
Sofia University ”St. Kliment Ohridski”
Faculty of Mathematics and Informatics

Department of Mathematical Logic and Its Applications

Master Thesis

Hyper Separation Logic

Trayan Tanchev Gospodinov

M.Sc. Logic and Algorithms, Mathematics

Faculty Number: 5MI3100006

Supervisor: Prof. Dr. Tinko Tinchev

Advisors: Thibault Dardinier

Prof. Dr. Peter Müller

1

Contents

1 Introduction 3

2 Preliminaries 5
2.1 Hoare logic . 5

2.1.1 Semantics . 5
2.1.2 Syntax . 8
2.1.3 Undecidability and effective incompleteness 13
2.1.4 Soundness and non-effective completeness 14

2.2 Separation logic . 26
2.2.1 Semantics . 26
2.2.2 Syntax . 29
2.2.3 Syntactic and semantic logic 30
2.2.4 Separating conjunction and the frame rule 32

2.3 Separation Sufficient Incorrectness logic 35
2.4 Outcome Separation logic . 38
2.5 Relational Separation logic . 40

2.5.1 Semantics . 40
2.5.2 Syntax . 42

2.6 Properties and hyperproperties 43
2.7 Hyper Hoare logic . 46

2.7.1 Semantics . 46
2.7.2 Syntax . 48
2.7.3 Expressivity . 49

3 Hyper Separation logic 52
3.1 Separating conjunction . 52

3.1.1 Desired properties . 52
3.1.2 Definition . 59

3.2 Hyper-tripe validity . 66
3.3 The strongest postcondition . 68
3.4 The Frame rule . 71

3.4.1 Soundness . 71
3.4.2 Expressivity . 72

2

1 Introduction

To formally prove a property (in the general sense) about a program, one must
rely on three essential components, introduced below from the most general to
the most specific. First, one needs a general foundational system in which to
work (e.g., set theory). Next, a state model for representing program states must
be established. Finally, the semantics of the programming language for which
the property is being proven must be defined. With these in place, anyone with
sufficient expertise can derive results within the limits of the chosen foundational
system, such as set theory.

Hoare logics provide a structured approach to reasoning when (dis-)proving
certain properties (in the general sense) of programs. While they may not
introduce fundamentally new concepts—since any concept developed through
Hoare logics could have emerged through general means—their true value lies
in making reasoning more systematic and rigorous. This added rigor facilitates
automation, allowing computers to handle the reasoning process more efficiently,
reducing the reliance on manual proofs.

To start, we look at the formulae in Hoare logic [Hoare 1969], {p}C{q},
which consist of three syntactic elements—p, C, and q—along with the de-
limiting symbols { and }. The p (precondition) and q (postcondition) are
first-order formulae, referred to as syntactic assertions, while C is a syntactic
program command. A Hoare formula {p}C{q} is a theorem of Hoare logic
iff executing C in a program state that satisfies p leads to a program state
that satisfies q, or causes divergence. It is evident that this definition relies on
both the satisfiability (i.e., the interpretation) and the semantics of the program
command (i.e., the interpretive model), which itself depends on the satisfiabil-
ity. In this thesis, p and q are formulae from (a slight alteration of) Peano
arithmetic, while C adheres to the structure of Kleene algebra with tests. We
will go over well-known results, such as the soundness of Hoare logic for any
interpretation, and demonstrate that completeness is unattainable, as it would
otherwise contradict Gödel’s incompleteness theorem. We will establish (follow-
ing [Cook 1978]), given an oracle for the standard model of Peano arithmetic,
a weaker form of completeness, namely relative completeness, which concerns
only a single interpretation—in this case, the standard interpretation of Peano
arithmetic.

Next, we introduce the concept of Separation logics, which are specialized
Hoare logics with the added capability of reasoning about the heap. That is,
the assertion language is extended, and heap-sensitive base program commands
are added to the existing syntax for program commands. We demonstrate that
the naive approach for local reasoning though the so called constancy rule fails,
because two different variables can point to the same heap location. We then
present the seminal solution from [Reynolds 2002], which re-establishes local
reasoning through the introduction of the separating conjunction ∗, replacing ∧
in the constancy rule and thereby giving rise to the so-called frame rule.

Then, we introduce the concept of semantic logics, where the formulae are
not syntactic, but rather semantic, i.e. set-theoretic, objects, and the theorems

3

are recursively (in the sense of set theory) defined predicates and not finitistic
ones. Once the semantic logic is established, obtaining a corresponding syn-
tactic logic becomes straightforward, with the primary challenge arising only if
one aims to show relative completeness, particularly in ensuring that the syntax
can express all loop invariants. We argue that, when discussing Hoare logics, it
is more insightful to focus on semantic logics rather than syntactic ones. This
is because the main advantage of a syntactic logics is that they are finitistic,
making them well-suited for automation. However, any relatively complete syn-
tactic Hoare logic that incorporates the standard model of Peano arithmetic
relies on an oracle, thus diverging it from finitism and consequently losing its
main advantage.

Subsequently, we introduce Sufficient Incorrectness logic and its Separation
variant [Ascari et al. 2024]. Similarly to Hoare (and Separation) logic, their
formulae are of the form {p}C{q}. We say that {p}C{q} is a theorem of
(Separation) Sufficient Incorrectness logic iff for any starting state that satisfies
p, there exists a terminating execution of C that leads to a state satisfying
q. Then, we introduce the concepts of over- and underapproximate logics. In
short, overapproximating logics prove properties for all possible executions, en-
suring the absence of bad behaviors, while underapproximating logics establish
the existence of certain executions, which can be useful for demonstrating bugs.
Overapproximate logics include Hoare and Separation logic, whereas underap-
proximate logics include Sufficient Incorrectness logic and its separation variant.

Following this, we introduce Outcome [Zilberstein et al. 2023] and Outcome
Separation logic [Zilberstein et al. 2024], which, unlike the logics mentioned
above, have formulae of the form {P}C{Q}, where P and Q are formulae that
express not a set of states, but rather a set of sets of states. Disregarding a minor
detail, {P}C{Q} is said to be a theorem of Outcome and Outcome Separation
logic iff executing (in the lifted sense) C in a set of program states that satisfies
P leads to a set of program states that satisfies Q. Outcome and its separation
variant support both over- and underapproximate reasoning.

After, we introduce Relational Hoare logic [Benton 2004] and Relational
Separation logic [Yang 2007], which reason about relations between programs.
That is, their formulae are of the form {R}C1

C2
{S}, where R and S are formulae

that express relations of states and C1 and C2 are program commands. Disre-
garding a minor detail, theorems of Relational Hoare logic and its separation
variant are defined analogously to Hoare logic, but with pairs of states instead,
where C1 modifies the first coordinate state and C2 modifies the second. A
typical use case is demonstrating that a compiler-optimized program behaves
the same as the original one. However, in this thesis, we focus on the scenario
where the two programs coincide, which may initially appear to lack practical
applications. That said, this is not the case, as we introduce some use cases,
including observational determinism and non-interference.

The final preliminary logic that we introduce is Hyper Hoare logic [Dardinier
and Müller 2024], which operates similarly to Outcome logic. That is, the
formulae of the assertion language express sets of states and the theorems are
defined analogously. Like Outcome logic, formulae of Hyper Hoare logic take

4

the form {P}C{Q} with the key distinction that the syntax of P and Q is more
expressive, allowing expressing statements like ”all states have the same value for
a given program variable”. This addition is essential, as it provides the missing
component for achieving a Hoare-style logic with maximal expressiveness. To
formalize this, we introduce program properties and program hyperproperties,
and refer to [Dardinier and Müller 2024], where it is demonstrated that Hyper
Hoare logic can express any program hyperproperty.

In practice, virtually all programs in practice use heap. This renders Hyper
Hoare logic, while highly expressive, practically inapplicable. This issue is not
specific to Hyper Hoare logic; it arises with all Hoare logics. The standard
solution, applied to essentially all well-established Hoare logics, is to develop a
separation-style variant. The difficulty in Hyper Hoare logic arises from the fact
that the separating conjunction, which operates over sets of states, cannot be
used nearly as directly as in other Hoare logics, as we are concerned with sets
of sets of states. The goal of this thesis is to explore the properties that our
separating conjunction should satisfy, and then define and verify that it meets
these properties. Finally, we present an initial outline of what validity in Hyper
Separation Logic might look like and argue that the definition is well-grounded
as it gives rise to a very expressive frame rule.

2 Preliminaries

In this section, we lay the groundwork required for Hyper Separation logic.
We begin by introducing the foundational concept of Hoare logic [Hoare 1969],
followed by Separation logic - a specialized framework for local reasoning about
heap programs. Next, we delve into Separation Sufficient Incorrectness logic,
offering deeper insights into the intricacies of program verification, in particular
- underapproximate reasoning. Subsequently, we introduce Outcome Separation
logic, which can express both over- and underapproximate reasoning. Then, we
discuss Relational Separation logic, which provides a framework for reasoning
about two programs. Finally, we introduce a novel logic, which can reason about
arbitrary hyperproperties, called Hyper Hoare logic.

2.1 Hoare logic

2.1.1 Semantics

The foundational concept we will rest upon is Hoare triple. A Hoare triple has
the form {p}C{q}, where p (precondition) and q (postcondition) are assertions
and C is a program command. A Hoare triple is valid iff executing successfully
C, starting in a program state satisfying p, results in a program state satisfying
q.

We begin with some definitions that depend on a non-empty set, Val, and a
countably infinite set of program variables, PVars. While this dependency will
be omitted in some instances and explicitly mentioned in others, we trust that
the reader will be able to discern the intended context.

5

Definition 2.1. A heapless program state (or stack) s is a total function from
PVars to Val, i.e. s : PVars → Val.

We denote the set of all heapless program states by Stacks. We will use the
meta symbol s with potential indices to denote a heapless program state.

Definition 2.2. A heapless assertion p is a set of heapless program states.

We denote the set of all heapless assertions by SAsrts (S for store/stack). We
will use the meta symbols p, q, r, f with potential indices to denote assertions1

and heapless assertions. Which of the two is intended will be clear from the
context.

Definition 2.3. A program expression e is a total function from Stacks to Val.

We will use the meta symbol e with potential indices to denote a program
expression.

Definition 2.4. A program predicate b is a set of heapless program states2.

We will use the meta symbol b with potential indices to denote a program
predicate. With b̄ we will denote the complement of b.

Definition 2.5. We define heapless program commands using Backus–Naur
form (BNF):

C ⇋ skip |x := e |x := nonDet() |assume b | (C;C) | (C + C) |C∗,

where x ∈ PVars.

We will use the meta symbol C with potential indices to denote a program
command3 or a heapless program command. Which of the two is intended will
be clear from the context. For the remainder of this thesis, standard parentheses
omitting rules hold, e.g. when precedence is clear, when associativity holds and
the outer most parentheses.

The skip, assignment (x := e) and sequential composition (C1;C2) are stan-
dard. The assume command aborts the execution if b is not satisfied, oth-
erwise it acts like skip. The + command is nondeterministic choice and ∗ is
nondeterministic iteration. Using these commands we can define deterministic
if b then C1 else C2 fi and deterministic while b do C od as follows:

if b then C1 else C2 fi ⇋ (assume b;C1) + (assume b̄;C2)

while b do C od ⇋ (assume b;C)∗;assume b̄

Our program commands also include unbounded nondeterministic assignment
(x := nonDet()). In combination with assume we can express constrained
nondeterministic assignment:

x := cNonDet(a, b) ⇋ x := nonDet();assume {s ∈ Stacks | a ≤ s(y) ≤ b}
1Yet to be introduced.
2Note that the definition coincides with that of a heapless assertion.
3Yet to be introduced.

6

⟨x := e, s⟩ → ⟨skip, se(s)x ⟩ ⟨x := nonDet(), s⟩ → ⟨skip, snx⟩

⟨skip;C2, s⟩ → ⟨C2, s⟩
⟨C1, s⟩ → ⟨C ′

1, s
′⟩

⟨C1;C2, s⟩ → ⟨C ′
1;C2, s

′⟩
s ∈ b

⟨assume b, s⟩ → ⟨skip, s⟩

⟨C1 + C2, s⟩ → ⟨C2, s⟩ ⟨C1 + C2, s⟩ → ⟨C1, s⟩ ⟨C∗, s⟩ → ⟨(C;C∗) + skip, s⟩

Figure 2.1: Small-step semantics of heapless program commands, where snx(x) =
v and snx(y) = s(y) for y ̸= x.

To define formally the semantics of our heapless program commands, we
introduce:

Definition 2.6. A heapless program configuration ⟨C, s⟩ is an ordered pair,
where C is a heapless program command and s is a heapless program state.

Definition 2.7. The small-step semantics, denoted →, of the heapless program commands
is a relation over heapless program configurations and is defined by recursion in
figure 2.1.

We will denote by →∗ the reflexive and transitive closure of the relation →.
For any ⟨C, s⟩, ⟨C ′, s′⟩: ⟨C, s⟩ →∗ ⟨C ′, s′⟩ we say that C executes, starting in
s, with a remainder C ′ and results in s′. If C ′ = skip, then we say that C
executes successfully (terminates successfully), starting in s and results in s′.
Note that we can have ⟨C, s⟩ →∗ ⟨C ′, s′⟩ and ⟨C, s⟩ →∗ ⟨C ′, s′′⟩,where s′ ̸= s′′,
e.g. ⟨x := nonDet(), s⟩ →∗ ⟨skip, s0x⟩ and ⟨x := nonDet(), s⟩ →∗ ⟨skip, s1x⟩.
We say that C does not terminate, starting in s iff ∄s′.⟨C, s⟩ →∗ ⟨skip, s′⟩. We
denote the input-output relation of C with JCK ⇋ {⟨s, s′⟩ | ⟨C, s⟩ →∗ ⟨skip, s′⟩}.

Lemma 2.8. The following properties hold:

(i) JskipK = {⟨s, s⟩ | s ∈ Stacks};

(ii) Jx := eK = {⟨s, se(s)x ⟩ | s ∈ Stacks};

(iii) Jx := nonDet()K = {⟨s, snx⟩ | s ∈ Stacks ∧ n ∈ Val};

(iv) Jassume bK = {⟨s, s⟩ | s ∈ b};

(v) JC1;C2K = JC1K ◦ JC2K, where ◦ is composition of relations;

(vi) JC1 + C2K = JC1K ∪ JC2K;

(vii) JC∗K =
⋃

n∈ℕJCnK, where C0 ⇋ skip and Cn+1 ⇋ C;Cn.

Proof. See theorem dsem properties in HeaplessProgramCommands.thy.

Now, we are ready to define formally heapless Hoare triples and their validity.

7

Definition 2.9. A heapless Hoare triple {p}C{q} is an ordered triple (with a
special syntax {·}·{·}), where p and q are heapless assertions and C is a heapless
program command.

Definition 2.10. A heapless Hoare triple {p}C{q} validity is defined as follows:

|=HL {p}C{q} def⇐⇒ ∀s ∈ p.∀s′. ⟨s, s′⟩ ∈ JCK ⇒ s′ ∈ q.

Before we show a few examples, it’s worth nothing that we haven’t yet
introduced any syntax for our heapless assertions. What is more, we haven’t
introduced any syntax neither for our program expressions, nor our program
predicates. The syntax we will work with will be introduced in the syntactic part
of this subsection. To distinguish the yet not introduced syntax from its intended
semantics, we shall use the symbols J·K and wherever possible different notation
(e.g. semantic 1 vs syntactic 1). For example, Jx .

= 1 K = {s ∈ Stacks | s(x) = 1}
and Jx+ 1 K = λs. s(x)+ 14. Now, we are ready to show a few examples of valid
and invalid heapless Hoare triples:

|=HL {Jx .
= 0 K}x := Jx+ 1 K{Jx .

= 1K} ̸|=HL {Jx .
= 0 K}x := Jx+ 1 K{Jx .

= 0 K}
|=HL {Jx .

= 0 K}y := Jx+ 1 K{Jy .
= 1 K} ̸|=HL {Jx .

= 0 K}y := Jx+ 1 K{Jy .
= 0 K}

Of course, we could’ve written them without involving any syntax:

|=HL {{s ∈ Stacks | s(x) = 0}}x := (λs. s(x) + 1){{s ∈ Stacks | s(x) = 1}}

However, if we choose to opt out of such syntax, we risk missing the core idea
in technicalities. To ease the readability even further5, later on we will write
|=HL {x = 0}x := x+1{x = 1} instead of |=HL {Jx .

= 0 K}x := Jx+1 K{Jx .
= 1 K}.

A heapless Hoare triples is also called partial correctness specification. Partial,
because for {p}C{q} to be valid, it is not necessary for the execution of C
to terminate, when started in a state satisfying p. For example the following
heapless Hoare triple {p}while J0 .

= 0 K do x := Jx+ 1 K od{q} is a valid for any
p and q. Having said that, what we are usually interested in is total correctness.
To obtain total correctness, we usually prove partial correctness and termination
separately.

2.1.2 Syntax

We begin this technical part with the syntax of program expressions and pro-
gram predicates. As a rule of thumb, the syntactic equivalents of the semantic
objects will use the same meta symbols, but in caligraphic font. The syntax we
are to introduce has a standard model with universe Val = ℕ.

Definition 2.11. We define ℕ-program expressions using BNF:

e ⇋ 0 | 1 | x | (e+ e) | (e · e)

where x ∈ PVars.
4We use lambda notation, but, formally, a function to us is defined set-theoretically.
5Most sources omit these details, usually writing |=HL {x = 0}x := x+ 1{x = 1}.

8

We denote the set of all ℕ-program expressions by AExpsℕ. We introduce
numerals in the standard way, e.g. the numeral 4 stands for (((1 + 1)+ 1)+ 1).
The interpretation6 (of the functional symbols 0 , 1 ,+, .) of interest is also the
standard interpretation:

J0 K(s) ⇋ 0

J1 K(s) ⇋ 1

JxK(s) ⇋ s(x)

Je1 + e2K(s) ⇋ Je1K(s) + Je2K(s)
Je1 · e2K(s) ⇋ Je1K(s) · Je2K(s)

We say that JeK(s) is the value of the (ℕ-)program expression e in the considered
interpretation J·K. Thus, JeK is a function from Stacks to ℕ, i.e. JeK is a program
expression (with Val = ℕ).

Note that we use the same symbols for syntactic and semantic addition
and multiplication. This syntax is given for concreteness. We could’ve added
other standard operations. However, to ensure totality (see definition 2.3), if
we were to introduce division, for instance, we would need to determine how
to handle division by zero. One possibility is to define it as always equal to
some integer, say 0. Alternatively, we could introduce a new symbol that we
interpret as ”undefined.” Another important point to note is that we require
only totality and not computability (see definition 2.3). In real-world scenarios,
computability might always be assumed, even though many results don’t rely
on it.

Definition 2.12. We define ℕ-program predicates using BNF:

b ⇋ ⊤ | ⊥ | (e⋖ e) | (e .
= e) | (b ∧ b) | (b ∨ b) | (b ⇒ b) | (b ⇔ b) | ¬b

We denote the set of all ℕ-program expressions by BExpsℕ. The interpre-
tation (of the predicate symbols ⊤,⊥,⋖ and

.
=) of interest is the standard

interpretation7:

J⊤K ⇋ Stacks

J⊥K ⇋ ∅
Je1 ⋖ e2K ⇋ {s ∈ Stacks | Je1K(s) < Je2K(s)}
Je1

.
= e2K ⇋ {s ∈ Stacks | Je1K(s) = Je2K(s)}

Jb1 ∧ b2K ⇋ {s ∈ Stacks | s ∈ Jb1K ∧ s ∈ Jb2K} = Jb1K ∩ Jb2K
Jb1 ∨ b2K ⇋ {s ∈ Stacks | s ∈ Jb1K ∨ s ∈ Jb2K} = Jb1K ∪ Jb2K

Jb1 ⇒ b2K ⇋ {s ∈ Stacks | s ∈ Jb1K ⇒ s ∈ Jb2K} = Jb1K ∪ Jb2K

Jb1 ⇔ b2K ⇋ {s ∈ Stacks | s ∈ Jb1K ⇔ s ∈ Jb2K} = (Jb1K ∩ Jb2K) ∪ (Jb1K ∩ Jb2K)

J¬bK ⇋ {s ∈ Stacks | s /∈ JbK} = JbK
6In the sense of Tarski.
7Note that we present not only the interpretation of the predicate symbols, but also remind

Tarski’s recursive definition of truth of non-quantified first-order logic formulae. Moreover,
we did the same for the evaluation of the terms in definition 2.11.

9

Whenever s ∈ JbK, we say that s satisfies b in the considered interpretation J·K.
The relation {⟨s, JbK⟩ | s ∈ JbK} is the standard Tarski’s satisfaction relation.
So, JbK represents the satisfaction relation in the sense that it is the set of all
states s satisfying b. Remark that JbK is a program predicate (with Val = ℕ).

Note that we use the same symbols for syntactic and semantic logical op-
erators. This syntax is given for concreteness. Similar to program expressions,
we don’t require program predicates to be computable. In real-world scenarios,
computability might always be assumed, even though many results don’t rely
on it.

Definition 2.13. We define heapless ℕ-assertions using BNF:

p ⇋ ⊤ | ⊥ | (e⋖e) | (e .
= e) | (p∧p) | (p∨p) | (p ⇒ p) | (p ⇔ p) | ¬p | ∃x.p | ∀x.p,

where x ∈ PVars.

We denote the set of all heapless ℕ-assertions by SynSAsrtsℕ. The inter-
pretation of interest is the standard interpretation (as in definition 2.12). We
remind that:

J∃x.pK ⇋ {s ∈ Stacks | ∃n. snx ∈ JpK}
J∀x.pK ⇋ {s ∈ Stacks | ∀n. snx ∈ JpK}

Whenever s ∈ JpK, we say that s satisfies p in the considered interpretation J·K.
The relation {⟨s, JpK⟩ | s ∈ JpK} is the standard Tarski’s satisfaction relation.
So, JpK represents the satisfaction relation in the sense that it is the set of all
states s satisfying p. Remark that JpK is a heapless assertion (with Val = ℕ).

Note that we use the same symbols for syntactic and semantic logical opera-
tors and quantifiers. This syntax is given for concreteness. Moreover, recall that
the notions of heapless assertions (definition 2.2) and program predicate (defi-
nition 2.4) coincided, whereas heapless ℕ-assertion (definition 2.13) generalizes
ℕ-program predicate (definition 2.12).

As previously mentioned, this syntax is provided for concreteness. In general
(see [Cook 1978]), we consider two first-order languages, L1 and L2, where L2

is an extension of L1, AExps are the terms of L1, BExps are the quantifier-free
formulae ofL1 and SynSAsrts are the formulae ofL2. That is, the first language,
L1, is for the programming language itself, while the second language, L2, is
for expressing program specifications.

Definition 2.14. We define heapless (AExps,BExps)-program commands using
BNF:

C ⇋ skip |x := e |x := nonDet() |assume b | (C;C) | (C +C) |C∗,

where x ∈ PVars,e ∈ AExps,b ∈ BExps.

We denote the set of all heapless (AExps,BExps)-program commands with
SCom(AExps,BExps). We define SComℕ as SCom(AExpsℕ,BExpsℕ). A distinc-
tion between heapless program commands and heapless (AExps,BExps)-program

10

commands is done, since the small-step semantic relation (fig. 2.1) doesn’t
depend on the language (and its interpretation of interest) used for program
expressions and predicates. To apply the small-step semantics relation for a
concrete interpretation (and hence language) J·K we introduce a translation func-
tion TJ·K, where TJ·K(C) is the translation of a heapless (AExps,BExps)-program
command C to a heapless program command TJ·K(C):

TJ·K(skip) ⇋ skip

TJ·K(x := e) ⇋ x := JeK
TJ·K(x := nonDet()) ⇋ x := nonDet()

TJ·K(assume b) ⇋ assume JbK
TJ·K(C1;C2) ⇋ TJ·K(C1);TJ·K(C2)

TJ·K(C1 +C2) ⇋ TJ·K(C1) + TJ·K(C2)

TJ·K(C
∗) ⇋ TJ·K(C)∗

We denote JCK ⇋ JTJ·K(C)K8 and will now summarize the usage of the notation J·K:

1. JCK: the input-output relation of C;

2. JeK: the program expression, corresponding to e in the considered inter-
pretation J·K;

3. JbK: the program predicate, corresponding to b in the considered inter-
pretation J·K;

4. JpK: the heapless assertion, corresponding to p in the considered inter-
pretation J·K;

5. JCK: the input-output relation of C for interpreted in J·K symbols from
AExps and BExps.

In general ([Cook 1978]), the middle three usages of J·K are expressed solely
through an interpretation I for L2 (which is also an interpretation for L1). The
last usage gives us the value of C, JCK, in the so-called ([Cook 1978]) interpretive
model M, which is induced by the interpretation I, i.e. M = M[I]. The first
usage gives us the ”blueprint” for obtaining M from I. Remark that when not
explicitly stated, one cannot differentiate neither JskipK (the first case) from
JskipK (the fifth case), nor Jx := nonDet()K (the first case) from Jx := nonDet()K
(the fifth case). However, this is not an issue, as the input-output relations for
the first and fifth cases coincide in both instances of ambiguity.

Definition 2.15. A heapless Hoare formula {p}C{q} is a syntactic object
composed of p,q ∈ SynSAsrtsℕ, each surrounded by the symbols { and } and
C ∈ SComℕ between them.

8To eliminate ambiguity, consider JCK′ = JTJ·K′ (C)K).

11

(Skip)
⊢HL,D {p}skip{p}

⊢HL,D {p}C{p}
(Iter)

⊢HL,D {p}C∗{p}
scq(x) ∩ fv(e) = ∅

(Assign)
⊢HL,D {q[e/x]}x := e{q}

(Havoc)
⊢HL,D {p}x := nonDet(){∃x.p}

⊢D p ⇒ p′ ⊢D q′ ⇒ q ⊢HL,D {p′}C{q′}
(Cons)

⊢HL,D {p}C{q}

⊢HL,D {p}C1{q} ⊢HL,D {q}C2{r}
(Seq)

⊢HL,D {p}C1;C2{r}
⊢HL,D {p}C1{q} ⊢HL,D {p}C2{q}

(Choice)
⊢HL,D {p}C1 +C2{q}

(Assume)
⊢HL,D {p}assume b{p ∧ b}

Figure 2.2: Axioms and rules of inference of Hoare logic relative to D, where
q[e/x] is q with x syntactically replaced by e, fv(e) is the set of free variables in
e and scq(x) is the set of quantified variables inq whose scope contain x as a free
variable, e.g. sc∃t.∃x.x .

=t(x) = ∅ and sc(∃y.x .
=z)∧(∀z.x .

=z)⇒(∃y.∀t.y⋖t)(x) = {y, z}.

Definition 2.16. Let D be a (not necessarily effective) deductive system for
SynSAsrtsℕ. We define in figure 2.2 Hoare logic relative to D.

We will use the meta symbol D with potential indices to denote a (not
necessarily effective) deductive system. Remark that, in general (see [Cook
1978]) Hoare logic (relative to some D) depends on L1 and L2 i.e. depends
on AExps,BExps and SynSAsrts. For simplicity, we consider only the case when
AExps,BExps and SynSAsrts are AExpsℕ,BExpsℕ and SynSAsrtsℕ, respectively.

In [Cook 1978], a formal proof of a formula {p}C{q} in HL (relative to
some D) is a finite sequence of formulae, each either an axiom of HL, a formula
deducible in D, or follows from earlier formulae in the sequence by one of the
rules of HL, where the last element of the sequence, which we will call a theorem
of HL (relative to D), is {p}C{q}. They introduce notation ⊢HL,D {p}C{q}
to indicate that {p}C{q} is provable in that sense. Our approach, however,
differs in that we define ⊢HL,D {p}C{q} as a recursively defined predicate
rather than a sequence-based proof9. Nevertheless, we will use both perspectives
throughout the thesis and trust that the reader will understand the context in
which each is applied.

To the best of our knowledge, every source discussing Hoare logics presents
the assignment axiom without the restriction we consider. While we have not
examined the soundness of the unrestricted assignment axiom, we demonstrate
the soundness of the restricted version. We argue that this restricted form is
more natural, as its semantic equivalent precisely represents the weakest liberal
precondition, as defined in [Clarke et al. 1984]10. Furthermore, we establish

9Note that, like Cook, we refer to actual finiteness, not non-standard notions. That is,
only if D is effective.

10In this thesis, however, we will focus on its dual concept, known as strongest postcondition
(see definition 2.20).

12

that this restricted assignment axiom is sufficient to demonstrate (non-effective)
completeness. It is worth noting that completeness can also be achieved with
an even more restricted assignment axiom, which imposes the condition that
bd(q) ∩ fv(e) = ∅, where bd(q) is the set of all bounded variables in q.

2.1.3 Undecidability and effective incompleteness

Consider the heapless Hoare triple {J⊤K}TJ·K(C){J⊥K}, C ∈ SComℕ.

|=HL {J⊤K}TJ·K(C){J⊥K} ⇐⇒ ∀s ∈ J⊤K.∀s′. ⟨s, s′⟩ ∈ JTJ·K(C)K ⇒ s′ ∈ J⊥K
⇐⇒ ∀s ∈ Stacks.∀s′. ⟨s, s′⟩ ∈ JCK ⇒ s′ ∈ ∅
⇐⇒ ∀s.∄s′. ⟨s, s′⟩ ∈ JCK

Suppose we could algorithmically decide whether |=HL {p}C{q} for any p, q and
C. In particular we could algorithmically decide whether |=HL {J⊤K}TJ·K(C){J⊥K}.
Then by the equivalence, we would have an algorithmic way to decide whether
∀s.∄s′. ⟨s, s′⟩ ∈ JCK. But C ∈ SComℕ was arbitrary. Thus for any C ∈ SComℕ
we can algorithmically decide whether ∀s.∄s′. ⟨s, s′⟩ ∈ JCK. But the expressiv-
ity of SComℕ (for the considered interpretive model) is obviously containing the
computable functions, therefore we can algorithmically decide the complement
of the halting problem (which isn’t even recursively enumerable) - contradic-
tion. Therefore the problem of validity of heapless Hoare triples is undecidable.
Moreover, the set of all non-terminating programs

{C ∈ SComℕ | |=HL {J⊤K}TJ·K(C){J⊥K}}

is not r.e. Hence, assuming soundness of HL11 relative to some effective D, we
cannot have semantic completeness (relative to J·K). Indeed, all theorems of
such proof system are r.e. and hence

{C ∈ SComℕ | ⊢HL,D {⊤}C{⊥}}

is r.e. However,

∀C ∈ SComℕ.⊢HL,D {⊤}C{⊥} ⇔ |=HL {J⊤K}TJ·K(C){J⊥K}}

by soundness and completeness and therefore

{C ∈ SComℕ | ⊢HL,D {⊤}C{⊥}} = {C ∈ SComℕ | |=HL {J⊤K}TJ·K(C){J⊥K}},

which is not r.e. - contradiction. Therefore, for any effective D, sound relative
to J·K, HL relative to D is semantically incomplete (relative to J·K)[Cook 1978,
Theorem 2, where I = J·K].

11In fact, it is sound for every (not necessary effective) D, which is sound relative to J·K
(see corollary 2.18).

13

2.1.4 Soundness and non-effective completeness

We say a formula p is true in an interpretation J·K iff for all valuations s of the
free variables, we have s ∈ JpK. That is, in our case iff JpK = Stacks. Equiva-
lently, since every interpretation induces exactly one interpretive model and ev-
ery interpretive model is induces by an interpretation, we say a formula p is true
in an interpretive model, induced by J·K, iff JpK = Stacks. A formula {p}C{q}
is true in interpretive model, induced by J·K, iff |=HL {JpK}TJ·K(C){JqK}. A
formula {p}C{q} is valid (sound) iff it is true for any interpretive model. A
rule α1 ... αn

β is valid (sound) iff β is true for any interpretive model in which

α1, . . . , αn are true.12

Theorem 2.17. The axioms and rules of HL are valid:

(i) |=HL {p}skip{p};

(ii) |=HL {{s | se(s)x ∈ q}}x := e{q};

(iii) |=HL {p}x := nonDet(){{snx | s ∈ p ∧ n ∈ Val}};

(iv) p ⊆ p′ ⇒ q′ ⊆ q ⇒ |=HL {p′}C{q′} ⇒ |=HL {p}C{q}13;

(v) |=HL {p}assume b{p ∩ b};

(vi) |=HL {p}C1{q} ⇒ |=HL {q}C2{r} ⇒ |=HL {p}C1;C2{r};

(vii) |=HL {p}C1{q} ⇒ |=HL {p}C2{q} ⇒ |=HL {p}C1 + C2{q};

(viii) |=HL {p}C{p} ⇒ |=HL {p}C∗{p}.

The precondition in (ii) is {s | se(s)x ∈ q}, whereas in the axiom it is q[e/x].

That’s because for any interpretation J·K we’ve Jq[e/x]K = {s | sJeK(s)
x ∈ JqK},

where scq(x) ∩ fv(e) = ∅14. In (iii) we require {snx | s ∈ p ∧ n ∈ Val}, whereas
in the axiom we require ∃x.p. That’s because for any interpretation J·K, we’ve
J∃x.pK = {snx | s ∈ JpK ∧ n ∈ Val}. In (iv) we require p ⊆ p′ and q′ ⊆ q,
whereas in the axiom we require ⊢D p ⇒ p′ and ⊢D q′ ⇒ q. That’s because
by the soundness theorem (for FOL) from ⊢D p ⇒ p′ and ⊢D q′ ⇒ q we know
that for any interpretation J·K of L2 we’ve Jp ⇒ p′K = Stacks and Jq′ ⇒ qK =
Stacks. That is JpK ∪ Jp′K = Stacks and Jq′K ∪ JqK = Stacks, i.e. JpK ⊆ Jp′K
and Jq′K ⊆ JqK. In (v) we use that for any interpretation J·K of L2 we’ve
Jp ∧qK = JpK ∩ JqK and that L2 extends L1.

12Recall the two perspectives discussed at the end of the Syntax subsubsection.
13We consider implication to be right-associative.
14Consider q ⇋ ∃y. x = y and e ⇋ y+1. We’ve that sc∃y.x+y(x)∩ fv(y+1) = {y} ̸= ∅ and

hence Jq[e/x]K = {s | sJeK(x)
x ∈ JqK} is not guaranteed. Indeed, ∅ = J(∃y. x = y)[y + 1/x]K ̸=

{s | sJy+1K(s)
x ∈ J∃y. x = yK} = Stacks.

14

Proof of theorem.

(i) (i)
def⇐⇒ ∀s ∈ p.∀s′. ⟨s, s′⟩ ∈ JskipK ⇒ s′ ∈ p

lem⇐⇒ ∀s ∈ p.∀s′. ⟨s, s′⟩ ∈ {⟨s, s⟩ | s ∈ Stacks} ⇒ s′ ∈ p

⇐⇒ ∀s ∈ p.∀s′. s′ = s ⇒ s′ ∈ p

(ii) (ii)
def⇐⇒ ∀s ∈ {s | se(s)x ∈ q}.∀s′. ⟨s, s′⟩ ∈ Jx := eK ⇒ s′ ∈ q

lem⇐⇒ ∀s ∈ {s | se(s)x ∈ q}.∀s′. ⟨s, s′⟩ ∈ {⟨s, se(s)x ⟩ | s ∈ Stacks} ⇒ s′ ∈ q

⇐⇒ ∀s. se(s)x ∈ q ⇒ ∀s′. s′ = se(s)x ⇒ s′ ∈ q

(iii) (iii)
def⇐⇒ ∀s ∈ p. ∀s′. ⟨s, s′⟩ ∈ Jx := nonDet()K ⇒ s′ ∈ {snx | s ∈ p ∧ n ∈ Val}
lem⇐⇒ ∀s ∈ p. ∀s′. ⟨s, s′⟩ ∈ {⟨s, snx⟩ | s ∈ Stacks ∧ n ∈ Val} ⇒ s′ ∈ {snx | s ∈ p ∧ n ∈ Val}
⇐⇒ ∀s ∈ p. ∀s′.∃n ∈ Val. s′ = snx ⇒ s′ ∈ {snx | s ∈ p ∧ n ∈ Val}

(iv) We’ve |=HL {p′}C{q′}, i.e. ∀s ∈ p′.∀s′. ⟨s, s′⟩ ∈ JCK ⇒ s′ ∈ q′. Now, since
p ⊆ p′ and q′ ⊆ q, it immediately follows ∀s ∈ p.∀s′. ⟨s, s′⟩ ∈ JCK ⇒ s′ ∈ q,
i.e. |=HL {p}C{q}.

(v) (v)
def⇐⇒ ∀s ∈ p. ∀s′. ⟨s, s′⟩ ∈ Jassumes bK ⇒ s′ ∈ p ∩ b

lem⇐⇒ ∀s ∈ p. ∀s′. ⟨s, s′⟩ ∈ {⟨s, s′⟩ | s ∈ b} ⇒ s′ ∈ p ∩ b

⇐⇒ ∀s ∈ p. ∀s′. s′ = s ∧ s′ ∈ b ⇒ s′ ∈ p ∩ b

(vi) We’ve |=HL {p}C1{q} and |=HL {q}C2{r}. That is, by definition, we’ve
∀s ∈ p.∀s′. ⟨s, s′⟩ ∈ JC1K ⇒ s′ ∈ q and ∀s′ ∈ q.∀s′′. ⟨s′, s′′⟩ ∈ JC2K ⇒
s′′ ∈ r. We claim that ∀s ∈ p.∀s′′. ⟨s, s′′⟩ ∈ JC1;C2K ⇒ s′′ ∈ r. That
is, by lemma 2.38, ∀s ∈ p.∀s′′. ⟨s, s′′⟩ ∈ JC1K ◦ JC2K ⇒ s′′ ∈ r. Hence,
we claim that ∀s ∈ p. ∀s′′.∃s′. ⟨s, s′⟩ ∈ JC1K ∧ ⟨s′, s′′⟩ ∈ JC2K ⇒ s′′ ∈ r
by the definition of composition. Let s, s′′ be such that s ∈ p and obtain
s′ such that ⟨s, s′⟩ ∈ JC1K ∧ ⟨s′, s′′⟩ ∈ JC2K. Then we obtain that s′ ∈ q
from s ∈ p, ⟨s, s′⟩ ∈ JC1K and ∀s ∈ p. ∀s′. ⟨s, s′⟩ ∈ JC1K ⇒ s′ ∈ q. We
conclude that s′′ ∈ r using ∀s′ ∈ q.∀s′′. ⟨s′, s′′⟩ ∈ JC2K ⇒ s′′ ∈ r and
s′ ∈ q, ⟨s′, s′′⟩ ∈ JC2K.

(vii) We’ve |=HL {p}C1{q} and |=HL {p}C2{q}. That is, by definition, we’ve
∀s ∈ p.∀s′. ⟨s, s′⟩ ∈ JC1K ⇒ s′ ∈ q and ∀s ∈ p. ∀s′. ⟨s, s′⟩ ∈ JC2K ⇒ s′ ∈ q.
We claim that ∀s ∈ p.∀s′. ⟨s, s′⟩ ∈ JC1+C2K ⇒ s′ ∈ q. That is, by lemma
2.38, ∀s ∈ p. ∀s′. ⟨s, s′⟩ ∈ JC1K ∪ JC2K ⇒ s′ ∈ q. We easily obtain it, using
∀s ∈ p. ∀s′. ⟨s, s′⟩ ∈ JC1K ⇒ s′ ∈ q and ∀s ∈ p. ∀s′. ⟨s, s′⟩ ∈ JC2K ⇒ s′ ∈ q.

(viii) First, we prove by induction on n ∈ ℕ that |=HL {p}Cn{p}, using the as-
sumption, (i) and (vi). We claim that ∀s ∈ p. ∀s′. ⟨s, s′⟩ ∈ JC∗K ⇒ s′ ∈ p.
That is, by lemma 2.38, ∀s ∈ p.∀s′. ⟨s, s′⟩ ∈

⋃
n∈ℕJCnK ⇒ s′ ∈ p.

We easily obtain it, using ∀n ∈ ℕ. |=HL {p}Cn{p}, or, equivelently,
∀n ∈ ℕ.∀s ∈ p. ∀s′. ⟨s, s′⟩ ∈ JCnK ⇒ s′ ∈ p.

15

We say that D is sound relative to an interpretation J·K iff every deducible
formula in D is true in J·K. That is, if for every p such that ⊢D p, we have
JpK = Stacks.

Corollary 2.18. Let D be sound relative to fixed J·K. Then ⊢HL,D {p}C{q} ⇒
|=HL {JpK}TJ·K(C){JqK}.

Proof. Induction on the recursive definition of the predicate ⊢HL,D {p}C{q}:

(i) ⊢HL,D {p}skip{p}
By theorem 2.17 we have |=HL {JpK}skip{JpK}. Moreover, by definition
TJ·K(skip) = skip. Therefore |=HL {JpK}TJ·K(skip){JpK};

(ii) ⊢HL,D {q[e/x]}x := e{q}, where scq(x) ∩ fv(e) = ∅

By theorem 2.17 we have |=HL {{s | sJeK(s)
x ∈ JqK}}x := JeK{JqK}. Since

scq(x) ∩ fv(e) = ∅, we have that Jq[e/x]K = {s | sJeK(s)
x ∈ JqK}. Thus,

we’ve |=HL {Jq[e/x]K}x := JeK{JqK}. Now, by definition TJ·K(x := e) =
x := JeK. Hence, |=HL {Jq[e/x]K}TJ·K(x := e){JqK};

(iii) ⊢HL,D {p}x := nonDet(){∃x.p}
By theorem 2.17 we’ve |=HL {JpK}x := nonDet(){{snx | s ∈ JpK ∧ n ∈ ℕ}}.
Moreover, we’ve J∃x.pK = {snx | s ∈ JpK ∧ n ∈ ℕ}. Therefore, we
have |=HL {JpK}x := nonDet(){J∃x.pK}. Now, by definition, we’ve that
TJ·K(x := nonDet()) = x := nonDet(). Finally, we conclude that the axiom
is true in J·K, i.e. |=HL {JpK}TJ·K(x := nonDet()){J∃x.pK} holds;

(iv) ⊢HL,D {p}C{q}, where i.h. holds for ⊢HL,D {p′}C{q′}, ⊢D p ⇒ p′

and ⊢D q′ ⇒ q

We’ve JpK ⊆ Jp′K ⇒ Jq′K ⊆ JqK ⇒ |=HL {Jp′K}TJ·K(C){Jq′K} ⇒ |=HL {JpK}TJ·K(C){JqK}
by theorem 2.17. Moreover, by ⊢D p ⇒ p′, ⊢D q′ ⇒ q and sound-
ness of D relative to J·K, we’ve Jp ⇒ p′K = Stacks and Jq′ ⇒ qK =
Stacks. That is JpK ⊆ Jp′K and Jq′K ⊆ JqK. Moreover, by the i.h. for
⊢HL,D {p′}C{q′} we’ve |=HL {Jp′K}TJ·K(C){Jq′K}. Therefore, we con-
clude that |=HL {JpK}TJ·K(C){JqK};

(v) ⊢HL,D {p}assume b{p ∧ b}
By theorem 2.17 we’ve |=HL {JpK}assume JbK{JpK∩ JbK}. Moreover, we
have that Jp∧bK = JpK∩JbK. Hence, we’ve |=HL {JpK}assume JbK{Jp ∧ bK}.
Now, by definition TJ·K(assume b) = assume JbK. Thus, we conclude
that |=HL {JpK}TJ·K(assume b){Jp ∧ bK};

(vi) ⊢HL,D {p}C1;C2{r} and letq be such that i.h. holds for ⊢HL,D {p}C1{q}
and ⊢HL,D {q}C2{r}
We’ve |=HL {JpK}TJ·K(C1){JqK} ⇒ |=HL {JqK}TJ·K(C2){JrK} ⇒ |=HL {JpK}TJ·K(C1);TJ·K(C2){JrK}
by theorem 2.17. Moreover, by i.h. for ⊢HL,D {p}C1{q} we have that

16

|=HL {JpK}TJ·K(C1){JqK} and by i.h. for ⊢HL,D {q}C2{r} we’ve that
|=HL {JqK}TJ·K(C2){JrK}. Therefore |=HL {JpK}TJ·K(C1);TJ·K(C2){JrK}.
Now, by definition TJ·K(C1;C2) = TJ·K(C1);TJ·K(C2). Hence, we conclude
that |=HL {JpK}TJ·K(C1;C2){JrK};

(vii) ⊢HL,D {p}C1+C2{q} and i.h. for ⊢HL,D {p}C1{q} and ⊢HL,D {p}C2{q}
We’ve |=HL {JpK}TJ·K(C1){JqK} ⇒ |=HL {JpK}TJ·K(C2){JqK} ⇒ |=HL {JpK}TJ·K(C1) + TJ·K(C2){JqK}
by theorem 2.17. Moreover, by i.h. for ⊢HL,D {p}C1{q} we have that
|=HL {JpK}TJ·K(C1){JqK} and by i.h. for ⊢HL,D {p}C2{q} we’ve that
|=HL {JpK}TJ·K(C2){JqK}. Therefore |=HL {JpK}TJ·K(C1)+TJ·K(C2){JqK}.
Now, by definition TJ·K(C1+C2) = TJ·K(C1)+TJ·K(C2). Hence, we conclude
that |=HL {JpK}TJ·K(C1 +C2){JqK};

(viii) ⊢HL,D {p}C∗{p} and i.h. holds for ⊢HL,D {p}C{p}
By theorem 2.17 we have |=HL {JpK}TJ·K(C){JpK} ⇒ |=HL {JpK}TJ·K(C)∗{JpK}.
Moreover, by i.h. for ⊢HL,D {p}C{p} we’ve |=HL {JpK}TJ·K(C){JpK}.
Hence |=HL {JpK}TJ·K(C)∗{JpK}. Now, by definition TJ·K(C

∗) = TJ·K(C)∗.
Therefore, we conclude that |=HL {JpK}TJ·K(C

∗){JpK}.

In the end of the previous subsubsection, we showed that HL relative to
any effective D is semantically incomplete (relative to J·K). However, there is
another way in which the system can fail to be complete. It could be the case
that SynSAsrts is not powerful enough to express the necessary invariants of the
loops.

Definition 2.19. Let L be a FOL and let J·K be an interpretation for it. Let
p ∈ L and p be a set of valuations (in our case, heapless assertion). We say
that p expresses p in J·K iff JpK = p.

Let JpK−1 be the formula (from L) with the lowest Gödel number that
expresses p in J·K if such formula exists and be undefined otherwise. That is,
if JpK−1 is defined, then JpK−1 expresses p in J·K, i.e. JJpK−1K = p. If JpK−1 is
defined, we say that p is expressible in J·K.

Definition 2.20. We define strongest postcondition corresponding to p and C
sp(p, C) ⇋ {s′ | ∃s ∈ p. ⟨s, s′⟩ ∈ JCK}.

Lemma 2.21. |=HL {p}C{q} ⇒ sp(p, C) ⊆ q

Proof. Assume |=HL {p}C{q}, i.e. ∀s ∈ p.∀s′. ⟨s, s′⟩ ∈ JCK ⇒ s′ ∈ q. Let s′

be arbitrary such that s′ ∈ sp(p, C). Let s be witness such that s ∈ p and
⟨s, s′⟩ ∈ JCK. Thus s′ ∈ q. But s′ was arbitrary, therefore sp(p, C) ⊆ q.

Lemma 2.22. |=HL {p}C{sp(p, C)}

Proof. Assume s ∈ p and s′ be such that ⟨s, s′⟩ ∈ JCK. Then s is witness for
∃s ∈ p. ⟨s, s′⟩ ∈ JCK. That is, s′ ∈ sp(p, C). Therefore |=HL {p}C{sp(p, C)}.

17

Lemma 2.23. The following properties hold:

(i) sp(p, skip) = p;

(ii) sp(p, x := e) = {se(s)x | s ∈ p};

(iii) sp(p, x := nonDet()) = {snx | s ∈ p ∧ n ∈ Val};

(iv) sp(p,assume b) = p ∩ b;

(v) sp(p, C1;C2) = sp(sp(p, C1), C2);

(vi) sp(p, C1 + C2) = sp(p, C1) ∪ sp(p, C2);

(vii) sp(p, C∗) = p ∪ sp(sp(p, C∗), C) =
⋃

n∈ℕ sp(p, C
n).

Proof. See lemma sp properties in HeaplessStrongestPostcondition.thy.

Lemma 2.24. For every p ∈ SynSAsrtsℕ and C ∈ SComℕ, we can (algorith-
mically) construct q ∈ SynSAsrtsℕ, which expresses sp(JpK, TJ·K(C)) in J·K, i.e.
sp(JpK, TJ·K(C)) = JpK.

Proof sketch. Induction on C (and arbitrary p ∈ SynSAsrtsℕ):

� C ≡ skip

Let p ∈ SynSAsrtsℕ. Then sp(JpK, skip) = JpK.

� C ≡ x := e

Letp ∈ SynSAsrtsℕ. Then sp(JpK, x := JeK) = J∃xin.p[xin/x] ∧ x
.
= e[xin/x]K.

� C ≡ x := nonDet()

Let p ∈ SynSAsrtsℕ. Then sp(JpK, x := nonDet()) = J∃x.pK.

� C ≡ assume b

Let p ∈ SynSAsrtsℕ. Then sp(JpK,assume JbK) = Jp ∧ bK.

� C ≡ C1;C2

Letp ∈ SynSAsrtsℕ. We’ve sp(JpK, TJ·K(C1;C2)) = sp(sp(JpK, TJ·K(C1)), TJ·K(C2)).
By i.h. let q ∈ SynSAsrtsℕ be such that sp(JpK, TJ·K(C1)) = JqK. Again,
by i.h. let r ∈ SynSAsrtsℕ be such that sp(JqK, TJ·K(C2)) = JrK. Therefore
sp(JpK, TJ·K(C1;C2)) = JrK.

� C ≡ C1 +C2

Let p ∈ SynSAsrtsℕ. We’ve sp(JpK, TJ·K(C1 +C2)) = sp(JpK, TJ·K(C1)) ∪
sp(JpK, TJ·K(C2)). By i.h. letq1,q2 ∈ SynSAsrtsℕ be such that sp(JpK, TJ·K(Ci)) =
JqiK, i ∈ {1, 2}. Therefore sp(JpK, TJ·K(C1 +C2)) = Jq1 ∨q2K.

18

� C ≡ C0

Let p ∈ SynSAsrtsℕ. We define by recursion qn ∈ SynSAsrtsℕ:∣∣∣∣ q0 ⇋ p

qn+1 ⇋ q, where q is from the i.h. such that sp(JqnK, TJ·K(C0)) = JqK

Using ∀p.∀C. sp(p, Cn+1) = sp(sp(p, Cn), C)15 and the i.h., it is easily
seen that ∀n. sp(JpK, TJ·K(C0

n)) = JqnK holds. Moreover, since by i.h.
we obtain (algorithmically) constructible q-s, then Q s.t. Q(n) ⇋ qn

is recursive. Therefore, by a careful modification of the Representability
theorem (see [Shoenfield 1967, Chapter 6.7]), which applies to a slight
modification of Robinson arithmetic R (where the functional symbol 1 is
present and the functional symbol s , corresponding to the function suc-
cessor, is absent), and since J·K is the standard interpretation (and hence
being a model of this slight modification of Robinson arithmetic), we can
construct a formula q ∈ SynSAsrtsℕ, containing a brand new free variable
z, such that Jq[n/z]K = JqnK for any n ∈ ℕ (n is the numeral corre-
sponding to n). Now, since sp(JpK, TJ·K(C0

∗)) =
⋃

n∈ℕ sp(JpK, TJ·K(C0
n)),

it follows that ∃z.q ∈ SynSAsrtsℕ expresses sp(JpK, TJ·K(C0
∗)) in J·K, i.e.

sp(JpK, TJ·K(C0
∗)) = J∃z.qK.

For a more general proof, see [Harel 1979, Theorem 3.2].

Definition 2.25. We say that SynSAsrts is expressive for SCom(AExps,BExps) in J·K
iff for every p ∈ SynSAsrts and C ∈ SCom(AExps,BExps), Jsp(JpK, TJ·K(C))K−1 ∈
SynSAsrts is defined.

Corollary 2.26. SynSAsrtsℕ is expressive for SComℕ in J·K.

Proof. Follows directly from lemma 2.24.

We remark that SynSAsrts+ is not expressive for SCom+ ⇋ SCom(AExps+,BExps+)
in J·K+16, where SynSAsrts+ is SynSAsrtsℕ without multiplication, i.e. the
language of the Presburger’s arithmetics. Similarly, AExps+ and BExps+ are
AExpsℕ and BExpsℕ without multiplication, respectively.

Example 2.27. Consider the following (AExps+,BExps+)-program command
(note that SCom+ ⊆ SComℕ)

C ⇋ r := 0 ;while 0 ⋖ x do r := r + y;x := x− 1 od

and the precondition

p ⇋ 0 ⋖ x ∧ 0 ⋖ y ∧ xin
.
= x ∈ SynSAsrts+.

15See lemma sp iter in HeaplessStrongestPostcondition.thy.
16The standard interpretation.

19

Then Jsp(JpK, TJ·K(C))K−1 ∈ SynSAsrtsℕ is defined and equivalent to

x
.
= 0 ∧ 0 ⋖ y ∧ 0 ⋖ xin ∧ r

.
= xin · y,

but Jsp(JpK, TJ·K(C))K−1
+ is not defined. Thus, SynSAsrts+ is not expressive for

SCom+ in J·K+.

Note that [Cook 1978] also requires
.
= to be in BExps and that it receives

its standard interpretation. It is required for the deterministic case in the while
case, whereas it isn’t for the nondeterministic case17. In fact, it is sufficient
(for the deterministic case) that

.
= belongs to BExps and is interpreted by a

predicate that satisfies the congruence axioms for the predicates and functions
of BExps. However, while this standard interpretation is not strictly necessary
for FOL-expressible properties, it becomes essential when considering properties
expressible in SOL. If one opts out of true equality, then unexpected behavior,
such as non-computation, occurs even for the simplest syntax. For example,
consider the standard interpretation of the natural numbers, but with ℕ copies
of 0 (00, 01, . . .) and two copies of 1 (10, 11), along with the interpretation of +
such that 0n + 1m = 1k, where k = 0 if the n-th program terminates with its
own code as input, and k = 1 otherwise. Of course, the non-computation is
with respect to the true equality and not

.
=.

Let T be a deductive system. We say that T is complete relative to an
interpretation J·K iff every true in J·K formula is deducible in T. That is, for
every p such that JpK = Stacks, we have ⊢T p. We will use the meta symbol
T with potential indices to denote a complete deductive system.

Before proving completeness (relative to J·K), we must first examine the
following alternative to the Hoare assignment axiom (see figure 2.2).

Lemma 2.28. Let D be a deductive, satisfying the logical axioms, system for
some interpretation J·K for SynSAsrtsℕ. Then the following axiom

xin /∈ fv(p) ∪ scp(x) ∪ fv(e) ∪ {x}
(Assign-Floyd)

⊢HL,D {p}x := e{∃xin.p[xin/x] ∧ x
.
= e[xin/x]}

is equivalent to the Hoare assignment axiom within the context of Hoare logic
(relative to D).

Proof.

� (Assign) ⇒ (Assign-Floyd)
Assume that for any q, x,e such that scq(x) ∩ fv(e) = ∅, we have that
⊢HL,D {q[e/x]}x := e{q}. Let p, x,e and xin be arbitrary such that
xin /∈ fv(p) ∪ scp(x) ∪ fv(e) ∪ {x}. Then sc∃xin.p[xin/x]∧x

.
=e[xin/x]

(x) =
{xin} and xin /∈ fv(e) and hence sc∃xin.p[xin/x]∧x

.
=e[xin/x]

(x) ∩ fv(e) = ∅.
Thus, we obtain

⊢HL,D {(∃xin.p[xin/x]∧x
.
= e[xin/x])[e/x]}x := e{∃xin.p[xin/x]∧x

.
= e[xin/x]}

17Not required when applying corollary 2.26, but used in the encoding within the proof
itself.

20

by the assumption. The precondition coincides (syntactically) with the
formula ∃xin.p[xin/x] ∧ e

.
= e[xin/x]. Finally, using the consequence rule

with ⊢D p ⇒ ∃xin.p[xin/x] ∧ e
.
= e[xin/x], we conclude that (Assign-

Floyd) is a theorem, i.e. ⊢HL,D {p}x := e{∃xin.p[xin/x]∧e
.
= e[xin/x]}.

� (Assign-Floyd) ⇒ (Assign)
Assume that for any p, x,e, xin such that xin /∈ fv(p)∪scp(x)∪fv(e)∪{x},
we have ⊢HL,D {p}x := e{∃xin.p[xin/x] ∧ x

.
= e[xin/x]}. Letq, x,e and

xin be such that scq(x)∩fv(e) = ∅ and xin /∈ fv(q[e/x]) ∪ scq[e/x](x) ∪ fv(e) ∪ {x}.
By the assumption,

⊢HL,D {q[e/x]}x := e{∃xin.q[e/x][xin/x] ∧ x
.
= e[xin/x]}.

The postcondition coincides with ∃xin.q[e[xin/x]/x] ∧ x
.
= e[xin/x] syn-

tactically. Now, we closely examine that it’s equivalent with the formula
∃xin.q ∧ x

.
= e[xin/x]. Consider J∃xin.q[e[xin/x]/x] ∧ x

.
= e[xin/x]K. i.e.,

{s | ∃n. snxin
∈ Jq[e[xin/x]/x]K ∧ snsin ∈ Jx .

= e[xin/x]K}.

Unfolding the second conjunct gives us

{s | ∃n. snxin
∈ Jq[e[xin/x]/x]K ∧ snxin

(x) = Je[xin/x]K(snxin
)}.

To unfold the first conjunct to s
n,Je[xin/x]K(snxin

)
xin,x ∈ JqK we require that

scq(x) ∩ fv(e[xin/x]) = ∅18, which we obtain using scq(x) ∩ fv(e) = ∅,
xin /∈ scq[e/x](x) and considering the two cases x ∈ fv(e) and x /∈ fv(e).
Now, using the unfolded second conjunct, we have that

s
n,Je[xin/x]K(snxin

)
xin,x = s

n,snxin
(x)

xin,x = snxin
.

Finally, we obtain {s | ∃n. snxin
∈ JqK∧snsin ∈ Jx .

= e[xin/x]K} by reverting
the unfolding of the second conjunct, equivalent to J∃xin.q ∧ x

.
= e[xin/x]K.

Since the equivalence holds for every interpretation J·K, by Gödel’s com-
pleteness theorem, we obtain that

⊢D (∃xin.q[e[xin/x]/x] ∧ x
.
= e[xin/x]) ⇔ (∃xin.q ∧ x

.
= e[xin/x]).

Moreover, xin /∈ fv(q) since xin /∈ fv(q[e/x]) ∪ {x}, and hence

⊢D (∃xin.q ∧ x
.
= e[xin/x]) ⇔ (q ∧ ∃xin. x

.
= e[xin/x]).

Therefore ⊢D (∃xin.q[e[xin/x]/x] ∧ x
.
= e[xin/x]) ⇒ q and by the con-

sequence rule, we conclude ⊢HL,D {q[e/x]}x := e{q}.

18Using that if scq(x) ∩ fv(e) = ∅, then s ∈ Jq[e/x]K ⇔ s
JeK(s)
x ∈ JqK. Par-

ticular case, where J·K is the standard interpretation, proven in Isabelle (see lemma
Hoare assign axiom semantically in HeaplessSyntax.thy).

21

Theorem 2.29. Let T be a complete (non-effective) proof system for SynSAsrtsℕ
(relative to J·K). Then ⊢HL,T {p}C{Jsp(JpK, TJ·K(C))K−1} for any p ∈ SynSAsrtsℕ
and C ∈ SComℕ.

Proof. Induction on C (and arbitrary p ∈ SynSAsrtsℕ):

(i) C ≡ skip

Let p ∈ SynSAsrtsℕ. We’ve ⊢HL,T {p}skip{p} as an axiom. More-
over, sp(JpK, TJ·K(skip)) = sp(JpK, skip) = JpK by lemma 2.23. We know
that Jsp(JpK, TJ·K(skip))K−1 is defined, since p expresses it in J·K. Then
JJsp(JpK, TJ·K(skip))K−1K = JpK and hence ⊢T p ⇔ Jsp(JpK, TJ·K(skip))K−1

by completeness of T relative to J·K19. Now by consequence rule and
⊢HL,T {p}skip{p}, we conclude ⊢HL,T {p}skip{Jsp(JpK, TJ·K(skip))K−1}.
Thus, for arbitrary p ∈ SynSAsrtsℕ.

(ii) C ≡ x := e

Let p ∈ SynSAsrtsℕ. We’ve

⊢HL,T {p}x := e{∃xin.p[xin/x] ∧ x
.
= e[xin/x]},

xin /∈ fv(p) ∪ scp(x) ∪ fv(e) ∪ {x} by lemma 2.28. Moreover, by lemma

2.23, we’ve sp(JpK, x := JeK) = {sJeK(s)
x | s ∈ JpK} and hence

sp(JpK, TJ·K(x := e)) = {sJeK(s)
x | s ∈ JpK}.

Now, since J∃xin.p[xin/x] ∧ x
.
= e[xin/x]K = {sJeK(s)

x | s ∈ JpK}20, it
follows that Jsp(JpK, TJ·K(x := e))K−1 is defined and by completeness of T
relative to J·K, we obtain that

⊢T (∃xin.p[xin/x] ∧ x
.
= e[xin/x]) ⇔ Jsp(JpK, TJ·K(x := e))K−1.

Now, by consequence rule and

⊢HL,T {p}x := e{∃xin.p[xin/x] ∧ x
.
= e[xin/x]},

we conclude that ⊢HL,T {p}x := e{Jsp(JpK, TJ·K(x := e))K−1}. Thus, for
arbitrary p ∈ SynSAsrtsℕ.

(iii) C ≡ x := nonDet()

Let p ∈ SynSAsrtsℕ. We’ve ⊢HL,T {p}x := nonDet(){∃x.p} as an axiom.
Moreover, we’ve sp(JpK, TJ·K(x := nonDet())) = sp(JpK, x := nonDet()) =
{snx | s ∈ JpK ∧ n ∈ ℕ} by lemma 2.23. Now, since

J∃x.pK = {snx | s ∈ JpK ∧ n ∈ ℕ},
19Note that we cannot apply Gödel’s completeness theorem here, since

JJsp(JpK, TJ·K(skip))K−1K′ = JpK′ doesn’t hold for all p and interpretations J·K′.
20See lemma Floyd assign axiom semantically in HeaplessSyntax.thy.

22

it follows that Jsp(JpK, TJ·K(x := nonDet()))K−1 is defined and by complete-
ness of T relative to J·K, we obtain

⊢T (∃x.p) ⇔ Jsp(JpK, TJ·K(x := nonDet()))K−1.

Now, by consequence rule and ⊢HL,T {p}x := nonDet(){∃x.p}, we con-
clude that the desired

⊢HL,T {p}x := nonDet(){Jsp(JpK, TJ·K(x := nonDet()))K−1}

holds. Thus, for arbitrary p ∈ SynSAsrtsℕ.

(iv) C ≡ assume b

Let p ∈ SynSAsrtsℕ. We’ve ⊢HL,T {p}assume b{p ∧ b} as an axiom.
Moreover, we’ve

sp(JpK, TJ·K(assume b)) = sp(JpK,assume JbK) = JpK ∩ JbK

by lemma 2.23. Hence, we’ve sp(JpK, TJ·K(assume b)) = Jp ∧ bK. Thus
Jsp(JpK, TJ·K(assume b))K−1 is defined and by completeness of T relative
to J·K, we obtain that ⊢T p ∧ b ⇔ Jsp(JpK, TJ·K(assume b))K−1. Now,
by consequence rule and ⊢HL,T {p}assume b{p ∧ b}, we conclude that
the desired ⊢HL,T {p}assume b{Jsp(JpK, TJ·K(assume b))K−1}. Thus,
for arbitrary p ∈ SynSAsrtsℕ.

(v) C ≡ C1;C2

Assume for C1 and C2. Let p ∈ SynSAsrtsℕ. By i.h. we’ve

⊢HL,T {p}C1{Jsp(JpK, TJ·K(C1))K−1}.

In particular, Jsp(JpK, TJ·K(C1))K−1 ∈ SynSAsrtsℕ is defined. Therefore, we
can apply the i.h. for it and C2. That is, we’ve

⊢HL,T {Jsp(JpK, TJ·K(C1))K−1}C2{Jsp(JJsp(JpK, TJ·K(C1))K−1K, TJ·K(C2))K−1},

i.e.

⊢HL,T {Jsp(JpK, TJ·K(C1))K−1}C2{Jsp(sp(JpK, TJ·K(C1)), TJ·K(C2))K−1}.

Now, by lemma 2.23, we’ve

sp(sp(JpK, TJ·K(C1)), TJ·K(C2)) = sp(JpK, TJ·K(C1);TJ·K(C2)) = sp(JpK, TJ·K(C1;C2)).

Therefore, we have

⊢HL,T {Jsp(JpK, TJ·K(C1))K−1}C2{Jsp(JpK, TJ·K(C1;C2))K−1}.

Now, by sequence rule and that we’ve ⊢HL,T {p}C1{Jsp(JpK, TJ·K(C1))K−1},
we conclude that ⊢HL,T {p}C2{Jsp(JpK, TJ·K(C1;C2))K−1}. Thus, for ar-
bitrary p ∈ SynSAsrtsℕ.

23

(vi) C ≡ C1 +C2

Assume for C1 and C2. Let p ∈ SynSAsrtsℕ. By i.h. we’ve

⊢HL,T {p}C1{Jsp(JpK, TJ·K(C1))K−1}

and
⊢HL,T {p}C2{Jsp(JpK, TJ·K(C2))K−1}.

By lemma 2.23, we’ve that

sp(JpK, TJ·K(C))∪sp(JpK, TJ·K(C)) = sp(JpK, TJ·K(C1)+TJ·K(C2)) = sp(JpK, TJ·K(C1+C2)).

Now, since SynSAsrtsℕ is expressive for SComℕ in J·K (see lemma 2.25) it
follows that Jsp(JpK, TJ·K(C1+C2))K−1 is defined21, whereas Jsp(JpK, TJ·K(C1))K−1

and Jsp(JpK, TJ·K(C2))K−1 are defined by the i.h. Now, by the completeness
ofT relative to J·K, JJsp(JpK, TJ·K(C1))K−1K ⊆ JJsp(JpK, TJ·K(C1 +C2))K−1K
and JJsp(JpK, TJ·K(C2))K−1K ⊆ JJsp(JpK, TJ·K(C1 +C2))K−1K, we obtain that
the following ⊢T Jsp(JpK, TJ·K(C1))K−1 ⇒ Jsp(JpK, TJ·K(C1 + C2))K−1 and
⊢T Jsp(JpK, TJ·K(C2))K−1 ⇒ Jsp(JpK, TJ·K(C1 +C2))K−1 hold. Applying the
consequence rule with the above, ⊢HL,T {p}C1{Jsp(JpK, TJ·K(C1))K−1}
and ⊢HL,T {p}C2{Jsp(JpK, TJ·K(C2))K−1}, we obtain that

⊢HL,T {p}C1{Jsp(JpK, TJ·K(C1 +C2))K−1}

and
⊢HL,T {p}C2{Jsp(JpK, TJ·K(C1 +C2))K−1}.

Finally, applying the choice rule, we conclude that

⊢HL,T {p}C1 +C2{Jsp(JpK, TJ·K(C1 +C2))K−1}.

Thus, for arbitrary p ∈ SynSAsrtsℕ.

(vii) C ≡ C0
∗

Assume for C0. Let p ∈ SynSAsrtsℕ. Since SynSAsrtsℕ is expressive for
SComℕ in J·K (see lemma 2.25) it follows that Jsp(JpK, TJ·K(C0

∗))K−1 ∈
SynSAsrtsℕ is defined, thus we can apply i.h. with C0 and obtain

⊢HL,T {Jsp(JpK, TJ·K(C0
∗))K−1}C0{Jsp(JJsp(JpK, TJ·K(C0

∗))K−1K, TJ·K(C0))K−1}.

That is,

⊢HL,T {Jsp(JpK, TJ·K(C0
∗))K−1}C0{Jsp(sp(JpK, TJ·K(C0

∗)), TJ·K(C0))K−1}.

Moreover,

sp(sp(JpK, TJ·K(C0
∗)), TJ·K(C0)) = sp(sp(JpK, TJ·K(C0)

∗), TJ·K(C0))

⊆ sp(JpK, TJ·K(C0)
∗)

= sp(JpK, TJ·K(C0
∗))

21We don’t necessary need to use the expressiveness: Jsp(JpK, TJ·K(C1))K−1 ∨
Jsp(JpK, TJ·K(C2))K−1.

24

by lemma 2.23 and hence

JJsp(sp(JpK, TJ·K(C0
∗)), TJ·K(C0))K−1K ⊆ JJsp(JpK, TJ·K(C0

∗))K−1K,

where Jsp(sp(JpK, TJ·K(C0
∗)), TJ·K(C0))K−1 is defined by the i.h. Now, by

completeness of T relative to J·K, we obtain

⊢T Jsp(sp(JpK, TJ·K(C0
∗)), TJ·K(C0))K−1 ⇒ Jsp(JpK, TJ·K(C0

∗))K−1.

Applying the consequence rule with

⊢HL,T {Jsp(JpK, TJ·K(C0
∗))K−1}C0{Jsp(sp(JpK, TJ·K(C0

∗)), TJ·K(C0))K−1}

and the above, we obtain

⊢HL,T {Jsp(JpK, TJ·K(C0
∗))K−1}C0{Jsp(JpK, TJ·K(C0

∗))K−1}.

Now, by the iteration rule, we obtain

⊢HL,T {Jsp(JpK, TJ·K(C0
∗))K−1}C0

∗{Jsp(JpK, TJ·K(C0
∗))K−1}.

Analogously to ⊢T Jsp(sp(JpK, TJ·K(C0
∗)), TJ·K(C0))K−1 ⇒ Jsp(JpK, TJ·K(C0

∗))K−1,
we obtain ⊢T p ⇒ Jsp(JpK, TJ·K(C0

∗))K−1. Applying the consequence rule
with this and the above, we conclude that

⊢HL,T {p}C0
∗{Jsp(JpK, TJ·K(C0

∗))K−1}.

Thus, for arbitrary p ∈ SynSAsrtsℕ.

Corollary 2.30. Let T be a complete (non-effective) proof system for SynSAsrtsℕ
(relative to J·K). Then |=HL {JpK}TJ·K(C){JqK} ⇒ ⊢HL,T {p}C{q}.

Proof. Assume |=HL {JpK}TJ·K(C){JqK}. By theorem 2.29 we’ve

⊢HL,T {p}C{Jsp(JpK, TJ·K(C))K−1}.

Moreover, by the assumption, lemma 2.21 and the definedness of Jsp(JpK, TJ·K(C))K−1,
we obtain that JJsp(JpK, TJ·K(C))K−1K = sp(JpK, TJ·K(C)) ⊆ JqK and hence by
the completeness of T relative to J·K, we obtain ⊢T Jsp(JpK, TJ·K(C))K−1 ⇒ q

and hence by consequence rule and ⊢HL,T {p}C{Jsp(JpK, TJ·K(C))K−1}, we con-
clude that ⊢HL,T {p}C{q}.

Relative completeness is often established using the weakest liberal precon-
dition (the dual notion of the strongest postcondition) due to its simplicity.
However, we opted for the strongest postcondition approach, though without
a specific justification. The overall reasoning remains unchanged, but a new
axiom is required for the nondeterministic assignment:

(Havoc-backward)
⊢HL,D {∀x.q}x := nonDet(){q} .

Moreover, we use the Hoare assignment axiom (rather than the Floyd assign-
ment axiom) for the assignment case.

25

2.2 Separation logic

2.2.1 Semantics

Hoare logic, despite being complete, has a significant limitation in practical
applications: it lacks the ability to reason about heap-sensitive programs. We
begin this subsection by defining the state model used to reason about heap
programs, which sets the stage for introducing Separation logic—a specialized
framework for local reasoning about heap programs.

Definition 2.31. A heap h is a finite partial function from ℕ to Val∪{⊥}, i.e.
h : ℕ fin

⇀ Val ∪ {⊥}, where ⊥ /∈ Val.

We denote the set of all heaps by Heaps. We will use the meta symbol h with
potential indices to denote a heap. Both h(5) = ⊥ and 5 /∈ Dom(h) indicate
that address 5 is not allocated. For Separation logic either of these approaches
suffices. However, in order to avoid introducing separate state models—one
for Separation logic, and one for Separation Sufficient Incorrectness logic—we
adopt this state model for Separation logic as well. Location 0 serves as the
NULL pointer, i.e. 0 /∈ Dom(h) for any h22.

Definition 2.32. A program state σ = ⟨s, h⟩ is an ordered pair, consisting of
a heapless program state s and a heap h, i.e. σ ∈ Stacks× Heaps.

We denote the set of all program states by States. We will use the meta
symbol σ with potential indices to denote a program state.

Definition 2.33. An assertion p is a set of program states.

We denote the set of all assertions by Asrts. We will use the meta symbols
p, q, r, f with potential indices to denote assertion.

Note that we don’t introduce program expressions and predicates that de-
pend on the heap. Such stack-only dependent program expressions and predi-
cates are called pure. Moreover, recall that the definitions of heapless assertion
and program predicate coincided, whereas now the definitions differ in that
assertions can reason about heaps, while program predicates cannot.

Definition 2.34. We define program commands using BNF:

C ⇋ skip | x := e | x := nonDet() | assume b | x := alloc()

| [x] := e | y := [x] | free(x) | (C;C) | (C + C) | C∗,

where x, y ∈ PVars.

We will use the meta symbol C with potential indices to denote a program
command.

The x := alloc() command allocates memory (with arbitrary initialization)
and stores the address of the allocated memory in x. The [x] := e command

22We could have defined h : ℕ+ fin
⇀ Val∪{⊥}, but we chose not to for ease of use in Isabelle.

26

⟨x := e, ⟨s, h⟩⟩ → ⟨skip, ⟨se(s)x , h⟩⟩ ⟨x := nonDet(), ⟨s, h⟩⟩ → ⟨skip, ⟨snx , h⟩⟩

l ̸= 0 ∧ (l /∈ Dom(h) ∨ h(l) = ⊥)

⟨x := alloc(), ⟨s, h⟩⟩ → ⟨skip, ⟨slx, hn
l ⟩⟩

s(x) ̸= 0 ∧ s(x) ∈ Dom(h) ∧ h(s(x)) ̸= ⊥

⟨[x] := e, ⟨s, h⟩⟩ → ⟨skip, ⟨s, he(s)
s(x)⟩⟩

s(x) ̸= 0 ∧ s(x) ∈ Dom(h) ∧ h(s(x)) ̸= ⊥
⟨y := [x], ⟨s, h⟩⟩ → ⟨skip, ⟨sh(s(x))y , h⟩⟩

s(x) ̸= 0 ∧ s(x) ∈ Dom(h) ∧ h(s(x)) ̸= ⊥
⟨free(x), ⟨s, h⟩⟩ → ⟨skip, ⟨s, h⊥

s(x)⟩⟩

⟨skip;C2, σ⟩ → ⟨C2, σ⟩
⟨C1, σ⟩ → ⟨C ′

1, σ
′⟩

⟨C1;C2, σ⟩ → ⟨C ′
1;C2, σ

′⟩
s ∈ b

⟨assume b, ⟨s, h⟩⟩ → ⟨skip, ⟨s, h⟩⟩

⟨C1 + C2, σ⟩ → ⟨C2, σ⟩ ⟨C1 + C2, σ⟩ → ⟨C1, σ⟩ ⟨C∗, σ⟩ → ⟨(C;C∗) + skip, σ⟩

Figure 2.3: Small-step semantics of program commands.

writes the value computed by e to the memory at the address x. The y := [x]
commands reads the value from the memory at address x and stores it in y.
The free(x) commands frees the memory located at address x.

Definition 2.35. The set of all modified variables by C, denoted md(C), is
defined as follows

md(skip) ⇋ ∅ md(x := e) ⇋ {x} md(x := nonDet()) ⇋ {x}
md(assume b) ⇋ ∅ md(x := alloc()) ⇋ {x} md([x] := e) = ∅
md(y := [x]) ⇋ {y} md(free(x)) ⇋ ∅ md(C1;C2) = md(C1) ∪md(C2)

md(C1 + C2) = md(C1) ∪md(C2) md(C∗) ⇋ md(C)

Definition 2.36. A program configuration ⟨C, σ⟩ is an ordered pair, where C
is a program command and σ is a program state.

We will use the meta symbol c with potential indices to denote a program
configuration.

Definition 2.37. The small-step semantics, denoted →, of the program commands
is a relation over program configurations and is defined by recursion in figure
2.3.

Similarly to the heapless program commands, we define →∗ as the reflexive
and transitive closure of →, where → now refers to the small-step semantics of
the program commands. Moreover, we adopt the same terminology for execu-
tion, termination, and related concepts as in the heapless case. The definition
of JCK, JCK ⇋ {⟨σ, σ′⟩ | ⟨C, σ⟩ →∗ ⟨skip, σ′⟩}, remains the same, with the type
updated.

27

s(x) = 0 ∨ s(x) /∈ Dom(h) ∨ h(s(x)) = ⊥
aborts ⟨[x] := e, ⟨s, h⟩⟩

s(x) = 0 ∨ s(x) /∈ Dom(h) ∨ h(s(x)) = ⊥
aborts ⟨y := [x], ⟨s, h⟩⟩

s(x) = 0 ∨ s(x) /∈ Dom(h) ∨ h(s(x)) = ⊥
aborts ⟨free(x), ⟨s, h⟩⟩

aborts ⟨C1, σ⟩
aborts ⟨C1;C2, σ⟩

Figure 2.4: Operational erroneous semantics of program commands that imme-
diately abort.

Lemma 2.38. The following properties hold:

(i) JskipK = {⟨σ, σ⟩ | σ ∈ States};

(ii) Jx := eK = {⟨⟨s, h⟩, ⟨se(s)x , h⟩⟩ | ⟨s, h⟩ ∈ States};

(iii) Jx := nonDet()K = {⟨⟨s, h⟩, ⟨snx , h⟩⟩ | ⟨s, h⟩ ∈ States ∧ n ∈ Val};

(iv) Jassume bK = {⟨⟨s, h⟩, ⟨s, h⟩⟩ | s ∈ b ∧ h ∈ Heaps};

(v) Jx := alloc()K = {⟨⟨s, h⟩, ⟨slx, hn
l ⟩⟩ | (l /∈ Dom(h) ∨ h(l) = ⊥) ∧ l ̸= 0};

(vi) J[x] := eK = {⟨⟨s, h⟩, ⟨s, he(s)
s(x)⟩⟩ | ∃n. h(s(x)) = n ∧ n ̸= ⊥ ∧ s(x) ̸= 0};

(vii) Jy := [x]K = {⟨⟨s, h⟩, ⟨sny , h⟩⟩ | ∃n. h(s(x)) = n ∧ n ̸= ⊥ ∧ s(x) ̸= 0};

(viii) Jfree(x)K = {⟨⟨s, h⟩, ⟨s, h⊥
s(x)⟩⟩ | ∃n. h(s(x)) = n ∧ n ̸= ⊥ ∧ s(x) ̸= 0};

(ix) JC1;C2K = JC1K ◦ JC2K, where ◦ is composition of relations;

(x) JC1 + C2K = JC1K ∪ JC2K;

(xi) JC∗K =
⋃

n∈ℕJCnK, where C0 ⇋ skip and Cn+1 ⇋ C;Cn.

Proof. See theorem dsem properties in ProgramCommands.thy.

Definition 2.39. The operational erroneous semantics aborts of program commands that immediately abort
is an unary predicate over program configurations and is defined by recursion in
figure 2.4.

Definition 2.40. An assertion p provides the memory required by C iff

∀σ ∈ p. ∀c′. ⟨C, σ⟩ →∗ c′ ⇒ ¬aborts(c′)

Now, we are ready to define formally Hoare triples and their validity.

Definition 2.41. A Hoare triple {p}C{q} is an ordered triple (with a special
syntax {·} · {·}), where p and q are assertions and C is a program command.

Definition 2.42. A Hoare triple {p}C{q} is valid, written |=SL {p}C{q}, iff

1. p provides the memory required by C; and

2. ∀σ ∈ p.∀σ′. ⟨σ, σ′⟩ ∈ JCK ⇒ σ′ ∈ q.

28

As in the heapless setting, providing intuitive examples is not feasible with-
out introducing a clean syntax. Therefore, to aid understanding, we present a
representative fragment of the syntax, along with the interpretation of interest.
First, the syntax for ”dereferencing” a pointer is x 7→ 1 , which is interpreted as
Jx 7→ 1 K = {⟨s, h⟩ | h(s(x)) = 1}. Second, the syntax for indicating an empty
heap is emp, which is interpreted as JempK = {⟨s, h⟩ | h = ∅}. Now, it is easy
to see that

|=SL {JempK}x := alloc(){J∃n. x 7→ nK} |=SL {Jx 7→ 1 K}y := [x]K{Jy .
= 1 K}

̸|=SL {JempK}[x] := J1 K{Jx 7→ 1 K} |=SL {Jx 7→ 1 K}free(x){Jx 7→ ⊥K},

where the third one is not valid, because JempK doesn’t provide the memory
required by [x] := J1 K.

The first conjunct of the definition of Hoare triple validity servers two roles:

1. Any derivable Hoare formula ensures no NULL or ”dangling” pointers are
dereferenced; and

2. Ensures the soundness of the Frame rule (see below).

2.2.2 Syntax

We will use the same syntax for both program expressions and program pred-
icates: AExpsℕ and BExpsℕ, respectively. Additionally, we will adopt the same
interpretation, namely the standard model. The difference lies in the syntax for
our assertions.

Definition 2.43. We define ℕ-assertions using BNF:

p ⇋⊤ | ⊥ | (e⋖ e) | (e .
= e) | emp | x 7→ e | x 7→ ⊥ | (p ∗p)

| (p ∧p) | (p ∨p) | (p ⇒ p) | (p ⇔ p) | ¬p | ∃x.p | ∀x.p,

where x ∈ PVars,e ∈ AExpsℕ.

We denote the set of all ℕ-assertions by SynAsrtℕ. The predicates emp and
x 7→ ⊥ both signify that the heap is empty. Specifically, emp indicates that
the entire heap is empty, while x 7→ ⊥ means that the memory at location x
is empty. The latter also provides the additional information that we ”own”
the memory at address x. The predicate x 7→ e indicates that we ”own” the
memory at location x and that it is allocated, containing the value e. Lastly,
the functional symbol ∗ represents the so-called separating conjunction, which
we will discuss in more detail in subsubsection 2.2.4. It is worth noting that ⊥
is used both as false and as an empty address. However, this is not a problem,
since the latter case can be considered as part of the bigger unary predicate
symbol ” 7→ ⊥.” Moreover, ⊥ is also used semantically in h(5) = ⊥. Lastly,
when we write x 7→ e, it is important to note that e cannot be evaluated to ⊥
(see definition 2.11 and recall its standard interpretation).

29

The interpretation of interest J·K is as follows:

J⊤K ⇋ States

J⊥K ⇋ ∅
Je1 ⋖ e2K ⇋ {⟨s, h⟩ ∈ States | Je1K(s) < Je2K(s)}
Je1

.
= e2K ⇋ {⟨s, h⟩ ∈ States | Je1K(s) = Je2K(s)}

JempK ⇋ {⟨s, h⟩ ∈ States | h = ∅}
Jx 7→ eK ⇋ {⟨s, h⟩ ∈ States | h(s(x)) = JeK(s) ∧ s(x) ̸= 0}
Jx 7→ ⊥K ⇋ {⟨s, h⟩ ∈ States | h(s(x)) = ⊥ ∧ s(x) ̸= 0}
Jp ∗qK ⇋ {⟨s, h1 ∪ h2⟩ | ⟨s, h1⟩ ∈ JpK ∧ ⟨s, h2⟩ ∈ JqK ∧ h1⊥h2}
J∃x.pK ⇋ {⟨s, h⟩ ∈ States | ∃n. ⟨snx , h⟩ ∈ JpK}
J∀x.pK ⇋ {⟨s, h⟩ ∈ States | ∀n. ⟨snx , h⟩ ∈ JpK},

where h1⊥h2 ⇋ Dom(h1) ∩ Dom(h2) = ∅23. The remaining logical symbols
receive their standard (in the sense of Tarski) interpretation. Now that we’ve
outlined the interpretation, it’s helpful to revisit the distinction between emp
and x 7→ ⊥. In simple terms, emp indicates that we have no specific information
about the heap locally, in particular for the address x. On the other hand, x 7→ ⊥
means that we are explicitly aware that x contains no memory. This difference
explains why we can add more heap to x when emp holds—since we have no
prior knowledge of its contents—whereas we cannot do so with x 7→ ⊥, as we
assert that x’s memory is accounted for (and deallocated in this case). That is,
JempK ∗ Jx 7→ 1 K = Jx 7→ 1 K and Jx 7→ ⊥K ∗ Jx 7→ 1 K = ∅. Finally, we define
(AExps,BExps)-program commands, denoted with C with potential indices, in
the obvious way.

2.2.3 Syntactic and semantic logic

We observed with Hoare logic that any Hoare-style logic, ⊢HL,D, is destined
to be (effectively) incomplete24. Furthermore, it’s evident that no syntax can
express each assertion with a corresponding formula, as there are countably
many formulae but uncountably many assertions. We argued that this isn’t
a problem since what we need from the syntax is just the ability to express
loop invariants. Therefore, for simplicity, it’s common to divide the work into
two parts: first, defining the axioms and rules semantically, and then adding
a syntax that can express the loop invariants. In the remainder of this thesis,
we focus on the former, leaving the latter as an open question for future explo-
ration. It’s important to note that the (syntactic) axioms and rules rely solely
on logical symbols—symbols with fixed interpretations—and syntactic substi-
tution, which behaves consistently across all interpretations. This allows their
semantic soundness to trivially ensure their syntactic soundness. By semantic
axioms and rules, we mean precisely what is presented in theorem 2.17, which
trivially ensure soundness of their syntactic counterparts (see corollary 2.18).

23Yet another usage of ⊥.
24Since no complete (effective) system D exists for the standard model of PA.

30

(Alloc)
|=SL {p}x := alloc(){{⟨slx, hn

l ⟩ | ⟨s, h⟩ ∈ p ∧ (l /∈ Dom(h) ∨ h(s(x)) = ⊥) ∧ l ̸= 0}}

p provides the memory required by C
(Write)

|=SL {p}[x] := e{⟨s, he(s)
s(x)⟩ | ⟨s, h⟩ ∈ p ∧ h(s(x)) = n ∧ n ̸= ⊥ ∧ s(x) ̸= 0}

p provides the memory required by C
(Read)

|=SL {p}y := [x]{⟨sny , h⟩ | ⟨s, h⟩ ∈ p ∧ h(s(x)) = n ∧ n ̸= ⊥ ∧ s(x) ̸= 0}

p provides the memory required by C
(Free)

|=SL {p}free(x){⟨s, h⊥
s(x)⟩ | ⟨s, h⟩ ∈ p ∧ h(s(x)) = n ∧ n ̸= ⊥ ∧ s(x) ̸= 0}

Figure 2.5: Semantic heap axioms of Separation logic.

(Alloc)
⊢SL,D {⊤}x := alloc(){x 7→ −}

(Write)
⊢SL,D {x 7→ −}[x] := e{x 7→ e}

(Read)
⊢SL,D {x 7→ n}y := [x]{x 7→ n ∧ y

.
= n}

(Free)
⊢SL,D {x 7→ n}free(x){x 7→ ⊥}

Figure 2.6: Syntactic heap axioms of Separation logic, where x 7→ − is short for
∃n. x 7→ n.

To illustrate the differences between semantic and syntactic axioms and
rules, let us consider the four semantic axioms presented in figure 2.5. These
axioms can be easily verified with the help of lemma 2.38. Our aim in design-
ing semantic axioms is to ensure that the postcondition precisely corresponds
to the strongest postcondition. This ensures that when formulating syntactic
axioms, our only task is to demonstrate that the strongest postcondition can
be expressed syntactically for each given syntactically expressible precondition
and corresponding program command. It is easily verified that these axioms
satisfy the desired property, i.e. sp(p, x := alloc()) = {⟨slx, hn

l ⟩ | ⟨s, h⟩ ∈ p ∧ (l /∈
Dom(h) ∨ h(s(x)) = ⊥) ∧ l ̸= 0}, etc. Furthermore, it is evident that the last
three axioms cannot be designed for arbitrary preconditions since they need to
provide the memory required by the corresponding program command. Now,
using these semantic axiom, we can trivially obtain the soundness of the syn-
tactic axioms presented in figure 2.6. The question of whether these syntactic
axiom are sufficient for the completeness of Separation logic (in the sense of
theorem 2.29) is, as mentioned above, beyond the scope of this thesis. That
is, it is possible that there is p such that sp(JpK,C) is not expressible in J·K,
where C is x := alloc(), [x] := e, y := [x] or free(x)25. For those interested, [Tat-

25An example of such p and C was identified shortly before the finalization of this thesis:
emp and x := alloc(), respectively. The solution is to remove emp from the syntax, as it
adds no practical value. It, however, is retained in the thesis to better illustrate the difference
between l /∈ Dom(h) and h(l) = ⊥.

31

suta et al. 2019] demonstrates the (syntactic) completeness of Separation Logic
in the context of weakest liberal preconditions, utilizing the so-called ”magic
wand.” Moreover, [Bannister et al. 2018] shows a broader approach—covering
both backward (via weakest liberal precondition) and forward (via strongest
postcondition) perspectives. In our thesis, we focus on the forward direction;
thus, one can adopt the approach outlined in the latter work, which introduces
the so-called ”septraction.” It’s also worth noting that neither of the two account
for memory which we ”own” and know to be empty, represented by h(l) = ⊥,
indicating that further modifications may be necessary, presumably with the
allocation axiom.

2.2.4 Separating conjunction and the frame rule

We now turn to the separating conjunction and frame rule, which lie at the heart
of Separation logic and constitutes the primary focus of this thesis. We begin by
noting that Hoare logic can reason locally: ⊢HL {x .

= 0}x := x+1{x .
= 1}. That

is, it can focus only on the resources required/used by the program command.
Moreover, it can combine multiple local specifications into a more general one
using the constancy and consequence rules, where

⊢HL,D {p}C{q} md(C) ∩ fv(f) = ∅
(Constancy)

⊢HL,D {p ∧ f}C{q ∧ f}

and md(C) is the set of variables modified by C (analogous to definition 2.35).
Note that if the condition md(C)∩ fv(f) = ∅ is not satisfied, then the constancy
rule is unsound (not valid) since ⊢HL,D {x .

= 0}x := 1{x .
= 1}, whereas ̸⊢HL,D

{x .
= 0 ∧ x

.
= 0}x := 1{x .

= 1 ∧ x
.
= 0}.

Lemma 2.44. Let ∀s ∈ f. ∀x ∈ md(C).∀n. snx ∈ f . Then sp(p ∩ f, C) = sp(p, C) ∩ f .

Proof. See lemma sp frame in HeaplessStrongestPostcondition.thy.

One can easily see that the second assumption of the constancy rule, namely
md(C) ∩ fv(f) = ∅, implies ∀s ∈ JfK.∀x ∈ md(C).∀n. snx ∈ JfK using the fact
that ∀s ∈ JfK.∀x /∈ fv(f).∀n. snx ∈ JfK.

Corollary 2.45. Let |=HL {p}C{q} and ∀s ∈ f. ∀x ∈ md(C).∀n. snx ∈ f . Then
|=HL {p ∩ f}C{q ∩ f}.
Proof. We’ve that sp(p, C) ⊆ q by assumption 1 and lemma 2.21. Therefore
sp(p, C) ∩ f ⊆ q ∩ f . Thus, by assumption 2 and lemma 2.44 it follows that
sp(p∩f, C) ⊆ q∩f . Moreover, by lemma 2.22 we’ve |=HL {p∩f}C{sp(p∩f, C)}.
Therefore by theorem 2.17 we conclude that |=HL {p ∩ f}C{q ∩ f}.

Corollary 2.46. Rule of constancy is valid.

Proof. Let J·K be an interpretation such that |=HL {JpK}TJ·K(C){JqK} and let
md(C) ∩ fv(f) = ∅, i.e. md(TJ·K(C)) ∩ fv(f) = ∅ From assumption 2, we obtain
that ∀s ∈ JfK.∀x ∈ md(TJ·K(C)).∀n. snx ∈ JfK. Then from assumption 1 and
corollary 2.45, it follows that |=HL {JpK ∩ JfK}TJ·K(C){JqK ∩ JfK}. That is,
|=HL {Jp ∧ fK}TJ·K(C){Jq ∧ fK}.

32

We showed that the rule of constancy is valid in Hoare logic. One might
expect it to hold in Separation logic as well; however, it is, in fact, unsound:

⊢HL,D {x 7→ 0}[x] := 1{x 7→ 1},

whereas
̸⊢HL,D {x 7→ 0 ∧ y 7→ 0}[x] := 1{x 7→ 1 ∧ y 7→ 0},

since x and y may be equivalent. In order to resolve this problem, it is necessary
to guarantee that x ̸= y. To address this, we turn to the seminal solution
presented in [Reynolds 2002]. Rather than using conjunction, which does not
ensure that the conjuncts have disjoint memory, they propose the so-called
separating conjunction ∗, defined as follows:

p ∗ q ⇋ {⟨s, h1 ∪ h2⟩ | ⟨s, h1⟩ ∈ p ∧ ⟨s, h2⟩ ∈ q ∧ h1⊥h2}.26

This definition guarantees that states satisfying x 7→ 0 ∗ y 7→ 0 have x ̸= y and
hence we obtain that ⊢HL,D {x 7→ 0 ∗ y 7→ 0}[x] := 1{x 7→ 1 ∗ y 7→ 0} is valid.

Remark 2.47. Recall that a formula {p}C{q} is valid iff it is true for any in-
terpretive model. In Hoare logic, we assume that the symbols

.
=,∧,∨,⇒,⇔,¬,∃

and ∀ have fixed interpretations. These symbols are considered logical, while
⊤,⊥ and ⋖ are non-logical. Given this, more precisely, a formula {p}C{q}
is valid iff it is true for any interpretive model, induced by an interpretation
J·K, where the logical symbols are assigned their fixed meanings. In Separation
logic, we treat emp, 7→, 7→ ⊥ and ∗ as logical symbols, in addition to the logical
symbols from Hoare logic, with all their interpretations fixed accordingly.

Lemma 2.48. Let p provide the memory required by C. Then p ∗ f provides
the memory required by C.

Proof. See lemma provides mono in Star.thy.

The definition sp(p, C) ⇋ {s′ | ∃σ ∈ p. ⟨σ, σ′⟩ ∈ JCK}, remains the same,
with the type updated.

Lemma 2.49. |=SL {p}C{q} ⇒ sp(p, C) ⊆ q

Proof. Assume |=SL {p}C{q}. Let σ′ be arbitrary such that σ′ ∈ sp(p, C). Let
σ be witness such that σ ∈ p and ⟨σ, σ′⟩ ∈ JCK. Thus, by the assumption,
σ′ ∈ q. But σ′ was arbitrary, therefore sp(p, C) ⊆ q.

Lemma 2.50. Let p provide the memory required by C. Then |=SL {p}C{sp(p, C)}.

Proof. Assume s ∈ p and s′ be such that ⟨s, s′⟩ ∈ JCK. Then s is witness for
∃s ∈ p. ⟨s, s′⟩ ∈ JCK. That is, s′ ∈ sp(p, C). Moreover, recall that p provides the
memory required by C. Therefore |=SL {p}C{sp(p, C)}.

26Note that we use the same symbol, ∗, for both the syntactic and semantic instances.

33

Theorem 2.51. Let ∀⟨s, h⟩ ∈ f. ∀x ∈ md(C).∀n. ⟨snx , h⟩ ∈ f , p provide the
memory required by C and ∀⟨s, h⟩ ∈ f. h(l) = ⊥ ⇒ hl ∈ f , where hl0

⇋
{⟨l, n⟩ ∈ h | l ̸= l0}. Then sp(p ∗ f, C) = sp(p, C) ∗ f .

Proof. See lemma sp frame in Star.thy.

Note that if we didn’t have a way to indicate that we own empty memory,
⊥, this lemma would not hold for program commands that deallocate memory:

∅ = sp(Jx 7→ 1 K ∗ Jx 7→ 1 K, free(x)) ⊂ sp(Jx 7→ 1 K, free(x)) ∗ Jx 7→ 1 K = Jx 7→ 1 K.

In our case, however, the equality hold, since

sp(Jx 7→ 1 K, free(x)) ∗ Jx 7→ 1 K = Jx 7→ ⊥K ∗ Jx 7→ 1K = ∅.

The third assumption of the lemma, ∀⟨s, h⟩ ∈ f. h(l) = ⊥ ⇒ hl ∈ f , when
f = JfK, essentially says that ”f does not speak of ⊥”, i.e. ⊥ does not appear
(syntactically) in f.

Corollary 2.52. Let |=SL {p}C{q}, ∀⟨s, h⟩ ∈ f. ∀x ∈ md(C).∀n. ⟨snx , h⟩ ∈ f
and ∀⟨s, h⟩ ∈ f. h(l) = ⊥ ⇒ hl ∈ f . Then |=SL {p ∗ f}C{q ∗ f}.

Proof. We’ve that p provides the memory required by C by assumption 1 and the
definition of validity. Thus, by lemma 2.48 it follows that p∗f provides the mem-
ory required by C and hence by lemma 2.50 we obtain |=SL {p ∗ f}C{sp(p ∗ f, C)}.
Moreover, using that p ∗ f provides the memory required by C, assumptions 2
and 3 and theorem 2.51, we obtain that sp(p ∗ f, C) = sp(p, C) ∗ f . Therefore
|=SL {p ∗ f}C{sp(p, C) ∗ f}. Now, by lemma 2.49 and assumption 1, we obtain
that sp(p, C) ⊆ q and hence by the monotonicity of ∗, which is easily verified,
we obtain sp(p, C) ∗ f ⊆ q ∗ f . Finally, using the fact that we can weaken the
postcondition, which is easily provable, and |=SL {p ∗ f}C{sp(p, C) ∗ f}, we
conclude that |=SL {p ∗ f}C{q ∗ f}.

Now, the soundness of the syntactic frame rule

⊢SL,D {p}C{q} fv(f) ∩md(C) = ∅ no ⊥ in f
(Frame)

⊢SL,D {p ∗ f}C{q ∗ f}

can easily be obtained by corollary 2.52 and since we consider ∗ as a logical
symbol with fixed interpretation (Jp ∗qK = JpK ∗ JqK). In this thesis, we focus
on the semantic frame rule due to its generality and simplicity and since the
syntactic one following directly from it.

Note that if we didn’t require the precondition to provide the memory re-
quired by the program command, the frame rule would be unsound:

|=SL {JempK}[x] := J1 K{Jx 7→ 1 K}
̸|=SL {JempK ∗ Jx 7→ 1 K}[x] := J1 K{Jx 7→ 1 K ∗ Jx 7→ 1 K} .

Moreover, this requirement is strictly stronger than the requirement to have a
sound frame rule. That is, for |=SL′ {p}C{q} defined to hold whenever

34

1. |=SL′ supports a sound semantic frame rule; and

2. ∀σ ∈ p. ∀σ′. ⟨σ, σ′⟩ ∈ JCK ⇒ σ′ ∈ q; and

3. |=SL′ is the biggest such predicate,

it follows that |=SL {p}C{q} ⇒ |=SL′ {p}C{q} and not ⇔. The difference
comes in the read command:

|=SL′ {J⊤K}x := [y]{J⊤K},

whereas
̸|=SL {J⊤K}x := [y]J⊤K.

The goal of SL is not having as general as possible Frame rule, but rather to be
useful in practice, hence the choice of definition. That is, proven (via the sound
logic) specifications, guarantee that the program doesn’t dereference NULL or
”dangling” pointers.

2.3 Separation Sufficient Incorrectness logic

Hoare logic and its separation variant, Separation logic, are considered overap-
proximating logics because the postconditions of valid triples are overapproxima-
tions (supersets) of the set of reachable states. Formally, let post(p, C) ⇋ JCK[p]
and pre(q, C) ⇋ JCK−1[q], where R[X] is the image of X under the relation R,
i.e. R[X] ⇋ {y | ∃x ∈ X. ⟨x, y⟩ ∈ R} and R−1 is the inverse relation of R, i.e.
R−1 ⇋ {⟨y, x⟩ | ⟨x, y⟩ ∈ R}. Then we have

|=HL {p}C{q} ⇔ post(p, C) ⊆ q

and

|=SL {p}C{q} ⇔ post(p, C) ⊆ q, for p providing the memory required by C.

In a similar manner, Incorrectness logic (abbreviated as IL; see [O’Hearn 2019])
and its separation variant, Incorrectness Separation logic (abbreviated as ISL;
see [Raad et al. 2020]), defined as

|=I(S)L {p}C{q} def⇐⇒ ∀σ′ ∈ q.∃σ ∈ p. ⟨σ, σ′⟩ ∈ JCK,

are underapproximate, since the postcondition, q, of a valid triple is an under-
approximation (subset) of the set of reachable states, i.e.

|=I(S)L {p}C{q} ⇔ q ⊆ post(p, C).

Note that sp coincide with post. Additionally, the consequence rule in Incorrect-
ness (Separation) logic is ”reversed.” Consequently, the weakest postcondition,
denoted wpo, is introduced. It is straightforward to recognize that wpo coincides
with post. As a further observation, the validity of all 4 logics introduced so

35

far can be expressed through the post, but not via pre. In this thesis, we focus
on backward underapproximation, rather that (forward) underapproximation,
where the precondition is a subset of the backward reachable states. Specif-
ically, we consider Sufficient Incorrectness logic (abbreviated SIL; see [Ascari
et al. 2024]) and especially its separation variant, Separation Sufficient Incor-
rectness logic (abbreviated SSIL; see [Ascari et al. 2024]), defined as

|=(S)SIL {p}C{q} def⇐⇒ ∀σ ∈ p.∃σ′ ∈ q. ⟨σ, σ′⟩ ∈ JCK.

Indeed, it is evident that every precondition, p, of a valid triple for these two
logics is an underapproximation of the set of backward reachable states, i.e.

|=(S)SIL {p}C{q} ⇔ p ⊆ pre(q, C).

While we do not delve into the details of (S)SIL, we present the following
representative example:

⊢(S)SIL,D {x .
= 0}x := nonDet(){x .

= 17},

which says that, starting in a state satisfying x
.
= 0 , there is an execution path,

which terminates successfully in a state satisfying x
.
= 17 .

We will now focus on one of the key aspects of SSIL that is central to this
thesis: its frame rule. Immediately, it is clear that their semantic frame rule is
unsound, as seen in the following example

|=SSIL {JempK}x := alloc(){Jx .
= 1 K}

̸|=SSIL {JempK ∗ J1 7→ 1 K}x := alloc(){Jx .
= 1 K ∗ J1 7→ 1 K} .

This issue is common among underapproximate logics, where in order to main-
tain a sound frame rule, one cannot guarantee that the allocated address is part
of a fixed finite set. The essence of the problem lies in the fact that we can-
not determine the allocated address locally, as this requires global knowledge of
which addresses are available. Without this global context, we cannot guarantee
the exact address that will be assigned during allocation, leading to potential
inconsistencies when applying the frame rule. If, however, we know locally that
an address is free, i.e. 1 7→ ⊥, then we have a guarantee that location 1 can be
returned by alloc()

|=SSIL {J1 7→ ⊥K}x := alloc(){Jx .
= 1 K}

|=SSIL {J1 7→ ⊥K ∗ J1 7→ 1 K}x := alloc(){Jx .
= 1 K ∗ J1 7→ 1 K} .

Regardless, the semantic frame rule is unsound for SSIL. They bypass this prob-
lem by proving a syntactic frame rule sound, where the syntactic alloc axiom
they use is

⊢SSIL,D {emp}x := alloc(){x 7→ n}.
That is, they cannot obtain the problematic assumption of the frame rule,
namely

̸⊢SSIL,D {emp}x := alloc(){x .
= n}.

36

Using this approach, however, they encounter another issue: the alloc axiom
is not complete in the sense that ⊢SSIL,D {emp}x := alloc(){x .

= n} is valid,
but is not a theorem. Their proposed solution is less than ideal, as it alters the
semantics of the allocation command to only produce addresses that are locally
known to be free. This approach is problematic because it effectively makes the
allocation command local, whereas, in reality, it is inherently (and uniquely)
non-local.

A notable observation, though not directly relevant to this thesis, is that
loop invariants are not complete for underapproximation. That is, the rule

|=HL {p}C{p}
(Iter)

|=HL {p}C∗{p}

won’t suffice for the completeness of either I(S)L or (S)SIL. Indeed, it is clear
that

|=I(S)L {Jx .
= 0 K}(x := Jx+ 1 K)∗{Jx ≥ 0 K},

where ≥ is interpreted in the obvious way. However, there is no invariant p such
that

|=I(S)L {p}x := Jx+ 1 K{p}.

The ”best” we can do is p ⇋ Jx ≥ 0 K, which still fails, since we cannot reach any
state s such that s(x) = 0. If we consider the integers rather than the naturals,
then we can find an invariant:

|=I(S)L {J⊤Kℤ}x := Jx+ 1 Kℤ{J⊤Kℤ}.

But this doesn’t help either, as I(S)L’s reversed consequence rule allows only
precondition weakening, hence we cannot obtain the precondition Jx .

= 0 Kℤ from
J⊤Kℤ. Similarly, it is clear that

|=(S)SIL {J0 ⋖ xK}(assume J0 ⋖ xK;x := x− 1)∗{Jx .
= 0 K}.

The ”best” we can do for an invariant of assume J0 ⋖ xK;x := x − 1 is either
J0 ⋖ xK or Jx ≥ 0 K. The former fails because for a state s with s(x) = 1, the
resulting state s′ with s′(x) = 0 does not satisfy 0 ⋖ x. The latter fails because
for a state s with s(x) = 0, no resulting state exists. To obtain completeness
for the underapproximate logics, most sources (e.g. [Ascari et al. 2024]) require
a rule that involves infinite union (or, in terms of the syntactic rules, infinite
disjunction)

for all n ∈ ℕ. |=(S)SIL {qn+1}C{qn}
(iter)

|=(S)SIL {
⋃
n∈ℕ

qn}C∗{q0} .

We, however, are led to believe that, using

(iter0)
|=(S)SIL {q}C∗{q}

|=(S)SIL {p}C∗;C{q}
(iterN)

|=(S)SIL {p}C∗{q}

37

|=(S)SIL {p}C{q}
(Exists)

|=(S)SIL {{⟨snx , h⟩ | ⟨s, h⟩ ∈ p}}C{{⟨snx , h⟩ | ⟨s, h⟩ ∈ q}} ,

we obtain completeness as well, but now the syntactic variant of (Exists) requires
only an existential quantifier instead of an infinite disjunction. Using (iter0) and
(iterN), we obtain

for all n ∈ ℕ. |=(S)SIL {qn+1}C{qn}
|=(S)SIL {qn}C∗{q0} .

Now, if it is sufficeint for the completeness to apply this with only recursive pn
and qn, then we can integrate the idea from the proof of lemma 2.24 and finally
apply the (Exists) rule. This, however, lies beyond the scope of this thesis.

2.4 Outcome Separation logic

All the logics discussed so far express either over- or underapproximate rea-
soning. We will now explore Outcome Logic (abbreviated OL; see [Zilberstein
et al. 2023]) and, more relevant to this thesis, its separation variant, Outcome
Separation Logic (abbreviated OSL; see [Zilberstein et al. 2024]), which support
both types of reasoning. While the command semantics are parametric on an
execution model for OL and on an outcome algebra and an allocator function
for OSL, we consider the instantiation corresponding to nondeterministic and
non-probabilistic programs. That is, the program semantics (for the considered
instantiation) of OL essentially coincide with the semantics presented in lemma
2.8, whereas the program semantics (for the considered instantiation) of OSL es-
sentially coincide with the semantics presented in lemma 2.38 with the difference
that they are parametric on an allocator function27 alloc : States → P(ℕ+)\{∅}

Jx := alloc()Kalloc = {⟨⟨s, h⟩, ⟨slx, hn
l ⟩⟩ | (l /∈ Dom(h)∨h(l) = ⊥)∧l ̸= 0∧l ∈ alloc(⟨s, h⟩)}.

We say that an allocator alloc is adequate iff

∀⟨s, h⟩ ∈ States.∃l ∈ alloc(⟨s, h⟩). l /∈ Dom(h) ∨ h(l) = ⊥.

The validity of the OSL triples will quantify over all possible adequate alloca-
tors, hence solving the issue discussed with SSIL (and underapproximation in
general), i.e. since we quantify over all (adequate) allocators, we cannot have
guarantee for the value of the allocated address. That is,

̸|=OSL {JempK}x := alloc(){Jx .
= 1 K},

which will ensure the soundness of the (semantic) frame rule. Formally, the
validity (for the considered instantiation) is defined as

|=OSL {P}C{Q} def⇐⇒ ∀S ∈ P.∀alloc ∈ A. JCKalloc[S] ∈ Q,

where A is the set of adequate allocators. Note that P and Q are sets of
assertions, which we will refer to as hyper-assertions (or hassertions for short).

27The definition is slightly altered, but the essence remains intact. We denote the powerset
of X with P(X).

38

Definition 2.53. A hyper-assertion (or hassertion) P is a set of assertions.

We denote the set of all hassertions by HAsrts. We will use the meta symbols
P,Q,R, F with potential indices to denote hassertion.

Now, we return to the (considered instantiation of the) validity of OSL with
greater precision. We noted that their validity quantifies over all (adequate)
allocators, which enables a sound semantic frame rule. To speak of the frame rule
in the first place, they would require a star operator over hassertions. However,
they have avoided defining such a star, missing the significant advantage of their
semantics—its ability to support a general sound semantic frame rule. Instead,
they have achieved a sound semantic frame rule, but limited to a specific type
of hassertions—these that can be expressed by their syntax. The syntax of
hassertions includes ”power sets (without the empty set) of assertions”, union of
hassertions (syntactically ∨), and join of hassertions (syntactically ⊗)28, where
their syntax for assertions is a slight alteration of our ℕ-assertions (see definition
2.43). We use ∪ as a semantic equivalent of ∨ (as usual) and the same symbol
⊗ for both the semantic and syntactic join. The definition of join is as follows:

P ⊗Q ⇋ {SP ∪ SQ | SP ∈ P ∧ SQ ∈ Q}.

They define a new separating conjunction ⊛ as a transformations on the syn-
tactic hassertions as follows (illustrated semantically):

� P+(p)⊛ f ⇋ P+(p ∗ f), where P+(X) ⇋ P(X) \ {∅};

� (P ∪Q)⊛ f ⇋ (P ⊛ f) ∪ (Q⊛ f);

� (P ⊗Q)⊛ f ⇋ (P ⊛ f)⊗ (Q⊛ f).

Note that the left and right arguments of ⊛ have different types: the left ar-
gument is a hassertion, while the right argument is an assertion. For this star
then, they prove sound semantic frame rule

|=OSL {P}C{Q} ”md(C) ∩ fv(f) = ∅”
(Frame)

|=OSL {P ⊛ f}C{Q⊛ f} ,

where ”md(C) ∩ fv(f) = ∅” is ∀⟨s, h⟩ ∈ f. ∀x ∈ md(C).∀n. ⟨snx , h⟩ ∈ f and P
and Q are obtained via (finite applications of) unions and joins of non-empty
powersets of assertions. It turns out, however, that there’s a small mistake29:
they have to require that the frame does not contain (syntactically) ⊥, otherwise
the frame rule becomes unsound:

|=OSL {P+(JempK)}x := alloc(){P+(Jx 7→ −K)}
̸|=OSL {P+(JempK)⊛ J1 7→ ⊥K}x := alloc(){P+(Jx 7→ −K)⊛ J1 7→ ⊥K} ,

since otherwise the conclusion says that location 1 cannot be returned by the
allocation command, even though we know that it is free. This mistake seems
to be common among sources, as it occurs also in [Ascari et al. 2024].

28In the OSL paper it is denoted with the symbol ⊕ and called the outcome conjunction.
29It is unclear to us whether this condition is tacitly implied at some point in their work.

39

The main goal of this thesis is to design a star over hassertions, which sup-
ports a sound frame rule. Inspired by the definition of OSL’s star, we aim to
create a star that distributes over both union and join. It is worth noting that
OSL’s hassertion language includes ⊤, which is satisfied by anything, including
erroneous states. This inclusion is necessary to ”drop” outcomes, allowing them
to reason underapproximatingly. As will be demonstrated later, this feature is
also essential for enabling Hyper Separation logic to reason in an underapproxi-
mate manner. However, this aspect falls outside the scope of the current thesis,
and therefore, we focus on the overapproximate part. Formally, ⊤ ⊛ f ⇋ ⊤
plays a crucial role in enabling underapproximate reasoning in OSL. While, ide-
ally, our star operator should serve a similar function, it falls beyond the scope
of this thesis.

2.5 Relational Separation logic

2.5.1 Semantics

So far, the logics we’ve considered have focused on reasoning about a single pro-
gram’s behavior. Relational Hoare logics (abbreviated RHL; see [Benton 2004])
and its separation variant Relational Separation logic (abbreviated RSL; see
[Yang 2007]) take a step further by enabling us to reason about the relationship
between two programs. Rather than describing properties of a single program
command, relational logics allow us to analyze how one program might relate
to another. That is, we now consider quadruplets {r}C1

C2
{s}, where r and s are

relations, called (heapless) rassertions, and C1 and C2 are (heapless) program
commands. Such relational logic can be used to demonstrate the equivalence
between a compiler-optimized program and its original, non-optimized counter-
part.

Definition 2.54. A relational-assertion (or rassertion) r is a set of pairs of
program states, i.e. r ⊆ States2.

We denote the set of all rassertions by RAsrts. We will use the meta symbols
r,s,t,f with potential indices to denote rassertion. We will use interchangeably[⟨s1,h1⟩
⟨s2,h2⟩

]
with ⟨⟨s1, h1⟩, ⟨s2, h2⟩⟩ ∈ States2.

Definition 2.55. A Hoare quadruple {r}C1
C2
{s} is an ordered quadruple (with a

special syntax {·}··{·}), where r and s are rassertions and C1 and C2 are program
commands.

Definition 2.56. A Hoare quadruple {r}C1
C2
{s} is valid, written |=RSL {r}C1

C2
{s}, iff

1. Dom(r) provides the memory required by C1; and

2. Rng(r) provides the memory required by C2; and

3. ∀
[⟨s1,h1⟩
⟨s2,h2⟩

]
∈ r.∀H1 ⊇ h1.∀H2 ⊇ h2. ⟨C1, ⟨s1, H1⟩⟩ can diverge ⇔ ⟨C2, ⟨s2, H2⟩⟩

can diverge; and

4. ∀
[
σ1
σ2

]
∈ r.∀σ′

1 ∈ JC1K[{σ1}].∀σ′
2 ∈ JC2K[{σ2}].

[σ′
1

σ′
2

]
∈ s.

40

The first two conditions, just as in SL, guarantee the soundness of the frame
rule (assuming simultaneous divergence is not a concern). Following this, when
designing a logic for comparing two programs, it makes sense to check if they
have diverging execution paths simultaneously, hence the third condition. How-
ever, there is more to the third condition: if we only checked for simultaneous
divergence in the current heap rather than in all heap extensions, we’d end up
with an unsound frame rule (using the syntax introduced in definition 2.57):

|=RSL {Jemp
empK} x:=alloc();while Jx .

=1 K do skip od
x′:=alloc();while Jx′ .

=1 K do skip od
{Jx 7→−

x′ 7→−K}

̸|=RSL {Jemp
empK □∗ J17→1

empK} x:=alloc();while Jx .
=1 K do skip od

x′:=alloc();while Jx′ .
=1 K do skip od

{Jx 7→−
x′ 7→−K □∗ J17→1

empK} .

Indeed, in the first case, both may diverge if allocation returns address 1. In
contrast, in the second case, address 1 cannot be returned, as it is already
allocated. Since no (easily identifiable) natural and practically useful condition
guarantees soundness of the frame rule for divergence (whereas the first two
conditions already give us soundness of the frame rule for non-diverging states),
the approach taken is to embed the frame rule into the semantics. This way,
it constitutes the most general predicate that ensures a sound frame rule for
simultaneous divergence. The fourth condition is standard.

In the RSL paper, they approach rassertions differently. They assume that
the two programs operate with disjoint sets of variables, which allows them to
use just one store. Therefore, they represent the rassertions as sets of ⟨s, h1, h2⟩
(rather than ⟨⟨s1, h1⟩, ⟨s2, h2⟩⟩). Note that using a single heap to represent
the two heaps is not possible (e.g., where even addresses are reserved for the
first program and odd addresses for the second) without changing the semantics
of the heap-sensitive commands. For instance, alloc() would allocate only at
even addresses in the first program, and [4] would actually refer to address 8
(the fourth positive even number) in the first program, while it would refer to
address 7 (the fourth positive odd number) in the second program. They define
separating conjunction as

r∗s ⇋ {⟨s, hR
1 ∪hS

1 , h
R
2 ∪hS

2 ⟩ | ⟨s, hR
1 , h

R
2 ⟩ ∈ R∧⟨s, hS

1 , h
S
2 ⟩ ∈ S∧hR

1 ⊥hS
1∧hR

2 ⊥hS
2 }

and prove the soundness of the frame rule. The modified star, as per our model,
is defined as

r □∗ s ⇋ {⟨⟨s1, hR
1 ∪hS

1 ⟩, ⟨s2, hR
2 ∪hS

2 ⟩⟩ | ⟨⟨s1, hR
1 ⟩, ⟨s2, hR

2 ⟩⟩ ∈ R ∧ ⟨⟨s1, hS
1 ⟩, ⟨s2, hS

2 ⟩⟩ ∈ S ∧ hR
1 ⊥hS

1 ∧ hR
2 ⊥hS

2 }.

The choice of model is evidently cosmetic. However, this thesis focuses exclu-
sively on the scenario where the two programs coincide, making the use of their
model not directly applicable. To apply their approach, we would assign a prime
to all variables in the second coordinate. For instance, a variable x would be
written as x′ in the second coordinate. To avoid such additional modifications,
we instead adopt the approach using ⟨⟨s1, h1⟩, ⟨s2, h2⟩⟩. Examples of where this
restricted scenario is useful are

41

� Monotonicity
|=RSL {J∃k.

[
x

.
=k

k≥x

]
K}CC{J∃k.

[
y

.
=k

k≥y

]
K} - bigger input x results in a bigger output y;

� Injectivity

|=RSL {J∃k.
[
x

.
=k

x̸
.
=k

]
K}CC{J∃k.

[
y

.
=k

y ̸ .=k

]
K} - different input x results in a different output y;

� Observational determinism30

|=RSL {J∃k.
[
x1

.
=k

x1
.
=k

]
K ∩ . . . ∩ J∃k.

[
xn

.
=k

xn
.
=k

]
K}CC{J∃k.

[
x1

.
=k

x1
.
=k

]
K ∩ . . . ∩ J∃k.

[
xn

.
=k

xn
.
=k

]
K},

where x1, . . . , xn are the program variables appearing in C. Note that C
could be the program x := nonDet();x := J1 K, which makes it nondeter-
ministic, but observably deterministic. To express true determinism, we
require a state model based on program traces (countable sequences of
states) rather than individual states;

� Non-interference
|=RSL {J∃k.

[
x1

.
=k

x1
.
=k

]
K ∩ . . . ∩ J∃k.

[
xn

.
=k

xn
.
=k

]
K}CC{J∃k.

[
x1

.
=k

x1
.
=k

]
K ∩ . . . ∩ J∃k.

[
xn

.
=k

xn
.
=k

]
K},

meaning variables {x1, . . . , xn} are not influenced by variables PVars \
{x1, . . . , xn} in C. On a high level, non-interference says that there is no
”leakage” of information from PVars \ {x1, . . . , xn} to {x1, . . . , xn}. In the
literature, first introduced in [Goguen and Meseguer 1982], they are often
called high- and low-sensitivity variables, respectively.

2.5.2 Syntax

In this subsubsection, we formalize the syntax and its interpretation used above.

Definition 2.57. We define ℕ-rassertions using BNF:

R ⇋ Same |
[
p
q

]
| (R □∗ R) | (R∧R) | (R∨R) | (R ⇒ R) | (R ⇔ R) | ¬R | ∃x.R | ∀x.R,

where p,q ∈ ℕ-assertions and x ∈ PVars.

The interpretation of interest J·K is as follows:

JSameK ⇋ {
[⟨s1,h1⟩
⟨s2,h2⟩

]
∈ States2 | h1 = h2}

J
[
p
q

]
K ⇋ {

[⟨s1,h1⟩
⟨s2,h2⟩

]
∈ States2 | ⟨s1, h1⟩ ∈ JpK ∧ ⟨s2, h2⟩ ∈ JqK}

JR □∗ SK ⇋ JRK □∗ JSK

J∃x.RK ⇋ {
[⟨s1,h1⟩
⟨s2,h2⟩

]
∈ States2 | ∃n.

[⟨(s1)nx ,h1⟩
⟨(s2)nx ,h2⟩

]
∈ JRK}

J∀x.RK ⇋ {
[⟨s1,h1⟩
⟨s2,h2⟩

]
∈ States2 | ∀n.

[⟨(s1)nx ,h1⟩
⟨(s2)nx ,h2⟩

]
∈ JRK}

with the remaining logical symbols receiving their standard (in the sense of
Tarski) interpretation.

30The definition used here differs from the one commonly found in the literature.

42

An important aspect of the syntax is the ability to express connections/relations

between the two coordinates, say {
[⟨s1,h1⟩
⟨s2,h2⟩

]
| 4s1(x) + s1(y) < s2(x)s2(y)}. We

can express it using the existential quantifier:

J∃x1.∃y1.
[
x

.
=x1∧y

.
=y1

4 ·x1+y1⋖x·y
]
K = {

[⟨s1,h1⟩
⟨s2,h2⟩

]
| 4s1(x) + s1(y) < s2(x)s2(y)}.

Roughly speaking, what we do is ”copy” the x and y from the first coordinate
into x1 and y1, respectively, and then use the copies in the second coordinate.
Analogously, we can express connections between the heaps as well:

J∃n.
[
x 7→n
y 7→n

]
K = {

[⟨s1,h1⟩
⟨s2,h2⟩

]
| h1(s1(x)) = h2(s2(y))}.

2.6 Properties and hyperproperties

In this subsection, we introduce the notion of heapless program properties and,
more importantly, heapless program hyperproperties, which are essential for
fully grasping the capabilities of the (later introduced) Hyper Hoare logic. The
definition of the heap variants—program property and program hyperprop-
erty—are defined analogously, but are not considered in this thesis.

Definition 2.58. A heapless program property p is a set of pairs of heapless

program states, i.e. p ∈ P(Stacks2).

We denote the set of all heapless program proeprties by SProps. We will use
the meta symbol p with potential indices to denote a heapless program property.

Definition 2.59. We say that a heapless command C satisfies a heapless pro-
gram propery p iff JCK ⊆ p.

For example, there exists a function p : SAsrts2 → SProps such that for all
p, C and q,

|=HL {p}C{q} ⇔ JCK ⊆ p(p, q).

Indeed, p(p, q) ⇋ {⟨s, s′⟩ | s ∈ p ⇒ s′ ∈ q} is a witness:

|=HL {p}C{q} def⇐⇒ ∀s ∈ p.∀s′. ⟨s, s′⟩ ∈ JCK ⇒ s′ ∈ q

⇐⇒ ∀⟨s, s′⟩ ∈ JCK. s ∈ p ⇒ s′ ∈ p

⇐⇒ ∀⟨s, s′⟩ ∈ JCK. ⟨s, s′⟩ ∈ {⟨s, s′⟩ | s ∈ p ⇒ s′ ∈ q}
⇐⇒ JCK ⊆ {⟨s, s′⟩ | s ∈ p ⇒ s′ ∈ q} = p(p, q)

However, for any p and q such that p ̸= ∅, it is impossible to equivalently
state |=SIL {p}C{q} via satisfaction of some property. That is, for any property
p ∈ SProps, there exists C such that |=SIL {p}C{q} ̸⇔ JCK ⊆ p. Indeed,
C ⇋ while Jx .

= xK do skip od is a (uniform) witness:

|=SIL {p}while Jx .
= xK do skip od{q} ̸⇔ JCK ⊆ p,

43

since the left side is false, whereas the right side is trivially true. Therefore,
there does not exist p : SAsrts2 → SProps such that for all p, C and q, |=SIL

{p}C{q} ⇔ JCK ⊆ p(p, q).
In order to show further examples, we first need to generalize our state

model to reason about non-termination, i.e. Stacks↑ ⇋ Stacks ∪ {↑}, where
↑ /∈ Stacks is denoting divergence. We generalize J·K to J·K↑ in the obvious way,
e.g. Jwhile Jx .

= xK do skip odK↑ = {⟨s, ↑⟩ | s ∈ Stacks↑}. We also generalize
heapless program property to be any p ⊆ Stacks↑ × Stacks↑ (and its satisfaction
analogously) and trust that the context will clear any ambiguities31. Then the
heapless property ”termination on p” is

p ⇋ {⟨s, s′⟩ ∈ Stacks× Stacks↑ | s ∈ p ⇒ s′ ̸=↑},

i.e. any program C satisfying p, JCK↑ ⊆ p, terminates for any execution path,
starting with input state s ∈ p. Formally, let

div(s, C) ⇋ s ̸= ↑⇒ ∃f : ℕ → SConfs. f(0) = s ∧ ∀n ∈ ℕ. f(n) → f(n+ 1),

where SConfs is the set of all heapless program configurations, and

JCK↑ ⇋ JCK ∪ {⟨s, ↑⟩ | s ∈ Stacks↑ ∧ div(s, C)}.

Then we have

∀s ∈ p.¬div(s, C) ⇐⇒ JCK↑ ⊆ {⟨s, s′⟩ ∈ Stacks× Stacks↑ | s ∈ p ⇒ s′ ̸= ↑}.

Now that we have a way to reason about non-termination, one might expect
that we can now equivalently state SIL’s validity, but it remains impossible. To
show this, we define validity over this generalized state model32:

|=↑
HL {p}C{q} def⇐⇒ ∀s ∈ p.∀s′ ̸= ↑. ⟨s, s′⟩ ∈ JCK↑ ⇒ s′ ∈ q

and

|=↑
SIL {p}C{q} def⇐⇒ ∀s ∈ p.∃s′ ∈ q \ {↑}. ⟨s, s′⟩ ∈ JCK↑.

The initial HL example can be equivalently stated as follows

|=↑
HL {p}C{q} ⇔ JCK↑ ⊆ {⟨s, s′⟩ | s ∈ p ⇒ s′ ∈ q ∨ s′ = ↑}.

We claim that there isn’t p such that for all C,

|=↑
SIL {J⊤K}C{J⊤K} ⇐⇒ JCK↑ ⊆ p,

Indeed, suppose that such property exists. Then, since

|=↑
SIL {J⊤K}C{J⊤K} ⇒ JCK↑ ⊆ p,

31In general, (heapless) program properties are defined using infinite traces, where the final
state repeats upon termination, rather than input-output pairs—an approach that is essential
for parallel programs.

32We also show the generalization of HL’s validity to further clarify the concept.

44

it follows that p must contain all pairs ⟨s, ↑⟩, s ∈ Stacks↑, since for

C ⇋ skip+while Jx .
= xK do skip od,

we have that |=↑
SIL {J⊤K}C{J⊤K} and hence

{⟨s, s⟩, ⟨s, ↑⟩ | s ∈ Stacks↑} = JCK↑ ⊆ p.

But then the heapless program command C ′ ⇋ while Jx .
= xK do skip od

with JC ′K↑ = {⟨s, ↑⟩ | s ∈ Stacks↑} satisfies p, i.e. JC ′K↑ ⊆ p, whereas

̸|=↑
SIL {J⊤K}C ′{J⊤K} - contradiction. Therefore, |=↑

SIL {p}C{q} cannot be
equivalently stated via satisfiability of (heapless) program properties.

In order to equivalently state |=SIL {p}C{q}, |=OL {p}C{q} and |=RHL {p}C{q},
we introduce the so called heapless program hyperproperties.

Definition 2.60. A heapless program hyperproperty P is a set of sets of pairs

of heapless program states, i.e. P ⊆ P(Stacks2).

We denote the set of all heapless program hyperproeprties by SHProps. We
will use the meta symbol P with potential indices to denote a heapless program
hyperproperty.

Definition 2.61. We say that a heapless command C satisfies a heapless pro-
gram hyperpropery P iff JCK ∈ P.

We can equivalently state |=HL {p}C{q}, |=SIL {p}C{q}, |=OL {p}C{q}
and |=RHL {p}C{q}, using heapless hyperproperties:

|=HL {p}C{q} ⇔ JCK ∈ {X ⊆ Stacks2 | ∀s ∈ p.∀s′. ⟨s, s′⟩ ∈ X ⇒ s′ ∈ q}
|=SIL {p}C{q} ⇔ JCK ∈ {X ⊆ Stacks2 | ∀s ∈ p.∃s′ ∈ q. ⟨s, s′⟩ ∈ X}
|=OL {P}C{Q} ⇔ JCK ∈ {X ⊆ Stacks2 | ∀S ∈ P.X[S] ∈ Q}

|=RHL {r}CC{s} ⇔ JCK ∈ {X ⊆ Stacks2 | ∀
[
s1
s2

]
∈ r.∀s′1 ∈ X[{s1}].∀s′2 ∈ X[{s2}].

[s′1
s′2

]
∈ s},

where

|=OL {P}C{Q} def⇐⇒ ∀S ∈ P. JCK[S] ∈ Q

and

|=RHL {r}C1
C2
{s} def⇐⇒ ∀

[
s1
s2

]
∈ r.∀s′1 ∈ JC1K[{s1}].∀s′2 ∈ JC2K[{s2}].

[s′1
s′2

]
∈ s.

Note that, unlike RSL, simultaneous divergence is not taken into account in
RHL (see [Benton 2004]), which we believe to be purely a design choice in the
sense that both alternatives are viable, each with its differences. Had it been
considered, we would need the generalized state model—the one that accounts
for non-termination—to state it equivalently with heapless program hyperprop-
erties.

In general, (see [Clarkson and Schneider 2008]) heapless program hyperprop-
erties are defined via program traces—infinite sequences of states—to facilitate
reasoning about concurrency. This, however, lies outside the scope of this thesis.

45

2.7 Hyper Hoare logic

2.7.1 Semantics

The final preliminary Hoare-style logic we need to introduce is Hyper Hoare
logic (abbreviated HHL; see [Dardinier and Müller 2024]), which is, in fact, the
logic whose separation variant we aim to design in this thesis and more pre-
cisely, its frame rule. Similarly to OL, HHL’s pre- and postconditions are not
merely sets of (heapless) states, but rather sets of sets of (heapless) states, called
analogously heapless hyper-assertions (or heapless hassertions). However, a key
difference is that in OL, they consider only specific type of heapless hasser-
tions (see [Zilberstein et al. 2023]), whereas HHL considers arbitrary heapless
hassertions. In [Dardinier and Müller 2024], they show that they can prove
or disprove arbitrary heapless program hyperproperties. Therefore, using their
validity, they can capture HL, SIL, OL, RHL and beyond. Note that they use
logical variables in addition to the program variables, whereas we won’t for sim-
plicity. However, we will still be able to capture the essence of these 4 logics
with this simplification in place.

Definition 2.62. A heapless hyper-assertion (or heapless hassertion) P is a set
of heapless assertions.

We denote the set of all heapless hassertions by SHAsrts. We will use the
meta symbols P,Q,R, F with potential indices to denote heapless hassertion.

Definition 2.63. A heapless hyper-triple {P}C{Q} is an ordered triple (with
a special syntax {·} · {·}), where P and Q are heapless hassertions and C is a
heapless program command.

Definition 2.64. A heapless hyper-triple {P}C{Q} validity is defined as fol-
lows:

|=HHL {P}C{Q} def⇐⇒ ∀S ∈ P. JCK[S] ∈ Q.

Intuitively, an HHL triple {P}C{Q} is valid iff the strongest postcondition
of every p ∈ P and C belongs to Q, i.e. ∀p ∈ P. sp(p, C) ∈ Q. A rule that sheds
light on the nature of HHL is

|=HHL {P}C1{Q1} |=HHL {P}C2{Q2}
(Choice)

|=HHL {P}C1 + C2{Q1 ⊗Q2} .

Note that the resulting postcondition is Q1⊗Q2 = {S1∪S2 | S1 ∈ Q1∧S2 ∈ Q2}
and not Q1 ∪Q2. That’s because sp(p, C1 + C2) = sp(p, C1) ∪ sp(p, C2) and by
the assumption we know that sp(p, C1) ∈ Q1 and sp(p, C2) ∈ Q2. Therefore,
sp(p, C1 + C2) ∈ Q1 ⊗ Q2. If we were to show that sp(p, C1 + C2) ∈ Q1 ∪ Q2,
then it would’ve been the case that sp(p, C1 +C2) ∈ Q1 or sp(p, C1 +C2) ∈ Q2,
which is clearly not the case (in general). An example, illustrating the above:

|=HHL {
P

{{s}}}x := J0 K{
Q1

{{s0x}}} |=HHL {
P

{{s}}}x := J1 K{
Q2

{{s1x}}}
|=HHL {{{s}}

P

}x := J0 K + x := J1 K{{{s0x, s1x}}
Q1⊗Q2

} .

46

It is clear that {s0x, s1x} /∈ Q1 ∪Q2.
In a similar manner to sp(p, C), we define SP(P,C) ⇋ {JCK[S] | S ∈ P} and

show that for any P,Q and C:

1. |=HHL {P}C{SP(P,C)}; and

2. |=HHL {P}C{Q} ⇒ SP(P,C) ⊆ Q.

[Dardinier and Müller 2024] establish the (semantic) completeness of HHL, with
the only non-tivial aspect being the inductive steps for C ≡ C1 + C2 and C ≡
C0

∗. Notably, only one direction holds: SP(P,C1+C2) ⊆ SP(P,C1)⊗SP(P,C2)
for arbitrary P and C.

Let 𝕤 ∈ Stacks be such that ∀x. 𝕤(x) = 0. Now, the choice rule

|=HHL {
P

{{𝕤}, {𝕤2x}}}skip{
Q1

{{𝕤}, {𝕤2x}}} |=HHL {
P

{{𝕤}, {𝕤2x}}}x := Jx+ 1 K{
Q2

{{𝕤1x}, {𝕤3x}}} (Choice)
|=HHL {{{𝕤}, {𝕤2x}}

P

}skip+ x := Jx+ 1 K{{{𝕤, 𝕤1x}, {𝕤, 𝕤3x}, {𝕤2x, 𝕤1x}, {𝕤2x, 𝕤3x}}
Q1⊗Q2

}

does not yield the strongest postcondition, despite the premises having the
strongest postcondition, i.e. SP(P, skip) = Q1 and SP(P, x := Jx + 1 K) = Q2,
but SP(P, skip + x := Jx + 1 K) ⊃ Q1 ⊗ Q2. Note that |SP(P,C)| ≤ |P |, since
every assertion p from the hassertion P ends up as sp(p, C) in the postcondi-
tion Q and since sp(p1, C) and sp(p2, C) could coincide for different p1, p2 ∈ P .
To overcome the problem above, we work with hassertions P with cardinality
1. Then it is guaranteed that the strongest postcondition Q = SP(P,C) has
cardinality 1, i.e. |P | = 1 ⇒ |SP(P,C)| = 1. That way, applying the choice
rule won’t join sp({𝕤}, skip) = {𝕤} with sp({𝕤2x}, x := Jx + 1 K) = {𝕤3x} and
sp({𝕤2x}, skip) = {𝕤2x} with sp({𝕤}, x := Jx + 1 K) = {𝕤1x}, since the precondi-
tion cannot have cardinality 2, i.e. P cannot be {{𝕤}, {𝕤2x}}. After obtaining
the strongest postcondition, by applying the choice rule over premises with pre-
condiitons with cardinality 1, we apply the union rule

|=HHL {P1}C{Q1} |=HHL {P2}C{Q2}
(Union)

|=HHL {P1 ∪ P2}C{Q1 ∪Q2} ,

which preserves the strongest postcondition:

|=HHL {
P1

{{𝕤}}}skip{
Q11

{{𝕤}}} |=HHL {
P1

{{𝕤}}}x := Jx+ 1 K{
Q12

{{𝕤1x}}} (Choice)
|=HHL {{{𝕤}}

P1

}skip+ x := Jx+ 1 K{{{𝕤, 𝕤1x}}
Q11⊗Q12

}
|=HHL {

P2

{{𝕤2x}}}skip{
Q21

{{𝕤2x}}} |=HHL {
P2

{{𝕤2x}}}x := Jx+ 1 K{
Q22

{{𝕤3x}}} (Choice)
|=HHL {{{𝕤2x}}

P2

}skip+ x := Jx+ 1 K{{{𝕤2x, 𝕤3x}}
Q21⊗Q22

}

(Union)
|=HHL {{{𝕤}, {𝕤2x}}

P1∪P2

}skip+ x := Jx+ 1 K{ {{𝕤, 𝕤1x}, {𝕤2x, 𝕤3x}}
(Q11⊗Q12)∪(Q21⊗Q22)

} .

For infinite preconditions, the same approach is applied, but with the infinite
union rule

for all i ∈ I. |=HHL {Pi}C{Qi}
(Idx-Union)

|=HHL {
⋃
i∈I

Pi}C{
⋃
i∈I

Qi} .

47

The iteration case of the induction hypothesis follows analogously, using the
rule

for all n ∈ ℕ. |=HHL {In}C{In+1}
(Iter)

|=HHL {I0}C∗{
⊗
n∈ℕ

In} ,

where
⊗

i∈I Xi ⇋ {
⋃

i∈I f(i) | ∀i ∈ I. f(i) ∈ Xi}33. More precisely, we

break down the precondition P =
⋃

p∈P X
(p)
0 , where X

(p)
0 = {p} and define

X
(p)
n+1 ⇋ SP(X

(p)
n , C), each with cardinality of 1. Then by the iteration rule,

we obtain |=HHL {X(p)
0 }C∗{

⊗
n∈ℕ X

(p)
n }, where |

⊗
n∈ℕ X

(p)
n | = 1 and hence

is the strongest postcondition. Therefore, by the infinite union rule, we ob-

tain that |=HHL {
⋃

p∈P X
(p)
0 }C∗{

⋃
p∈P

(⊗
n∈ℕ X

(p)
n

)
}. Finally, since infinite

union preserves the strongest postcondition (easily verifiable), we conclude that

SP(P,C∗) =
⋃

p∈P

(⊗
n∈ℕ X

(p)
n

)
.

2.7.2 Syntax

Let SVars be a countably infinite set of stack variables such that SVars∩PVars =
∅. We introduce a slight alteration of the syntax presented in [Dardinier and
Müller 2024].

Definition 2.65. We define heapless ℕ-hassertions using BNF:

P ⇋ ⊤ | ⊥ | s(p) | [s1s2](R) | ∃x.P | ∀x.P | ∃⟨s⟩.P | ∀⟨s⟩.P | (P∧P) | (P∨P),

where p is a heapless ℕ-assertion, R is a heapless ℕ-rassertion34, x ∈ PVars
and s, s1, s2 ∈ SVars.

Note that the notation ⟨·⟩ is used purely for readability. That is, since
PVars ∩ SVars = ∅, then the distinction between s ∈ SVars and x ∈ PVars is
clear regardless. The interpretation of interest J·KΣ, where Σ : SVars → Stacks,

33Informally, if I = {i1, i2, . . .} is countable, then
⊗

i∈I Xi = {Si1 ∪ Si2 ∪ . . . | Si1 ∈
Xi1 ∧ Si2 ∈ Xi2 ∧ . . .}.

34We trust that the reader can define such a notion.

48

is as follows:

J⊤KΣ ⇋ SAsrts

J⊥KΣ ⇋ ∅
Js(p)KΣ ⇋ {S ∈ SAsrts | Σ(s) ∈ JpK}

J
[
s1
s2

]
(R)KΣ ⇋ {S ∈ SAsrts |

[Σ(s1)
Σ(s2)

]
∈ JRK}

J∃x.PKΣ ⇋ {S ∈ SAsrts | ∃n. {snx | s ∈ S} ∈ JPK(λs.Σ(s)nx)
}

J∀x.PKΣ ⇋ {S ∈ SAsrts | ∀n. {snx | s ∈ S} ∈ JPK(λs.Σ(s)nx)
}

J∃⟨s⟩.PKΣ ⇋ {S ∈ SAsrts | ∃s ∈ S. S ∈ JPKΣs
s
}

J∀⟨s⟩.PKΣ ⇋ {S ∈ SAsrts | ∀s ∈ S. S ∈ JPKΣs
s
}

JP ∧QKΣ ⇋ JPKΣ ∩ JQKΣ
JP ∨QKΣ ⇋ JPKΣ ∪ JQKΣ.

The formulae P of interest are those with no free variables from SVars, i.e.
fv(P) ∩ SVars = ∅.

Lemma 2.66. Let P,Σ and Σ′ be such that ∀s ∈ fv(P) ∩ SVars.Σ(s) = Σ′(s).
Then JP KΣ = JP KΣ′ .

Proof. See lemma inter depends on free2 in HeaplessSyntax.thy.

Corollary 2.67. Let P be such that fv(P) ∩ SVars = ∅. Then for every Σ and
Σ′, JP KΣ = JP KΣ′ .

Proof. Follows directly by lemma 2.66.

Since we will consider only such closed formulae (w.r.t. SVars) and they are
not dependent on Σ, then we introduce the abbreviation JP K ⇋ JP KΣ0

, for some
fixed Σ0.

2.7.3 Expressivity

Using this syntax, HHL can capture HL, SIL, OL and RHL:

Lemma 2.68. The following properties hold:

1. |=HL {JpK}C{JqK} ⇐⇒ |=HHL {J∀⟨s⟩. s(p)K}C{J∀⟨s⟩. s(q)K}

2. |=SIL {JpK}C{JqK} ⇐⇒ |=HHL {J∃⟨s⟩. s(p)K}C{J∃⟨s⟩. s(q)K}

3. |=OL {JPK}C{JQK} ⇐⇒ |=HHL {JencOL(P)K}C{JencOL(Q)K}, where

� Let toDNF be an algorithm, which takes as an input OL formula and
returns an OL formula such that for any OL formula P, we have
JtoDNF(P)K = JPK and

toDNF(P) = (P+(p
(1)
1)⊗. . .⊗P+(p(1)

n1
))∨. . .∨(P+(p

(k)
1)⊗. . .⊗P+(p(k)

nk
)),

49

where the syntax of OL is P ⇋ P+(p) | P ∨ P | P ⊗ P,p ∈
SynSAsrts35. Such an algorithm exists—analogous to how every propo-
sitional formula can be algorithmically transformed into disjunctive
normal form—since ⊗ distributes over ∨.

� Now, encOL(P) is defined as follows

encOL(P) ⇋ P1 ∨ . . . ∨Pk,

where

Pi ⇋
(
∀⟨s⟩. s(p(i)

1 ∨. . .∨p(i)
ni

)
)
∧
(
∃⟨s⟩. s(p(i)

1)
)
∧. . .∧

(
∃⟨s⟩. s(p(i)

ni
)
)
, i ∈ {1, . . . , k}

and

toDNF(P) = (P+(p
(1)
1)⊗. . .⊗P+(p(1)

n1
))∨. . .∨(P+(p

(k)
1)⊗. . .⊗P+(p(k)

nk
)).

Note that replacing all base hassertions P+(p) with ∀⟨s⟩. s(p) would have
provided a sufficient encoding. However, we presented this alternative en-
coding to give a clearer intuition for the later introduced properties (OSL1)
and (OSLk).

4. Let JRK ⊆ J
[
t

.
=1
t

.
=2

]
K, t /∈ md(C). Then |=RHL {JRK}CC{JSK} ⇐⇒ |=HHL

{JencRHL(R, t)K}C{JencRHL(S, t)K}, where

encRHL(R, t) ⇋ ∀⟨s1⟩.∀⟨s2⟩. s1(¬ t
.
= 1) ∨ s2(¬ t

.
= 2) ∨

[
s1
s2

]
(R).

Proof.

1. Since J∀⟨s⟩. s(p)K = {S | S ⊆ JpK} and

|=HHL {{S | S ⊆ p}}C{{S | S ⊆ q}} ⇐⇒ ∀S ⊆ p. JCK[S] ⊆ q

⇐⇒ ∀s ∈ p. JCK[{s}] ⊆ q

⇐⇒ ∀s ∈ p. ∀s′. ⟨s, s′⟩ ∈ JCK ⇒ s′ ∈ q

⇐⇒ |=HL {p}C{q};

2. Since J∃⟨s⟩. s(p)K = {S | S ∩ JpK ̸= ∅} and

|=HHL {{S | S ∩ p ̸= ∅}}C{{S | S ∩ q ̸= ∅}} ⇐⇒ ∀S. S ∩ p ̸= ∅ ⇒ JCK[S] ∩ q ̸= ∅
⇐⇒ ∀s ∈ p. JCK[{s}] ∩ q ̸= ∅
⇐⇒ ∀s ∈ p.∃s′. ⟨s, s′⟩ ∈ JCK ∧ s′ ∈ q

⇐⇒ |=SIL {p}C{q};

3. Since JPK = JtoDNF(P)K = JencOL(P)K and |=HHL {P}C{Q} ⇐⇒ |=OL {P}C{Q};
35Strictly speaking, this is the (heapless variant of the) syntax of OSL rather than the

syntax of OL. However, since our goal is to demonstrate that our logic captures OSL, we
present this informal blend of OL and OSL.

50

4. Since, by definition, we’ve that for any P, J∀⟨s1⟩.∀⟨s2⟩. s1(¬ t
.
= 1) ∨

s2(¬ t
.
= 2) ∨ PKΣ = {S | ∀s1 ∈ S. ∀s2 ∈ S. s1(t) = 1 ⇒ s2(t) = 2 ⇒

S ∈ JPKΣs1,s2
s1,s2

}. Therefore, JencRHL(R)K = {S | ∀s1 ∈ S. ∀s2 ∈ S. s1(t) =

1 ⇒ s2(t) = 2 ⇒
[
s1
s2

]
∈ JRK}. Let’s denote the semantic encoding with

ENCRHL(r, t) ⇋ {S | ∀s1 ∈ S.∀s2 ∈ S. s1(t) = 1 ⇒ s2(t) = 2 ⇒
[
s1
s2

]
∈

r}. Now, the claim follows since JencRHL(R, t)K = ENCRHL(JRK, t) and

|=HHL {ENCRHL(r, t)}C{ENCRHL(s, t)} ⇐⇒ ∀S. S1 × S2 ⊆ r ⇒ (JCK[S])1 × (JCK[S])2 ⊆ s

⇐⇒ ∀S. S1 × S2 ⊆ r ⇒ (JCK[S1])1 × (JCK[S2])2 ⊆ s

⇐⇒ ∀
[
s1
s2

]
∈ r.∀s′1 ∈ JCK[{s1}].∀s′2JCK[{s2}].

[s′1
s′2

]
∈ s

⇐⇒ |=RHL {Rp}CC{Rq},

where Si ⇋ {s ∈ S | s(t) = i}, i.e. ENCRHL(r) = {S | S1 × S2 ⊆ r}.

Inspired by these encodings and by the fact that we aim to design a most
general frame rule36, it would be ideal if we can obtain the frame rules of SL,
SSIL, OSL and RSL directly from our frame rule. That is, ideally

(SL) J∀⟨s⟩. s(p)K ⋆ J∀⟨s⟩. s(f)K = J∀⟨s⟩. s(p ∗ f)K;

(SSIL) J∃⟨s⟩. s(p)K ⋆ J∀⟨s⟩. s(f)K = J∃⟨s⟩. s(p ∗ f)K;

(OSL1) J(∀⟨s⟩. s(p))∧(∃⟨s⟩. s(p))K⋆J∀⟨s⟩. s(f)K = J(∀⟨s⟩. s(p ∗ f))∧(∃⟨s⟩. s(p ∗ f))K;

(OSLk) J
(
∀⟨s⟩. s(p1∨. . .∨pk)

)
∧
(
∃⟨s⟩. s(p1)

)
∧. . .∧

(
∃⟨s⟩. s(pk)

)
K⋆J∀⟨s⟩. s(f)K =

J
(
∀⟨s⟩. s((p1 ∨ . . .∨pk) ∗f)

)
∧
(
∃⟨s⟩. s(p1 ∗ f)

)
∧ . . .∧

(
∃⟨s⟩. s(pk ∗f)

)
K;

(RSL) J∀⟨s1⟩.∀⟨s2⟩. s1(¬ t
.
= 1) ∨ s2(¬ t

.
= 2) ∨

[
s1
s2

]
(R)K ⋆ J∀⟨s1⟩.∀⟨s2⟩. s1(¬ t

.
= 1) ∨ s2(¬ t

.
= 2) ∨

[
s1
s2

]
(F)K =

J∀⟨s1⟩.∀⟨s2⟩. s1(¬ t
.
= 1) ∨ s2(¬ t

.
= 2) ∨

[
s1
s2

]
(R □∗ F)K.

Note that one might expect to require

J∃⟨s⟩. s(p)K ⋆ J∃⟨s⟩. s(f)K = J∃⟨s⟩. s(p ∗ f)K

for SSIL,

J(∀⟨s⟩. s(p))∧(∃⟨s⟩. s(p))K⋆J(∀⟨s⟩. s(f))∧(∃⟨s⟩. s(f))K = J(∀⟨s⟩. s(p ∗ f))∧(∃⟨s⟩. s(p ∗ f))K

for OSL1, and an analogous condition for OSLk. However, an important prop-
erty our star, i.e. separating conjunction, must satisfy is to act like conjunction,
but to somehow ”split the heap(s)”. In particular, when we reason only about
the stack, our star must act exactly like conjunction, i.e.

J
(
∃⟨s⟩. s(x .

= 0)
)
⋆
(
∃⟨s⟩. s(y .

= 1)
)
K = J

(
∃⟨s⟩. s(x .

= 0)
)
∧
(
∃⟨s⟩. s(y .

= 1)
)
K

⊃ J∃⟨s⟩. s(x .
= 0 ∧ y

.
= 1)K

= J∃⟨s⟩. s(x .
= 0 ∗ y .

= 1)K.
36For non-parallel, non-probabilistic and nondeterministic programs.

51

So, the property we are looking for SSIL is not J∃⟨s⟩. s(p)K ⋆ J∃⟨s⟩. s(f)K =
J∃⟨s⟩. s(p ∗ f)K. On the other hand, the ”one might expect” variant of OSL(1)
is reasonable and might work. However, we refrain from designing a frame rule,
whose frame is not downward closed, since it does not appear particularly useful
for non-concurrent programs and adding such a heap is generally unsound:37

|=HHL {J∀⟨s⟩. s(x .
= 0)K}div{J∀⟨s⟩. s(x .

= 0)K}
̸|=HHL {J∀⟨s⟩. s(x .

= 0)K ⋆ J∃⟨s⟩. s(x .
= 0)K}div{J∀⟨s⟩. s(x .

= 0)K ⋆ J∃⟨s⟩. s(x .
= 0)K}

and

|=HHL {J∃⟨s⟩. s(x .
= 0)K}if Jx .

= 0 K then skip else div fi{J∃⟨s⟩. s(x .
= 0)K}

̸|=HHL {J∃⟨s⟩. s(x .
= 0)K ⋆ J∃⟨s⟩. s(y .

= 0)K}if Jx .
= 0 K then skip else div fi{J∃⟨s⟩. s(x .

= 0)K ⋆ J∃⟨s⟩. s(y .
= 0)K} ,

(1)
where div ⇋ while Jx .

= xK do skip od. The first examples’ assumption holds
trivially, since the program always diverges and the postcondition is downward
closed, i.e. for any p, sp(p,div) = ∅ belongs to any downward closed set, whereas
the conclusion fails, since its postcondition no longer contains the empty set.
The second example demonstrates that the issue is more general, extending
beyond ”removal of the empty set”. The conclusion of the second example
fails for S ⇋ {⟨𝕤1y, ∅⟩, ⟨𝕤1x, ∅⟩}38. Indeed, S ∈ J∃⟨s⟩. s(x .

= 0)K ⋆ J∃⟨s⟩. s(y .
=

0)K, since ⟨𝕤1y, ∅⟩ is a witness for J∃⟨s⟩. s(x .
= 0)K and ⟨𝕤1x, ∅⟩ is a witness for

J∃⟨s⟩. s(y .
= 0)K, but the strongest postcondition

Jif Jx .
= 0 K then skip else div fiK[S] = {⟨𝕤1y, ∅⟩} /∈ J∃⟨s⟩. s(x .

= 0)K⋆J∃⟨s⟩. s(y .
= 0)K,

since there is no witness for J∃⟨s⟩. s(y .
= 0)K. Resolving this issue is left for

future work, specifically when developing a concurrent version of HHL.

3 Hyper Separation logic

3.1 Separating conjunction

3.1.1 Desired properties

We begin by noting that we want our separating conjunction (or star), written
⋆, to be commutative, associative and to have an unit element. The rationale
for these requirements, beyond their general desirability, is presented in subsec-
tion 3.4. Moreover, we formally define what it means for the star to behave
exactly like conjunction for (h)assertions that refer only to the stack. We first
demonstrate this in the context of SL before specifying it for HSL.

Definition 3.1. We say that an assertion p is intuitionistic, denoted intu(p),
iff

∀⟨s, h0⟩ ∈ p.∀h ⊇ h0. ⟨s, h⟩ ∈ p.

37Recall that ⋆ has to act like ∩ when reasoning about the stack only.
38Recall that 𝕤 is (λx. 0).

52

Consider the assertions Jx .
= 0K, J¬x .

= 0 K, Jx 7→ 0 K and J¬x 7→ 0 K, the
first three of which are intuitionistic, i.e. states with larger heaps (and the
same stores) are being preserved. This, however, is not true for the last, since
⟨s5x, ∅⟩ ∈ J¬x 7→ 0 K, but ⟨s5x, ∅15⟩ /∈ J¬x 7→ 0 K, for any s.

Lemma 3.2. Let p, q be intuitionistic. Then p ∗ q is intuitionistic.

Proof. Let s, h and H be such that ⟨s, h⟩ ∈ p ∗ q and h ⊆ H. By the definition
of ∗ we obtain hp, hq where h = hp ∪ hq, hp⊥hq, ⟨s, hp⟩ ∈ p and ⟨s, hq⟩ ∈ q. Let
Hp ⇋ H ↾ Dom(hp) and Hq ⇋ H \Hp, where f ↾ A ⇋ f ∩ (A×Rng(f)) is the
restriction of function f to the set A. Then hp ⊆ Hp and hq ⊆ Hq, hence by the
assumption ⟨s,Hp⟩ ∈ p and ⟨s,Hq⟩ ∈ q. Moreover, H = Hp ∪Hq and Hp⊥Hq,
therefore ⟨s,H⟩ ∈ p ∗ q.

Definition 3.3. We say that an assertion p is pure, denoted pure(p), iff

∀⟨s, h⟩ ∈ p.∀h′. ⟨s, h′⟩ ∈ p.

Consider the same 4 assertions Jx .
= 0K, J¬x .

= 0 K, Jx 7→ 0 K and J¬x 7→ 0 K.
Now, only the first two of them are pure, i.e. they are stack-only dependent. It
is evident that if pure(p), then intu(p).

Lemma 3.4. Let p, q be pure. Then p ∗ q is pure.

Proof. Let s, h and h′ be such that ⟨s, h⟩ ∈ p ∗ q. By the definition of ∗ we
obtain hp, hq where ⟨s, hp⟩ ∈ p and ⟨s, hq⟩ ∈ q. By the assumption we derive
that ⟨s, h′⟩ ∈ p and ⟨s, ∅⟩ ∈ q. Since h′ = h′ ∪ ∅ and h′⊥∅, we conclude that
⟨s, h′⟩ ∈ p ∗ q.

Lemma 3.5. Let p ∈ SynAsrtsℕ not contain emp, x 7→ e, x 7→ ⊥ for any
x ∈ PVars and e ∈ AExpsℕ. Then pure(JpK).

Proof. Induction on p:

� Base cases follow trivially;

� p ≡ p1 ∗p2

Let s, h and h′ be such that ⟨s, h⟩ ∈ Jp1 ∗ p2K. By the definition of ∗,
we obtain heaps h1, h2 such that ⟨s, h1⟩ ∈ Jp1K and ⟨s, h2⟩ ∈ Jp2K. By
the i.h., we have that ⟨s, h′⟩ ∈ Jp1K and ⟨s, ∅⟩ ∈ Jp2K. Therefore, by the
definition of ∗, we conclude that ⟨s, h′⟩ ∈ Jp1 ∗p2K;

� p ≡ p1 ∧p2

Let s, h and h′ be such that ⟨s, h⟩ ∈ Jp1 ∧p2K = Jp1K∩ Jp2K. By the i.h.,
we obtain ⟨s, h′⟩ ∈ Jp1K ∩ Jp2K = Jp1 ∧p2K;

� p ≡ p1 ∨p2

Let s, h and h′ be such that ⟨s, h⟩ ∈ Jp1 ∨ p2K = Jp1K ∪ Jp2K. By the
i.h., considering the two cases ⟨s, h⟩ ∈ Jp1K and ⟨s, h⟩ ∈ Jp2K, we obtain
⟨s, h′⟩ ∈ Jp1K ∪ Jp2K = Jp1 ∨p2K;

53

� p ≡ p1 ⇒ p2

Let s, h and h′ be such that ⟨s, h⟩ ∈ Jp1 ⇒ p2K. Then ⟨s, h⟩ ∈ Jp1K∪Jp2K.
Consider the case ⟨s, h⟩ ∈ Jp1K. Then ⟨s, h⟩ /∈ Jp1K and by the i.h.,
⟨s, h′⟩ /∈ Jp1K, i.e. ⟨s, h′⟩ ∈ Jp1K. The other case follows directly by the
i.h. Therefore ⟨s, h′⟩ ∈ Jp1 ⇒ p2K;

� p ≡ p1 ⇔ p2

Let s, h and h′ be such that ⟨s, h⟩ ∈ Jp1 ⇔ p2K. Then ⟨s, h⟩ ∈ (Jp1K ∩
Jp2K) ∪ (Jp1K ∩ Jp2K). Analogously, considering two the cases ⟨s, h⟩ ∈
Jp1K ∩ Jp2K and ⟨s, h⟩ ∈ Jp1K ∩ Jp2K;

� p ≡ ¬p0 - Analogously;

� p ≡ ∃x.p0

Let s, h and h′ be such that ⟨s, h⟩ ∈ J∃x.p0K. Then let n be such that
⟨snx , h⟩ ∈ Jp0K. Now, by the i.h., ⟨snx , h′⟩ ∈ Jp0K and hence ⟨s, h⟩ ∈
J∃x.p0K;

� p ≡ ∀x.p0 - Analogously.

Lemma 3.6. Let p, q be assertions such that intu(p) and pure(q). Then p ∗ q =
p ∩ q.

Proof. We prove both inclusions individually:

� p ∗ q ⊆ p ∩ q

Let ⟨s, h⟩ ∈ p ∗ q. By the definition of ∗, we obtain hp, hq such that
h = hp ∪ hq, hp⊥hq, ⟨s, hp⟩ ∈ p and ⟨s, hq⟩ ∈ q. Moreover, hp ⊆ h since
hp ⊆ h. Therefore, using ⟨s, hp⟩ ∈ p and intu(p), we obtain that ⟨s, h⟩ ∈ p.
Now, since ⟨s, hq⟩ ∈ q and by the pureness of q, we obtain that ⟨s, h⟩ ∈ q.
Therefore ⟨s, h⟩ ∈ p ∩ q.

� p ∩ q ⊆ p ∗ q
Let ⟨s, h⟩ ∈ p ∩ q. Then ⟨s, ∅⟩ ∈ q by the pureness of q. Therefore, by the
definition of ∗, we conclude that ⟨s, h⟩ ∈ p ∗ q.

Corollary 3.7. Let p, q be assertions such that pure(p) and pure(q). Then
p ∗ q = p ∩ q.

Proof. Follows directly from lemma 3.6 and the fact that ∀p. pure(p) ⇒ intu(p).

54

We will now define a notion of intuitionisticity and pureness for hassertions
and formally state the requirements for our star: it should preserve intuitionis-
ticity and pureness and coincide with conjunction when one argument is intu-
itionistic and the other is pure.

The syntax for ℕ-hassertions is not yet clear, but we aim to be something
similar to that of heapless ℕ-hassertions. For example, we want to include (at
least) ∀⟨s⟩. s(p) and ∃⟨s⟩. s(p), where p ∈ SynSAsrtsℕ. Note that pure(JpK),
since p ∈ SynSAsrtsℕ, i.e. it depends only on the stack. We want to define a
notion of pureness, such that Pure(J∀⟨s⟩. s(p)K) and Pure(J∃⟨s⟩. s(p)K), where
pure(JpK) and similarly for intuitionisticity. Semantically, we require that if p
is pure (intuitionistic), then {S | S ⊆ p} and {S | S ∩ p ̸= ∅} are also pure
(intuitionistic).

Definition 3.8. We say that a hassertion P is pure, denoted Pure(P), iff

∀S ∈ P.∀S′.
(
(∀⟨s, h⟩ ∈ S. ∃h′. ⟨s, h′⟩ ∈ S′)∧(∀⟨s, h′⟩ ∈ S′.∃h. ⟨s, h⟩ ∈ S)

)
⇒ S′ ∈ P.

Lemma 3.9. Let p be pure. Then {S | S ⊆ p} and {S | S ∩ p ̸= ∅} are pure.

Proof. We show individually:

� Pure({S | S ⊆ p})
Let S and S′ be such that S ∈ {S | S ⊆ p} and ∀⟨s, h′⟩ ∈ S′.∃h. ⟨s, h⟩ ∈ S.
Then, since S ⊆ p, it follows that ∀⟨s, h′⟩ ∈ S′.∃h. ⟨s, h⟩ ∈ p. Now, since
pure(p), we obtain that ∀⟨s, h′⟩ ∈ S′. ⟨s, h′⟩ ∈ p. Therefore S′ ∈ {S | S ⊆
p}.

� Pure({S | S ∩ p ̸= ∅})
Let S and S′ be such that S ∈ {S | S∩p ̸= ∅} and ∀⟨s, h⟩ ∈ S. ∃h′. ⟨s, h′⟩ ∈
S′. Let s and h be such that ⟨s, h⟩ ∈ S and ⟨s, h⟩ ∈ p. Now, let h′ be such
that ⟨s, h′⟩ ∈ S′. By the pureness of p and that ⟨s, h⟩ ∈ p, it follows that
⟨s, h′⟩ ∈ p. Therefore ⟨s, h′⟩ ∈ S′ ∩ p, hence S′ ∈ {S | S ∩ p ̸= ∅}.

Definition 3.10. We say that a hassertion P is intuitionistic, denoted Intu(P),
iff

∀S ∈ P.∀S′.
(
(∀⟨s, h⟩ ∈ S. ∃h′ ⊇ h. ⟨s, h′⟩ ∈ S′)∧(∀⟨s, h′⟩ ∈ S′.∃h ⊆ h′. ⟨s, h⟩ ∈ S)

)
⇒ S′ ∈ P.

Lemma 3.11. Let p be intuitionistic. Then {S | S ⊆ p} and {S | S ∩ p ̸= ∅}
are intuitionistic.

Proof. We show individually:

� Intu({S | S ⊆ p})
Let S and S′ be such that S ∈ {S | S ⊆ p} and ∀⟨s, h′⟩ ∈ S′.∃h ⊆
h′. ⟨s, h⟩ ∈ S. Then, since S ⊆ p, it follows that ∀⟨s, h′⟩ ∈ S′.∃h ⊆
h′. ⟨s, h⟩ ∈ p. Now, since intu(p), we obtain that ∀⟨s, h′⟩ ∈ S′. ⟨s, h′⟩ ∈ p.
Therefore S′ ∈ {S | S ⊆ p}.

55

� Intu({S | S ∩ p ̸= ∅})
Let S and S′ be such that S ∈ {S | S ∩ p ̸= ∅} and ∀⟨s, h⟩ ∈ S. ∃h′ ⊇
h. ⟨s, h′⟩ ∈ S′. Let s and h be such that ⟨s, h⟩ ∈ S and ⟨s, h⟩ ∈ p. Now,
let h′ be such that h ⊆ h′ and ⟨s, h′⟩ ∈ S′. By the intuitionisticity of p,
⟨s, h⟩ ∈ p and h ⊆ h′, it follows that ⟨s, h′⟩ ∈ p. Therefore ⟨s, h′⟩ ∈ S′ ∩ p,
hence S′ ∈ {S | S ∩ p ̸= ∅}.

To summarize, our goal is to design a star, ⋆, which satisfies the following
properties:

1. (unit) ∃U.∀P. P ⋆ U = P

2. (commutativity) P ⋆ Q = Q ⋆ P

3. (associativity) (P ⋆ Q) ⋆ R = P ⋆ (Q ⋆ R)

4. (monotonicity) P ⊆ P ′ ⇒ Q ⊆ Q′ ⇒ P ⋆ Q ⊆ P ′ ⋆ Q′

5. (∪-distributivity) (P ∪Q) ⋆ F = (P ⋆ F) ∪ (Q ⋆ F)

6. (
⋃
-distributivity) (

⋃
P∈X P) ⋆ F =

⋃
P∈X(P ⋆ F)

7. (⊗-distributivity) (P ⊗Q) ⋆ F = (P ⋆ F)⊗ (Q ⋆ F)

8. (
⊗

-distributivity) (
⊗

P∈X P) ⋆ F =
⊗

P∈X(P ⋆ F)

9. (pure-intersection) Intu(P) ⇒ Pure(Q) ⇒ P ⋆ Q = P ∩Q

10. (Intu-preserving) Intu(P) ⇒ Intu(Q) ⇒ Intu(P ⋆ Q)

11. (Pure-preserving) Pure(P) ⇒ Pure(Q) ⇒ Pure(P ⋆ Q)

12. (operational-coherence) SP(P ⋆ F,C) = SP(P,C) ⋆ F ,
for appropriate frames F and definition of SP

13. (FR-SL) {S | S ⊆ p} ⋆ {S | S ⊆ f} = {S | S ⊆ p ∗ f}

14. (FR-SSIL) {S | S ∩ p ̸= ∅} ⋆ {S | S ⊆ f} = {S | S ∩ (p ∗ f) ̸= ∅}

15. (FR-OSL-1) {S | S ⊆ p ∧ S ∩ p ̸= ∅} ⋆ {S | S ⊆ f} = {S | S ⊆ p ∗ f ∧ S ∩ (p ∗ f) ̸= ∅}

16. (FR-OSL-2) {S | S ⊆ p1 ∪ p2 ∧S ∩ p1 ̸= ∅∧S ∩ p2 ̸= ∅} ⋆ {S | S ⊆ f} =
{S | S ⊆ (p1 ∪ p2) ∗ f ∧ S ∩ (p1 ∗ f) ̸= ∅ ∧ S ∩ (p2 ∗ f) ̸= ∅}39

17. (FR-RSL) {S | S1×S2 ⊆ r}⋆{S | S1×S2 ⊆ f} = {S | S1×S2 ⊆ r □∗ f},
where Si ⇋ {⟨s, h⟩ ∈ S | s(t) = i}.

39Note that ∗ distributes over ∪.

56

The first three properties are used in subsection 3.4 and are generally desirable.
The fourth is necessary, for instance, to establish the fifth property. Properties
5–6 are standard in separation logics, while properties 7–8 are inspired by OSL
and appear essential when generalizing a separation logic for hassertions. Prop-
erties 9–11 ensure that the star operator behaves like ordinary conjunction for
stack-only dependent hassertions. Property 12 is the most indicative, captur-
ing the expected behavior of the star. Finally, properties 13–17 are needed to
formulate the frame rules of SL, SSIL, OSL, and RSL solely through our frame
rule40.

We regard property 9 as a fundamental design requirement—it must hold.
After all, the operation is called separating conjunction, so it should behave like
a conjunction for pure hassertions, or more precisely, for one pure hassertion
and one intuitionistic one. This immediately implies that properties 7 (and its
general form, property 8) and 14 cannot hold, since they are incompatible with
property 9:

� Property 7

– F has to be downward closed

Let P ⇋ J
(
∀⟨s⟩. s(x .

= 0)
)
∧
(
∃⟨s⟩. s(x .

= 0)
)
K, Q ⇋ J

(
∀⟨s⟩. s(x .

=

1)
)
∧
(
∃⟨s⟩. s(x .

= 1)
)
K and F ⇋ J

(
∃⟨s⟩. s(x .

= 0)
)
∧
(
∃⟨s⟩. s(x .

= 1)
)
K.

Then

(P⊗Q)∩F = P⊗Q = J
(
∀⟨s⟩. s(x .

= 0∨x .
= 1)

)
∧
(
∃⟨s⟩. s(x .

= 0)
)
∧
(
∃⟨s⟩. s(x .

= 1)
)
K,

whereas
(P ∩ F)⊗ (Q ∩ F) = ∅ ⊗ ∅ = ∅.

This issue could be resolved by ensuring that F is downward closed.

– F has to be union closed

Let P ⇋ J∀⟨s⟩. s(x .
= 0)K, Q ⇋ J∀⟨s⟩. s(x .

= 1)K and F ⇋ J∀⟨s1⟩. ⟨s2⟩.
[
s1
s2

]
(∃y.

[
x

.
=y

x
.
=y

]
)K.

Then

(P ∩ F)⊗ (Q ∩ F) = P ⊗Q = J∀⟨s⟩. s(x .
= 0 ∨ x

.
= 1)K,

whereas

(P⊗Q)∩F = J∀⟨s⟩. s(x .
= 0 ∨x .

= 1)K∩F ⊂ J∀⟨s⟩. s(x .
= 0 ∨x .

= 1)K,

since {s0x, s1x} ∈ J∀⟨s⟩. s(x .
= 0 ∨ x

.
= 1)K \ F , for any s. This issue

could be resolved by ensuring that F is union closed, i.e. ∀S ∈
F.∀S′ ∈ F. S ∪ S′ ∈ F .

� Property 14

Let p ⇋ Jx .
= 0 K and f ⇋ Jx .

= 0 K. Then

{S | S∩p ̸= ∅}∩{S | S ⊆ f} = {S | S ⊆ Jx .
= 0 K∧S∩Jx .

= 0 K ̸= ∅} ⊂ {S | S∩(p∩f) ̸= ∅},
40Later, we’ll see that some of these properties don’t hold, and we’ll explore the implications

of that.

57

since the right side permits states with x ̸= 0, while the left doesn’t. In
subsection 3.4 we argue that this direction is sufficient.

Recall the definition

p ∗ q ⇋ {⟨s, hp ∪ hq⟩ | ⟨s, hp⟩ ∈ p ∧ ⟨s, hq⟩ ∈ q ∧ hp⊥hq}.

Note that the definition of p ∗ q operates in a pointwise manner, combining
individual elements from p and q whenever their heaps are disjoint. It does
not impose any additional structure on p and q as wholes but instead lifts the
heap union operation to compatible pairs. This locality is precisely why ∗ sat-
isfies monotonicity (property 4), as extending either argument with additional
elements naturally extends their combinations. In fact, this is the behavior we
want for our separating conjunction, rather than monotonicity itself being the
goal. We claim that property 17 cannot be satisfied by any such poitwise/local
⋆:

� Property 17

– Semantically

Let r ⇋ {
[⟨s1t ,h1⟩
⟨s2t ,h1⟩

]
,
[⟨s1t ,h2⟩
⟨s2t ,h2⟩

]
} and s ⇋ {

[⟨s1t ,∅⟩
⟨s2t ,h2⟩

]
,
[⟨s1t ,∅⟩
⟨s2t ,h1⟩

]
} for some s

and non-empty h1, h2 such that h1⊥h2. Then

r □∗ s = {
[⟨s1t ,h1⟩
⟨s2t ,h1∪h2⟩

]
,
[⟨s1t ,h2⟩
⟨s2t ,h1∪h2⟩

]
}.

Note how r □∗ s is ”rectangular”, i.e. it’s a cartesian product of
{⟨s1t , h1⟩, ⟨s1t , h2⟩} and {⟨s2t , h1 ∪ h2⟩}, whereas r is not rectangular.
The failure of property 17 stems from the ability to derive a rect-
angular rassertion from a non-rectangular one. More precisely, let
S ⇋ {⟨s1t , h1⟩, ⟨s1t , h2⟩, ⟨s2t , h1 ∪ h2⟩} ∈ {S | S1 × S2 ⊆ r □∗ s}. Since
we want ⋆ to be pointwise, we want Sr and Ss such that Sr ∈ {S |
S1 × S2 ⊆ r} and Ss ∈ {S | S1 × S2 ⊆ s} and that they somehow
combine up to S. Note that each element of {S | S1×S2 ⊆ r} repre-
sents a rectangular subrelation of r41. That is, ∅ represents ∅ ⊆ r42,

{⟨s1t , h1⟩, ⟨s2t , h1⟩} represents {
[⟨s1t ,h1⟩
⟨s2t ,h1⟩

]
} ⊆ r and {⟨s1t , h2⟩, ⟨s2t , h2⟩}

represents {
[⟨s1t ,h2⟩
⟨s2t ,h2⟩

]
} ⊆ r. There is no way to represent the whole

r, since it is not rectangular. Thus, we are missing either of the
two elements of r, whereas both are required to obtain r □∗ s, rep-
resented by S. Therefore, we can hope for a star, satisfying at most
{S | S1 × S2 ⊆ r} ⋆ {S | S1 × S2 ⊆ f} ⊆ {S | S1 × S2 ⊆ r □∗ f}. In
subsection 3.4 we argue that this direction is sufficient.

– Syntactically

41The elements with t /∈ {1, 2} are irrelevant, so we consider only the cases with no such
elements.

42Any set S with S1 = ∅ ∨ S2 = ∅ also represents ∅ ⊆ r.

58

Now we demonstrate that this issue can arise with semantic objects,
expressible in our syntax. Let r ⇋ J

([
z

.
=0

x 7→0

]
∨
[
z

.
=1

y 7→1

])
∧
[
t

.
=1
t

.
=2

]
K and

s ⇋ J
([

z
.
=0

y 7→1

]
∨
[
z

.
=1

x7→0

])
∧
[
t

.
=1
t

.
=2

]
K. Then

{
[⟨s0,1z,t ,∅⟩
⟨s1,2,2x,y,t,∅

0,1
1,2⟩

]
,
[⟨s1,1z,t ,∅⟩
⟨s1,2,2x,y,t,∅

0,1
1,2⟩

]
} ∈ r □∗ s,

where the witnesses are

{
[⟨s0,1z,t ,∅⟩
⟨s1,2,2x,y,t,∅

0
1⟩

]
,
[⟨s1,1z,t ,∅⟩
⟨s1,2,2x,y,t,∅

1
2⟩

]
} ∈ r

and

{
[⟨s0,1z,t ,∅⟩
⟨s1,2,2x,y,t,∅

1
2⟩

]
,
[⟨s1,1z,t ,∅⟩
⟨s1,2,2x,y,t,∅

0
1⟩

]
} ∈ s.

Again, the result is rectangular, whereas the witnesses are non-rectangular.
Moreover, there are no such rectangular witnesses.

To summarize, we weaken properties 7, 8, 14 and 17 as follows:

7. (⊗-distributivity) (P ⊗Q) ⋆ {S | S ⊆ f} = (P ⋆ {S | S ⊆ f})⊗ (Q ⋆ {S | S ⊆ f})

8. (
⊗

-distributivity) (
⊗

P∈X P) ⋆ {S | S ⊆ f} =
⊗

P∈X(P ⋆ {S | S ⊆ f})

14. (FR-SSIL) {S | S ∩ p ̸= ∅} ⋆ {S | S ⊆ f} ⊆ {S | S ∩ (p ∗ f) ̸= ∅}

17. (FR-RSL) {S | S1×S2 ⊆ r}⋆{S | S1×S2 ⊆ f} = {S | S1×S2 ⊆ r □∗ f}

Note that {S | S ⊆ f} is both downward closed and closed under union. How-
ever, not every family F with these closure properties admits a witness f such
that F = {S | S ⊆ f}. For instance, this fails for F = {∅, {0}, {0, 1}, {0, 1, 2} . . .}.
If, however, F is also closed under infinite union, then such f exists, namely
f ⇋

⋃
F . For property 7, finite union closure suffices (which we establish),

but we present this weaker condition for simplicity. In contrast, for property 8,
infinite union closure is necessary.

3.1.2 Definition

The naive definition of our star, denoted ⋆naive, given by

P ⋆naive Q ⇋ {S | S ⊆ Sp ∗ Sq ∧ Sp ∈ P ∧ Sq ∈ Q},

fails, since it considers only the ”universal part”, i.e.

{S | S ⊆ p} ⋆naive {S | S ⊆ q} = {S | S ⊆ p ∗ q},

but doesn’t consider the ”existential part”, i.e.

{S | S ∩ p ̸= ∅} ⋆naive {S | S ⊆ q} ̸⊆ {S | S ∩ (p ∩ q) ̸= ∅}.

59

That’s because if {S | S ∩ p ̸= ∅} ⋆naive {S | S ⊆ q} ≠ ∅, then we have
∅ ∈ {S | S ∩ p ̸= ∅} ⋆naive {S | S ⊆ q}. That is, we ”lose” the witness of
S ∩ p ̸= ∅.

One might suspect that this issue arises solely because we allow all possible
subsets, including those that have ”lost” the witness (of S ∩ p ̸= ∅). However,
even modifying the definition to

P ⋆′naive Q ⇋ {Sp ∗ Sq | Sp ∈ P ∧ Sq ∈ Q},

does not resolve the problem. This definition, like the original, considers only
the ”universal part”, i.e. {S | S ⊆ p} ⋆′naive {S | S ⊆ q} ⊆ {S | S ⊆ p ∗ q}43, but
doesn’t consider the ”existential part”, i.e.

{S | S ∩ p ̸= ∅} ⋆′naive {S | S ⊆ q} ̸⊆ {S | S ∩ (p ∩ q) ̸= ∅}.

Indeed, consider
{⟨s0x, ∅⟩
witness

, ⟨s1,0x,y, ∅⟩} ∈ {S | S ∩ Jx .
= 0 K}

and
{⟨s1,0x,y, ∅⟩} ∈ {S | S ⊆ Jy .

= 0 K}.

Then

{⟨s1,0x,y, ∅⟩} = {⟨s0x, ∅⟩
witness

, ⟨s1,0x,y, ∅⟩}∗{⟨s1,0x,y, ∅⟩} ∈ {S | S∩Jx .
= 0 K}⋆′naive{S | S ⊆ Jy .

= 0 K}.

Thus, ⋆′naive once again fails to preserve the witness.
The solution we propose explicitly enforces the preservation of witnesses

using the predicates

left lives(S, S1, S2)
def⇐⇒ ∀σ1 ∈ S1.∃σ ∈ S.∃σ2 ∈ S2. hAdd(σ, σ1, σ2)

and

right lives(S, S1, S2)
def⇐⇒ left lives(S, S2, S1),

where

hAdd(⟨s, h⟩, ⟨s1, h1⟩, ⟨s2, h2⟩)
def⇐⇒ s = s1 ∧ s2 ∧ h = h1 ∪ h2 ∧ h1⊥h2.

Now, two natural definitions emerge:

1. P ⋆ Q
?
⇋ {S | S = SP ∗ SQ ∧ SP ∈ P ∧ SQ ∈ Q ∧ left lives(S, SP , SQ) ∧ right lives(S, SP , SQ)};

2. P ⋆ Q
?
⇋ {S | S ⊆ SP ∗ SQ ∧ SP ∈ P ∧ SQ ∈ Q ∧ left lives(S, SP , SQ) ∧ right lives(S, SP , SQ)}.

43Note that we changed = to ⊆. Turns out, having enough of the other properties, ⊆
is actually sufficient to express the frame rule of SL, since we can generate all singletons
{σ} ⊆ p ∗ q, which can be then combined into arbitrary subset of p ∗ q with the yet not
introduced (Idx-Join) rule. This idea is explored in 3.4.2 in detail.

60

The first definition seems more natural, as it more closely mirrors the definition
of ∗. However, it fails to satisfy associativity44, even though it seems to satisfy
almost all other properties (or their slightly weaker variants). Specifically, due
to its rectangular design (i.e., its resemblance to the Cartesian product), it
satisfies at most one direction of properties 745, 8, 13, 15, and 16:

7. (⊗-distributivity) (P ⊗Q)⋆F ⊆ (P ⋆F)⊗ (Q⋆F), F - downward closed

8. (
⊗

-distributivity) (
⊗

P∈X P)⋆F ⊆
⊗

P∈X(P⋆F), F - downward closed

13. (FR-SL) {S | S ⊆ p} ⋆ {S | S ⊆ f} ⊆ {S | S ⊆ p ∗ f}

15. (FR-OSL-1) {S | S ⊆ p ∧ S ∩ p ̸= ∅} ⋆ {S | S ⊆ f} ⊆ {S | S ⊆ p ∗ f ∧ S ∩ (p ∗ f) ̸= ∅}

16. (FR-OSL-2) {S | S ⊆ p1 ∪ p2 ∧S ∩ p1 ̸= ∅∧S ∩ p2 ̸= ∅} ⋆ {S | S ⊆ f} ⊆
{S | S ⊆ (p1 ∪ p2) ∗ f ∧ S ∩ (p1 ∗ f) ̸= ∅ ∧ S ∩ (p2 ∗ f) ̸= ∅}

We believe these weaker variants would still suffice to express the four logics and
yield a reasonable logic overall—but that is clearly not the case, as associativity
is missing.

Therefore, we adopt the second option:

P⋆Q ⇋ {S | S ⊆ SP ∗SQ∧SP ∈ P∧SQ ∈ Q∧left lives(S, SP , SQ)∧right lives(S, SP , SQ)}.

Lemma 3.12. The following provides an equivalent characterization of ⋆:

P⋆Q = {S | ∃τ ∈ States3.
(
∀⟨σ, σP , σQ⟩ ∈ τ. hAdd(σ, σP , σQ)

)
∧ π3

1(τ) = S ∧ π3
2(τ) ∈ P ∧ π3

3(τ) ∈ Q},

where πn
i (X) ⇋ {σi | ⟨σ1, . . . , σn⟩ ∈ X} is the ith projection of X for n ∈ N, i ∈

{1, . . . , n}.

Proof. See lemma hstar via triples in HyperStar.thy.

Now, we present sketch proofs for all properties except 12, which will be
addressed in subsection 3.3. For formal proofs of these properties, see theorem
hstar properties in HyperStar.thy.

1. (unit) ∃U.∀P. P ⋆ U = P

Let U ⇋ {S | S ⊆ {⟨s, ∅⟩ | s ∈ Stacks}}. Then for each P , P ⋆ U = P .
The key observation is that hAdd(⟨s, h⟩, ⟨s, h⟩, ⟨s, ∅⟩).

� P ⋆ U ⊆ P

Let S ∈ P ⋆ U . Then obtain SP ∈ P and SU ∈ U such that S ⊆
SP ∗SQ and left lives(S, SP , SU). Therefore S = SP and hence S ∈ P .

44Let P ⇋ {{⟨s, ∅11⟩, ⟨s, ∅22⟩}}, Q ⇋ {{⟨s, ∅11⟩, ⟨s, ∅33⟩}} and R ⇋ {{⟨s, ∅22⟩, ⟨s, ∅44⟩}}. Then

P ⋆ (Q ⋆ R) = ∅, whereas (P ⋆ Q) ⋆ R = {⟨s, ∅1,2,31,2,3⟩, ⟨s, ∅
1,2,4
1,2,4⟩, ⟨s, ∅

1,3,4
1,3,4⟩, ⟨s, ∅

2,3,4
2,3,4⟩}.

45Let P ⇋ {{⟨s, ∅11⟩}}, Q ⇋ {{⟨s, ∅22⟩}} and F ⇋ {S | S ⊆ {⟨s, ∅33⟩, ⟨s, ∅44⟩}}. Then
(P ⊗Q) ⋆ F ⊂ (P ⋆ F)⊗ (Q ⋆ F).

61

� P ⊆ P ⋆ U

Let S ∈ P . Now, define SU ⇋ {⟨s, ∅⟩ | ∃h. ⟨s, h⟩ ∈ S} ∈ U . Now,
S ⊆ S ∗ SU , left lives(S, S, SU) and right lives(S, S, SU). Therefore
S ∈ P ⋆ U .

2. (commutativity) P ⋆ Q = Q ⋆ P

Immediately follows, since ∗ is commutative and the definition of right lives.

3. (associativity) (P ⋆ Q) ⋆ R = P ⋆ (Q ⋆ R)

Unfolding twice the left side, using lemma 3.12, we obtain

(P ⋆ Q) ⋆ R = {S | ∃τ, τPQ ∈ States3.(
∀⟨σPQR, σPQ, σR⟩ ∈ τ. hAdd(σPQR, σPQ, σR)

)
∧(

∀⟨σPQ, σP , σR⟩ ∈ τPQ. hAdd(σPQ, σP , σQ)
)
∧

π3
1(τ) = S ∧ π3

1(τPQ) = π3
2(τ) ∧

π3
2(τPQ) ∈ P ∧ π3

3(τPQ) ∈ Q ∧ π3
3(τ) ∈ R}.

Building on the connection between the triples, namely π3
1(τPQ) = π3

2(τ),
we can express it more concisely by combining the triples into a single
quadruple, leading to an equivalent formulation as follows:

(P ⋆ Q) ⋆ R = {S | ∃τ ∈ States4.(
∀⟨σPQR, σP , σQ, σR⟩ ∈ τ.∃σPQ. hAdd(σPQR, σPQ, σR) ∧ hAdd(σPQ, σP , σQ)

)
∧

π4
1(τ) = S ∧ π4

2(τ) ∈ P ∧ π4
3(τ) ∈ Q ∧ π4

4(τ) ∈ R}.

Analogously,

P ⋆ (Q ⋆ R) = {S | ∃τ ∈ States4.(
∀⟨σPQR, σP , σQ, σR⟩ ∈ τ.∃σQR. hAdd(σPQR, σP , σQR) ∧ hAdd(σQR, σQ, σR)

)
∧

π4
1(τ) = S ∧ π4

2(τ) ∈ P ∧ π4
3(τ) ∈ Q ∧ π4

4(τ) ∈ R}.

Therefore, since hAdd is associative, which can be easily verified, it follows
that (P ⋆ Q) ⋆ R = P ⋆ (Q ⋆ R).

4. (monotonicity) P ⊆ P ′ ⇒ Q ⊆ Q′ ⇒ P ⋆ Q ⊆ P ′ ⋆ Q′

Follows directly from the pointwise nature of ⋆.

5. (∪-distributivity) (P ∪Q) ⋆ F = (P ⋆ F) ∪ (Q ⋆ F)

Follows directly from the pointwise nature of ⋆.

6. (
⋃
-distributivity) (

⋃
P∈X P) ⋆ F =

⋃
P∈X(P ⋆ F)

Follows directly from the pointwise nature of ⋆.

7. (⊗-distributivity) (P ⊗Q) ⋆ F = (P ⋆ F)⊗ (Q ⋆ F), F - downward and
union closed

62

� (P ⊗Q) ⋆ F ⊆ (P ⋆ F)⊗ (Q ⋆ F), F - downward closed

Let S ∈ (P ⊗Q)⋆F . Then obtain SPQ and SF where S ⊆ SPQ ∗SF ,
SPQ ∈ P ⋆ Q, SF ∈ F and left lives(S, SPQ, SF). Now, let SP ∈ P
and SQ ∈ Q be such that SPQ = SP ∪ SQ. Define

τPF ⇋ {⟨σ, σP , σF ⟩ | σ ∈ S∧σP ∈ SP ∧σF ∈ SF ∧hAdd(σ, σP , σF)}.

Then π3
2(τPF) = SP ∈ P and π3

3(τPQ) ⊆ SF ∈ F . Thus, by
the downward closeness of F , π3

3(τPF) ∈ F . Moreover, note that
π3
1(τPF) ⊆ π3

2(τPF) ∗ π3
3(τPF), left lives(π

3
1(τPF), π

3
2(τPF), π

3
3(τPF))

and right lives(π3
1(τPF), π

3
3(τPF), π

3
3(τPF)). Therefore π

3
1(τPF) ∈ P ⋆ F .

Analogously, for

τQF ⇋ {⟨σ, σQ, σF ⟩ | σ ∈ S∧σQ ∈ SQ∧σF ∈ SF ∧hAdd(σ, σQ, σF)},

we obtain that π3
1(τQF) ∈ Q ⋆ F . Finally, notice that S = π3

1(τPF) ∪
π3
1(τQF). Therefore, S ∈ (P ⋆ F)⊗ (Q ⋆ F).

� (P ⋆ F)⊗ (Q ⋆ F) ⊆ (P ⊗Q) ⋆ F , F - union closed

Let S ∈ (P ⋆F)⊗(Q⋆F). Then obtain SPF ∈ P ⋆F and SQF ∈ Q⋆F
such that S = SPF ∪ SQF . Let SP ∈ P and SF ∈ F be witnesses for
SPF ⊆ P ⋆F and SQ ∈ Q and S′

F ∈ F be witnesses for SQF ⊆ Q⋆F .
Then SP ∪ SQ ∈ P ⊗ Q and SF ∪ S′

F ∈ F , since F is union closed.
Moreover, SPF ∪ SQF ⊆ (SP ∪ SQ) ∗ (SF ∪ S′

F), left lives(SPF ∪
SQF , SP ∪SQ, SF ∪S′

F) and right lives(SPF ∪SQF , SP ∪SQ, SF ∪S′
F).

Therefore S = SPF ∪ SQF ∈ (P ⋆ Q)⊗ F .

8. (
⊗

-distributivity) (
⊗

P∈X P) ⋆ F =
⊗

P∈X(P ⋆ F), F - downward and
infinite union closed

� (
⊗

P∈X P) ⋆ F ⊆
⊗

P∈X(P ⋆ F), F - downward closed

Let S ∈ (
⊗

P∈X P) ⋆ F . Then obtain SX ∈ (
⊗

P∈X P) and SF ∈ F
where S ⊆ SPQ ∗ SF and left lives(S, SX , SF). Now, let f be such
that

⋃
P∈X f(P) and ∀P ∈ X. f(P) ∈ P . Let

τP ⇋ {⟨σ, σP , σF ⟩ | σ ∈ S∧σP ∈ f(P)∧σF ∈ SF ∧hAdd(σ, σP , σF)}

for P ∈ X. Analogously to (⊗-distributivity), we obtain that
π3
1(τP) ∈ P⋆F , using the downward closeness of F , and

⋃
P∈X π3

1(τP) =
S. Therefore S ∈

⊗
P∈X(P ⋆ F).

�

⊗
P∈X(P ⋆ F) ⊆ (

⊗
P∈X P) ⋆ F , F - infinite union closed

Analogously to (⊗-distributivity), i.e. the witnesses are simply the
unions of the assumption witnesses.

9. (pure-intersection) Intu(P) ⇒ Pure(Q) ⇒ P ⋆ Q = P ∩Q

� Intu(P) ⇒ Intu(Q) ⇒ P ⋆ Q ⊆ P ∩Q

63

Let S ∈ P ⋆Q and let SP ∈ P and SQ ∈ Q be witnesses for this. We
have that

(∀⟨s, hP ⟩ ∈ SP .∃h ⊇ hP . ⟨s, h⟩ ∈ S)∧(∀⟨s, h⟩ ∈ S. ∃hP ⊆ h. ⟨s, hP ⟩ ∈ SP)

and hence S ∈ P by first assumption and SP ∈ P . Similarly, S ∈ Q
by the second assumption. Therefore S ∈ P ∩Q.

� Pure(Q) ⇒ P ∩Q ⊆ P ⋆ Q

Let S ∈ P ∩ Q. Then S ∈ P and I ⇋ {⟨s, ∅⟩ | ⟨s, h⟩ ∈ S} ∈ Q
by the pureness of Q. Moreover, S = S ∗ I, left lives(S, S, I) and
right lives(S, S, I). Therefore, S ∈ P ⋆ Q.

10. (Intu-preserving) Intu(P) ⇒ Intu(Q) ⇒ Intu(P ⋆ Q)

Let S ∈ P ⋆ Q and let S′ be such that

(∀⟨s, h⟩ ∈ S. ∃h′ ⊇ h. ⟨s, h′⟩ ∈ S′) ∧ (∀⟨s, h′⟩ ∈ S′.∃h ⊆ h′. ⟨s, h⟩ ∈ S).

Let τ be such that ∀⟨σ, σP , σQ⟩ ∈ τ. hAdd(σ, σP , σQ), π
3
1(τ) = S, π3

2(τ) ∈
P and π3

3(τ) ∈ Q. We define

τ ′ ⇋ {⟨⟨s, h′⟩, ⟨s, h′ ↾ Dom(hQ)⟩, ⟨s, h′ ↾ Dom(hQ)⟩ | ⟨s, h′⟩ ∈ S′ ∧ h ⊆ h′

∧ ⟨⟨s, h⟩, ⟨s, hP ⟩, ⟨s, hQ⟩⟩ ∈ τ}.

Now, it is easy to verify that S′ = π3
1(τ

′). Moreover, π3
2(τ) ∈ P and π3

2(τ
′)

satisfy the antecedent of the matrix46 of the unfolded Intu(P). Therefore,
π3
2(τ

′) ∈ P . Analogously, π3
3(τ

′) ∈ Q. Furthermore, we have π3
1(τ

′) ⊆
π3
2(τ

′)∗π3
3(τ

′), left lives(π3
1(τ

′), π3
2(τ

′), π3
3(τ

′)) and right lives(π3
1(τ

′), π3
2(τ

′), π3
3(τ

′)).
Therefore, S′ ∈ P ⋆ Q.

11. (Pure-preserving) Pure(P) ⇒ Pure(Q) ⇒ Pure(P ⋆ Q)

Let S ∈ P ⋆ Q and let S′ be such that

(∀⟨s, h⟩ ∈ S. ∃h′. ⟨s, h′⟩ ∈ S′) ∧ (∀⟨s, h′⟩ ∈ S′.∃h. ⟨s, h⟩ ∈ S)

and let SP ∈ P and SQ ∈ Q be witnesses for S ∈ P ⋆ Q. It’s easy to
verify that SP ∈ P and S′ satisfy the antecedent of the matrix of Pure(P).
Therefore S′ ∈ P . Analogously, SQ ∈ Q and I ⇋ {⟨s, ∅⟩ | ⟨s, h′⟩ ∈ S′}
satisfy the antecedent of the matrix of Pure(Q). Therefore I ∈ Q. Further-
more, S′ ⊆ S′ ∗ I, left lives(S′, S′, I) and right lives(S′, S′, I). Therefore,
S′ ∈ P ⋆ Q.

13. (FR-SL) {S | S ⊆ p} ⋆ {S | S ⊆ f} = {S | S ⊆ p ∗ f}

� {S | S ⊆ p} ⋆ {S | S ⊆ f} ⊆ {S | S ⊆ p ∗ f}
Let S ∈ {S | S ⊆ p} ⋆ {S | S ⊆ f} and let Sp ⊆ p and Sf ⊆ f
be witnesses for this. In particular, S ⊆ Sp ∗ Sf and hence, by
monotonicity, S ⊆ p ∗ f .

46The matrix of a formula in prenex normal form is its quantifier-free core, i.e., the part
remaining after all quantifiers have been removed.

64

� {S | S ⊆ p ∗ f} ⊆ {S | S ⊆ p} ⋆ {S | S ⊆ f}
Let S ∈ {S | S ⊆ p ∗ f}, i.e. S ⊆ p ∗ f . We define

τ ⇋ {⟨σ, σp, σf ⟩ | σ ∈ S ∧ σp ∈ p ∧ σf ∈ f ∧ hAdd(σ, σp, σf)}.

Now, S = π3
1(τ), π

3
2(τ) ∈ {S | S ⊆ p} and π3

3(τ) ∈ {S | S ⊆ f}.
Moreover, π3

1(τ) ⊆ π3
2(τ) ∗ π3

3(τ), left lives(π
3
1(τ), π

3
2(τ), π

3
3(τ)) and

right lives(π3
1(τ), π

3
2(τ), π

3
3(τ)). Therefore, S ∈ {S | S ⊆ p} ⋆ {S | S ⊆ f}.

14. (FR-SSIL) {S | S ∩ p ̸= ∅} ⋆ {S | S ⊆ f} ⊆ {S | S ∩ (p ∗ f) ̸= ∅}
Let S ∈ {S | S ∩ p ̸= ∅} ⋆ {S | S ⊆ f} and let Sp ∈ {S | S ∩ p ̸= ∅} and
Sf ∈ {S | S ⊆ f} be witnesses for this. Let ⟨s, hp⟩ ∈ Sp ∩ p and since
left lives(S, Sp, Sf), we obtain h and hf where ⟨s, h⟩ ∈ S, ⟨s, hf ⟩ ∈ Sf ,
hAdd(⟨s, h⟩, ⟨s, hp⟩, ⟨s, hf ⟩) and hp⊥hf . Then, we have ⟨s, hf ⟩ ∈ f by the
definition of Sf . Therefore, ⟨s, h⟩ ∈ p ∗ f and hence, since ⟨s, h⟩ ∈ S, we
conclude that S ∈ {S | S ∩ (p ∗ q) ̸= ∅}.

15. (FR-OSL-1) {S | S ⊆ p ∧ S ∩ p ̸= ∅} ⋆ {S | S ⊆ f} = {S | S ⊆ p ∗ f ∧ S ∩ (p ∗ f) ̸= ∅}

� {S | S ⊆ p∧S∩p ̸= ∅}⋆{S | S ⊆ f} ⊆ {S | S ⊆ p∗f∧S∩(p∗f) ̸= ∅}
Let S ∈ {S | S ⊆ p ∧ S ∩ p ̸= ∅} ⋆ {S | S ⊆ f} and let Sp ∈ {S |
S ⊆ p ∧ S ∩ p ̸= ∅} and Sf ∈ {S | S ⊆ f} be witnesses for this.
Similarly to (FR-SL), we show that S ∈ {S | S ⊆ p ∗ f}. The
second part, namely S ̸= ∅ follows from left lives(S, Sp, Sf) and the
fact that Sp ̸= ∅. Therefore, S ∈ {S | S ⊆ p ∗ f ∧ S ∩ (p ∗ f) ̸= ∅}.

� {S | S ⊆ p∗f∧S∩(p∗f) ̸= ∅} ⊆ {S | S ⊆ p∧S∩p ̸= ∅}⋆{S | S ⊆ f}
Analogously to (FR-SL).

16. (FR-OSL-2) {S | S ⊆ p1 ∪ p2 ∧S ∩ p1 ̸= ∅∧S ∩ p2 ̸= ∅} ⋆ {S | S ⊆ f} =
{S | S ⊆ (p1 ∪ p2) ∗ f ∧ S ∩ (p1 ∗ f) ̸= ∅ ∧ S ∩ (p2 ∗ f) ̸= ∅}
First, note that

{S | S ⊆ p1∪p2∧S∩p1 ̸= ∅∧S∩p2 ̸= ∅} = {S | S ⊆ p1∧S∩p1 ̸= ∅}⊗{S | S ⊆ p2∧S∩p2 ̸= ∅}.

Now, by applying (⊗-distributivity), the left side equals

({S | S ⊆ p1∧S∩p1 ̸= ∅}⋆{S | S ⊆ f})⊗({S | S ⊆ p2∧S∩p2 ̸= ∅}⋆{S | S ⊆ f})

which, after applying (FR-OSL-1), equals

{S | S ⊆ p1 ∗ f ∧ S ∩ (p1 ∗ f) ̸= ∅} ⊗ {S | S ⊆ p2 ∗ f ∧ S ∩ (p2 ∗ f) ̸= ∅}

which equals

{S | S ⊆ (p ∗ f) ∪ (q ∗ f) ∧ S ∩ (p ∗ f) ̸= ∅ ∧ S ∩ (q ∗ f) ̸= ∅}.

Finally, since ∗ distributes over ∪, we conclude that the statement is true.

65

17. (FR-RSL) {S | S1×S2 ⊆ r}⋆{S | S1×S2 ⊆ f} ⊆ {S | S1×S2 ⊆ r □∗ f},
where Si ⇋ {⟨s, h⟩ ∈ S | s(t) = i}.
Let S ∈ {S | S1 ×S2 ⊆ r} ⋆ {S | S1 ×S2 ⊆ f} and Sr ∈ {S | S1 ×S2 ⊆ r}
and Sf ∈ {S | S1×S2 ⊆ f} be witnesses for this. In particular, S ⊆ Sr∗Sf.
Then we have

S1 ⊆ (Sr)1 ∗ (Sf)1 and S2 ⊆ (Sr)2 ∗ (Sf)2.

Moreover,
(Sr)1 × (Sr)2 ⊆ r and (Sf)1 × (Sf)2 ⊆ f

and hence
((Sr)1 ∗ (Sf)1)× ((Sr)2 ∗ (Sf)2) ⊆ r □∗ f.

Therefore, S1 × S2 ⊆ r □∗ f and thus S ∈ {S | S1 × S2 ⊆ r □∗ f}.

3.2 Hyper-tripe validity

Before delving into the frame rule, we need to establish what it means for our
hyper-triples to be valid, i.e. |=HSL {P}C{Q}. This is not straightforward,
as we lack an (easily identifiable) natural condition ensuring the soundness of
the frame rule, unlike in SL. Specifically, because we aim to support both over-
and underapproximate reasoning, we cannot reuse the mechanism used in SL,
namely the requirement that the precondition provides the memory required by
the program command. Indeed, if we defined validity with this requirement,
then

̸|=HSL {J∃⟨s⟩. s(x .
= 0)K}skip+ free(x){J∃⟨s⟩. s(x .

= 0)K},
since

∀S ∈ J∃⟨s⟩. s(x .
= 0)K. S provides the memory required by C

does not hold. That is, we have essentially lost all (non-pure) underapproxi-
mate reasoning capabilities. One might suggest a naive solution: to distinguish
whether the precondition is J∀⟨s⟩. s(p)K or J∃⟨s⟩. s(p)K, enforcing the require-
ment in the former case but not in the latter. However, this approach is highly
unsatisfactory and artificial.

The approach we have adopted is standard (e.g., see the third condition in
RSL’s validity). Rather than searching for a ”natural” condition, we simply take
the weakest definition (which is at least as strong as HHL’s validity) that ensures
a sound frame rule. That is, we ”embed” the frame rule into the definition of
validity:

|=HSL {P}C{Q} def⇐⇒ ∀S. ∀f. S ∈ P ⋆ {S | S ⊆ f} ⇒ JCK[S] ∈ Q ⋆ {S | S ⊆ f}.

Note that this definition is only a rough outline, meant for illustration,
since we quantify over all frames and not only those that satisfy ”fv(f)∩md(C) =
∅”. That is, according to this definition

̸|=HSL {J∀⟨s⟩. s(x .
= 0)K}x := Jx+ 1 K{J∀⟨s⟩. s(x .

= 1)K},

66

since for f ⇋ Jx .
= 0 K, J∀⟨s⟩. s(x .

= 0)K ⋆ {S | S ⊆ Jx .
= 0 K} = J∀⟨s⟩. s(x .

= 0)K,
whereas J∀⟨s⟩. s(x .

= 1)K ⋆ {S | S ⊆ Jx .
= 0 K} = {∅}. The fix for this is

straightforward—one simply needs to introduce a syntax and define the semantic
condition ”fv(f) ∩md(C) = ∅”. In this thesis, we do neither, as this is not our
focus.

We point out that there is a more fundamental problem with this definition
(or rather, with the state model it rests upon!): None of the encodings used in
HHL, work in the separation variant. That is, for example,

|=SL {JpK}C{JqK} ⇐⇒ |=HSL {J∀⟨s⟩. s(p)K}C{J∀⟨s⟩. s(q)K}

does not hold. Specifically, recall the discussion at the end of subsection 2.2,
where we demonstrated that SL’s validity definition is not the weakest one
(which is at least as strong as HL’s validity) that supports a sound frame rule.
The issue arises from this distinction—HSL’s validity is defined as the weakest
one that supports a sound frame rule, whereas SL’s validity is not. Formally,

̸|=SL {J⊤K}x := [y]{J⊤K},

whereas, assuming we have added the condition ”md(C) ∩ fv(f) = ∅” to the
definition of |=HSL,

|=HSL {J∀⟨s⟩. s(⊤)K}x := [y]{J∀⟨s⟩. s(⊤)K}.

The former doesn’t hold, since the precondition doesn’t provide the memory
required by x := [y]. The latter holds, since no matter what frame f (such that
”md(C)∩ fv(f) = ∅” holds) we add to J∀⟨s⟩. s(⊤)K, the only thing the program
changes is x, i.e. for any S ∈ J∀⟨s⟩. s(⊤)K ⋆ {S | S ⊆ f}, it follows that JCK[S]
is the same as S but with changed x. Hence by the ”md(C) ∩ fv(f) = ∅”, it
follows that JCK[S] ∈ J∀⟨s⟩. s(⊤)K ⋆ {S | S ⊆ f}.

One might expected that this definition (at least) works for SSIL, as, sim-
ilarly to SSIL, it does not require the precondition to provide the memory re-
quired by the program command. However, that’s not the case either, since,
HSL considers all paths simultaneously, whereas SSIL focuses on specific paths.
Formally,

|=SSIL {J⊤K}skip+ free(x){J⊤K},

whereas
̸|=HSL {J∃⟨s⟩. s(⊤)K}skip+ free(x){J∃⟨s⟩. s(⊤)K}.

The former holds, since for any state, we have a terminating execution path
(via skip) to J⊤K. The latter doesn’t hold, since for f ⇋ Jx 7→ 5 K and S ⇋
{⟨s1x, ∅51⟩} ∈ J∃⟨s⟩. s(⊤)K⋆{S | S ⊆ f}, the resulting JCK[S] = {⟨s1x, ∅51⟩, ⟨s1x, ∅⟩} /∈
J∃⟨s⟩. s(⊤)K⋆{S | S ⊆ f}, since it considers both paths and, in particular, ⟨s1x, ∅⟩
lacks the required by the frame heap Jx 7→ 5 K.

The essence of the issue lies at a deeper level. The primary concern is not
the definition of validity itself (with the added condition ”md(C)∩ fv(f) = ∅”),
but rather the state model itself. Specifically, we do not account for errors. In

67

[Zilberstein et al. 2024], they demonstrate that by incorporating errors, a sound
frame rule can be achieved, which accommodates both under- and overapprox-
imation. However, this is beyond the scope of the current thesis.

Our goal is to develop a separating conjunction (which we already did) and
as general as possible frame rule, which is at least as strong as the frame rules
found in these four logics. It is important to note that we work under the
assumption that the encodings, used in HHL, would also be applicable to HSL,
once the state model is generalized to account for errors. This assumption is
reasonable, as the encodings capture the very essence of the logics.

3.3 The strongest postcondition

In the context of this subsection assume that the condition ”md(C)∩ fv(f) = ∅”
is added to the definition of |=HSL.

Unlike the previously discussed logics, it is unclear whether our logic sup-
ports strongest postcondition. That is, it may contain multiple minimal post-
conditions, but not a strongest one. Recall that in HHL, for each S in the
precondition P , we had exactly one resulting JCK[S], which was required to be
included in the postcondition Q. However, that’s not the case anymore due of
the interplay between the allocation axiom, the requirement for a sound frame
rule, and the fact that HSL supports underapproximate reasoning.

First, recall that the semantic frame rule of SSIL is unsound, e.g.

|=SSIL {JempK}x := alloc(){Jx .
= 42 K}

̸|=SSIL {JempK ∗ J42 7→ 42 K}x := alloc(){Jx .
= 42 K ∗ J42 7→ 42 K} ,

and we argued (see section 2.3) that this is common issue of underapproximate
logics. In HSL, we ensured that the semantic frame rule is sound:

̸|=HSL {J∃⟨s⟩. s(⊤)K}x := alloc(){J∃⟨s⟩. s(x .
= 42)K},

since the frame rule is embeded. That is, let f ⇋ J42 7→ 42 K. Then for
S ∈ J∃⟨s⟩. s(⊤)K ⋆ {S | S ⊆ J42 7→ 42 K}, it follows that all ⟨s, h⟩ ∈ S are
such that location 42 is allocated. Therefore the x := alloc() command can-
not allocate location 42 and subsequently store it in x. Hence, the resulting
Jx := alloc()K[S] cannot satisfy the postcondition J∃⟨s⟩. s(x .

= 42)K. However,
the semantic soundness of the frame rule may come at the cost of losing the
existence of a strongest postcondition—though we hope this is not the case. If
it turns out that a strongest postcondition does not exist, this would further
hint at a fundamental incompatibility between underapproximation, the frame
rule (based on the proposed ⋆47), and completeness. We leave this for further
exploration and instead focus on explaining why a strongest postcondition may
fail to exist.

Note that the axioms still (as in HHL) follow the general patter of

|=HSL {P}C{{JCK[S] | S ∈ P}
Q

}.

47It may be the case that we have missed a crucial property that must be satisfied by ⋆.

68

That is, for each S ∈ P , we require that JCK[S] ∈ Q. The only exception is the
allocation axiom. In order to show a simpler example, assume we have a more
precise version of x := alloc(), namely x := alloc(e), where Jx := alloc(e)K =

{⟨⟨s, h⟩, ⟨slx, h
JeK(s)
l ⟩⟩ | (l /∈ Dom(h) ∨ h(l) = ⊥) ∧ l ̸= 0}. Let s ∈ Stacks be

arbitrary, such that s(x) = 7. We have (independent of the choice of s) that

̸|=HSL {{
SP

{⟨s, ∅⟩}}
P

}x := alloc(5){{
sp(x:=alloc(5),SP)

{⟨slx, ∅5l ⟩ | l ̸= 0}}
Q

},

even though the only element S ⇋ {⟨s, ∅⟩} ∈ P has its denotational image
Jx := alloc(5)K[S] belong to Q, i.e. Jx := alloc(5)K[S] = {⟨slx, ∅5l ⟩ | l ̸= 0} ∈ Q.
The reason for that is the embeded frame rule and the witness preserving na-
ture of ⋆. More precisely, let f ⇋ J42 7→ 42 K. Then P ⋆ f = {{⟨s, ∅42s(x)⟩}},
but the denotational image of its only element, {⟨s, ∅42s(x)⟩}, does not belong to

Q ⋆ {S | S ⊆ f}. That is,

Jx := alloc(5)K[{⟨s, ∅427 ⟩}] = {⟨slx, ∅
42,5
7,l ⟩ | l ̸= 0∧l ̸= 7} /∈ {{⟨slx, ∅5l ⟩ | l ̸= 0}}⋆{S | S ⊆ J42 7→ 42 K}.

Indeed, notice that

{{⟨slx, ∅5l ⟩ | l ̸= 0}} ⋆ {S | S ⊆ J42 7→ 42 K} = ∅,

which stems from the fundamental design choice made for the ⋆, namely the
preservation of the witnesses (formalized with left lives and right lives). More
precisely, ⟨s42x , ∅542⟩ ∈ {⟨slx, ∅5l ⟩ | l ̸= 0}, which is the only element of {{⟨slx, ∅5l ⟩ |
l ̸= 0}}, cannot ”continue its life”, since every Sf ∈ {S | S ⊆ J42 7→ 42 K} has
already location 42 allocated for all σf ∈ Sf , thus

∀Sf ∈ {S | S ⊆ J42 7→ 42 K}.∄S. left lives(S, {⟨slx, ∅5l ⟩ | l ̸= 0}, Sf).

In order to resolve this issue, more precise alternatives to left lives and right lives,
which allow some states to not ”continue their lives”, are required. However,
this falls beyond the scope of this thesis.

Discussion 3.13. Since we haven’t formally defined |=HSL with the condition
”md(C)∩ fv(f) = ∅” added, we refrain from further exploration of the allocation
axiom (and HSL in general). We, however, strongly believe that there exists a
strongest postcondition for the allocation axiom and that the proposed ⋆ satisfies
the 12th property for said program command, namely

SP(P, x := alloc()) ⋆ F = SP(P ⋆ F, x := alloc()).

We strongly believe that the strongest postcondition SP({p}, x := alloc()) ex-
ists and is the set of all finitely smaller subsets of the denotational image
Jx := alloc()K[p]. For P with cardinality more than 1, we apply the trick from
subsubsection 2.7.1. Notice the finitely smaller requirement—it stems from the
fact that we model the heaps as finite partial functions, rather than just partial
functions.

69

Finally, we show yet another fundamental flaw of the state model. That
is, the 12th property, namely (operational-coherence), does not hold for
the error-prone commands [x] := e, y := [x] and free(x). Indeed, consider
SP(J∀⟨s⟩. s(emp)K, free(x)). Even though a general definition for SP(P,C) is
non-trivial (and perhaps doesn’t even exists), this is not the case when C is
a base command, different that allocation. In that case, it is easy to see that
SP(P,C) = {JCK[S] | S ∈ P}. Therefore,

SP(J∀⟨s⟩. s(emp)K, free(x)) = {∅}

and hence

SP(J∀⟨s⟩. s(emp)K, free(x)) ⋆ {S | S ⊆ Jx 7→ 1 K} = {∅}.

However,

J∀⟨s⟩. s(emp)K ⋆ {S | S ⊆ Jx 7→ 1 K} = J∀⟨s⟩. s(x 7→ 1)K

and thus

SP(J∀⟨s⟩. s(emp)K ⋆ {S | S ⊆ Jx 7→ 1 K}, free(x)) = J∀⟨s⟩. s(x 7→ ⊥)K ⊃ {∅}.

Similarly to how sp(p, C) ∗ f = sp(p ∗ f, C) failed to hold for the less expressive
state model but held for the more expressive state model (which incorporates
⊥; see subsubsection 2.2.4), we strongly believe that for a more expressive state
model—one that accounts for errors—the property (operational-coherence)
will hold, at least for the base program commands. Note that this issue has
significant implications: there are no axioms for error-prone commands, which
do not provide the memory required by the program. That is, for any Q (even
J⊤K)

̸|=HSL {J∀⟨s⟩. (emp)K}free(x){Q}.

and, more importantly,

̸|=HSL {J∃⟨s⟩. s(x 7→ 5)K}free(x){J∃⟨s⟩. s(x 7→ ⊥)K},

since for f ⇋ {⟨s1x, ∅⟩, ⟨s2x, ∅22⟩}48 and S ⇋ {⟨s1x, ∅51⟩, ⟨s2x, ∅22⟩} ∈ J∃⟨s⟩. s(x 7→ 5)K ⋆ {S | S ⊆ f},
we have that Jfree(x)K[S] = {⟨s1x, ∅⊥1 ⟩, ⟨s2x, ∅⊥2 ⟩} /∈ J∃⟨s⟩. s(x 7→ ⊥)K⋆{S | S ⊆ f}.
The same counterexample can be used to show that

̸|=HSL {J∃⟨s⟩. s(x 7→ 5)K}free(x){J∃⟨s⟩. s(⊤)K}

and even
̸|=HSL {J∃⟨s⟩. s(x 7→ 5)K}free(x){J⊤K}.

A syntactically expressible variant of the counterexample consists of the same
S and f ⇋ J(x .

= 1 ⇒ emp) ∧ (x
.
= 2 ⇒ 2 7→ 2)K.

48Since md(free(x)) = ∅, then any f satisfies the condition ”md(free(x)) ∩ fv(f) = ∅”.

70

3.4 The Frame rule

3.4.1 Soundness

In the context of this subsubsection, we assume that the condition ”md(C) ∩
fv(f) = ∅” is not added to the definition of |=HSL.

Recall that our goal is to obtain a frame rule, sound for any downward closes
frame (see subsubsection 2.7.3). As previously mentioned, we achieve this by
embedding the frame rule into the definition of validity:

|=HSL {P}C{Q} def⇐⇒ ∀S.∀f. S ∈ P ⋆ {S | S ⊆ f} ⇒ JCK[S] ∈ Q ⋆ {S | S ⊆ f}.

However, instead of embedding arbitrary downward closed frame F into the
validity definition, we embedded an arbitrary power set frame {S | S ⊆ f},
which is both downward closed and closed under infinite union. It turns out
that this is sufficient to establish the soundness of the frame rule for arbitrary
downward closed frames, which further reinforces the idea that our ⋆ is well-
grounded.

We begin by proving that the rule

for all i ∈ I. |=HSL {Pi}C{Qi}
(Idx-Union)

|=HSL {
⋃
i∈I

Pi}C{
⋃
i∈I

Qi}

is still (as in HHL) sound. Indeed, let S and f be such that S ∈ (
⋃

i∈I Pi) ⋆ {S |
S ⊆ f}. That is, by (

⋃
-distributivity), S ∈

⋃
i∈I(Pi ⋆ {S | S ⊆ f}). Let i ∈ I

such that S ∈ Pi⋆{S | S ⊆ f}. Then, by the assumption, JCK[S] ∈ Qi⋆{S | S ⊆
f} ⊆

⋃
i∈I(Qi ⋆ {S | S ⊆ f}). Therefore, by (

⋃
-distributivity), we conclude

that JCK[S] ∈ (
⋃

i∈I Qi) ⋆ {S | S ⊆ f}. Thus, the rule (Idx-Union) is sound.

Theorem 3.14. The semantic frame rule

|=HSL {P}C{Q} ∀S ∈ F.∀S′ ⊆ S. S′ ∈ F
(Frame)

|=HSL {P ⋆ F}C{Q ⋆ F}

is sound.

Proof. First, using (associativity), (FR-SL) and |=HSL {P}C{Q}, we obtain
that for any f ,

|=HSL {P ⋆ {S | S ⊆ f}}C{Q ⋆ {S | S ⊆ f}}

and now by the (Idx-Union) rule, we obtain

|=HSL {
⋃
f∈F

(P ⋆ {S | S ⊆ f})}C{
⋃
f∈F

(Q ⋆ {S | S ⊆ f})}

and hence by (
⋃
-distributivity) and (commutativity)

|=HSL {P ⋆
(⋃

f∈F

{S | S ⊆ f}
)
}C{Q ⋆

(⋃
f∈F

{S | S ⊆ f}
)
}

71

Finally, since F is downward closed, it follows that F =
⋃

f∈F {S | S ⊆ f}.
Therefore,

|=HSL {P ⋆ F}C{Q ⋆ F}.

Of course, once ”md(C)∩ fv(f) = ∅” is added to the definition of |=HSL, we
will be able to prove (at most) the usual frame rule, which has ”md(C)∩fv(F) =
∅” in the assumption. Finally, as discussed in subsection 2.4, where we demon-
strate that the frame rule becomes unsound if the frame contains ⊥ syntactically,
we need to further weaken the embedding of the frame rule in the definition of
|=HSL by quantifying only over frames that do not syntactically contain ⊥ and
hence obtain a frame rule, which takes as an additional assumption that the
frame does not contain syntactically ⊥. That is,

|=HSL {P}C{Q} ∀S ∈ F.∀S′ ⊆ S. S′ ∈ F ”fv(F) ∩md(C) = ∅” ”no ⊥ in F”
(Frame)

|=HSL {P ⋆ F}C{Q ⋆ F} .

3.4.2 Expressivity

Recall that none of the encodings used in HHL apply in our case due to the weak
(non-erroneous) state model. However, we will provide high-level semantic49

arguments explaining why HSL’s frame rule (alongside other HSL axioms and
rules) should be sufficient to capture the frame rules of SL, SSIL and OSL.
Moreover, we will present an initial idea for deriving RSL’s frame rule, which
has not been fully explored and may or may not succeed. Crucially, we assume
that the final encodings (that will be used in HSL with erroneous state model)
will match those used in HHL. That is, we assume that for

ENCSL(p) ⇋ {S | S ⊆ p}

ENCSSIL(p) ⇋ {S | S ∩ p ̸= ∅}

ENCOSL(p) ⇋ {S | S ⊆ p∧S∩p ̸= ∅}, for the base case hassertion P+(p) in OSL

ENCRSL(r, t) ⇋ {S | ∀s1 ∈ S. ∀s2 ∈ S. s1(t) = 1 ⇒ s2(t) = 2 ⇒
[
s1
s2

]
∈ r}

we have
|=SL {p}C{q} ⇐⇒ |=HSL {ENCSL(p)}C{ENCSL(q)}

|=SSIL {p}C{q} ⇐⇒ |=HSL {ENCSSIL(p)}C{ENCSSIL(q)}

|=OSL {P}C{Q} ⇐⇒ |=HSL {P}C{Q}, for OSL hassertions P and Q

|=RSL {r}C{s} ⇐⇒ |=HSL {ENCRSL(r)}C{ENCRSL(s)},

where there is a subtle detail in the RSL case, discussed in the corresponding
bullet point.

49We trust that the reader can easily construct the syntactic variants.

72

� SL

The frame rule of SL

|=SL {p}C{q} ”md(C) ∩ fv(f) = ∅” ”no ⊥ in f”
(Frame)

|=SL {p ∗ f}C{q ∗ f}

can be expressed in HSL as follows

|=HSL {{S | S ⊆ p}}C{{S | S ⊆ q}} ”md(C) ∩ fv({S | S ⊆ f}) = ∅” ”no ⊥ in {S | S ⊆ f}”
(Frame)

|=HSL {{S | S ⊆ p} ⋆ {S | S ⊆ f}}C{{S | S ⊆ q} ⋆ {S | S ⊆ f}} .

Now, using property (FR-SL), namely {S | S ⊆ p} ⋆ {S | S ⊆ f} =
{S | S ⊆ p ∗ f} and the fact that our hassertions have no free SVars
variables and are obtained via quantification of assertions (hence ”fv({S |
S ⊆ f}) = fv(f)” and ”⊥ in {S | S ⊆ f} iff ⊥ in f”) , we conclude that
HSL’s frame rule gives directly SL’s frame rule:

|=HSL {ENCSL(p)}C{ENCSL(q)} ”md(C) ∩ fv(f) = ∅” ”no ⊥ in f”
(Frame)

|=HSL {ENCSL(p ∗ f)}C{ENCSL(q ∗ f)} .

For simplicity, in the remaining bullet points, we will ignore the filtering as-
sumptions of the frame rule, namely ”md(C)∩fv(f) = ∅” and ”no ⊥ in f”,
as they are analogous.

� SSIL

Using HSL’s frame rule, we obtain

|=HSL {{S | S ∩ p ̸= ∅}}C{{S | S ∩ q ̸= ∅}}
(Frame)

|=HSL {{S | S ∩ p ̸= ∅} ⋆ {S | S ⊆ f}}C{{S | S ∩ q ̸= ∅} ⋆ {S | S ⊆ f}}

and using property (FR-SSIL), namely {S | S ∩ p ̸= ∅} ⋆ {S | S ⊆ f} ⊆
{S | S ∩ (p ∗ f) ̸= ∅}, and the consequence rule (which is easily verified
sound), we obtain

|=HSL {{S | S ∩ p ̸= ∅}}C{{S | S ∩ q ̸= ∅}}
(Frame)

|=HSL {{S | S ∩ p ̸= ∅} ⋆ {S | S ⊆ f}}C{{S | S ∩ q ̸= ∅} ⋆ {S | S ⊆ f}}
(Cons)

|=HSL {{S | S ∩ p ̸= ∅} ⋆ {S | S ⊆ f}}C{{S | S ∩ (q ∗ f) ̸= ∅}} .

That is, we obtained a little weaker version of SSIL’s frame rule. To
make it as strong as SSIL’s one, we need to generalize the precondition to
{S | S ∩ (p ∗ f) ̸= ∅}. To achieve this, we introduce the following axiom

(Triv-Post)
|=HSL {P}C{J⊤K}

and rule
|=HSL {P}C{Q} |=HSL {P ′}C{Q′}

(Join)
|=HSL {P ⊗ P ′}C{Q⊗Q′} .

73

As already discussed (see subsection 3.3), (Triv-Post) is unsound for the
current state model. However, once errors are incorporated, the definition
of the ⋆ can be adjusted (while keeping the frame embedding definition
of |=HSL) in an appropriate manner to restore its soundness. The (Join)
rule is easily proven sound, using the property (⊗-distributivity). Now,
incorporating (Triv-Post), (Join) and (Frame), we obtain

|=HSL {{S | S ∩ p ̸= ∅}}C{{S | S ∩ q ̸= ∅}}
(Frame)

|=HSL {{S | S ∩ p ̸= ∅} ⋆ {S | S ⊆ f}}C{{S | S ∩ q ̸= ∅} ⋆ {S | S ⊆ f}}
(Triv-Post)

|=HSL {J⊤K}C{J⊤K}
(Join)

|=HSL {({S | S ∩ p ̸= ∅} ⋆ {S | S ⊆ f})⊗ J⊤K}C{({S | S ∩ q ̸= ∅} ⋆ {S | S ⊆ f})⊗ J⊤K} .

Finally, using the fact that ({S | S ∩ p ̸= ∅} ⋆ {S | S ⊆ f}) ⊗ J⊤K = {S |
S ∩ (p ∗ f) ̸= ∅}, which is easily verified (see lemma add unconstrained in
HyperStar.thy), we conclude that

|=HSL {ENCSSIL(p)}C{ENCSSIL(q)}
(Frame)(Triv-Post)(Join)

|=HSL {ENCSSIL(p ∗ f)}C{ENCSSIL(q ∗ f)} .

� OSL

The rule of OSL for the base case hassertion

|=OSL {{S | S ⊆ p ∧ S ∩ p ̸= ∅}}C{{S | S ⊆ q ∧ S ∩ q ̸= ∅}}
(Frame)

|=OSL {{S | S ⊆ p ∗ f ∧ S ∩ (p ∗ f) ̸= ∅}}C{{S | S ⊆ q ∗ f ∧ S ∩ (q ∗ f) ̸= ∅}}

follows directly from HSL’s frame rule and (FR-OSL-1), namely

{S | S ⊆ p ∧ S ∩ p ̸= ∅} ⋆ {S | S ⊆ f} = {S | S ⊆ p ∗ f ∧ S ∩ (p ∗ f) ̸= ∅}.

The inductive steps incorporate properties (∪-distributivity) and (⊗-
distributivity).

� RSL

This case is especially challenging as there are two major obstacles in-
volved. The first one being that RSL (see [Yang 2007]) reasons about
simultaneous divergence, which in essence is not ∀∀-program hyperprop-
erty. In this thesis we focus on an alternative of RSL, where simultaneous
divergence is not considered, i.e. with the third condition in the definition
of |=RSL removed. If one is to capture RSL in its original ∀∀- and ∀∃-form,
then the state model should further be expanded by adding ↑ (divergence).
The second obstacle arises from the fundamental difference between the
types on which ours ⋆ and theirs □∗ operate—hassertions and rassertions,
respectively. That is, their □∗ can easily differentiate whether a heap is
from the first or from the second coordinate, whereas ours has no way
of differentiating that—there are no coordinates in the first place. The
workaround we did was to encode in the store (in a variable t /∈ md(C))
the coordinate from which a state, particularly a heap, originates. This

74

solution, however, has the drawback that it can only speak of ”rectangu-
lar” rassertions, i.e. those which are cartesian product of two asserions,
e.g. r ⇋ {

[
σ11
σ21

]
,
[
σ12
σ22

]
} is not rectangular as r ⊂ {σ11, σ12}×{σ21, σ22}. In

this bullet point we set aside the first problem and focus on the ∀∀-variant
of RSL and give an initial idea of how a potential solution to the second
problem may look like.

We begin by illustrating a simplified variant of the second problem and
its solution. Recall the naive star

P ⋆′naive Q ⇋ {Sp ∗ Sq | Sp ∈ P ∧ Sq ∈ Q}.

It suffers a similar problem with rectangularness. Indeed, consider p ⇋
{⟨s, ∅11⟩, ⟨s, ∅22⟩} and q ⇋ {⟨s, ∅33⟩, ⟨s, ∅44⟩} for some fixed s. Then

{S | S ⊆ p} ⋆′naive {S | S ⊆ q} = {∅, //0× 0

{⟨s, ∅1,31,3⟩}, {⟨s, ∅
1,4
1,4⟩}, {⟨s, ∅

2,3
2,3⟩}, {⟨s, ∅

2,4
2,4⟩}, {⟨s, ∅

1,3
1,3⟩}, //1× 1

{⟨s, ∅1,31,3⟩, ⟨s, ∅
1,4
1,4⟩}, {⟨s, ∅

2,3
2,3⟩, ⟨s, ∅

2,4
2,4⟩}, //1× 2

{⟨s, ∅1,31,3⟩, ⟨s, ∅
2,3
2,3⟩}, {⟨s, ∅

1,4
1,4⟩, ⟨s, ∅

2,4
2,4⟩}, //2× 1

{⟨s, ∅1,31,3⟩, ⟨s, ∅
1,4
1,4⟩, ⟨s, ∅

2,3
2,3⟩, ⟨s, ∅

2,4
2,4⟩}}. //2× 2

Notice that we have all 0× 0, 1× 1, 1× 2, 2× 1 and 2× 2 subsets of p ∗ q,
but miss the ”serrated” subsets, i.e. those with cardinality 3. That is, we
have

{S | S ⊆ p} ⋆′naive {S | S ⊆ q} ⊆ {S | S ⊆ p ∗ q}

and not the stronger version with equality. However, it is not an arbitrary
subset. It is a subset, which contains the 0 × 0 subset, i.e. ∅, and, more
importantly, all 1× 1 subsets:

∀σ ∈ p ∗ q. {σ} ∈ {S | S ⊆ p} ⋆′naive {S | S ⊆ q}.

That is, using HSL’s frame rule and the consequence rule we obtain

|=HSL {{S | S ⊆ p}}C{{S | S ⊆ q}}
(Frame)

|=HSL {{S | S ⊆ p} ⋆′naive {S | S ⊆ f}}C{{S | S ⊆ q} ⋆′naive {S | S ⊆ f}}
(Cons)

|=HSL {{∅, {σ}}}C{{S | S ⊆ q ∗ f}} ,

for any σ ∈ p ∗ f . Now, in order to continue with the illustration, let’s
replace ⋆′naive with ⋆ in the reasoning we did, which can clearly be made.
This change is made because we will need the soundness of the following
rule

for all i ∈ I. |=HSL {Pi}C{Qi}
(Idx-Join)

|=HSL {
⊗
i∈I

Pi}C{
⊗
i∈I

Qi} .

However, we believe that this rule is actually unsound for ⋆′naive, while for
⋆, the soundness is easily verified using the property (

⊗
-distributivity)

75

(see Indexed join rule sound in HyperFrameRule.thy). That is, we have
obtained a weaker version of SL’s frame rule, namely

|=HSL {{S | S ⊆ p}}C{{S | S ⊆ q}}
(Frame)

|=HSL {{S | S ⊆ p} ⋆ {S | S ⊆ f}}C{{S | S ⊆ q} ⋆ {S | S ⊆ f}}
(Cons)

|=HSL {{∅, {σ}}}C{{S | S ⊆ q ∗ f}} ,

for any σ ∈ p ∗ f . For the sake of the example, let’s overlook the fact
that SL’s frame rule was already obtained before the application of the
consequence rule. Therefore, by applying the (Idx-Join) rule, we obtain

for all σ ∈ p ∗ f. |=HSL {{∅, {σ}}}C{{S | S ⊆ q ∗ f}}
(Idx-Join)

|=HSL {
(⊗

σ∈p∗f

{∅, {σ}}
)
}C{

(⊗
σ∈p∗f

{S | S ⊆ q ∗ f}
)
} .

Finally, note that the precondition
⊗

σ∈p∗f{∅, {σ}} = {S | S ⊆ p ∗ f} and
the postcondition

⊗
σ∈p∗f{S | S ⊆ q ∗ f} = {S | S ⊆ q ∗ f}. That is, we

obtained the (encoding of the) conclusion of SL’s frame rule. What we
demonstrated is that, essentially, it suffices that ⋆ yields all 1× 1 subsets,
as the (Idx-Join) rule then allows us to obtain all subsets.

For the RSL’s frame rule, we speculate that the same principle might
work. That is, for t /∈ md(C) and Si ⇋ {⟨s, h⟩ ∈ S | s(t) = i}, by
applying (FR-RSL), we obtain

|=HSL {{S | S1 × S2 ⊆ r}}C{{S | S1 × S2 ⊆ s}}
(Frame)

|=HSL {{S | S1 × S2 ⊆ r} ⋆ {S | S1 × S2 ⊆ f}}C{{S | S1 × S2 ⊆ s} ⋆ {S | S1 × S2 ⊆ f}}
(Cons)

|=HSL {{∅, {σ1, σ2}}}C{{S | S1 × S2 ⊆ s □∗ f}} ,

for any
[
σ1
σ2

]
∈ r □∗ f. The issue here is that the postcondition is not

union closed, so the application of the (Join-Idx) rule may result in a
weaker postcondition than the starting one. Whether this has a simple
workaround, is a fundamental issue, or is a flaw in the definition of ⋆
remains an open question.

76

References

Flavio Ascari, Roberto Bruni, Roberta Gori, and Francesco Logozzo. Sufficient
incorrectness logic: Sil and separation sil, 2024. URL https://arxiv.org/

abs/2310.18156.

Callum Bannister, Peter Höfner, and Gerwin Klein. Backwards and forwards
with separation logic. In Jeremy Avigad and Assia Mahboubi, editors, In-
teractive Theorem Proving, pages 68–87, Cham, 2018. Springer International
Publishing. ISBN 978-3-319-94821-8.

Nick Benton. Simple relational correctness proofs for static analyses and pro-
gram transformations. In Proceedings of the 31st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’04, page 14–25,
New York, NY, USA, 2004. Association for Computing Machinery. URL
https://doi.org/10.1145/964001.964003.

E. M. Clarke, P. Aczel, J. V. Tucker, and J. C. Shepherdson. The characteriza-
tion problem for hoare logics [and discussion]. Philosophical Transactions of
the Royal Society of London. Series A, Mathematical and Physical Sciences,
312:423–440, 1984. URL http://www.jstor.org/stable/37443.

Michael R. Clarkson and Fred B. Schneider. Hyperproperties. In 2008 21st
IEEE Computer Security Foundations Symposium, pages 51–65, 2008. URL
https://doi.org/10.1109/CSF.2008.7.

Stephen A. Cook. Soundness and completeness of an axiom system for pro-
gram verification. SIAM J. Comput., 7:70–90, 1978. URL https://api.

semanticscholar.org/CorpusID:9829063.

Thibault Dardinier and Peter Müller. Hyper hoare logic: (dis-)proving program
hyperproperties. Proc. ACM Program. Lang., 8(PLDI), June 2024. URL
https://doi.org/10.1145/3656437.

J. A. Goguen and J. Meseguer. Security policies and security models. In 1982
IEEE Symposium on Security and Privacy, pages 11–11, 1982. doi: 10.1109/
SP.1982.10014.

David Harel. First-Order Dynamic Logic, volume 68 of Lecture Notes in Com-
puter Science. Springer-Verlag, 1979.

C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12(10):576–580, oct 1969. URL https://doi.org/10.1145/363235.363259.

Peter W. O’Hearn. Incorrectness logic. Proc. ACM Program. Lang., 4(POPL):
1–32, dec 2019. URL https://doi.org/10.1145/3371078.

Azalea Raad, Josh Berdine, Hoang-Hai Dang, Derek Dreyer, Peter O’Hearn,
and Jules Villard. Local Reasoning About the Presence of Bugs: Incorrectness
Separation Logic, pages 225–252. Springer International Publishing, 07 2020.
URL https://doi.org/10.1007/978-3-030-53291-8_14.

77

https://arxiv.org/abs/2310.18156
https://arxiv.org/abs/2310.18156
https://doi.org/10.1145/964001.964003
http://www.jstor.org/stable/37443
https://doi.org/10.1109/CSF.2008.7
https://api.semanticscholar.org/CorpusID:9829063
https://api.semanticscholar.org/CorpusID:9829063
https://doi.org/10.1145/3656437
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/3371078
https://doi.org/10.1007/978-3-030-53291-8_14

J.C. Reynolds. Separation logic: a logic for shared mutable data structures.
In Proceedings 17th Annual IEEE Symposium on Logic in Computer Science,
pages 55–74, 2002. URL https://doi.org/10.1109/LICS.2002.1029817.

Joseph Robert Shoenfield. Mathematical Logic. Addison-Wesley, 1967.

Makoto Tatsuta, Wei-Ngan Chin, and Mahmudul Faisal Al Ameen. Com-
pleteness and expressiveness of pointer program verification by separation
logic. Information and Computation, 267:1–27, 2019. ISSN 0890-5401. doi:
https://doi.org/10.1016/j.ic.2019.03.002.

Hongseok Yang. Relational separation logic. Theoretical Computer Science, 375
(1):308–334, 2007. URL https://doi.org/10.1016/j.tcs.2006.12.036.

Noam Zilberstein, Derek Dreyer, and Alexandra Silva. Outcome logic: A unify-
ing foundation for correctness and incorrectness reasoning. Proc. ACM Pro-
gram. Lang., 7(OOPSLA1), April 2023. URL https://doi.org/10.1145/

3586045.

Noam Zilberstein, Angelina Saliling, and Alexandra Silva. Outcome separation
logic: Local reasoning for correctness and incorrectness with computational
effects. Proc. ACM Program. Lang., 8(OOPSLA1), April 2024. URL https:

//doi.org/10.1145/3649821.

78

https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1016/j.tcs.2006.12.036
https://doi.org/10.1145/3586045
https://doi.org/10.1145/3586045
https://doi.org/10.1145/3649821
https://doi.org/10.1145/3649821

	Introduction
	Preliminaries
	Hoare logic
	Semantics
	Syntax
	Undecidability and effective incompleteness
	Soundness and non-effective completeness

	Separation logic
	Semantics
	Syntax
	Syntactic and semantic logic
	Separating conjunction and the frame rule

	Separation Sufficient Incorrectness logic
	Outcome Separation logic
	Relational Separation logic
	Semantics
	Syntax

	Properties and hyperproperties
	Hyper Hoare logic
	Semantics
	Syntax
	Expressivity

	Hyper Separation logic
	Separating conjunction
	Desired properties
	Definition

	Hyper-tripe validity
	The strongest postcondition
	The Frame rule
	Soundness
	Expressivity

