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Abstract

The generalized notion of genericity in the theory of abstract structure

degrees is used to obtain a characterization of abstractly generic predicate of

natural numbers as the preimage of some predicate of the denumerable set N

and generic regular enumeration.

Introduction

In this paper we deal with search-computability, de�ned by Moschovakis in [2],

though for the proofs of most of the propositions we have used the Skordev's de�-

nition of search-computability, in [3] Skordev proved both are equivalent.

The idea of considering two sort structures was presented by I.N.Soskov during

the cycle of lectures of the seminar on Computability Theory at So�a University,

1998. The abstract structure degrees are de�ned also by him during the same

seminar as well as their regular enumerations.

The �rst sort of the mentioned two-sort abstract structures is an arbitrary

denumerable set and the other is the set of natural numbers. The presence of the

equality among the basic predicates of the structure is required.

In these terms we present an analogue of some notions from the theory of the

enumeration degrees, namely the set genericity and the related results, applying the

techniques used by Copestake in [1]. We generalize the characterization obtained

in [6], stating that a set of natural numbers is generic relatively a set B if and only

if it is the preimage of some set A using a B-generic B-regular enumeration such

that both A and its complement are e-reducible to B:

Here we introduce the notion of genericity for abstract predicates. Using the

enumerations of two-sort abstract structures (in the way they are used in [4]) we

obtain a characterization of this type of abstract genericity, which claims that a

predicate A of natural numbers is generic relatively the two-sort abstract structure

B with one predicate if and only if there exists a predicate � on the �rst sort,

which is search computable in B and a B-generic regular enumeration f; such that

A = f�1N (�):

This paper is part of the author's Master's Thesis, supervised by I.Soskov.

1



1 Preliminaries

We use some standard de�nitions and notations: �e denotes the enumeration re-

ducibility between sets and 	e denotes the e-th enumeration operator, i.e. 	e(B) =

fx j 9v
�
hx; vi 2 We&Dv � B

�
g, where We is the recursively enumerable set with

G�odel code e; B is a set of natural numbers and Dv is the �nite set with code v: Re-

call the join operation for sets of naturals: A�B is the set f2xjx 2 Ag[f2x+1jx 2

Bg, used to induce the least upper bound of the e-degrees of A and B.

Given a countable set N and 0� 62 N , N� denotes the Moschovakis' extension of

N; i.e. the smallest extension of N [ f0�g closed under the operation ordered pair

h�; �i (we will use the same notation for e�ective coding of pairs of natural numbers);

! denotes the set of the natural numbers and !� � N� is the set of elements

0�; : : : ; (n+1)� : : : , such that (n+ 1)� = h0�; n�i 2 !�. By F we denote the set of

one-argument partial functions ' : N�(!N�. We write ' 2 SC('1; : : : ; 'n) to

say that ' is search computable in the set of functions f'1 : : : 'ng � F , (see [3]).

From now on, we consider the abstract partial two-sort structures:

A = hN;!; =N ; 6=N ; �1; : : : ;�ki;

with two �xed basic predicates in N2: =N (equality) and 6=N (inequality), and

partial predicates �i � Nai � !bi ; s.t. ai; bi � 0 but not both zero. This kind of

structures will be denoted by A(�1 : : :�k).

The notation �0 �SC A says that �0 is search computable in the set of A's pred-

icates, including the equality and inequality, i.e. b�0 2 SC(b�A1 ; : : : ; b�Ak ; b=N ; b6=N),
(we also write b�0 2 SC(A)), where b� : N� (! N� is the semi-characteristic

function of the predicate.

Soskov de�ned A � B to be the two-sort structure with predicates =N , 6=N ,

�A1 : : : �AkA , �
B
1 : : : �BkB ; A �SC B if and only if 8i(1�i�kA): �Ai �SC B and

A �SC B if and only if A �SC B and B �SC A:

De�nition 1.1 (Soskov)

The abstract structure degrees are the equivalence classes, induced by the rela-

tion �SC between structures, and we denote them by a; b; c::: and for every a and

b in D; a [ b = Ds(A�B) for some A 2 a and B 2 b:

We write D for the set of all abstract structure degrees with the partial ordering

induced by �SC : Thus the structure hD;�SC;[;Oi is an upper semi-lattice with

least element the empty structure O = hN ;!; =N ; 6=Ni:

On the seminar on Computability Theory in 1998, I.Soskov introduced the

following de�nition of search computability and proved its equivalence with the

standard ones (see [2] and [3]):

A �SC B i� 8�(B � �) A � �);

where � = (f;R) is enumeration and A � � if and only if f�1(A) �e R: Here we

shall use it for a single predicate � � Nai � !bi in this particular form:

� �SC A i�
�
f�1N (�) �e f

�1
N (A); for every N -enumeration fN

�
(1)
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where fN : ! ! N is total and surjective function, that we shall call N-enumeration,

f�1N (�) = fhx1 : : : xa; y1 : : : ybi 2 ! j (fN (x1) : : : fN(xa); y1 : : : yb) 2 �g and for the

structure A = hN;!; =N ; 6=N ; �1; : : : ;�ki; the preimage f
�1
N (A) is de�ned in such

a way that is e-equivalent to f�1N (�1)� : : :� f�1N (�k)� f�1N (=N )� f�1N ( 6=N ):

2 Enumerations

Many of the de�nitions and the proofs from [4] concerning the enumeration ap-

proach and the normal form theorem are applicable in our case. We recall them in

order to use them later in x3 and for the characterization in x4.

De�nition 2.1

1) N -string �N is a �nite function �N : [0 : : : n � 1] ! N; with domain an initial

segment of ! with length lh(�N) = n:

We shall call the strings used in [6] !-strings, i.e. an !-string is a �nite sequence

of naturals meant to be an initial segment of !:

2) �N � �N i� 8x(x < lh(�N )) �N (x) = �N (x)):

3) Code of the N -string �N is de�ned to be p�Nq = hn�; �N (0); : : : ; �N (n� 1)i:

De�nition 2.2 ([4])

For a structure A(�1 : : :�k) with �i � Nai�!bi ; an N -string �N and a formula

Fe(z) with e; z 2 !; de�ne the forcing relation �n 
A Fe(z) as follows:

(1) �N 
A Fe(z) i� 9v(hv; zi 2We & �n 
A Dv)

(2) �N 
A Dv i� 8u 2 Dv(u = hi; hx1 : : : xai ; y1 : : : ybiii&

1 � i � k & x1 : : : xai 2 Dom(�N ) &(�N (x1) : : : �N (xai); y1 : : : ybi) 2 �i_ u =

h0; 2hx; yii & x; y 2 Dom(�N ) & �N (x) = �N (y) & u = h0; 2hx; yi + 1i & x; y 2

Dom(�N ) & �N (x) 6=N �N (y)):

De�nition 2.3 ([4])

For anN -enumeration fN : ! ! N and a structure A(�1 : : :�k) with predicates

�i � Nai � !bi ; de�ne

fN j=A Fe(z) if and only if z 2 	e(f
�1
N (A)):

De�nition 2.4 ([4])

We say that the predicate � � Na � !b has normal form in the structure

A(�1 : : :�k); if there exist e 2 !; an N -string �N and x1 : : : xa 62 Dom(�N ); such

that for all s1 : : : sa 2 N; and for all y1 : : : yb 2 !; (s1 : : : sa; y1 : : : yb) 2 � i�

9�N � �N s.t. 81�i�a (�N (xi) = si) & �N 
A Fe(hx1 : : : xa; y1 : : : ybi):

The following is a corrollary from the Normal Form Theorem from [4] for the

case of two-sort structures.

Theorem 2.5 (Normal Form Theorem)

Let A(�1 : : :�k) be a structure, with predicates �i � Nai � !bi : Then every

predicate � � Na � !b that � is search computable in A, has a normal form in A:
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3 Generic predicates

De�nition 3.1

1) Let � � Na � !b be a predicate. We de�ne the characteristic function of �

to be the function �� : N�(! N�; de�ned as follows:

��(s) =

8><>:
0� if s = hs1 : : : sa; x

�

1 : : : x
�

bi & (s1 : : : sa; x1 : : : xb) 2 �

1� if s = hs1 : : : sa; x
�

1 : : : x
�

bi & (s1 : : : sa; x1 : : : xb) 62 �

" otherwise

:

2) Let Fa;b; where a+ b � 1; be the set of all partial functions ' 2 F ; such that

Dom(') �
�
hs1 : : : sa; x

�

1 : : : x
�

bi j (s1 : : : sa; x1 : : : xb) 2 N
a � !b

	
and Range(') �

!�:

3) De�ne (a; b)-string to be a �nite function � 2 Fa;b with Range(�) � f0�; 1�g :

We may de�ne the code of the (a; b)-string � (denote p�q); to be hk�; hs1; �(s1)i ;

: : : ; hsk; �(sk)ii 2 N�; if Dom(�) = fs1; : : : ; skg ; and p?q = 0�; for the empty

function.

Remark: Since an (a; b)-string may have more than one (but only �nitely many) di�erent codes, by

� 2 S� � N; we mean that there exists a code of �; which belongs to the set S�; respectively � 62 S�

means there is no code of � that belongs to the set. We say that S� is a set of codes of (a; b)-strings

when each element is a code of some (a; b)-string, it is not necessary that S� contains all the codes of

an (a; b)-string.

4) Semi-characteristic function of the set S� � N we call the function CS� :

N�(! N�; de�ned as follows:

CS�(s) �=

(
0� if s 2 S�

" otherwise

For a given set S� � N� and structure B(�1 : : :�k); we write S
� 2 SC(B); when

CS� 2 SC(=̂N ; ^6=N ; �̂1; : : : ; �̂k):

5) For every a and b; which are not both zero, and every function ' 2 Fa;b;

we de�ne the graph-predicate of '; to be the predicate �' � Na � !b+1; such

that for all s1; : : : ; sa 2 N and x1; : : : ; xb; y 2 !; (s1 : : : sa; x1 : : : xb; y) 2 �' i�

'(hs1 : : : sa; x
�

1 : : : x
�

bi) = y�:

De�nition 3.2

Given a structure B(�1 : : :�k); we say that the predicate � � Na � !b is B-

generic if for every set S� � N� of codes of (a; b)-strings such that S� 2 SC(B);

the following holds:

9� � ��
�
� 2 S� _ 8� � �(� 62 S�)

�
:

Note: If we consider a structure B(B) with one predicate of naturals and a

predicate � � !; then � is B-generic in the sense of De�nition 3.2 if and only if

the set � is B-generic set of natural numbers in the classical sense. The proof uses

the de�nition of SC via enumerations (1).
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Proposition 3.3

For every structure B = B(�1 : : :�k) and a; b 2 !; such that a + b � 1; there

exists a B-generic predicate � � Na � !b:

Proof:

In this proof and from now on x will denote a �nite sequence of elements for

brevity (an appropriate number of them).

We can �nd such � by building its characteristic function as a union of (a; b)-

strings, that we build at stages, such that at even stages we satisfy the requirements

Dom(��) to be a domain of a predicate's characteristic function and at odd stages

- the genericity.

Let us have some enumeration S�0 : : : S
�

n : : : of the domains the partial functions

from SC(B), i.e. S�n = Dom('); for ' 2 SC(B):

Stage 0 De�ne �0 = ?:

Stage 2n+1 We have de�ned �q for q = 2n: Let hs; x�i 2 N� be such that

(s; x) is the least according to some order in Na � !b element for which hs; x�i

62 Dom(�): De�ne �q+1 to extend �q with one new argument, i.e. such that

�q+1(hs1 : : : sa; x
�

1 : : : x
�

b i) = 0�:

Stage 2n+2 We have de�ned �q for q = 2n+ 1:

Case 1. If there exists in S�n an (a; b)-string �; extending �q; de�ne �q+1 to be the

�rst such �:

Case 2. Otherwise de�ne �q+1 = �q:

Finally we can de�ne �� =

1[
q=0

�q ; that is the characteristic function of some

B-generic predicate. �

Proposition 3.4

Let B be an abstract structure and � � Na � !b a B-generic predicate. Then

the following hold:

P1) The predicate � � Na � !b is B-generic.

P2) There is no in�nite predicate C � Na�!b; such that C �SC B and C � �:

P3) � is in�nite.

P4) � 6�SC B:

Proof:

Each of (P3) and (P4) follows directly from the previous properties. To prove

(P1) we may assume it's false. Therefore there is a set of codes of (a; b)-strings,

namely P � 2 SC(B); such that:

(a) 8� � �� (� 62 P � & 9� � �(� 2 P �)):

There is a recursive function translating (codes of) (a; b)-strings into their re-

verse, e.g. the reverse of � being the (a; b)-string �; such that 8s 2 Dom(�);

�(x) = 0� i� �(x) = 1�: Thus the set S� = f� j � 2 P �g 2 SC(B) and therefore

there exists � � �� (and therefore � � ��) such that the next (1) or (2) holds:

(1) � 2 S�: Then � 2 P � and � � ��; which is a contradiction with (a).
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(2) 8� � � (� 62 S�): But from (a) for � follows there exists an (a; b)-string

� 2 P � extending �: Since � = �; we have that � 2 S� and � � �; which is a

contradiction.

In both cases we found a contradiction, therefore � is B-generic.

To prove (P2) we may assume there exists such C � Na�!b and de�ne a set S�

= f� j 9s1 : : : sa 2 N; 9y1 : : : yb 2 ! ((s1 : : : sa; y1 : : : yb) 2 C & �(hs1 : : : sa; y
�

1 : : : y
�

b i) =

1�)g; that will lead to contradiction.

�

De�nition 3.5

Let us de�ne the structure A(�A1 : : :�
A
n ) to be total i� �Ai �SC A for 1 � i � n.

The generalization the quasi-minimal and the minimal-like (see [1]) will have the

following form:

1. A is quasi-minimal over B if the following two conditions hold:

� B �SC A and A 6�SC B;

� For every total structure C; if C �SC A then C �SC B:

2. A is minimal-like over B; if the following two conditions hold:

� B �SC A and A 6�SC B;

� For every function ' 2 Fa;b; if ' 2 SC(A), there exists a function

 2 Fa;b such that ' �  and  2 SC(B):

For the (a; b)-string � we de�ne a predicate �+ to be the set f(s1 : : : sa; x1 : : : xb)j

�(hs1 : : : sa; x
�

1 : : : x
�

bi) = 0�g:

If �0 is a predicate and B(�1 : : :�k) a structure, we denote by �0 � B the

two-sort structure with predicates �0;�1 : : :�k:

Proposition 3.6

For given B(�1 : : :�k) and B-generic predicate �0; the structure �0 � B is

minimal-like over B:

Proof:

Since �0 is B-generic, �0 6�SC B and therefore B �SC �0 �B: Let (ai; bi) be

the arity of the predicate �i � Nai � !bi :

For ' 2 Fa;b; such that ' 2 SC(�0 � B); we de�ne its graph-predicate �'

for which b�' 2 SC(�0 � B); i.e. �' �SC �0 � B and from the Normal form

theorem(2.5) it follows that �' has normal form in �0 � B: i.e. there are e 2

!; N -string �N and z1 : : : za 62 Dom(�N ); such that for all s1; : : : ; sa 2 N and

x1 : : : xb; y 2 !; (s1 : : : sa; x1 : : : xb; y) 2 �' i� 9�N � �N s.t. (�N (zi) = si &

�N 
�0�B Fe(hz1; : : : ; za; x1 : : : xb; yi): If by Pa;b we denote the set of codes of all

(a; b)-strings and by PN the set of all codes of N -strings, we may de�ne the set S�

to be the set of all �0 2 Pa0;b0 ; for which there exist �i 2 Pai;bi for 81�i�k; s.t.

�+i � �i; and there exist �1N ; �
2
N 2 PN ; both extending �N and such that z1 : : : za 2
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Dom(�1N ) \Dom(�2N ); and there exist natural numbers x1 : : : xb 2 !; y1 6= y2 2 !;

such that �"N 

A(�

+

0
;�
+

1
;::: ;�

+

k
) Fe(hz1 : : : za; x1 : : : xb; y"i) for each " 2 f1; 2g; where

A(�+0 ; �
+
1 ; : : : ; �

+
k ) denotes the structure with �nite predicates �+i � Nai � !bi :

Therefore S� 2 B and there is an (a0; b0)-string � � ��0 ; such that � 2 S� or

8� � � (� 62 S�):

In the �rst case, since � � ��0 ; then �
+ � �0; and from �"N 


A(�+;�
+

1
;::: ;�

+

k
)

Fe(hz1 : : : za; x1 : : : xb; y"i) follows that �
"
N 
�0�B Fe(hz1 : : : za; x1 : : : xb; y"i); and

using the normal form of �' we obtain a contradiction. So it remains the second

case 8� � �(� 62 S�) and now we can de�ne a predicate � as follows:

� = f(s1 : : : sa; x1 : : : xb; y) j
�
9�0 2 Pa0;b0 : : : 9�k 2 Pak;bk ; 9�N 2 PN

�
s.t.�

�0 � � & 81�i�k �
+
i � �i & �N � �N & 81�j�a �N (zj) = sj & �N 
A(�+

0
;�
+

1
;::: ;�

+

k
)

Fe(hz1 : : : za; x1 : : : xb; yi); which is the graph-predicate of some function  and is

search computable in B; therefore  2 SC(B):

Using the above de�nition and the normal form of �' it is not di�cult to verify

that �' � � ; from which follows that ' �  ; and this proves our proposition.

�

Given a structure C(�1 : : :�k) and a predicate � � Na � !b; if � �SC C and

� �SC C; then its characteristic function �� 2 SC(C): This fact can be used to

prove the following:

Proposition 3.7

Given a structureB(�1 : : :�k) and aB-generic predicate �; the structure ��B

with predicates �;�1; : : : ;�k is quasi-minimal over B:

The above is true for a single predicate, but not in the general case with multiple

B-generic predicates. For example, for any total structure A(�;�) with B-generic

predicates � and � � Na � !b; the structure A�B is not quasi-minimal over B:

4 Generic regular enumerations

The regular enumerations are introduced by I.Soskov in [5] and here we shall use

their modi�cation for two-sort structures. An enumeration for two-sort structures

is the pair f = (fN ; f!); where fN : ! ! N and f! : ! ! ! are total surjective

functions.

Gr(fN ) = f(s; x) j fN(x) = sg � N � ! is the graph of fN .

Gr(f!) = fhx; yi j f!(x) = yg � ! is the graph of f!:

The enumerations f = (fN ; f!); de�ne a unique structure A(Gr(fN ); Gr(f!));

denoted by Af :

Since every two-sort structure (with �nite number of predicates) is equivalent,

in terms of search computability, to a structure with one predicate, in this section

we consider only structures with one predicate.
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De�nition 4.1

Given a structure B(�B) with one predicate ? 6= �B � Na � !b; we say that

the enumeration f = (fN ; f!) is B-regular, if the function f! is f�1N (�B)-regular

enumeration of ! in the sense of [5] and [6], i.e. f! is total surjective mapping of !

onto !; such that f!(2!) = f�1N (�B):

De�nition 4.2

1) A pair of strings � = (�N ; �!) is the pair of an N -string �N : ! (! N and

an !-string �! : ! (! ! (see De�nition 2.1). The pair ? = (?N ;?!) is referred

as the empty pair of strings.

2) Given a structure B(�B) with predicate ? 6= �B � Na � !b; we say that

the pair of strings � = (�N ; �!) is B-regular if �!(2!) � ��1N (�B); where ��1N (�B)

= fhx1 : : : xa; y1 : : : ybi 2 Dom(�N )
a � !b j & (�N (x1) : : : �N (xa); y1 : : : yb) 2 �Bg

and �!(2!)=fy j 9x (�!(2x)=y)g:

3) The N�-code of � = (�N ; �!) is denoted by p�q� and de�ned to be the pair

of codes p�q� = hp�Nq
�; p�!q

�i ; where p�Nq
� = hn�; h1�; �N (1)i ; : : : ; hn

�; �N (n)ii

and p�!q
� = hm�; h1�; (�!(1))

�i ; : : : ; hm�; (�!(m))�ii; n = lh(�N ) and m = lh(�!);

de�ne p?Nq
� = 0� and p?!q

� = 0�:

4)We say that � extends �; write � � �; if both �N � �N and �! � �! : For

an enumeration f = (fN ; f!) and a pair of strings � = (�N ; �!); we say that � � f

when both �N � fN and �! � f!:

Remark:Given a structure B(�B) let RegB denote the set of codes of all B-

regular pairs of strings. Thus � 2 RegB , �!(2!) � ��1N (�B); and therefore

RegB 2 SC(B):

De�nition 4.3

Given a structure B(�B) with predicate ? 6= �B � Na � !b; we say that

f = (fN ; f!) is B-generic regular enumeration, if it is B-regular enumeration and

for every set S� � N� of codes of B(�B)-regular pairs of strings, for which S� 2

SC(B); there exists a pair of strings � � f; such that � 2 S� or 8� � � (� 62 S�):

Proposition 4.4

For every structure B(�B) with one predicate ? 6= �B � Na�!b; there exists

a B-generic regular enumeration f = (fN ; f!).

Proof:

Let S�0 ; : : : ; S
�

n; : : : be a sequence of all the sets S
� 2 SC(B) and s0; : : : ; sn; : : :

be all the elements of N: We can build a B-generic regular enumeration in the

standard way starting from the empty pair of strings and building an increasing

sequence of B-regular pair of strings, such that, at even stages we will monitor

the n-th set S�n and take care to satisfy the requirements for genericity. At odd

stages we will satisfy �q!(2!) � (�q!)
�1(�B) and in the same time f�1N � f!(2!); as

follows:

Suppose at Stage 2n+1 we have de�ned �q = (�
q
N ; �

q
!); for q = 2n: We may

de�ne �
q+1
N to extend �

q
N ; so that for x = lh(�

q
N); �

q+1
N (x) = sn: For the set
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(�
q+1
N )�1(�B) we have two possibilities: if it is empty, de�ne �q+1

! = �q!: Otherwise

(�
q+1
N )�1(�B) 6= �. In this case we consider the set Aq = (�

q+1
N )�1(�B) n �q!(2!)

and de�ne �q+1
! to extend �q! such that in the �rst odd number x1 62 Dom(�q!);

de�ne �q+1
! (x1) = n; and in the �rst even number x0 62 Dom(�q!); de�ne �

q+1
! (x0)

to be the �rst y 2 Aq ; if Aq 6= �, or the �rst y 2 (�
q+1
N )�1(�B); if Aq = �.

In this way we obtain the desired enumeration.

�

To prove the following proposition and the lemma, it may be convenient to

de�ne two notations for a (0; 1)-string � and N -string �N :

cmp(�; �N ) if and only if 8x 2 ! (x� 2 Dom(�) , x 2 Dom(�N ));

� s� �N if and only if 8x� 2 Dom(�)
�
�(x�) = 0� , �N (x) 2 �

�
:

Proposition 4.5

For a structure B(�B) with one predicate ? 6= �B � Na�!b and a B-generic

regular enumeration f = (fN ; f!) the following properties hold:

1)B �SC Af

2)Af 6�SC B

3) For every predicate � � Na�!b; if � �SC B and � �SC Af ; then � �SC B:

4) For every predicate � � N; if ? 6= � �SC B and ? 6= � �SC B; then

f�1N (�) is B-generic predicate.

5) For every predicate � � N; if ? 6= � �SC B and ? 6= � �SC B; the

structure A(f�1N (�);�B) is quasi-minimal over B:

Proof:

These properties follow easily from the de�nitions and the properties of the

enumerations. For example, for the proof of (4) we may assume that f�1N (�) is

not B-generic predicate. Then there exists a set of (0; 1)-strings S; that fails the

genericity, and consider the set of B-regular pairs of strings:

P � = f� 2 RegB j 9� 2 S(cmp(�; �N ) & � s� �N )g:

Since for each � there is a unique �; such that cmp(�; �N ) and � s� �N ; and for

each � there is such �N ; we can obtain a contradiction with the genericity of f:

�

Lemma 4.6

Given a structure B(�B) with ? 6= �B � Na � !b; given a pair of strings �, a

B-generic predicate A � ! and a predicate � � N; such that ? 6= � �SC B and

? 6= � �SC B; for which the following two conditions hold:

(1) � is B-regular;

(2) 8x < lh(�N ) (x 2 A, �N (x) 2 �),

If S� � N� is a set of codes of B-regular pairs of strings and S �SC B; then there

exists a pair of strings � with the following properties:

(a) � � �;

(b) � is B-regular;
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(c) 8x < lh(�N ) (x 2 A, �N (x) 2 �); (this is the property (2) for �);

(d) � 2 S _ 8�(� � � ) � 62 S):

Proof:

The proof is very similar to the one of the corresponding lemma in the classical

case (Lemma 2.4. in [6]).

�

Proposition 4.7

Given a structure B(�B) with ? 6= �B, a B-generic predicate A � !, and a

predicate � � N; such that ? 6= � �SC B and ? 6= � �SC B, there exists a

B-generic regular enumeration f; such that A = f�1N (�):

Proof:

We can build f by the standard construction of increasing sequence of pairs

of strings �q ; (starting from the empty pair of strings), with the properties (1)

and (2) from the above lemma. Moreover, we want them to satisfy four additional

properties:

(3) 9n8e � n
�
lh(�2e+1

N ) � lh(�2eN ) and lh(�2e+1
! ) � lh(�2e! )

�
:

(4) 8s 2 N 9e (s 2 Range(�2e+1
N )) and 8y 2 ! 9e (y 2 Range(�2e+1

! )):

(5) 8p 8x 2 (�
p
N )
�1(�B) 9e (x 2 �2e+1

! (2!)):

(6) 8e
�
if Se � RegB then (�2e+2 2 Se _ 8� � �2e+2 (� 62 Se))

�
; where Se is

the e-th search computable in B set in some given enumeration of all the sets from

SC(B), and RegB is the set of the B-regular pair of strings.

These requirements guarantee that f =

1[
q=0

�q will be a B-generic regular enu-

meration and A = f�1N (�):

Stage 2e+1 Suppose �q is de�ned, for q = 2e: De�ne �
q+1
N to extend �

q

N with

new elements and to have the property (2) de�ned in the previous lemma. If

(�
q
N )
�1(�B) is empty, we de�ne �q+1

! = �q!; otherwise de�ne �
q+1
! to extend �q!

with the �rst two elements x0 2 2! nDom(�q!) and x1 2 (2! + 1) nDom(�q!); for

which:

� �q+1
! (x1) = the �rst y s.t. y 62 Range(�q!);

� �q+1
! (x0) = the �rst y s.t. y 2 (�q!)

�1(�B) n �q!(2!) if not empty, or the �rst

y 2 (�q!)
�1(�B) otherwise.

Stage 2e+2 Suppose �q is de�ned, for q = 2e+ 1: Let G be the set of all pairs

of strings having the properties (1) and (2) from the previous lemma. We have two

possibilities:

Case 1. 9� � �q
�
� 2 G & (� 2 Se _ 8� � � (� 62 Se))

�
: De�ne �q+1 to be the

�rst such �:

Case 2. Otherwise de�ne �q+1 = �q :

Now it can be veri�ed that this construction meets the requirements (3) to

(6), de�ned earlier in the current proof. For example to verify (6) we can use the
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previous lemma to show that Case 2 never happens if Se is a set of B-regular pair

of strings.

�

Theorem 4.8

Let a structure B(�B) with one predicate ? 6= �B � Na � !b; be given.

Then for any predicate A � !; A is B-generic if and only if there exist a

predicate � � N; such that ? 6= � �SC B and ? 6= � �SC B; and there exists a

B-generic regular enumeration f; such that A = f�1N (�):

Proof:

(() The Proposition 4.5-4.

()) Consider the predicate � = fsg for which it is clear that ? 6= � �SC B and

? 6= � �SC B. From previous proposition it follows that there exists a B-generic

regular enumeration f; such that A = f�1N (�):

�
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