Genericity in abstract structure degrees

V.Boutchkova
March 1, 2002

Abstract

The generalized notion of genericity in the theory of abstract structure
degrees is used to obtain a characterization of abstractly generic predicate of
natural numbers as the preimage of some predicate of the denumerable set NV
and generic regular enumeration.

Introduction

In this paper we deal with search-computability, defined by Moschovakis in [2],
though for the proofs of most of the propositions we have used the Skordev’s defi-
nition of search-computability, in [3] Skordev proved both are equivalent.

The idea of considering two sort structures was presented by I.N.Soskov during
the cycle of lectures of the seminar on Computability Theory at Sofia University,
1998. The abstract structure degrees are defined also by him during the same
seminar as well as their regular enumerations.

The first sort of the mentioned two-sort abstract structures is an arbitrary
denumerable set and the other is the set of natural numbers. The presence of the
equality among the basic predicates of the structure is required.

In these terms we present an analogue of some notions from the theory of the
enumeration degrees, namely the set genericity and the related results, applying the
techniques used by Copestake in [1]. We generalize the characterization obtained
in [6], stating that a set of natural numbers is generic relatively a set B if and only
if it is the preimage of some set A using a B-generic B-regular enumeration such
that both A and its complement are e-reducible to B.

Here we introduce the notion of genericity for abstract predicates. Using the
enumerations of two-sort abstract structures (in the way they are used in [4]) we
obtain a characterization of this type of abstract genericity, which claims that a
predicate A of natural numbers is generic relatively the two-sort abstract structure
B with one predicate if and only if there exists a predicate ¥ on the first sort,
which is search computable in 8 and a B-generic regular enumeration f, such that
A= fR(®).

This paper is part of the author’s Master’s Thesis, supervised by I.Soskov.



1 Preliminaries

We use some standard definitions and notations: <. denotes the enumeration re-
ducibility between sets and ¥, denotes the e-th enumeration operator, i.e. ¥.(B) =
{z| v ((z,v) € W.& D, C B)}, where W, is the recursively enumerable set with
Godel code e, B is a set of natural numbers and D, is the finite set with code v. Re-
call the join operation for sets of naturals: A® B is the set {2z |z € A}U{2z+1|z €
B}, used to induce the least upper bound of the e-degrees of A and B.

Given a countable set N and 0* ¢ N, N* denotes the Moschovakis’ extension of
N, i.e. the smallest extension of N U {0*} closed under the operation ordered pair
(+,-) (we will use the same notation for effective coding of pairs of natural numbers);
w denotes the set of the natural numbers and w* C N* is the set of elements
0*,...,(mn+1)*..., such that (n + 1)* = (0*,n*) € w*. By F we denote the set of
one-argument partial functions ¢ : N* —— N*. We write ¢ € SC(p1,... ,¢n) to
say that ¢ is search computable in the set of functions {p; ...¢,} C F, (see [3]).

From now on, we consider the abstract partial two-sort structures:
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with two fixed basic predicates in N2 = (equality) and #y (inequality), and
partial predicates ¥; C N% x w’, s.t. a;,b; > 0 but not both zero. This kind of
structures will be denoted by (X ...%g).

The notation ¥y <sc 2 says that X is search computable in the set of 2’s pred-
icates, including the equality and inequality, i.e. S, € SC(EX, .. Z%, 2N, EN),
(we also write $o € SC()), where £ : N* —o— N* is the semi-characteristic
function of the predicate.

Soskov defined A & % to be the two-sort structure with predicates =n, #n,
IELND Y D 3t R 2 <sc B if and only if Vi<icpy): ¥ <gc B and

ko ksB;

A =gc B if and only if A <gc B and B <gc 2.

Definition 1.1 (Soskov)
The abstract structure degrees are the equivalence classes, induced by the rela-

tion =g¢ between structures, and we denote them by a,b,c... and for every a and
bin®,aUb =2, &) for some A € a and B € b.

We write ® for the set of all abstract structure degrees with the partial ordering
induced by <s¢ . Thus the structure (D, <gc,U, D) is an upper semi-lattice with
least element the empty structure O = (N;w;=n, #nN)-

On the seminar on Computability Theory in 1998, I.Soskov introduced the
following definition of search computability and proved its equivalence with the
standard ones (see [2] and [3]):

A<scBiff Va(B < a= A< a),

where @ = (f, R) is enumeration and 2 < « if and only if f~}(A) <, R. Here we
shall use it for a single predicate ¥ C N% x wbi in this particular form:

Y <sc Aiff (f5'(2) < fx'(A), for every N-enumeration fy) (1)



where fy : w — N is total and surjective function, that we shall call N-enumeration,
INE) ={@ .20y ) €| (fN(®1) ... fN(Ta),y1 - -yp) € T} and for the
structure A = (N, w; =N, #n; 21, ... , L), the preimage f;,l(Ql) is defined in such
a way that is e-equivalent to f5 ' (21) ® ... ® fy' (Zk) ® fr' (=) @ fy' ().

2 Enumerations

Many of the definitions and the proofs from [4] concerning the enumeration ap-
proach and the normal form theorem are applicable in our case. We recall them in
order to use them later in §3 and for the characterization in §4.

Definition 2.1
1) N-string 7w is a finite function 73 : [0...n — 1] = N, with domain an initial
segment of w with length lh(ry) = n.

We shall call the strings used in [6] w-strings, i.e. an w-string is a finite sequence
of naturals meant to be an initial segment of w.
2) ™ Con iff Vl‘(l’ < lh(TN) = TN(I‘) = O'N(Z’)).
3) Code of the N-string 7 is defined to be "7 7 = (n*,7x(0),... ,7n(n — 1)).

Definition 2.2 ([4])

For a structure A(3; ... ;) with ¥; C N% xwb | an N-string i and a formula,
F,.(z) with e,z € w, define the forcing relation 1, Iy F.(2) as follows:

(1) v kg Fe(2) iff Fu({v, z) € W, & 7, Ik Dy)

(2) 77 kot Dy iff Vu € Dy(u = (i, (x1 ... Zay Y1 - Y )) &
1<i<k&m.. ..z, € Dom(ry) &(rn(21) ... TN (Ta;),¥1---Yp;) € BiV u =
0,2(x,y)) & xz,y € Dom(rn) & ™~ (z) = ™8 (y) & u = (0,2(x,y) + 1) & z,y €
Dom(tn) & v () #N TN ().

Definition 2.3 ([4])
For an N-enumeration fx : w — N and a structure 2(X; ...X;) with predicates
¥; C N% x wb, define

fn Ea Fo(z) if and only if z € W (fy1()).

Definition 2.4 ([4])

We say that the predicate ¥ C N¢ x w® has normal form in the structure
A(X; ... Xg), if there exist e € w, an N-string oy and z; ...z, ¢ Dom(dn), such
that for all sq...s, € N, and for all y; ...y € w, (S1...54,¥1...Yp) € XL iff
ETN 2 5N s.t. Vlgiga (TN(:L’i) = Sz) & ™ ”_Ql Fe(<1’1 e LgyY1 . --yb>)-

The following is a corrollary from the Normal Form Theorem from [4] for the
case of two-sort structures.

Theorem 2.5 (Normal Form Theorem)
Let A(X;...3%) be a structure, with predicates ¥; < N% x w’. Then every
predicate ¥ C N® x w® that ¥ is search computable in 2, has a normal form in 2.



3 Generic predicates

Definition 3.1
1) Let ¥ C N® x w’ be a predicate. We define the characteristic function of
to be the function yy : N* —— N*, defined as follows:

0* ifs=(s1...8q,2]...2}) &(s1...80,%1...2p) € X
xs(s) = 1% ifs=(s1...80,2}...25) &(s1...80,21...2) €T .
1 otherwise

2) Let Fq b, where a+b > 1, be the set of all partial functions ¢ € F, such that
Dom(p) C {(s1...8a,2}...2}) | (51...84,21...75) € N* x W’} and Range(p) C
w*.

3) Define (a, b)-string to be a finite function o € F,  with Range(a) C {0*,1*}.
We may define the code of the (a,b)-string a (denote "a7), to be (k*, (s1,a(s1)),

., (sg,a(sg))) € N*, if Dom(a) = {s1,...,s;}; and "@7 = 0%, for the empty
function.

Remark: Since an (a, b)-string may have more than one (but only finitely many) different codes, by
a € S* C N, we mean that there exists a code of «, which belongs to the set S*; respectively a ¢ S*
means there is no code of a that belongs to the set. We say that S™ is a set of codes of (a, b)-strings
when each element is a code of some (a,b)-string, it is not necessary that S*™ contains all the codes of

an (a, b)-string.

4) Semi-characteristic function of the set S* C N we call the function Cg« :
N* —— N*  defined as follows:

0* ifseS*

1T otherwise

Cg- (S) = {

For a given set S* C N* and structure B(%; ... X;), we write S* € SC(8), when
Cs+ € SC(ﬁN, FENy DLy, Ek)

5) For every a and b, which are not both zero, and every function ¢ € Fgp,
we define the graph-predicate of ¢, to be the predicate ¥, C N x Wbt such
that for all si,...,s, € N and x1,... ,2p,y € w, (81...84,%1...2p,y) € U, iff

((s1...8a0,2%...75)) = y*.

Definition 3.2

Given a structure B(X; ... %), we say that the predicate ¥ C N x w® is B-
generic if for every set S* C N* of codes of (a,b)-strings such that S* € SC(B),
the following holds:

Ja Cxs(ae S*VVBDa(B ¢ S5)).

Note: If we consider a structure B(B) with one predicate of naturals and a
predicate ¥ C w, then X is B-generic in the sense of Definition 3.2 if and only if
the set ¥ is B-generic set of natural numbers in the classical sense. The proof uses
the definition of SC via enumerations (1).



Proposition 3.3

For every structure B = B(X; ... %) and a,b € w, such that a + b > 1, there
exists a B-generic predicate ¥ C N® x wb.
PROOF:

In this proof and from now on T will denote a finite sequence of elements for
brevity (an appropriate number of them).

We can find such ¥ by building its characteristic function as a union of (a,b)-
strings, that we build at stages, such that at even stages we satisfy the requirements
Dom(xx) to be a domain of a predicate’s characteristic function and at odd stages
- the genericity.

Let us have some enumeration Sj ... S} ... of the domains the partial functions
from SC(B), i.e. S} = Dom(yp), for ¢ € SC(*B).

Stage 0 Define ay = @.

Stage 2n+1 We have defined a4 for ¢ = 2n. Let (5,T*) € N* be such that
(5,T) is the least according to some order in N® x w’ element for which (3,7T*)
¢ Dom(a). Define agq1 to extend oy with one new argument, i.e. such that
agr1({s1...5q,27...27)) = 0%

Stage 2n+2 We have defined o, for ¢ = 2n + 1.

Case 1. If there exists in S an (a, b)-string [, extending «,, define ay41 to be the
first such £.
Case 2. Otherwise define ag41 = ay.

o0

Finally we can define s = U oy, that is the characteristic function of some
q=0
B-generic predicate. O

Proposition 3.4
Let B8 be an abstract structure and ¥ C N x w’ a B-generic predicate. Then
the following hold:
P1) The predicate ¥ C N® x w® is B-generic.
P2) There is no infinite predicate C C N x w?, such that C <gc B and C C X.
P3) X is infinite.
P4) ¥ £sc B.

PROOF:

Each of (P3) and (P4) follows directly from the previous properties. To prove
(P1) we may assume it’s false. Therefore there is a set of codes of (a,b)-strings,
namely P* € SC(B), such that:

(a) Ya C x5 (a € P* & 36 D a(B € P*)).

There is a recursive function translating (codes of) (a,b)-strings into their re-
verse, e.g. the reverse of a being the (a,b)-string @, such that Vs € Dom(a),
a(z) = 0* iff @(z) = 1*. Thus the set S* = {a | @ € P*} € SC(B) and therefore
there exists a C x» (and therefore @ C x5) such that the next (1) or (2) holds:

(1) a € S*. Then @ € P* and @ C x5, which is a contradiction with (a).



(2) VB 2 a (B ¢ S*). But from (a) for @ follows there exists an (a,b)-string
B € P* extending @. Since § = 3, we have that 3 € S* and 8 D «, which is a
contradiction.

In both cases we found a contradiction, therefore ¥ is B-generic.

To prove (P2) we may assume there exists such C C N% x w® and define a set S*
={a|3s1...5 EN,Ty1...yp €Ew((s1---Sa,Y1---Yp) EC&a({(s1...54, Y7 -.-Y5)) =
1%)}, that will lead to contradiction.

g

Definition 3.5 L

Let us define the structure 2(X} ... E¥) to be total iff 2% <gc ™A for 1 < i < n.
The generalization the quasi-minimal and the minimal-like (see [1]) will have the
following form:

1. A is quasi-minimal over B if the following two conditions hold:

o B <gc A and A £sc B;
e For every total structure €, if € <gc A then € <gc B.

2. A is minimal-like over B, if the following two conditions hold:

o B <gc A and A £sc B;

e For every function ¢ € Fop, if ¢ € SC(R), there exists a function
¥ € Fap such that ¢ C ¢ and ¢ € SC(B).

For the (a, b)-string « we define a predicate a™ to be the set {(s1 ... 54,21 ... Tp)]
a((si...sq,27...25)) = 0%},

If 3y is a predicate and B(X; ...X;) a structure, we denote by Xo ® B the
two-sort structure with predicates Yo, X1 ... 3g.

Proposition 3.6
For given B(X; ...%;) and B-generic predicate g, the structure ¥y ® B is
minimal-like over B.

ProoF:

Since Xy is B-generic, ¥y £sc B and therefore B $sc Yo @ B. Let (a;,b;) be
the arity of the predicate ¥; C N% x wbi.

For ¢ € F,, such that ¢ € SC(Xy & B), we define its graph-predicate X,
for which iw € SC(Xp @ B), ie. ¥, <gc Xo @B and from the Normal form
theorem(2.5) it follows that ¥, has normal form in Xy & B. i.e. there are e €

w, N-string oy and 21 ...z, € Dom(dn), such that for all sq,...,s, € N and
T1...ThY € W, (81...50,21...25,Y) € By, iff Ity D oy sit. (7w(zi) = 85 &
™~ rsomw Fe((21,. ., 2a,%1 ... 2p,y)). If by P, we denote the set of codes of all

(a,b)-strings and by Py the set of all codes of N-strings, we may define the set S*
to be the set of all By € Py, 5., for which there exist 8; € P, s, for Vi<i<g, s.t.
B C %, and there exist 7}, 7% € Py, both extending §x and such that z; ...z, €



Dom(rx;) N Dom(7%), and there exist natural numbers x1 ...z, € w,y; # Y2 € w,
such that 75 H—Ql(ﬁgrﬂfr,...ﬂ,fr) F.((z1...2a,21 ...2p,yc)) for each € € {1,2}, where

A(BT, B, . ,ﬁ,:r) denotes the structure with finite predicates 87 C N% x wbi,
Therefore S* € B and there is an (ag, bp)-string a C xx,, such that & € S* or
V8D a (B ¢S).

In the first case, since @ C x3,, then a™ C ¥, and from 7§ LT +

Fo({(z1...2q,%1 ... 2p,Yc)) follows that 75 ks es Fe((z1...24,%1-..Tp,¥e)), and
using the normal form of ¥, we obtain a contradiction. So it remains the second
case V3 D a(f ¢ S*) and now we can define a predicate X, as follows:
E¢ = {(81 v Sa, 21 . .:L’b,y) | (E'ﬁo S Pao,bo . Hﬁk S Pak,bk; dry € PN) s.t.
(ﬂo Dak& Vii<wk ﬂj CY; &w2Don & Vi<j<a TN(Z]') =s; &N ”—Ql(ﬁar,ﬁfr,---,ﬁ,:r)
F.((z1...24,21...2p,Yy)), which is the graph-predicate of some function ¢ and is
search computable in 9B, therefore ¢» € SC(B).

Using the above definition and the normal form of X, it is not difficult to verify
that ¥, C X, from which follows that ¢ C 1, and this proves our proposition.

(|

_ Given a structure ¢(X;...3;) and a predicate ¥ C N® x w, if ¥ <gc € and
Y <sc €, then its characteristic function ys, € SC(€). This fact can be used to
prove the following:

Proposition 3.7
Given a structure B(X; ... %) and a B-generic predicate X, the structure ¥ 9B
with predicates X,3,... , X} is quasi-minimal over ‘B.

The above is true for a single predicate, but not in the general case with multiple
B-generic predicates. For example, for any total structure A(X, X) with B-generic
predicates ¥ and £ C N® x w?, the structure A & B is not quasi-minimal over B.

4 Generic regular enumerations

The regular enumerations are introduced by I.Soskov in [5] and here we shall use
their modification for two-sort structures. An enumeration for two-sort structures
is the pair f = (fn, f,), where fv : w —» N and f, : w — w are total surjective
functions.

Gr(fn) ={(s,z) | fn(z) = s} C N X w is the graph of fx.

Gr(fu) ={(z,y) | fu(x) =y} C w is the graph of f,.

The enumerations f = (fn, f,), define a unique structure A(Gr(fn), Gr(f.)),
denoted by 2.

Since every two-sort structure (with finite number of predicates) is equivalent,
in terms of search computability, to a structure with one predicate, in this section
we consider only structures with one predicate.



Definition 4.1
Given a structure B(X®) with one predicate @ # X® C N x w, we say that
the enumeration f = (fn, f.) is B-regular, if the function f,, is f&l(E“B)—regular

enumeration of w in the sense of [5] and [6], i.e. f, is total surjective mapping of w
onto w, such that f,(2w) = f3'(X2).

Definition 4.2

1) A pair of strings T = (7N, 7,) is the pair of an N-string 7n : w —— N and
an w-string 7, : w —o— w (see Definition 2.1). The pair @ = (&N, J,,) is referred
as the empty pair of strings.

2) Given a structure B(X?) with predicate @ # X C N x w®, we say that
the pair of strings 7 = (1, 7,) is B-regular if 7,(2w) C 75 (£%), where 75, (£%)
={{z1..-Ta,y1.--yp) € Dom(tn)* x Wb | & (7n(z1) ... TN (T0), 91 ---yp) € 2P}
and 7, (2w) ={y| 3z (1, (22)=y)}.

3) The N*-code of T = (Tn,7,) is denoted by "7 and defined to be the pair
of codes "7 = (Try ™, "7, ™), where "7y ™ = (n*, (1*,7n(1)), ..., (n*,7n(n)))
and "7, ™ = (m*, (1%, (1, (1))*), ..., (m*, (1, (m))*)), n = lh(rn) and m = lh(7,);
define "oy ™ = 0* and "@, ™ = 0*.

4) We say that 7 extends o, write o C 7, if both oy C 74 and o, C 7,. For
an enumeration f = (fn, f,) and a pair of strings 7 = (7w, 7,), we say that 7 C f
when both 7 C fxy and 7, C f,.

Remark: Given a structure B(X®) let Regy denote the set of codes of all B-
regular pairs of strings. Thus 7 € Regy & 7,(2w) C 75" (X%), and therefore
Regy € SC(B).

Definition 4.3

Given a structure B(X®) with predicate @ # ¥® C N x w’, we say that
f = (fn, fo) is B-generic regular enumeration, if it is B-regular enumeration and
for every set S* C N* of codes of B(X%)-regular pairs of strings, for which S* €
SC(*B), there exists a pair of strings 7 C f, such that 7 € S* or Vo D 7 (6 € S*).

Proposition 4.4
For every structure B(X?) with one predicate @ # % C N® x w®, there exists
a B-generic regular enumeration f = (fn, f.)-

PROOF:

Let S§,...,S%, ... be asequence of all the sets S* € SC(B) and so, ... ,Sp,.-
be all the elements of N. We can build a B-generic regular enumeration in the
standard way starting from the empty pair of strings and building an increasing
sequence of B-regular pair of strings, such that, at even stages we will monitor
the n-th set S} and take care to satisfy the requirements for genericity. At odd
stages we will satisfy 74(2w) C (72)71(S®) and in the same time fy' C f,(2w), as
follows:

Suppose at Stage 2n+1 we have defined 7, = (7%,72), for ¢ = 2n. We may

define 74 to extend 7%, so that for z = [h(rY), Iq\,+1(:n) = s,. For the set



(r5)~1(2%) we have two possibilities: if it is empty, define 79+ = 79, Otherwise
() ~H(2®) # @. In this case we consider the set 4, = (r41)~1(2%) \ 77(2w)
and define 77t to extend 79 such that in the first odd number z; ¢ Dom(72),
define 797! (z1) = n, and in the first even number zo ¢ Dom(7%), define 72+ (z0)
to be the first y € A, if A, # @, or the first y € (757 ~1(2P), if 4, = O.
In this way we obtain the desired enumeration.
a

To prove the following proposition and the lemma, it may be convenient to
define two notations for a (0, 1)-string @ and N-string 7 :

emp(a, ) if and only if Vo € w (z* € Dom(a) < x € Dom(7n)),

a ~x 7y if and only if Vz* € Dom(a) (a(z*) = 0* & 75 (z) € ).

Proposition 4.5

For a structure B(X%) with one predicate @ # X® C N® x w’ and a B-generic
regular enumeration f = (fn, f.,) the following properties hold:

1) <sc D/

2) D/ £Lsc B

3) For every predicate ¥ C N¢ wa, if Y <gc Band T <gc s, then Y <gc B.

4) For every predicate ¥ C N, if @ # ¥ <gc B and @ # ¥ <gc ‘B, then
f5' (%) is B-generic predicate.

5) For every predicate ¥ C N, if @ # ¥ <gc B and @ # ¥ <gc ‘B, the
structure 2A(fx' (), £?) is quasi-minimal over %B.

PROOF:

These properties follow easily from the definitions and the properties of the
enumerations. For example, for the proof of (4) we may assume that fy'(¥) is
not B-generic predicate. Then there exists a set of (0,1)-strings S, that fails the
genericity, and consider the set of B-regular pairs of strings:

P* = {1 € Regy | Ja € S(cmp(a,7n) & a ~x TN)}.

Since for each 7 there is a unique «, such that emp(a, 7n) and a ~yx 7y, and for

each « there is such 7y, we can obtain a contradiction with the genericity of f.
O

Lemma 4.6

Given a structure B(X?) with @ # L% C N® x w?, given a pair of strings 6, a
B-generic predicate A C w and a predicate ¥ C N, such that @ # ¥ <gc B and
@ # Y <gc¢ B, for which the following two conditions hold:

(1) § is B-regular;

(2) Vz < lh(dn) (x € A & dn(z) € ),
If S* C N* is a set of codes of B-regular pairs of strings and S <gc B, then there
exists a pair of strings ¢ with the following properties:

(a)o 2 6;

(b) o is B-regular;



(c)Vz < lh(on) (x € A& on(z) € X), (this is the property (2) for o);
(d)oeSVVr(rD2o=1¢S5).

PROOF:
The proof is very similar to the one of the corresponding lemma in the classical
case (Lemma 2.4. in [6]).
O

Proposition 4.7

Given a structure B(X%) with @ # %, a B-generic predicate A C w, and a
predicate ¥ C N, such that @ # ¥ <gc B and @ # ¥ <gc B, there exists a
%B-generic regular enumeration f, such that A = f ' ().

PROOF:

We can build f by the standard construction of increasing sequence of pairs
of strings o,, (starting from the empty pair of strings), with the properties (1)
and (2) from the above lemma. Moreover, we want them to satisfy four additional
properties:

(3) InVe > n (Ih(oX™) > Ih(03¢) and [h(o2¢*Y) > Ih(02)).

(4) Vs € N Je (s € Range(oxt)) and Vy € w Je (y € Range(o?¢+)).

(5) Vp Vz € (08,)7H(Z®) Je (z € 02¢7! (2w)).

(6) Ve (if Se C Regsp then (02e42 € Se V VT D 02eq2 (T € Se))), where S, is
the e-th search computable in 9B set in some given enumeration of all the sets from
SC(B), and Regy is the set of the B-regular pair of strings.

o0

These requirements guarantee that f = U o, will be a B-generic regular enu-
q=0
meration and A = fy'(2).

Stage 2e+1 Suppose o, is defined, for ¢ = 2e. Define 047" to extend o% with
new elements and to have the property (2) defined in the previous lemma. If
(0%)~H(Z®) is empty, we define 0%t = 04, otherwise define oZ*! to extend o
with the first two elements z¢ € 2w \ Dom(c?) and z; € (2w + 1) \ Dom(c2), for
which:

o o0+ (z,) = the first y s.t. y & Range(a?);

e 04tl(zq) = the first y s.t. y € (02)"H(Z®)\ 04 (2w) if not empty, or the first
y € (69)"1(X®) otherwise.

Stage 2e+2 Suppose o4 is defined, for ¢ = 2e + 1. Let G be the set of all pairs
of strings having the properties (1) and (2) from the previous lemma. We have two
possibilities:

Case .30 Doy (0 € G & (0 € Se VVT D0 (1 € Se))). Define oq41 to be the
first such o.

Case 2. Otherwise define o441 = 0y.

Now it can be verified that this construction meets the requirements (3) to
(6), defined earlier in the current proof. For example to verify (6) we can use the

10



previous lemma to show that Case 2 never happens if S, is a set of B-regular pair
of strings.
O

Theorem 4.8
Let a structure B(X?) with one predicate @ # £% C N® x w®, be given.
Then for any predicate A C w, A is B-generic if and only if there exist a
predicate £ C N, such that @ # ¥ <gc B and @ # ¥ <gc¢ B, and there exists a
$B-generic regular enumeration f, such that A = f;,l(E).

PROOF:
(<) The Proposition 4.5-4.
(=) Consider the predicate ¥ = {s} for which it is clear that @ # ¥ <gc B and
@ # ¥ <gc B. From previous proposition it follows that there exists a B-generic
regular enumeration f, such that A = fg,l(E).
(|
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