiction.

2. m = 2k + 3: Let p := QD('2k+3) and q := QD('k+1): Then p = q + 1:

From IH it follows that 2q � 2 � k + 1; i.e 2q � k + 3; then 2p =

2q+1 � 2k + 6 = m + 3; then 2p � m + 2: Assume there is smaller p0

s.t. 2p
0

� m+ 2: Again p0 � q and therefore 2q � m+ 2 = 2k + 5; then

2q � 2k + 6; then 2q�1 � k + 3; i.e. 2q�1 � 2 � k + 1; but from IH (for
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k + 1 < m) it follows that q is the least with this property, which is a

contradiction.

Therefore if m 6= n and 2p � 2 � min(m;n) then Am 6�p An:

(() We want to prove that if m < n and 2p � 1 +m; then Am �p An; which is

equivalent to ; 2 LIp(Am;An): By induction on m � 1:

� m = 1:

Since 2p � 2; 0 � p � 1 and then A1 �p An; for n > 1:

� m > 1: IH for smaller than m:

We have to prove that:

{ for all a 2 Am there is b 2 An; such that f(a; b)g 2 LIp�1(Am;An);

{ for all b 2 An there is a 2 Am; such that f(a; b)g 2 LIp�1(Am;An):

For the �rst we consider di�erent cases for a :

1. for 0 � a �
m� 1

2
; take b = a:

f(a; a)g 2 LIp�1(Am;An) if and only if ; 2 LIp�1(Am�a�1;An�a�1);

which follows from 2p�1 � m� a; (from IH for m� a� 1 < m):

Assume 2p�1
> m� a:

Since 2p � m + 1; 2p�1 �
m+ 1

2
=
m

2
+

1

2
: Then

m+ 1

a

> m � a:

Therefore m+1 > 2m� 2a; then 2a > m� 1; then a >
m� 1

2
; which is

a contradiction.

2. for
m� 1

2
� a � m� 1; take b = a+ n�m;

i.e. such that the distances d(a;m � 1) = d(b; n � 1); b 2 An; since

0 � a + n � m � n � 1: Again f(a; b)g 2 LIp�1(Am;An) if and only

if ; 2 LIp�1(Aa;Ab); which follows from 2p�1 � a + 1; (from IH for

a < m):

Assume 2p�1
> a+ 1; then 2p > 2a+ 2: Since a �

m� 1

2
; 2a � m� 1:

Therefore 2p > m� 1 + 2 = m+ 1; which is a contradiction.

In order to prove the second, we consider cases for b :

1. for 0 � b �
m� 1

2
; take a = b:

The proof is the same as in the case for a:
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2. for n� 1�
m� 1

2
� b � n� 1; take a = b+m� n;

i.e. such that d(a;m � 1) = d(b; n� 1): Then
m� 1

2
� a � m � 1 and

the proof is the same as in the case for a:

3. for
m� 1

2
< b < n� 1�

m� 1

2
; take a =

�
m� 1

2

�
2 Am: Then

m� 2 � 2a � m� 1; a < b and m� a� 1 � n� b� 1;

m � 2b � 2n�m� 1:

Therefore f(a; b)g 2 LIp�1(Am;An) if and only if

; 2 LIp�1(Aa;Ab) and ; 2 LIp�1(Am�a�1;An�b�1);

which follows from
�
2p�1 � a+ 1 and 2p�1 � m� a

�
;

since IH for a+ 1 < m and IH for m� a� 1 < m:

Assume 2p�1
> a+ 1:

Then 2p > 2a+ 2 >= m: But 2p � m+ 1; then m+ 1 � 2p > m:

Then 2p = m + 1 and

�
m� 1

2

�
=
m� 1

2
; then 2a = m � 1; therefore

2p > 2a+ 2 = m+ 1; which is a contradiction.

Assume 2p�1
> m� 1:

Then 2p > 2m � 2a � 2m � m + 1 = m + 1; i.e. 2p > m + 1; but

2p � m+ 1; which is a contradiction.

Therefore
�
2p�1 � a+ 1 and 2p�1 � m� a

�
:

�
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3 The order types B
m
= (! �m;<)

Consider structures Bm = (Bm; <) with m � 1 and Bm = ! �m = fki j k 2 N &

0 � i � m� 1g and ki < lj , (i < j or i = j& k < l):

We want to prove that for all m;n � 1 and for all p � 0;

Bm �p Bn if and only if
�
(m = n) or (m 6= n and 2p�2 � min(m;n) )

�
:

Proof:

()) We want to prove that if m < n and 2p�2
> m; then Bm 6�p Bn; �nding

sentence  m; with QD( m) � p and such that Bn j=  m; but Bm 6j= 'm: De�ne a

formula Wip(x) with QD(Wip) = 2; which says that the element x does not have

immediate predecessor, but has a predecessor, as follows:

Wip(x) � 9y(y @ x) ^ 8y(y @ x! 9z(y @ z ^ z @ x)):

Again we can de�ne sentences DiffWipElm; for m � 1; such that

Bm j= :DiffWipElm and Bn j= DiffWipElm for all n > m; (DiffWipElm

says "there exist at least m di�erent Wip-elements"):

DiffWipElm � 9x0 : : :9xm�1(Wip(x0) ^ : : : ^Wip(xm�1) ^ x0 @ : : : @ xm�1):

QD(DiffWipElm) = m+2: It su�ces to �nd sentences  m; such that (a)QD( m) =

�p[2p�2 � 1 � m] and (b) Bn j=  m $ DiffWipElm; for all n:

We de�ne  m by induction on m � 1;����  1 � 9x0Wip(x0); QD( 1) = 3

 2 � 9x09x1(x0 @ x1 ^Wip(x0) ^Wip(x1)); QD( 2) = 4:

for m > 1; 'm+1 � 9
�
Wip(x) ^  x

[m
2
]
^  x

[m+1

2
]

�
; i.e.

����  2k+1 � 9x(Wip(x) ^  x
k (x) ^  xk (x))

 2k+2 � 9x(Wip(x) ^  x
k (x) ^  xk+1(x))

for k � 1:

It is easy to check (b), i.e. Bn j=  m $ DiffWipElm; for all n:

We prove (a), i.e. QD( m) = �p[2p�2 � 1 � m]; by induction on m :

� m = 1

�p[2p�2 � 1 � 1] = �p[2p�2 � 2] = �p[p� 2 � 1] = 3 = QD( 1):

� m = 2

�p[2p�2 � 1 � 2] = �p[2p�2 � 3] = �p[p� 2 � 2] = 4 = QD( 2):

� m > 2: IH for smaller than m:

Since the function f(p) = �p[2p�2 � m] is monotone, we have:

1. m = 2k + 1; for k � 1:

QD( 2k+1) = 1 + QD( k)
IH
= 1 + �q[2q�2 � 1 � k] = 1 + �q[2q�2 �

k + 1] = �p[2p�3 � k + 1] = �p[2p�2 � 2k + 2] = �p[2p�2
> 2k + 1] =

�p[2p�2 � 2k + 1]:
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2. m = 2k + 2; for k � 1:

QD( 2k+2) = 1+QD( k+1)
IH
= 1+�q[2q�2�1 � k+1] = 1+�q[2q�2 �

k + 2] = �p[2p�3 � k + 2] = �p[2p�2 � 2k + 4] = �p[2p�2
> 2k + 3] =

�p[2p�2 � 2k + 3] = �p[2p�2 � m+ 1]:

Therefore if n 6= m and 2p�2
> m; then Bm 6�p Bn:

(() We want to prove that if m < n and 2p�2 � m; then Bm �p Bn; which is

equivalent to ; 2 LIp(Bm;Bn): By induction on m � 1:

� m = 1:

Since 2p�2 � 1; 0 � p � 2 and then B1 �p Bn; for n > 1:

� m > 1: IH for smaller than m:

Let 2p�2 � m: We have to prove that:

{ for all a 2 ! �m there is b 2 ! � n; such that f(a; b)g 2 LIp�1(Bm;Bn);

{ for all b 2 ! �m there is a 2 ! � n; such that f(a; b)g 2 LIp�1(Bm;Bn):

First we prove that for the wip-elements, 0Bm

i and 0Bn

j ; with 0 < i � m� 1

and 0 < j � n � 1; i.e. those elements for which Bm j= Wip[0Bm

i ]: Using

that, the winning strategy for the second player in p moves, for the other

elements of ! �m and ! � n can be expressed, since:

f(0Bm

0 ; 0Bn

0 )g 2 LIp�1(Bm;Bn) if and only if ; 2 LIp�1(Bm;Bn);

And for a 2 Bm; such that 0Bm

i � a < 0Bm

i+1 and b 2 Bn; such that 0Bn

j �

a < 0Bn

j+1 and d(0Bm

i ; a) = d(0Bn

j ; b);

f(a; b)g 2 LIp�1(Bm;Bn) if and only if f(0Bm

i ; 0Bn

j )g 2 LIp�1(Bm;Bn):

So �rst we consider di�erent cases for a = 0Bm

i 2 Bm; for which we take

b = 0Bn

j 2 Bn; as follows:

1. For 1 � i �

�
m� 1

2

�
; take j = i: We have 1 � 2i � m� 1 and b = 0Bn

i :

Therefore f(a; b)g 2 LIp�1(Bm;Bn) if and only if ; 2 LIp�1(Bm�i;Bn�i);

which follows from 2p�3 � m� i; since IH for m� i < m:

Assume 2p�3
> m� i; i.e. m� i+1 � 2p�3 �

m

2
; then 2m�2i+2 � m;

then m+ 2 � 2i � m� 1; which is a contradiction.

2. For

�
m� 1

2

�
< i � m� 1; take j = n�m+ i:

We have m � 2i and b = 0Bn

n�m+i: Therefore f(a; b)g 2 LIp�1(Bm;Bn)

if and only if ; 2 LIp�1(Bi;Bj); which follows from 2p�3 � i; since IH

for i < m:

Assume 2p�3
> i; i.e. i+1 � 2p�3

; but 2p�2 � m: Then 2i+2 � 2p�2 �
m; i.e. m+ 2 � m; contradiction.

11



Now consider cases for b = 0Bn

j 2 Bn; for which we take a = 0Bm

i 2 Bm; as

follows (the proof for the �rst two cases is the same):

1. For 1 � j �

�
m� 1

2

�
; take i = j:

2. For

�
m� 1

2

�
+ n�m < j � n� 1; take i = j � n+m:

3. For

�
m� 1

2

�
+ 1 � j � n�m+

�
m� 1

2

�
; take i =

�
m� 1

2

�
+ 1:

Then we have m+ 1 � 2j � 2n�m� 2 and m � 2i � m+ 1:

f(a; b)g 2 LIp�1(Bm;Bn) if and only if�
; 2 LIp�1(Bi;Bj) and ; 2 LIp�1(Bm�i;Bn�j)

�
:

Since j < n�m+

�
m� 1

2

�
+1; j < n+ i�m: Then m� i < n� j: We

have i � j:
It su�ces to prove (2p�3 � i and 2p�3 � m� i); since from IH for i < m

and m� i < m it will follow that ; 2 LIp�1(Bm�i;Bn�j):

Assume 2p�3
> i; then 2p�2 � 2i + 2 � m + 2; but 2p�2 � m; then

m � m+ 2; contradiction.

Assume 2p�3
> m� i: Then 2p�2 � 2m�2i+2 � m+1: But 2p�2 � m;

then m � m+ 1; contradiction.

�
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4 The order types C
m;q

= (! �m+ q;<)

Consider structures Cm;q = (Cm;q ; <); where for m � 1 and q � 0;

Cm;q = ! �m + q; and ! �m+ q = (! �m) [ f! �m;! �m+ 1; : : : ! �m+ (q � 1)g.

The elements of a structure Cm;q will be denoted k

Cm;q

i for k
Cm;q

i 2 ! � m; i.e.

0 � i � m � 1; and k
Cm;q for ! � m + k: Therefore k

Cm;q

i < l

Cm;q

j , (i < j or

i = j& k < l); and k
Cm;q

i < k
Cm;q

; for all kCm;q and all k
Cm;q

i 2 ! �m:

Having two structures Cm;q and Cn;r; we want to �nd for which p; Cm;q �p Cn;r:

4.1. First consider the case m = n and q < r: We want to prove

Cm;q �p Cm;r , (q = 0 and p � 1) or (q > 0 and 2p < q + 5):

Proof:

()) We will need the following formulas:

Gst(x) � 8y(y = x _ y @ x); "x is the greatest element"; QD(Gst) = 1:

W ip
�(x) � 8y(y @ x ! 9z(y @ z @ x)); "x has no immediate predecessor";

QD(Wip
�) = 2:

Tail(x) � 8y(x v y ! :Wip
�(y)); "all the elements greater than or equal to x

have immediate predecessor"; QD(Tail) = 3:

DiffElq; de�ned in Section 2, "there are at least q + 1 di�erent elements"; we

have de�ned formulas 'q ; such that At j= 'q $ DiffElq; for all t; and QD('q) =

�p[2p � q + 2]: But still Cs;t j= 'q $ DiffElq; for all s and t; so here we may

assume that

QD(DiffElq) = �p[2p � q + 2]:

We de�ne formulas 	q by induction on q as follows:

��������

	0 � 9xGst(x); QD(	0) = 2;

	q � 8x(Wip
�(x) ! DiffEl

x
q�1(x)); for 1 � q � 3; QD(	q) = 3;

	q � 9x(	
x

[
q

2
]�2

(x) ^DiffElx
[
q+1

2
]
(x) ^ Tail(x)); for q > 3:

For these formulas we can prove the following properties:

(i) QD(	q) = �p[2p � q + 5]; for q > 0:

(ii)Cm;q 6j= 	q; but for all s and all t > q; Cs;t j= 	q:

(i) The proof is by induction on q; using
�
q

2

�
+
�
q+1
2

�
= q:

� 1 � q � 3; QD(	q) = 3 and �p[2p � q + 5] = 3 for 1 � q � 3;

� q > 3;

IH for t < q; i.e. for all t; such that 0 < t < q; QD(	t) = �p[2p � t+ 5]:

Therefore QD(	q) = 1 +max
�
QD(	[

q

2
]�2); QD(DiffEl[q+1

2
]); QD(Tail)

	
:

For q > 3; 0 �
�
q

2

�
� 2 < q: Therefore

(for q = 4 we cannot apply the IH, but the following equalities are still valid)
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QD(	q) = 1 +max
n
�p

�
2p � [ q

2
] + 3

�
; �p

�
2p � [ q+1

2
] + 2

�
; 3
o

=

= 1 + �p

�
2p � [ q

2
] + 3

�
= �p

�
2p�1 � [ q

2
] + 3

�
=

= �p

�
2p � 2 � [ q

2
] + 6

�
= �p

�
2p � 2[ q

2
] + 5

�
=

= �p

�
2p � q + 5

�
:

(ii) The proof is by induction on q:

(() The case q = 0 and p � 1 is easy to check.

If q > 0 and 2p � q + 4 we have to prove that ; 2 LIp(Cm;q;Cm;r); i.e. there is a

winning strategy for the second player for a game with p moves. The proof is by

induction on q:

� q = 1; Therefore p � 2: It is easy to check that ; 2 LIp(Cm;q ;Cm;r):

� q > 1;

IH for t < q; i.e. for all t; such that 0 < t < q; if 2p < t + 5; then ; 2
LIp(Cm;t;Cn;r); where m = n and t < r:

Let 2p � q + 4:

We shall prove

(a)8a 2 Cm;q9b 2 Cm;r s.t. f(a; b)g 2 LIp�1(Cm;q ;Cm;r); and

(b)8b 2 Cm;r9a 2 Cm;q s.t. f(a; b)g 2 LIp�1(Cm;q;Cm;r):

The cases a = k

Cm;q

i where 0 � i � m � 1; and b = k

Cm;r

i where 0 � i �
m � 1 for (a) and (b) resp. (the �rst player chooses element from the part

! �m and the second player answers with the same element from the other

structure) are trivial, since f(k
Cm;q

i ; k

Cm;q

i )g 2 LIp�1(Cm;q ;Cm;r) if and only

if ; 2 LIp�1(Cm;q;Cm;r):

Consider the case when the �rst player chooses element ! �m+ i from the tail,

i.e. an element a from the set f0Cm;q
: : : (q� 1)Cm;qg or b from f0Cm;r

: : : (r�
1)Cm;rg:

{ For a = k
Cm;q such that 0 � k � [ q

2
]� 2; take b = k

Cm;r 2 Cm;r:

Then we have f(a; b)g 2 LIp�1(Cm;q ;Cm;r) if and only if

f(kCm;q
; k
Cm;r)g 2 LIp�1(Cm;q;Cm;r) i� ; 2 LIp�1(Aq�k�1;Ar�k�1);

where Al denote the �nite structures (f0; : : : ; l� 1g; <); de�ned in Sec-

tion 2. We have proved that ; 2 LIp�1(Aq�k�1;Ar�k�1) i� 2p�1 �
1 + (q � k � 1); i.e. i� 2p�1 � q � k:
Since 0 � k � [ q

2
] � 2 and 2p � q + 4; we have 2k � q � 4; then

2q � 2k � q + 4 � 2p; therefore 2p�1 � q � k:

For b = l
Cm;r

; such that 0 � l � [ q
2
] � 2; take a = l

Cm;q
; and we have

proved f(lCm;q
; l
Cm;r)g 2 LIp�1(Cm;q;Cm;r):
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{ In the cases where the distance between the chosen element and the end

of the structure (the greatest element) is less than or equal to [ q+1
2
];

the second player chooses and element having the same distance to the

greatest element.

For a = k
Cm;q

; such that [ q
2
] � 1 � k � q � 1; take b = l

Cm;q
; such

that l = r � q + k: Therefore f(a; b)g 2 LIp�1(Cm;q;Cm;r) if and only if

f(kCm;q
; l
Cm;r)g 2 LIp�1(Cm;q ;Cm;r) if and only if�

; 2 LIp�1(Cm;k;Cm;l) and ; 2 LIp�1(Aq�k�1;Ar�l�1)
�
i�

; 2 LIp�1(Cm;k;Cm;l); since q � k � 1 = r � l � 1:

Since [ q
2
] � 1 � k � q � 1 and 2p � q + 4; we have 2k � q � 3; i.e.

2[ q
2
] � q � 1; then 2p � q + 4 � 2k + 7; i.e. 2p � 2k + 6; then 2p�1 �

k + 3 < k + 4: Then from the IH it follows that ; 2 LIp�1(Cm;k;Cm;l):

For b = l
Cm;r

; such that r� [ q+1
2
]� 1 � l � r� 1; take a = k

Cm;q
; where

k = l� r+ q: Therefore [ q
2
]� 1 � k � q� 1; and we have already proved

that f(kCm;q
; l
Cm;r)g 2 LIp�1(Cm;q ;Cm;r):

{ For b = l
Cm;r

; such that [ q
2
] � 1 � l � r � [ q+1

2
] � 2; take a = k

Cm;q
;

where k = [ q+1
2
]� 2:

Therefore f(a; b)g 2 LIp�1(Cm;q ;Cm;r) if and only if

f(kCm;q
; l
Cm;r)g 2 LIp�1(Cm;q ;Cm;r) if and only if�

; 2 LIp�1(Cm;k;Cm;l) and ; 2 LIp�1(Aq�k�1;Ar�l�1)
�
i��

2p�1 � k+4 and 2p�1 � q�k
�
; by IH and the result in Section 2, since

k < l and q � k � 1 < r � l� 1:

1) 2p�1 � q � k = [ q
2
] + 2 if and only if 2p � 2[ q

2
] + 4 i� 2p � q + 4; the

latter is our assumption.

2) Since 2p � q+4; we have 2p � 2[ q+1
2
]+4; therefore 2p�1 � [ q+1

2
]+2 �

k + 4:

Therefore f(a; b)g 2 LIp�1(Cm;q ;Cm;r):

This is the end of the proof for the �rst case, where m = n and q < r:

�

4.2. Now consider the case m � n and q = r: We want to prove

Cm;q �p Cn;q ,
�
2p�2 � m+ 1&

�
q � 3, 2p�2 � m

��
:

Proof:

()) Let Cm;q �p Cn;q; for m < n; and assume that m + 1 < 2p�2 and (m < 2p�1

if q � 3): In order to get a contradiction we need to �nd formulas �m;q; such that

QD(�m;q) � p and Cm;q 6j= �m;q; but Cn;q j= �m;q:
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We have de�ned sentencesDiffWipElm (see Section 3), such thatBn j=  m $
DiffWipElm; for all n; for some sentences  m with QD( m) = �p[2p�2 � m+1]:

But still Cs;q j=  m $ DiffWipElm; for all s � 1; and we may assume that

QD(DiffWipElm) = �p[2p�2 � m+ 1]:

De�ne DiffWipEl
�

m;q � DiffWipElm+1; "there are at least m+1 di�erent Wip-

elements". Therefore:

(a) QD(DiffWipEl
�

m;q) = �p[2p�2 � m+ 2]; and

(b) Cm;q 6j= DiffWipEl
�

m;q and Cn;q j= DiffWipEl
�

m;q; since m < n:

In Section 2 we de�ned sentences DiffElq "there are at least q + 1 di�erent ele-

ments" and we may assume that QD(DiffElq) = �p[2p � q+2]; since they are still

equivalent to formulas with this quanti�er depth in the structures Cs;q; for all s � 1

and q: Now de�ne sentences �m;q; that are equivalent to 9x0 : : :9xm�1

�
Wip(x0) ^

: : :^Wip(xm�1)^DiffEl
xm�1

q�1 (xm�1)
�
in any Cs;t; i.e. saying "there are at least

m di�erentWip-elements and at least q di�erent elements after the last", as follows:

�m;0 � DiffWipElm�1;

�1;q � 9x(Wip(x) ^DiffElxq�1(x0)); for q > 0;

�m+1;q � 9x
�
Wip(x) ^DiffWipEl

x
[m
2
]
(x) ^ �x

[m+1

2
];q
(x)

�
; for q > 0;

where the formula Wip is de�ned in Section 3 and QD(Wip) = 2:

Therefore

(c) QD(�m;q) = �p[2p�2 � m+ 1]; for q � 3; and

(d) Cm;q 6j= �m;q and Cn;q j= �m;q; since m < n:

The property (c) can be proved by induction on m :

� m = 1;

QD(�1;q) = 1 +max(2; �p[2p � q + 1]) = 3; for q � 3:

� IH for m � 1: Therefore

QD(�m+1;q) = 1+maxf2; �p[2p�2 � [m
2
]+1]; QD(�[m+1

2
];q)g= 1+max(�p[2p�2 �

[m
2
] + 1]; �p[2p�2 � [m+1

2
] + 1]) = 1 + �p[2p�2 � [m+1

2
] + 1] = �p[2p�3 �

[m+1
2

] + 1] = �p[2p�2 �];
since 2p�2 � 2[m+1

2
] + 2, 2p�2 � m+ 2:

De�ne �m;q as follows:

���� �m;q � �m;q ; for q � 3;

�m;q � DiffWipEl
�

m;q; for q > 3:
Therefore for

q � 3; QD(�m;q) = �p[2p�2 � m+1] and for q > 3; QD(�m;q) = �p[2p�2 � m+2];

i.e.QD(�m;q � p; and Cm;q 6j= �m;q; but Cn;q j= �m;q ; which is a contradiction.

())Let 2p�2 � m+1&
�
q � 3, 2p�2 � m

�
: We want to prove that Cm;q �p Cn;q:
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If 2p�2 � m; then (see Section 3) for any q the second player has a winning

strategy for a game with p moves (for the elements from the tail chooses the corre-

spondent elements from the tail of the other structure, and for the elements from

! �m use the winning strategy, described in Section 3).

Therefore it su�ces to consider the case 2p�2 = m+1 and q � 4; using induction

on m: We may assume that m = 2k + 1:

It is easy to verify the statement for m = 1; where p = 3:

Let m > 1 and assume (IH) the claim is true for smaller than m: We have to

prove that for every a 2 Cm;q there is b 2 Cn;q ; (and for every b 2 Cn;q there

is a 2 Cm;q); such that f(a; b)g 2 LIp�1(Cm;q ;Cn;q): Consider the cases for the

Wip-elements (the others are analogous), i.e. the �rst player chooses an element

a = 0
Cm;q

i (or b = 0
Cn;q

j ); then the second player chooses an element b = 0
Cn;q

j (resp.

a = 0
Cm;q

i ); depending on i :

� 1 � j � [m�1
2

] + 1; i.e. 1 � j � k + 1:

Take i = j: Therefore f(0
Cm;q

i ; 0
Cn;q

i )g 2 LIp�1(Cm;q ;Cn;q) if and only if ; 2
LIp�1(Cm�i;q ;Cn�i;q); which follows by the IH, if 2p�3 � m� i+ 1:

Assume 2p�3 � m� i+2; then 2p�2 = m+1 � 2m� 2i+4; then 2i � m+3;

then [m�1
2

] = k; therefore 2i � 2k+4; but i � [m�1
2

]+1 = k+1; contradiction.

� n� [m
2
] + 1 � j � n� 1; i.e. n� k + 1 � j � n� 1;

then [m�1
2

] � i � m� 1; i.e. k � i � 2k:

Take i = m � n+ j: Then f(0
Cm;q

i ; 0
Cn;q

i )g 2 LIp�1(Cm;q;Cn;q) if and only if

; 2 LIp�1(Bi;Bj); i� 2p�3 � i; since i < j (see Section 3). The case where

the �rst player chooses [m�1
2

] � i � m � 1; is the same if the second takes

j = n�m+ i:

� [m�1
2

+ 2 � j � n� [m
2
]]; i.e. k + 2 � j � n� k:

Take i = [m� 12]+1; i.e. i = k+1:Therefore f(0
Cm;q

i ; 0
Cn;q

i )g 2 LIp�1(Cm;q ;Cn;q)

if and only if

(left part) ; 2 LIp�1(Bi;Bj) and (right part) ; 2 LIp�1(Cm;q;Cm;q)

if and only if 2p�3 � i and 2p�3 � m� i+ 1; which is easy to check:

2p�3 � i i� 2p�3 � k+1 i� 2k+2 = 2p�2 � 2k+2; and 2p�3 � m�i+1 = k+1

i� 2p�2 � 2k + 2:

�

We have solved the problem ! �m+ q �p ! � n+ r for the cases where q = r or

m = n: It remains the case where m 6= n and q 6= r; which we do not consider here.
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5 The order types N
m
= (!m; <)

Consider structures Nm = (!m; <); where

!
m = f(x0; : : : ; xm�1) jx0; : : : ; xm�1 2 Ng: We want to �nd for which p; (!m; <

) �p (!n; <)?

Here we prove only that for m < n;

If (!m; <) �p (!
n
; <) then p � 2m:

Proof:

De�ne formulas Dm by induction as follows:

������
D0(x) � x = x

Dm+1(x) � 9y
�
y @ x ^Dm(y)

�
^

8y
�
y @ x ^Dm(y)! 9z

�
y @ z @ x ^Dm(z)

��
:

De�ne 'm � 9xDm(x):

One can prove by induction that QD(Dm) = 2m and

(a) QD('m) = 2m+ 1; and

(b) (!m; <) 6j= 'm; but (!
n
; <) j= 'm; since n > m:

If we assume that !m �p !
n and p � 2m + 1; then QD('m) � p; which is a

contradiction.

The other direction, i.e. the question whether for all m < n and p � 2m;

(!m; <) �p (!n; <) remains unsolved. However 2m seems to be very large upper

bound. �
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