
Sofia University “St. Kliment Ohridski”
Faculty of Mathematics and Informatics

Master’s thesis

Mathematics – Logic and Algorithms

Efficient representation of regular
contextual replacement rules

Author
Stanimir Petrov
Faculty number: 8MI3100005

Supervisor
Prof. DSc. Stoyan Mihov

2024-06-01 13:24:48+03:00

Contents

1 Introduction 1

2 Formal preliminaries 2

3 Contextual replacement rules 2

4 Finite-state automata and transducers 7

5 Two-step bimachines 11

6 Classical bimachines 23

7 Complexity analysis 33

8 Implementation 36
8.1 Implementation overview . 37
8.2 Porter stemmer and its representation with contextual replace-

ment rules . 38
8.3 Empirical results . 41

9 Conclusion 42

A Compact version of the original description of the Porter stem-
ming algorithm 44

B Porter stemming algorithm in form of contextual replacement
rules (PorterStemmer.hpp) 47

1 Introduction

Text rewriting according to contextual replacement rules is widely used in fields
like information retrieval and natural language processing. Generally, it is de-
sired that each input string has a unique rewriting based on these rules. Different
strategies are known for achieving this, one of which is leftmost-longest replace-
ment strategy. It is well-known fact that the resulting string function is regular
(see, e.g., [1]).

An interesting problem is representing this function with a finite-state device
so that the rewriting can be carried out by automatic means. Since the function
is regular, it can be represented by a finite-state transducer. But in general,
this transducer cannot be deterministic [2, remark 5.1.11], which makes the
rewriting highly inefficient. Bimachines, on the other hand, traverse its input in
both directions and provide a fully deterministic processing of any regular string
function in time proportional to the length of the string which is being rewritten.
This advantage of them is essential and makes them useful for rewriting large
texts even on devices with relatively low computing power.

One option for constructing the bimachine is to first find the regular function
determined by these rules and represent it by a real-time functional finite-state
transducer [1]. Then this transducer can be used to construct an equivalent
bimachine [3, 4]. However, in general, the intermediate steps of finding the
functional transducer may take an enormous amount of time and memory, while
the final result might be smaller in size.

The constructions presented in this thesis directly produce a bimachine,
avoiding the overhead costs of constructing the non-deterministic finite-state
transducer first.1 The main contribution of this work is the introduction of a
new type of bimachine (called two-step bimachine) and a construction of such
given a sequence (batch) of contextual rules. This type of bimachines have the
same expressive power as classical bimachines but they are specially designed
to provide an efficient construction process for a batch of rules. On top of that,
like the classical bimachines, they provide text rewriting in linear time. For the
example of our empirical analysis, classical bimachines and two-step bimachines
perform the rewriting process in practically indistinguishable time.

In section 3 contextual replacement rules are introduced and the notion of
leftmost-longest rewriting is formally defined. In section 4 definitions for finite-
state automata and transducers are given, as well as some of their properties
and constructions which are used later. In section 5 the two-step bimachines are
introduced. A direct construction of such machine from a finite-state represen-
tation of batch of rules is described and its correctness is proven. In section 6
a similar direct construction is shown which constructs a classical bimachine
with final output instead. Then the equivalence of the bimachines created by
these two constructions is proven. In section 7 upper bounds for the size of the
resulting bimachines from both constructions are given. Finally, in section 8

1Here we refer to the non-deterministic real-time functional finite-state transducer repre-
senting the leftmost-longest replacement, not the transducers representing the function part
of each individual rule. The latter are still needed.

1

an implementation of both constructions is provided and they are empirically
compared using a practically applicable example.

2 Formal preliminaries

Definition 2.1. Let Q be a finite set. We say that the function g : |Q| → Q is
an enumeration of Q if g is injective.2 We will denote by Enum(Q) the set of
all enumerations of Q, i.e.

Enum(Q) = {g : |Q| → Q | (∀i < |Q|)(∀j < |Q|)(i ̸= j =⇒ g(i) ̸= g(j))}.

We will denote by enumerate(Q) an arbitrary element of Enum(Q).

We can think of an enumeration Q as a sequence which contains every
element of Q exactly once. Clearly, for any finite set Q, Enum(Q) ̸= ∅, so
enumerate(Q) is well-defined.

Proposition 2.2. Let Q be a finite set. If g ∈ Enum(Q), then g : |Q| → Q is
bijective.

Proof. g is injective by definition. This implies |Rng(g)| = |Q|. Since Rng(g) ⊆
Q and Q is finite, we have Rng(g) = Q.

Definition 2.3. Let Q1, Q2 be finite sets such that Q1 ∩ Q2 = ∅. Let g1 ∈
Enum(Q1) and g2 ∈ Enum(Q2). We define the concatenation of g1 and g2 as
follows:

g1 ∥ g2 = g1 ∪ {(|g1|+ i, g2(i)) | i ∈ Dom(g2)}.

We can easily verify that g1 ∥ g2 ∈ Enum(Q1 ∪Q2).

Definition 2.4. Let R ⊆ A×A be an equivalence relation. For any a ∈ A, we
will denote by [a]R the equivalence class of a with respect to R, i.e.

[a]R = {b | (a, b) ∈ R}.

We will denote by A/R the set of all equivalence classes of R, i.e.

A/R = {[a]R | a ∈ A}.

3 Contextual replacement rules

Definition 3.1. Let Σ1,Σ2 be finite alphabets. Contextual replacement rule
(CRR) over (Σ1,Σ2) is a triple (T, λ, ρ) where:

• T ⊆ Σ∗
1 × Σ∗

2 is a function,

2When a natural number n is used in a context where a set is expected, we will assume
that n is used in the sense of a von Neumann ordinal, i.e. n = {0, . . . , n− 1}.

2

• λ ⊆ Σ∗
1 and ρ ⊆ Σ∗

1.

Instead of (T, λ, ρ), we will often write T/λ ρ.

Definition 3.2. Let Σ1,Σ2 be finite alphabets and T/λ ρ be a CRR over (Σ1,Σ2).
We say that (u, v, w) is a replacement context in t = t1 . . . tn ∈ Σ∗

1 for the rule
T/λ ρ if

u ∈ Σ∗
1λ & v ∈ Dom(T) & w ∈ ρΣ∗

1 & t = uvw.

In this case we write RC((u, v, w), t, T/λ ρ). We define the set of all replacement
contexts in t for the rule T/λ ρ:

ctx(t, T/λ ρ) = {c | RC(c, t, T/λ ρ)}.

Application of that rule on a context (u, v, w) in t is the replacement in t of the
substring v (starting at position |u|+ 1) with T (v).

Example 3.3. Consider the rule R = ({(a, ϵ)}∗{(aa,A)}∪{(ab, ϵ)})/{a} {aa, b}
and the string t = aaaaaabaaab. Then

ctx(t, R) = {(a, aa, aaabaaab), (a, aaa, aabaaab), (a, aaaaa, baaab),
(aa, aa, aabaaab), (aa, aaaa, baaab), (aaa, aaa, baaab),

(aaaa, aa, baaab), (aaaaa, ab, aaab), (aaaaaaba, aa, b)

}.

We will now extend the definition of replacement context to multiple CRR.

Definition 3.4. Let Σ1,Σ2 be finite alphabets, m ∈ N. Batch of contextual
replacement rules (BCRR) over (Σ1,Σ2) is a sequence BR = (Tr/λr ρr)

m
r=1 of

CRR over (Σ1,Σ2). We define the set of all replacement contexts in t for the
batch rule (Tr/λr ρr)

m
r=1:

C(t,BR) =

m⋃
r=1

ctx(t, Tr/λr ρr).

We also define earliest(t,BR)(c) = min{r | RC(c, t, Tr/λr ρr)}.

From example 3.3, it is immediately obvious that ambiguities may occur
when applying the rule R on the replacement contexts in the string t. One
may choose to apply R once to get aAaaabaaab, or aAaabaaab, or aAbaaab,
or aaAaabaaab, or aaAbaaab, or aaaAbaaab, or aaaaAbaaab, or aaaaaaaab,
or aaaaaabaAb. On the other hand, R may be applied multiple times to get
aAAbaaab, or aaAAbaaab, or aAaAbaaab, or aAaaAb, etc. Or R may not be
applied at all to get the same string t.

Note that there are pairs of contexts in ctx(t, R) on which R cannot be
applied simultaneously. For example

(a, aa, aaabaaab) and (a, aaa, aabaaab), or

(aa, aa, aabaaab) and (a, aaa, aabaaab), or

(a, aaaaa, baaab) and (aaaaa, ab, aaab), etc.

3

There are multiple strategies to resolve these ambiguities. In this work,
we will focus only on the leftmost-longest replacement strategy. We are going
to formalize this strategy in the definitions below. For other strategies, e.g.
leftmost-shortest, rightmost-longest, and so on, similar ideas and notions can be
used.

Letm ∈ N, BR = (Tr/λr ρr)
m
r=1 be a BCRR over (Σ1,Σ2), t = t1 . . . tn ∈ Σ∗

1.

Definition 3.5. Let ci = (ui, vi, wi) ∈ C(t,BR) for i ∈ {1, 2}. We say that
c2 is over c1 and we write Over(c2, c1) if |u1| < |u2| < |u1v1|. We say that c1
and c2 overlap and we write Overlap(c1, c2) if |u1| < |u2v2|, |u2| < |u1v1| and
|u1| ≠ |u2|.

It is trivial to see that Overlap(c1, c2) ⇐⇒ Over(c1, c2) ∨Over(c2, c1).

Definition 3.6. Let A,B ⊆ C(t,BR). We define the following functions:

After(A,B) = {(u, v, w) ∈ A | (∀(u′, v′, w′) ∈ B)(|u| ≥ |u′v′| & |u| ≠ |u′|)},
Leftmost(A) = {(u, v, w) ∈ A | (∀(u′, v′, w′) ∈ A)(|u| ≤ |u′|)},
Longest(A) = {(u, v, w) ∈ A | (∀(u′, v′, w′) ∈ A)(|u| = |u′| =⇒ |v| ≥ |v′|)}.

Definition 3.7. We define the sequence (Ci)
∞
i=0 by recursion:

C0(t,BR) = ∅,
Ci+1(t,BR) = Ci(t,BR) ∪ Leftmost(After(C(t,BR), Ci(t,BR))).

We now define CLM (t,BR) and CLML(t,BR) as follows:

CLM (t,BR) =

∞⋃
i=0

Ci(t,BR),

CLML(t,BR) = Longest(CLM (t,BR)).

From now on, we will omit the arguments t and BR when they are obvious.
Note that the sequence (Ci)

∞
i=0 is monotonically increasing and it becomes con-

stant after finite number of steps. Clearly CLML ⊆ CLM ⊆ C. C is finite, so
are CLM and CLML.

Let’s take a look at our example again.

Example 3.8. We will find CLML(t, ⟨R⟩) for t and R from example 3.3.

After(C,C0) = After(C, ∅) = C,

Leftmost(After(C,C0)) = {(a, aa, aaabaaab), (a, aaa, aabaaab), (a, aaaaa, baaab)},
C1 = C0 ∪ Leftmost(After(C,C0))

= {(a, aa, aaabaaab), (a, aaa, aabaaab), (a, aaaaa, baaab)},
After(C,C1) = {(aaaaaaba, aa, b)},

Leftmost(After(C,C1)) = {(aaaaaaba, aa, b)},
C2 = C1 ∪ Leftmost(After(C,C1))

4

= {(a, aa, aaabaaab), (a, aaa, aabaaab), (a, aaaaa, baaab), (aaaaaaba, aa, b)},
After(C,C2) = ∅,

Leftmost(After(C,C1)) = ∅,
C3 = C2 ∪ Leftmost(After(C,C1)) = C2.

Since C3 = C2, it follows that Ci = C2 for all i ≥ 3. Therefore

CLM =

∞⋃
i=0

Ci = C2,

CLML(t, ⟨R⟩) = Longest(CLM) = {(a, aaaaa, baaab), (aaaaaaba, aa, b)}.

Thus the rewriting of t = aaaaaabaaab according to ⟨R⟩ using leftmost-
longest match strategy is aAbaAb. This is precisely defined in definition 3.12.

Proposition 3.9. There are no overlapping contexts in CLM .

Proof. Let ci = (ui, vi, wi) ∈ CLM , ki = min{k | ci ∈ Ck} for i ∈ {1, 2}. Note
that ki > 0 since C0 = ∅.
case 1: k1 = k2. Let A = After(C,Ck1−1). We have c1, c2 ∈ Ck1

\ Ck1−1, so
c1, c2 ∈ Leftmost(A) and hence c1, c2 ∈ A. Since c1 ∈ Leftmost(A), we get
that (∀(u′, v′, w′) ∈ A)(|u1| ≤ |u′|). In particular, since c2 ∈ A, we have
|u1| ≤ |u2|.
By similar reasoning, we get that |u2| ≤ |u1|.
Therefore |u1| = |u2|, so ¬Overlap(c1, c2).

case 2: k1 < k2. Let A = After(C,Ck2−1). We have c2 ∈ Ck2 \ Ck2−1, so c2 ∈
Leftmost(A) and hence c2 ∈ A. Since c2 ∈ A, we get that (∀(u′, v′, w′) ∈
Ck2−1)(|u2| ≥ |u′v′| & |u2| ≠ |u′|). In particular, c1 ∈ Ck1

⊆ Ck2−1 (since
k1 ≤ k2 − 1). Therefore |u2| ≥ |u1v1|, so ¬Overlap(c1, c2).

case 3: k1 > k2. Same reasoning as in the previous case with c1 and c2
swapped.

It follows immediately that there are no overlapping contexts in CLML either.
Moreover, by the definition of CLML,

(∀(u1, v1, w1), (u2, v2, w2) ∈ CLML)(|u1| = |u2| =⇒ |v1| = |v2|).

Proposition 3.10. Let c1 = (u, v1, w1) ∈ C and c2 = (u, v2, w2) ∈ C. Then

c1 ∈ CLM ⇐⇒ c2 ∈ CLM .

Proof. Let c1 ∈ CLM . Let k1 = min{k | c1 ∈ Ck}. Let A = After(C,Ck1−1).
Then c1 ∈ Leftmost(A) and hence c1 ∈ A. Since c1 ∈ A, we get that (∀(u′, v′, w′) ∈
Ck2−1)(|u| ≥ |u′v′| & |u| ̸= |u′|). But this also means that c2 ∈ A. Now, since
c1 ∈ Leftmost(A), we get that (∀(u′, v′, w′) ∈ A)(|u| ≤ |u′|). But again this also
means that c2 ∈ Leftmost(A). Therefore c2 ∈ Ck1

⊆ CLM .
The other direction is completely symmetrical.

5

Proposition 3.11. Let c1 = (u1, v1, w1) ∈ C \ CLM . Then

(∃c2 ∈ CLML)Over(c1, c2).

Proof. Let Ai = After(C,Ci). We can easily see that the sequence (Ai)
∞
i=0 is

monotonically decreasing with respect to set-theoretical inclusion. Moreover,
if Ai ̸= ∅, then Ai ⊃ Ai+1. Therefore there is a unique j ∈ N such that
c1 ∈ Aj \Aj+1. Because c1 /∈ Aj+1, we have that

(∃(u′, v′, w′) ∈ Cj+1)(|u1| < |u′v′| ∨ |u1| = |u′|).

Take a witness c′2 = (u′2, v
′
2, w

′
2) for this existence. By proposition 3.10, we can

immediately conclude that |u1| ̸= |u′2| (c1 /∈ CLM , but c′2 ∈ Cj+1 ⊆ CLM).
Therefore it must be the case that |u1| < |u′2v′2|.

On the other hand, since c1 ∈ Aj , we have that

(∀(u′, v′, w′) ∈ Cj)(|u1| ≥ |u′v′| & |u1| ≠ |u′|).

Hence c′2 /∈ Cj . From the definition of Cj+1, it follows that c′2 ∈ Leftmost(Aj)
which means that (∀(u′, v′, w′) ∈ A)(|u′2| ≤ |u′|). In particular, since c1 ∈ Aj ,
we get |u′2| ≤ |u1|. But we already know that |u1| ≠ |u′2|, so |u′2| < |u1|.

We now have that |u′2| < |u1| < |u′2v′2|, hence Over(c1, c
′
2). Since c

′
2 ∈ CLM ,

there is some c2 ∈ CLML such that c2 = (u′2, v2, w2) and |v2| ≥ |v′2|. Therefore
Over(c1, c2).

Definition 3.12. We say that t′ = x0y0x1y1 . . . xnyn is a rewriting of t accord-
ing to the batch of rules BR using leftmost-longest match strategy where:

• x0 = ϵ,

• xi =

Tearliest((u,v,w))(v) (∃(u, v, w) ∈ CLML)(|u|+ 1 = i & i ≤ |uv|)
ϵ (∃(u, v, w) ∈ CLML)(|u|+ 1 < i & i ≤ |uv|)
ti otherwise

for each 0 < i ≤ n,

• yi =

{
Tearliest((u,v,w))(ϵ) (∃(u, v, w) ∈ CLML)(|u| = i & v = ϵ)

ϵ otherwise

for each 0 ≤ i ≤ n.

We will denote this rewriting t′ by RewriteLML(BR, t).

If c ∈ CLML, then {r | RC(c, t, Tr/λr ρr)} ≠ ∅. From this and the fact that
there are no overlapping contexts in CLML, it follows that RewriteLML(BR, t)
is correctly defined.

6

4 Finite-state automata and transducers

Definition 4.1. A monoid is a tripleM = (M, ◦, e) where:

• M ̸= ∅ is a set,

• ◦ :M ×M →M is the monoid operation and has the property

(∀a ∈M)(∀b ∈M)(∀c ∈M)((a ◦ b) ◦ c = a ◦ (b ◦ c)),

• e ∈M is the unit element and has the property

(∀a ∈M)(a ◦ e = a & e ◦ a = a).

Definition 4.2. A monoidal finite-state automaton (monoidal FSA) is a tuple
A = (M, Q, S, F,∆) where:

• M = (M, ◦, e) is a monoid,

• Q is a finite set of states,

• S ⊆ Q is the set of initial states,

• F ⊆ Q is the set of final states,

• ∆ ⊆ Q×M ×Q is a finite set of transitions.

For m ∈ N, we define ∆(n) by recursion:

∆(0) = {(q, e, q) | q ∈ Q},
∆(n+1) = {(q1, a ◦ α, q3) | ∃q2((q1, a, q2) ∈ ∆ & (q2, α, q3) ∈ ∆(n))}.

We define the generalized transition relation ∆∗ as follows:

∆∗ =

∞⋃
n=0

∆(n).

The language accepted by A is L(A) = {w | (∃s ∈ I)(∃f ∈ F)(s, w, f) ∈ ∆∗}.
The left language of a state q ∈ Q is

←−−−
LA(q) = {w | (∃s ∈ S)(s, w, q) ∈ ∆∗}. The

right language of a state q ∈ Q is
−−−→
LA(q) = {w | (∃f ∈ F)(q, w, f) ∈ ∆∗}. We

say that (qi)
n
i=0 is an execution of A over a1 ◦ · · · ◦ an if q0 ∈ S and, for each

i < n, (qi, ai+1, qi+1) ∈ ∆. We say that the execution (qi)
n
i=0 is successful if

qn ∈ F . We say that A is e-free if ∆ ⊆ Q× (M \ {e})×Q. We denote the set
of a-successors of P ⊆ Q by SuccA(P, a) = {q′ | (∃q ∈ P)(q, a, q′) ∈ ∆}.

Proposition 4.3. For every monoidal FSA A = ((M, ◦, e), Q, S, F,∆) there is
an e-free monoidal FSA A′ equivalent to A, i.e. L(A′) = L(A).

Proof. See [2, proposition 2.5.4].

7

Definition 4.4. Let A = ((M, ◦, e), Q, S, F,∆) be an e-free monoidal FSA. We
say that A is left-simple if S = {s} and ∆ ∩ (Q×M × S) = ∅, i.e. A has only
one initial state and there are no transitions going into it. We say that A is
right-simple if F = {f} and ∆ ∩ (F ×M × Q) = ∅, i.e. A has only one final
state and there are no transitions coming out of it. We say that A is simple if
it is left-simple and right-simple.

Proposition 4.5. Let A = (M, Q, S, F,∆) be an e-free monoidal FSA. Then
there exist a left-simple monoidal FSA Als and a right-simple monoidal FSA
Ars, such that L(A) = L(Als) = L(Ars).

Proof. Let s, f /∈ Q.

Als = (M, Q ∪ {s}, {s}, Fls,∆ls), where

• Fls = F ∪

{
∅ S ∩ F = ∅
{s} S ∩ F ̸= ∅

,

• ∆ls = ∆ ∪ {(s, a, q) | (∃s′ ∈ S)(s′, a, q) ∈ ∆}.

Ars = (M, Q ∪ {f}, Srs, {f},∆rs), where

• Srs = S ∪

{
∅ S ∩ F = ∅
{f} S ∩ F ̸= ∅

,

• ∆rs = ∆ ∪ {(q, a, f) | (∃f ′ ∈ F)(q, a, f ′) ∈ ∆}.

Clearly, Als is left-simple, Ars is right-simple and L(A) = L(Als) = L(Ars).

Definition 4.6. We say that a monoidal finite-state automaton A = ((Σ∗, ·, ϵ), Q, S, F,∆)
is classical if:

• Σ is a finite set called alphabet,

• (Σ∗, ·, ϵ) is the free monoid over Σ,

• ∆ ⊆ Q× (Σ ∪ {ϵ})×Q.

For simplicity, we will write A = (Σ, Q, S, F,∆). When we say that A is a
nondeterministic finite-state automaton (NFA) or simply a finite-state automa-
ton (FSA), we mean that A is classical. The reversed FSA of A is Arev =
(Σ, Q, F, S,∆rev), where ∆rev = {(p, a, q) | (q, a, p) ∈ ∆}.

Definition 4.7. We say that a nondeterministic finite-state automaton A =
(Σ, Q, {q0}, F,∆) is deterministic (DFA) if:

• ∆ ⊆ Q× Σ×Q,

• (∀q, q′, q′′ ∈ Q)(∀a ∈ Σ)((q, a, q′) ∈ ∆ & (q, a, q′′) ∈ ∆ =⇒ q′ = q′′).

For simplicity, we will write A = (Σ, Q, q0, F, δ), where δ : Q × Σ 7→ Q is a
partial function called transition function and δ(q, a) = q′ ⇐⇒ (q, a, q′) ∈ ∆.

8

Definition 4.8. We say that a monoidal finite-state automaton A = (M, Q, S, F,∆)
is a classical finite-state transducer or simply a finite-state transducer (FST) if
M can be represented as a Cartesian product of free monoids over some finite
sets Σ1 and Σ2. For simplicity we will write A = (Σ1,Σ2, Q, S, F,∆). We say
that A is letter transducer if ∆ ⊆ Q× ((Σ1 ∪ {ϵ})×Σ∗

2)×Q. We say that A is
real-time transducer if ∆ ⊆ Q×(Σ1×Σ∗

2)×Q. The underlying automaton of A is
Adom = (Σ1, Q, S, F,∆

Σ1), where ∆Σ1 = {(q, a, q′) | (∃m ∈ Σ∗
2)(q, (a,m), q′) ∈

∆}. We say that A is functional if L(A) is a function.

Proposition 4.9. Let A = (Σ1,Σ2, Q, S, F,∆) be a real-time finite-state trans-
ducer. Then there exists a simple FST As such that L(As) = L(A)\{(ϵ, ϵ)} and
As is also real-time.

Proof. Let s, f /∈ Q and s ̸= f .

As = (Σ1,Σ2, Q ∪ {s, f}, {s}, {f},∆s), where

∆s = ∆ ∪ {(s, a, q) | (∃s′ ∈ S)(s′, a, q) ∈ ∆}
∪ {(q, a, f) | (∃f ′ ∈ F)(q, a, f ′) ∈ ∆}
∪ {(s, a, f) | (∃s′ ∈ S)(∃f ′ ∈ F)(s′, a, f ′) ∈ ∆}.

Clearly, As is simple, real-time and L(As) = L(A) \ {(ϵ, ϵ)}.

Proposition 4.10. For every functional FST A = (Σ1,Σ2, Q, S, F,∆) there is
a real-time FST A′ such that L(A′) \ ({ϵ} × Σ∗

2) = L(A) \ ({ϵ} × Σ∗
2).

Proof. See [2, proposition 4.4.8].

Definition 4.11. We say that T is regular function if T = L(T) for some FST
T .3 We say that a CRR T/λ ρ is regular if all T , λ and ρ are regular. We say
that a BCCR (Tr/λr ρr)

m
r=1 is regular if all of its members are regular.

From now on, we will assume that all of the contextual replacement rules
and batches of contextual replacement rules we use are regular.

Definition 4.12. Let (Tr/λr ρr)
m
r=1 be a BCRR over (Σ1,Σ2). We say that

((Tr, Er, Aλr , Aρr))
m
r=1 is a finite-state representation (FSR) of (Tr/λr ρr)

m
r=1 if

for each r, r′ such that 1 ≤ r ≤ m, 1 ≤ r′ ≤ m:

• Aλr = (Σ1, Qλr , Sλr , {fλr},∆λr) is a right-simple NFA such that L(Aλr) =
Σ∗

1 · λr,

• Aρr = (Σ1, Qρr , {sρr}, Fρr ,∆ρr) is a left-simple NFA such that L(Aρr) =
ρr · Σ∗

1,

• Tr = (Σ1,Σ2, QTr
, {sTr

}, {fTr
},∆Tr

) is a simple real-time transducer such
that L(Tr) = Tr \ ({ϵ} × Σ∗

2),

3This is a simplified definition which tacitly uses Kleene’s theorem. For a proper definition
of monoidal regular language see [2, definition 2.3.1]

9

q3

q2

q0 q4

q1

(a,A)
(a,A)

(a,A)

(a, ϵ)

(a, ϵ)

(b, ϵ)

(a, ϵ)

(a, ϵ)

Figure 4.1: A simple real-time transducer representing the regular function
{(a, ϵ)}∗{(aa,A)} ∪ {(ab, ϵ)}.

l1

l0 l2

a

b a

a

b

a

Figure 4.2: A right-simple NFA representing the language {a, b}∗ · {a}.

• Er =

{
Tr(ϵ) ϵ ∈ Dom(Tr)

↑ 4 otherwise
,

• If r ̸= r′, then Qλr
∩Qλr′ = ∅, Qρr

∩Qρr′ = ∅ and QTr
∩QTr′ = ∅,

• QTr ∩Qρr′ = ∅.

Example 4.13. Consider the rule R = ({(a, ϵ)}∗{(aa,A)}∪{(ab, ϵ)})/{a} {aa, b}
from example 3.3 and assume Σ1 = {a, b}. A possible FSR of ⟨R⟩ is ⟨(T1, E1, Aλ1 , Aρ1)⟩
where E1 is undefined and T1, Aλ1

, Aρ1
are as shown in figure 4.1, figure 4.2 and

figure 4.3 respectively.

Construction 4.14. Let, for each 1 ≤ r ≤ m, Ar = (Σ, Qr, Sr, Fr,∆r) be a
NFA such that for i ̸= j, Qi ∩Qj = ∅. Let A be constructed as follows:

A :=

(
Σ,

m⋃
r=1

Qr,

m⋃
r=1

Sr,

m⋃
r=1

Fr,

m⋃
r=1

∆r

)
.

4We will use ↑ to indicate that something is undefined and ↓ to indicate that it is defined.

10

r0 r2r1

b

a a a, b

Figure 4.3: A left-simple NFA representing the language {aa, b} · {a, b}∗.

Proposition 4.15. Let, for each 1 ≤ r ≤ m, Ar = (Σ, Qr, Sr, Fr,∆r) be a
NFA such that for i ̸= j, Qi∩Qj = ∅. Let A be obtained from construction 4.14
applied on the sequence (Ar)

m
r=1. Then L(A) =

⋃m
r=1 L(Ar).

Construction 4.16. Let A1 = (Σ, Q1, S1, {f1},∆1) and A2 = (Σ, Q2, {s2}, F2,∆2)
be NFA such that Q1 ∩ Q2 = ∅. An NFA A := (Σ, Q1 ∪ Q2, S1, F,∆) is con-
structed where:

• F := F2 ∪

{
∅ s2 /∈ F2

{f1} s2 ∈ F2

,

• ∆ := ∆1 ∪∆2 ∪ {(f1, a, q) | (s2, a, q) ∈ ∆2}.

Proposition 4.17. Let A1 = (Σ, Q1, S1, {f1},∆1) and A2 = (Σ, Q2, {s2}, F2,∆2)
be NFA such that Q1∩Q2 = ∅. Let A be obtained from construction 4.16 applied
on A1 and A2. Then L(A) = L(A1) · L(A2).

5 Two-step bimachines

Definition 5.1. We say that A = (Σ1,Σ2, AL, AR, Q, q0, δ, τ, ψδ, ψτ) is a two-
step bimachine where:

• Σ1 is a finite set called input alphabet,

• Σ2 is a finite set called output alphabet,

• Q is a finite set of states,

• AL = (Σ1, QL, sL, QL, δL) is a DFA - the left automaton,

• AR = (Σ1, QR, sR, QR, δR) is a DFA - the right automaton,

• q0 ∈ Q is the initial state,

• δ : Q× Σ1 ×QR 7→ Q,

• τ : Q×QL ×QR 7→ Q,

• ψδ : Q× Σ1 ×QR 7→ Σ1 ∪ Σ∗
2,

11

• ψτ : Q×QL ×QR 7→ Σ∗
2.

Definition 5.2. Let A = (Σ1,Σ2, AL, AR, Q, q0, δ, τ, ψδ, ψτ) be a two-step bi-
machine. Let t = t1 . . . tn ∈ Σ∗

1. Let L0, . . . , Ln be the execution of AL over t
and Rn, . . . , R0 be the execution of AR over rev(t). Execution of A over t is the
sequence ((Li, qi, qi, Ri, oi, oi))

n
i=0 where:

• qi = τ(qi, Li, Ri), 0 ≤ i ≤ n,

• qi = δ(qi−1, ti, Ri), 0 < i ≤ n,

• o0 = ϵ,

• oi = ψτ (qi, Li, Ri), 0 ≤ i ≤ n,

• oi = ψδ(qi−1, ti, Ri), 0 < i ≤ n.

Output of A for t is OutA(t) = o0o0 . . . onon.

Construction 5.3. Let (Tr/λr ρr)
m
r=1 be a BCRR over (Σ1,Σ2). Let ((Tr, Er, Aλr

, Aρr
))mr=1

be a FSR of (Tr/λr ρr)
m
r=1 (the input for the construction).

Let Aλ = (Σ1, Qλ, Sλ, Fλ,∆λ) be obtained from construction 4.14 applied on
(Aλr)

m
r=1. The left automaton AL = (Σ1, QL, sL, QL, δL) is obtained by applying

a determinization procedure on Aλ, i.e.

• QL ⊆ P(Qλ),

• sL := Sλ,

• δL(L, a) := SuccAλ
(L, a), for L ∈ QL and a ∈ Σ1.

Let T dom
r = (Σ1, QTr

, {sTr
}, {fTr

},∆Σ1

Tr
) be the underlying automaton of

Tr. Let T dom = (Σ1, QT , ST , FT ,∆
Σ1

T) be obtained from construction 4.14 ap-
plied on (T dom

r)mr=1. Let ∆T =
⋃m

r=1 ∆Tr
. For each 1 ≤ r ≤ m, let ARr

=
(Σ1, QRr

, SRr
, FRr

,∆Rr
) be obtained from construction 4.16 applied on T dom

r

and Aρr
.

Now, let ARU = (Σ1, QRU , SRU , FRU ,∆RU) be obtained from construction 4.14
applied on (Arev

Rr
)mr=1. Let type = {(q, r) | q ∈ QTr}. Since QTr ∩ QTr′ = ∅ for

r ̸= r′, type : QT → {1, . . . ,m} is a function. For q ∈ QT , we will say that
type(q) is the type of q. The right automaton is AR = (Σ1, QR, sR, QR, δR)
where:

• QR ⊆ P(QRU)×
⋃

Q⊆QT

Enum(Q),

• sR := (SRU , gs), where

– gs ∈ Enum(SRU ∩ FT),

– (∀i ∈ Dom(gs))(∀j ∈ Dom(gs))(i ≤ j =⇒ type(gs(i)) ≤ type(gs(j)),

• δR((R
′, g′), a) := (R, g), for (R′, g′) ∈ QR and a ∈ Σ1 where (R, g) is an

arbitrary element with the following properties:

12

– R = SuccARU
(R′, a),

– g ∈ Enum(R ∩QT),

– (∀i ∈ Dom(g))(∀j ∈ Dom(g))(i ≤ j =⇒
((g(i) ∈ FT & g(j) ∈ FT & type(g(i)) ≤ type(g(j))) ∨
(g(i) /∈ FT & g(j) ∈ FT) ∨ µ(g(i), a, g′) ≤ µ(g(j), a, g′))),where
µ(q, a, g′) = min{i′ | (q, a, g′(i′)) ∈ ∆Σ1

T }.

Let L ∈ QL, (R, g) ∈ QR. We will define the following functions:

I(L, g) := {i | g(i) ∈ ST & fλtype(g(i))
∈ L},

ν(L, g) := g(min(I(L, g))),

J(L,R) := {r | Er ↓ & fλr ∈ L & fTr ∈ R}.

The output of this construction is a two-step bimachine A = (Σ1,Σ2, AL, AR, Q, qerr, δ, τ, ψδ, ψτ)
where:

• Q = QT ∪ {qerr}, qerr /∈ QT ,

• δ(q, a, (R′, g′)) :=

{
g′(µ(q, a, g′)) q ∈ Rng(g) \ FT , where (R, g) = δR((R

′, g′), a)

qerr otherwise
,

• τ(q, L, (R, g)) :=

q q ∈ QT \ FT

ν(L, g) q /∈ QT \ FT & I(L, g) ̸= ∅
qerr otherwise

,

• ψδ(q, a, (R
′, g′)) :=

{
elem of{m | (q, (a,m), δ(q, a, (R′, g′))) ∈ ∆T } δ(q, a, (R′, g′)) ∈ QT

a otherwise
,

• ψτ (q, L, (R, g)) :=

{
Emin(J(L,R)) τ(q, L, (R, g)) = qerr & J(L,R) ̸= ∅
ϵ otherwise

.

Example 5.4. A possible result of applying construction 5.3 on the FSR ⟨(T1, E1, Aλ1
, Aρ1

)⟩
from example 4.13 is A = ({a, b}, {A}, AL, AR, Q, qerr, δ, τ, ψδ, ψτ) where

• AL = ({a, b}, QL, L0, QL, δL), where

– QL = {L0, L1},
– L0 = {l0} L1 = {l1, l2},
– For δL see figure 5.1.

• AR = ({a, b}, QR, R0, QR, δR), where

– QR = {R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10},

13

L0 L1
a

ab

b

Figure 5.1: The left automaton of the two-step bimachine from example 5.4. It
lands on state L1 (which contains the final state l2 of Aλ1

) iff the last symbol
read was ′a′. This is used to determine whether a valid left context is present
after reading some prefix of the input string.

–

R0 = ({r2}, ⟨⟩) R6 = ({r0, r1, r2, q3, q4}, ⟨q3, q4⟩)
R1 = ({r1, r2}, ⟨⟩) R7 = ({r0, r1, r2, q0, q1, q2, q4}, ⟨q1, q2, q0, q4⟩)
R2 = ({r0, r2, q4}, ⟨q4⟩) R8 = ({r1, r2, q0, q3}, ⟨q0, q3⟩)
R3 = ({r0, r1, r2, q4}, ⟨q4⟩) R9 = ({r0, r1, r2, q0, q1, q2, q3, q4}, ⟨q1, q2, q0, q3, q4⟩)
R4 = ({r1, r2, q3}, ⟨q3⟩) R10 = ({r0, r1, r2, q0, q1, q2, q3, q4}, ⟨q0, q1, q2, q3, q4⟩)
R5 = ({r0, r2, q4}, ⟨q4⟩)

,

– For δR see figure 5.2.

• Q = {q0, q1, q2, q3, q4, qerr},

• For δ and ψδ see table 5.1, for τ and ψτ – table 5.2.

q x R δ(q, x,R) ψδ(q, x,R)

q0, q1, q2 a R4, R6, R8 q3 A
q0 a R5, R7, R9, R10 q1 ϵ

q1, q2 a R7, R9, R10 q2 ϵ
q1 b R2, R3, R5, R6, R7, R9, R10 q4 ϵ
q3 a R2, R3, R5, R6, R7, R9, R10 q4 ϵ

Table 5.1: The functions δ and ψδ of A from example 5.4. Unless otherwise
specified, δ(q, x,R) = qerr and ψδ(q, x,R) = x.

The execution of A over the string t = aaaaaabaaab is shown on figure 5.3.

Proposition 5.5. Construction 5.3 correctly defines a two-step bimachine A.

Proof. Clearly, τ and ψτ are correctly defined. For gs, we just need to sort the
states in SRU ∩ FT by their type.

Let (R′, g′) ∈ QR, a ∈ Σ1 and R = SuccARU
(R′, a). We are going to

show that there exists g ∈ Enum(R ∩ QT) such that (R, g) can be a value of

14

R0

R1

R5

R2

R3

R4

R7 R6

R8

R9R10

a

b
a

b

a
b

b

a

b

a

a

b

a

b

a

b

a
b

a

b

a

b

Figure 5.2: The right automaton of the two-step bimachine from example 5.4.
The colors of the states are not part of the construction, their only purpose is
to make the example easier to understand. If t = αβ, after reading β from right
to left, it lands on a state colored in

• red iff only an empty (but no non-empty) replacement may occur just
after α (the enumeration part of red states contain q4 and do not contain
q0),

• blue iff only a non-empty (but no empty) replacement may occur just after
α (the enumeration part of blue states contain q0 and do not contain q4),

• violet iff both empty and non-empty replacement may occur just after α
(the enumeration part of violet states contain both q0 and q4).

Note that in our construction, if after reading β from right to left, the right au-
tomaton lands on a state colored in violet, an empty replacement will never occur
just after α (non-empty replacements are longer than empty replacements).

15

q L R τ(q, L,R) ψτ (q, L,R)

q4, qerr L1 R7, R8, R9, R10 q0 ϵ
q0 any any q0 ϵ
q1 any any q1 ϵ
q2 any any q2 ϵ
q3 any any q3 ϵ

Table 5.2: The functions τ and ψτ of A from example 5.4. Unless otherwise
specified, τ(q, L,R) = qerr and ψτ (q, L,R) = ϵ.

R10
a←− R10

a←− R10
a←− R10

a←− R7
a←− R8

a←− R5
b←− R10

a←− R7
a←− R4

a←− R2
b←− R0

L0
a−→ L1

a−→ L1
a−→ L1

a−→ L1
a−→ L1

a−→ L1
b−→ L0

a−→ L1
a−→ L1

a−→ L1
b−→ L0

qerr

qerr

qerr

q0

q1

q1

q2

q2

q2

q2

q3

q3

q4

qerr

qerr

qerr

qerr

q0

q3

q3

q4

qerr

qerr

qerr

ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ
a
a

a
ϵ

a
ϵ

a
ϵ

a

A

a
ϵ

b

b

a
a

a

A

a
ϵ

b

b

Figure 5.3: The execution of A over t = aaaaaabaaab. OutA(t) = aAbaAb.

δR((R
′, g′), a). For this purpose, we will define a sequence (gi)

|g′|−1

i=0 where

g0 = enumerate({q | (q, a, g′(0)) ∈ ∆Σ1

T }),
gi+1 = gi ∥ enumerate({q | (q, a, g′(i+ 1)) ∈ ∆Σ1

T & q /∈ Rng(gi)}).

Note that the requirement q /∈ Rng(gi) ensures that gi and the new enumer-
ation generated in step i + 1 have no common elements in their range, so the
concatenation is well-defined and therefore the whole sequence is well-defined.
Let gold = g|g′|−1. Let gnew be the enumeration of R ∩ FT in which the states
are sorted in ascending order by their type. Rng(gold)∩Rng(gnew) = ∅ because,
for each 1 ≤ r ≤ m, Tr is simple and in particular there are no transitions in
∆T coming out of fTr

(so Rng(gold) ∩ FT = ∅). We claim that

g = gold ∥ gnew

has the desired properties. Let i ≤ j. It is not possible that g(i) ∈ FT and g(j) /∈
FT . If g(i), g(j) ∈ FT , then clearly g(i), g(j) ∈ Rng(gnew) and so type(g(i)) ≤
type(g(j)) because the states in gnew are sorted in ascending order by their
type. Now assume g(i), g(j) /∈ FT . Then g(i), g(j) ∈ Rng(gold). Let k1 =
min{k | g(i) ∈ Rng(gk)} and k2 = min{k | g(j) ∈ Rng(gk)}. i ≤ j implies
that k1 ≤ k2. By the definition of k1, (g(i), a, g

′(k1)) ∈ ∆Σ1

T and also (∀k <
k1)(g(i) /∈ Rng(gk)). Therefore (∀k < k1)(g(i), a, g

′(k)) /∈ ∆Σ1

T . This means
k1 = µ(g(i), a, g′). Similarly, we can see that k2 = µ(g(j), a, g′). It remains to
see that g ∈ Enum(R ∩QT), i.e. Rng(g) = R ∩QT :

⊆: Let q ∈ Rng(g). If q ∈ Rng(gnew), then q ∈ (R∩FT) ⊆ (R∩QT). Otherwise

16

q ∈ Rng(gold) and there is q′ ∈ Rng(g′) = R′ ∩ QT such that (q, a, q′) ∈
∆Σ1

T . Therefore q ∈ R ∩QT .

⊇: Let q ∈ R ∩ QT . If q ∈ FT , then q ∈ Rng(gnew) ⊆ Rng(g). Assume
q /∈ FT . Since q ∈ R, there is q′ ∈ R′ such that (q′, a, q) ∈ ∆RU . Since
q ∈ QT \FT , it follows that q

′ ∈ QT which means (q, a, q′) ∈ ∆Σ1

T and hence
q′ ∈ (R′ ∩ QT) = Rng(g′). Therefore q ∈ Rng(gi) for some 0 ≤ i < |g′|.
Thus q ∈ Rng(gold) ⊆ Rng(g).

With the above reasonings we have shown that g has the desired properties and
therefore the definition of δR is correct.

For δ, let (R, g) = δR((R
′, g′), a) and assume q ∈ Rng(g) \ FT . Then q ∈

R = Succ(R′, a,∆RU) which means that there exists q′ ∈ R′ such that (q′, a, q) ∈
∆RU . Since q ∈ Rng(g) \ FT , we can conclude that (q′, a, q) ∈

(
∆Σ1

T

)rev
, i.e.

(q, a, q′) ∈ ∆Σ1

T . Therefore q′ ∈ (R′ ∩ QT) = Rng(g′), so {i′ | (q, a, g′(i′)) ∈
∆Σ1

T } ≠ ∅. Hence µ(q, a, g′) is defined. All elements of {i′ | (q, a, g′(i′)) ∈ ∆Σ1

T }
belong to the domain of g′ and in particular µ(q, a, g′) does. We can conclude
that g′(µ(q, a, g′)) is defined and so is δ(q, a, (R′, g′)).

For ψδ, let q
′ = δ(q, a, (R′, g′)) and assume q′ ∈ QT . Note that q′ /∈ ST .

We have that (q, a, q′) ∈ ∆Σ1

T , so {m | (q, (a,m), q′) ∈ ∆T } ̸= ∅. Hence
ψδ(q, a, (R

′, g′)) is correctly defined.

Let BR = (Tr/λr ρr)
m
r=1 be a BCRR over (Σ1,Σ2). LetA = (Σ1,Σ2, AL, AR, Q, qerr, δ, τ, ψδ, ψτ)

be obtained from construction 5.3 applied on ((Tr, Er, Aλr
, Aρr

))mr=1 – a FSR of
BR.

Proposition 5.6. Let t = t1 . . . tn ∈ Σ∗
1 and ((Li, qi, qi, (Ri, gi), oi, oi))

n
i=0 be

an execution of A over t. If qi ∈ QT , then qi ∈ Rng(gi) \ FT .

Proof. qi /∈ QT \ FT : From qi ̸= qerr it follows that qi ∈ Rng(gi) and qi ∈ ST .
Since ST ∩ FT = ∅, we have qi /∈ FT and hence qi ∈ Rng(gi) \ FT .

qi ∈ QT \ FT : Recall that q0 = qerr /∈ QT . Therefore i > 0. Then qi =
δ(qi−1, ti, (Ri, gi)) ∈ Rng(gi). By definition, qi = τ(qi, Li, (Ri, gi)) = qi ∈
Rng(gi). Since qi /∈ FT and qi = qi, it follows qi ∈ Rng(gi) \ FT .

Proposition 5.7. Let t = t1 . . . tn ∈ Σ∗
1 and ((Li, qi, qi, (Ri, gi), oi, oi))

n
i=0 be

an execution of A over t. Then qn = qerr.

Proof. Suppose qn ̸= qerr. Then qn ∈ QT \ FT .

qn ∈ ST : Then qn ∈ Rng(gn) = Rng(gs) ⊆ FT - an immediate contradiction.

qn ∈ QT \ (ST ∪ FT) : Then qn = qn /∈ FT . But qn ∈ Rng(gn) = Rng(gs) ⊆ FT

- again a contradiction.

17

Proposition 5.8. Let t = t1 . . . tn ∈ Σ∗
1 and ((Li, qi, qi, (Ri, gi), oi, oi))

n
i=0 be

an execution of A over t. Then, for each 0 ≤ i ≤ n,

fλr ∈ Li ⇐⇒ t1 . . . ti ∈ Σ∗
1 · λr,

sTr ∈ Ri ⇐⇒ ti+1 . . . tn ∈ (Dom(Tr) \ {ϵ}) · ρr · Σ∗
1,

fTr ∈ Ri ⇐⇒ ti+1 . . . tn ∈ ρr · Σ∗
1.

Definition 5.9. Let t, v ∈ Σ∗
1, q ∈ QT and r = type(q). We define the following

helper predicates:

submatch(q, v, t) ⇐⇒ v ∈
−−−→
LT dom

r
(q) & v−1t ∈ ρrΣ∗

1,

lsubmatch(q, v, t) ⇐⇒ submatch(q, v, t) & ∀v(submatch(q, v, t) =⇒ |v| ≤ |v|).

Proposition 5.10. Let t, v ∈ Σ∗
1, (R, g) = δ∗R(sR, rev(t)), j ∈ Dom(g) and

submatch(g(j), v, t). If i ≤ j, then ∃vl(submatch(g(i), vl, t) & |vl| ≥ |v|).

Proof. Let i ≤ j, ri = type(g(i)) and rj = type(g(j)). The proof goes by
induction on |v|:

v = ϵ : By definition g(i) ∈ R∩QT , so there is vl such that submatch(g(i), vl, t).
Of course, |vl| ≥ |v| = 0.

v = av′, a ∈ Σ1 : Let (R′, g′) = δ∗R(sR, rev(a
−1t)). Since v ̸= ϵ, v ∈

−−−→
LT dom

rj
(g(j))

and ∆Σ1

Trj
∩ ({fTrj

} × Σ1 × QTrj
) = ∅, it follows that g(j) /∈ FT . Then,

by the definition of g, we get that i′0 := µ(g(i), a, g′) ≤ µ(g(j), a, g′) =: j′0.
Let q′ ∈ QT be such that (g(j), a, q′) ∈ ∆Σ1

Trj
and v′ ∈

−−−→
LT dom

rj
(q′). Then

submatch(q′, v′, a−1t). Note that q′ ∈ Rng(g′) and let j′ be such that q′ =
g′(j′). Then j′ ∈ {j′ | (g(j), a, g′(j′)) ∈ ∆Σ1

T } which means i′0 ≤ j′0 ≤ j′.
By the i.h. we get that

∃v′l(submatch(g′(i′0), v
′
l, a

−1t) & |v′l| ≥ |v′|).

Take a witness v′l for this existence. Since (g(i), a, g′(i′0)) ∈ ∆Σ1

Tri
and v′l ∈

−−−→
LT dom

ri
(g′(i′0)), it follows that av

′
l ∈
−−−→
LT dom

ri
(g(i)). Hence submatch(g(i), av′l, t)

and |av′l| ≥ |av′| = |v|.

Proposition 5.11. Let v = av′ ∈ Σ∗
1, t = at′ ∈ Σ∗

1, q ∈ QT and lsubmatch(q, v, t).
If (q, a, q′) ∈ ∆Σ1

T and submatch(q′, v, t′), then |v| ≤ |v′|.

Proof. Suppose that |v| > |v′|. Then submatch(q, av, t) and |av| > |av′| = |v|.
This is a contradiction with lsubmatch(q, v, t).

Proposition 5.12. Let v = av′ ∈ Σ∗
1, t = at′ ∈ Σ∗

1, (R, g) = δ∗R(sR, rev(t)),
(R′, g′) = δ∗R(sR, rev(t

′)) and q ∈ Rng(g). If lsubmatch(q, v, t), then lsubmatch(g′(µ(q, a, g′)), v′, t′).

18

Proof. Let k0 = µ(q, a, g′). There exists q′ ∈ Rng(g′) such that (q, a, q′) ∈ ∆Σ1

T

and submatch(q′, v′, t′). Let k′ be such that q′ = g′(k′). Then k0 ≤ k′ ∈
Dom(g′). By proposition 5.10 (since submatch(g′(k′), v′, t′)), there is vl such
that submatch(g′(k0), vl, t

′) and |vl| ≥ |v′|. By proposition 5.11, |vl| ≤ |v′|.
Therefore |vl| = |v′|. Both vl and v′ are prefixes of the same string t′, so vl = v′.
Thus submatch(g′(k0), v

′, t′) and applying proposition 5.11 once again gives us
lsubmatch(g′(k0), v

′, t′).

Corollary 5.13. Let t = t1 . . . tn ∈ Σ∗
1 and ((Li, qi, qi, (Ri, gi), oi, oi))

n
i=0 be an

execution of A over t. If qi ∈ QT \FT and lsubmatch(qi, ti+1v
′, ti+1 . . . tn), then

(qi, ti+1, qi+1) ∈ ∆Σ1

T and lsubmatch(qi+1, v
′, ti+2 . . . tn).

Proof. By proposition 5.6, qi ∈ Rng(gi). Note that i < n (proposition 5.7).
Then qi+1 = δ(qi, ti+1, (Ri+1, gi+1)) = gi+1(µ(qi, ti+1, gi+1)). Clearly, (qi, ti+1, qi+1) ∈
∆Σ1

T . For lsubmatch(qi+1, v
′, ti+2 . . . tn), apply proposition 5.12.

Proposition 5.14. Let t, v ∈ Σ∗
1, (R, g) = δ∗R(sR, rev(t)), i, j ∈ Dom(g),

lsubmatch(g(i), v, t) and lsubmatch(g(j), v, t). If i ≤ j, then type(g(i)) ≤
type(g(j)).

Proof. Assume i ≤ j. By induction on |v|:

v = ϵ : In this case g(i) ∈ FT and g(j) ∈ FT . Thus, by the definition of g,
type(g(i)) ≤ type(g(j)).

v = av′, a ∈ Σ1 : In this case g(i) /∈ FT and g(j) /∈ FT . Thus, by the defi-
nition of g, i′0 := µ(g(i), a, g′) ≤ µ(g(j), a, g′) =: j′0. Proposition 5.12
gives us lsubmatch(g′(i′0), v

′, a−1t) and lsubmatch(g′(j′0), v
′, a−1t). By

the i.h. type(g′(i′0)) ≤ type(g′(j′0)). But type(g′(i′0)) = type(g(i)) and
type(g′(j′0)) = type(g(j)).

Proposition 5.15. Let t = t1 . . . tn ∈ Σ∗
1 and ((Li, qi, qi, (Ri, gi), oi, oi))

n
i=0

be an execution of A over t. Let qi = sTr
and lsubmatch(qi, v, ti+1 . . . tn).

Then for each i < k < i + |v|, qk ∈ QT \ FT and qi+|v| ∈ FT . Furthermore,

qi, qi+1, . . . , qi+|v| is a successful execution of T dom
r over v.

Proof. Obviously v ̸= ϵ since ϵ /∈ L(T dom
r) (in particular sTr

̸= fTr
). The proof

can be completed trivially by induction on |v| applying corollary 5.13.

Proposition 5.16. Let t = t1 . . . tn ∈ Σ∗
1 and ((Li, qi, qi, (Ri, gi), oi, oi))

n
i=0 be

an execution of A over t. Then

qi ∈ ST ⇐⇒ (∃(u, v, w) ∈ CLML)(|u| = i & v ̸= ϵ).

Proof. By complete induction on i: Let 0 ≤ i ≤ n and assume that the claim is
true for all j < i.

19

=⇒ : Let qi ∈ ST . Then qi = τ(qi, Li, (Ri, gi)) = gi(min(I(Li, gi))). Therefore,
for r = type(qi), fλr ∈ Li, sTr ∈ Ri and qi /∈ QT \FT . The first two imply
that t1 . . . ti ∈ Σ∗

1 · λr and ti+1 . . . tn ∈ (Dom(Tr) \ {ϵ}) · ρr · Σ∗
1, thus

∃v (t1 . . . ti, v, v−1(ti+1 . . . tn)) ∈ C.

Take the longest such v and let u = t1 . . . ti and w = v−1(ti+1 . . . tn).
v ∈ Dom(Tr) \ {ϵ}, so v ̸= ϵ. Suppose that (u, v, w) /∈ CLM . By proposi-
tion 3.11 there is (u′, v′, w′) ∈ CLML such that Over((u, v, w), (u′, v′, w′)),
i.e. |u′| < |u| < |u′v′|. v′ ̸= ϵ because otherwise |u′| < |u| < |u′| which
is impossible. By the i.h. q|u′| ∈ ST . By proposition 5.15 we have that
qk ∈ QT \FT for each |u′| < k < |u′v′|. But |u′| < i < |u′|, so qi ∈ QT \FT .
This contradiction shows that (u, v, w) ∈ CLM . The choice of v gives us
(u, v, w) ∈ CLML.

⇐= : Let (u, v, w) ∈ CLML, |u| = i and v ̸= ϵ. Then I(Li, gi) ̸= ∅. Suppose
qi ∈ QT \FT . Then there is j < i such that qj ∈ ST . Take the largest such
j. By the i.h. there exists (u′, v′, w′) ∈ CLML, |u′| = j and v′ ̸= ϵ. We
now have lsubmatch(qj , v

′, tj+1 . . . tn) and we can apply proposition 5.15
to get that, for each j < k < j + |v′|, qk ∈ QT \ FT and qj+|v′| ∈ FT .
Suppose that |u| ≥ |u′v′| = j + |v′|.

Case 1: i = j + |v′|. Then qi = qj+|v′| ∈ FT , which is a contradiction.

Case 2: i > j + |v′|. Then qj+|v′| ∈ FT and hence qj+|v′| ∈ ST ∪ {qerr}.
Therefore j is not the largest such that qj ∈ ST , which is also a
contradiction.

Therefore |u′| < |u| < |u′v′|, which means Overlap((u, v, w), (u′, v′, w′)).
But this is impossible (proposition 3.9), so our assumption must be wrong
and qi /∈ QT \ FT . Then qi = τ(qi, Li, (Ri, gi)) = gi(min(I(Li, gi))) ∈ ST .

Corollary 5.17. Let t = t1 . . . tn ∈ Σ∗
1 and ((Li, qi, qi, (Ri, gi), oi, oi))

n
i=0 be an

execution of A over t. Then

qi ∈ QT \ FT =⇒ ¬(∃(u, v, w) ∈ CLML)(|u| = i), (1)

qi /∈ QT \ FT =⇒ (∀(u, v, w) ∈ C)(|u| = i =⇒ (u, v, w) ∈ CLM). (2)

Proof. The proof of (1) and (2) are similar to right-to-left and left-to-right
directions of the proof of proposition 5.16 respectively.

Proposition 5.18. Let t = t1 . . . tn ∈ Σ∗
1 and ((Li, qi, qi, (Ri, gi), oi, oi))

n
i=0 be

an execution of A over t. If qi = sTr and lsubmatch(qi, v, ti+1 . . . tn), then
oi+1oi+1oi+2oi+2 . . . oi+|v|−1oi+|v|−1oi+|v| = Tr(v).

Proof. By proposition 5.15 and the definition of ψδ, qi, qi+1, . . . , qi+|v| is a suc-
cessful execution of Tr over (v, oi+1oi+2 . . . oi+|v|). L(Tr) ⊆ Tr, Tr is a function
and therefore oi+1oi+2 . . . oi+|v| = Tr(v). Now let i < k < i+ |v|. qk ∈ QT \FT ,
so τ(qk, Lk, Rk) = qk ̸= qerr. Therefore ok = ϵ.

20

Proposition 5.19. Let t = t1 . . . tn ∈ Σ∗
1 and ((Li, qi, qi, (Ri, gi), oi, oi))

n
i=0 be

an execution of A over t. If qi+1 ∈ QT , then |{m | (qi, (a,m), qi+1) ∈ ∆T }| = 1.

Proof. Let M = {m | (qi, (a,m), qi+1) ∈ ∆T }. From the correctness of the con-
struction we know that M ̸= ∅. Let m1,m2 ∈ M . Take the largest j ≤ i such
that qj = sTr

for some 1 ≤ r ≤ m. Let v be such that lsubmatch(qj , v, tj+1 . . . tn).
Then j + |v| ≥ i+ 1. By proposition 5.18,

oj+1 . . . oim1oi+2 . . . oj+|v| = Tr(v) = oj+1 . . . oim2oi+2 . . . oj+|v|.

Therefore m1 = m2 and since m1 and m2 are arbitrary elements ofM , it means
|M | = 1.

Proposition 5.20. Let t = t1 . . . tn ∈ Σ∗
1 and ((Li, qi, qi, (Ri, gi), oi, oi))

n
i=0 be

an execution of A over t. Let x0y0 . . . xnyn be a rewriting of t according to BR,
where xi and yi are as in definition 3.12, 0 ≤ i ≤ n. Then oi = yi.

Proof. Let c = (t1 . . . ti, ϵ, ti+1 . . . tn).

Case 1: τ(qi, Li, (Ri, gi)) ̸= qerr ∨ J(L,R) = ∅. Then oi = ϵ.
If τ(qi, Li, (Ri, gi)) ̸= qerr, then qi ∈ ST or qi = qi ∈ QT \ FT . If qi ∈ ST ,
by proposition 5.16

(∃(u, v, w) ∈ CLML)(|u| = i & v ̸= ϵ).

If qi ∈ QT \ FT , by corollary 5.17

¬(∃(u, v, w) ∈ CLML)(|u| = i).

If J(L,R) = ∅, then c /∈ C.
In all cases c /∈ CLML which means yi = ϵ.

Case 2: τ(qi, Li, (Ri, gi)) = qerr & J(L,R) ̸= ∅. Let r = min(J(L,R)). Then
oi = Er = Tr(ϵ). Since J(L,R) ̸= ∅, c ∈ C. By corollary 5.17 (since
qi /∈ QT \ FT), c ∈ CLM . Since qi /∈ ST , c ∈ CLML (proposition 5.16).
Thus yi = Tearliest(c)(ϵ). It is clear that J(L,R) = {r | RC(c, t, Tr/λr ρr)},
so r = earliest(c).

Proposition 5.21. Let t = t1 . . . tn ∈ Σ∗
1 and ((Li, qi, qi, (Ri, gi), oi, oi))

n
i=0 be

an execution of A over t. Let x0y0 . . . xnyn be a rewriting of t according to BR,
where xi and yi are as in definition 3.12, 0 ≤ i ≤ n. If qi ∈ ST ∪ {qerr}, then
o0o0 . . . oioi = x0y0 . . . xiyi.

Proof. By complete induction on i:

i = 0 : o0 = x0 = ϵ (by definition), o0 = y0 (proposition 5.20).

0 < i ≤ n : oi = yi (proposition 5.20). Note that qi ∈ FT ∪ {qerr}.

21

Case 1: qi = qerr. Then qi−1 = qerr. By the i.h. o0o0 . . . oi−1oi−1 =
x0y0 . . . xi−1yi−1. Clearly oi = ψδ(qi−1, ti, (Ri, gi)) = ti. We want
to show that xi = ti. Suppose that there exists (u, v, w) ∈ CLML

such that |u| < i ≤ |uv|. Then we immediately get that qi ∈ QT

(proposition 5.15) which is a contradiction. Therefore xi could not
have been defined by the first two cases of its definition, thus xi = ti.

Case 2: qi ∈ FT . Take the largest j < i such that qj ∈ ST . Let
r = type(qj). By the i.h. o0o0 . . . ojoj = x0y0 . . . xjyj . By proposi-
tion 5.16

(∃(u, v, w) ∈ CLML)(|u| = j & v ̸= ϵ).

Take a witness c = (u, v, w) for the existence above and note that
|uv| = i. Let r0 = earliest(c). Then we have all of the following:

• xj+1 = Tr0(v),

• xj+2 = · · · = xi = ϵ,

• yj+1 = · · · = yi−1 = ϵ,

• oj+1oj+1oj+2oj+2 . . . oi−1oi−1oi = Tr(v) (proposition 5.18).

Let k0 = min(I(Lj , gj)). Then qj = gj(k0) = sTr
. Clearly, r ∈

{r | RC(c, t, Tr/λr ρr)} and also k0 ≤ g−1(sTr0
) ∈ I(Lj , gj). By

proposition 5.14,

r = type(g(k0)) ≤ type(g(g−1(sTr0
))) = type(sTr0

) = r0.

r0 = min{r | RC(c, t, Tr/λr ρr)}, therefore r = r0 and hence

oj+1oj+1oj+2oj+2 . . . oi−1oi−1oi = xj+1yj+1xj+2yj+2 . . . xi−1yi−1xi.

Theorem 5.22. Let t ∈ Σ∗
1. Then OutA(t) = RewriteLML(BR, t)

Proof. By proposition 5.7 we have qn = qerr. Therefore we can apply proposi-
tion 5.21 to get the desired result.

For completeness, we are going to show that the expressive power of the two-
step bimachines coincides with the class of the regular functions. It is obvious
that for every two-step bimachine A, OutA is a function. In the following
proposition we will see that OutA is regular relation.

Proposition 5.23. For every two-step bimachine A = (Σ1,Σ2, AL, AR, Q, qerr, δ, τ, ψδ, ψτ),
there exists a finite-state transducer T , such that OutA = L(T).

Proof. Consider the FST

T = (Σ1,Σ1∪Σ2, 2×Q×QL×QR, {0}×{qerr}×{sL}×QR, {1}×Q×QL×{sR},∆),

where

∆ ={((0, q, L,R), (ϵ, ψτ (q, L,R)), (1, τ(q, L,R), L,R)) | q ∈ Q& L ∈ QL &R ∈ QR}∪
{((1, q, L,R), (a, ψδ(q, a,R

′)), (0, δ(q, a,R′), δL(L, a), R
′)) | q ∈ Q& L ∈ QL &R = δR(R

′, a)}.

22

It is easy to see that each successful path in T corresponds to a unique execution
of A and vice versa.

⊆: Let t = t1 . . . tn ∈ Σ∗
1 and ((Li, qi, qi, Ri, oi, oi))

n
i=0 be an execution of A over

t. Then

((0, q0, L0, R0), (ϵ, o0), (1, q0, L0, R0)) ∈ ∆,

and, for each 0 < i ≤ n,

((1, qi−1, Li−1, Ri−1), (ti, oi), (0, qi, Li, Ri)) ∈ ∆,

((0, qi, Li, Ri), (ϵ, oi), (1, qi, Li, Ri)) ∈ ∆.

Therefore

(0, q0, L0, R0)
(ϵ,o0)−−−→ (1, q0, L0, R0)

(t1,o1)−−−−→ (0, q1, L1, R1)
(ϵ,o1)−−−→ (1, q1, L1, R1)

(t2,o2)−−−−→ · · · (ϵ,on−1)−−−−−→ (1, qn−1, Ln−1, Rn−1)
(tn,on)−−−−→ (0, qn, Ln, Rn)

(ϵ,on)−−−−→ (1, qn, Ln, Rn)

is a path in T . Since q0 = qerr, L0 = sL and Rn = sR, this path corre-
sponds to a successful execution of T .

⊇: By the definition of ∆, every successful execution of T with label (t,) has
the form as in the previous case and corresponds to an execution of A over
t.

It remains to see that for every regular function regular function f , there
exists a two-step bimachine A such that f = OutA. We will show this in the
next section (proposition 6.5) after we introduce the classical bimachines.

6 Classical bimachines

Definition 6.1. A classical bimachine is a tuple B = (Σ2, AL, AR, ψ), where:

• Σ2 is a finite set - the output alphabet,

• AL = (Σ1, QL, sL, QL, δL) and AR = (Σ1, QR, sR, QR, δR) are DFA - the
left and right automata of the bimachine,

• ψ : QL × Σ1 ×QR 7→ Σ∗
2 is a partial function - the output function.

Definition 6.2. We say that B = (Σ2, AL, AR, ψ, ι) is a classical bimachine
with final output if (Σ2, AL, AR, ψ) is a classical bimachine and ι : QL 7→ Σ∗

2 is
the function producing the final output.

Definition 6.3. Let B = (Σ2, AL, AR, ψ) be a classical bimachine. Let t =
t1 . . . tn ∈ Σ∗

1. Let L0, . . . , Ln be the execution of AL over t and Rn, . . . , R0

be the execution of AR over rev(t). Execution of B over t is the sequence
((Li, oi, Ri))

n
i=0 where:

23

• oi = ψ(Li, ti+1, Ri+1), 0 ≤ i < n,

• on = ϵ.

Output of B for t ∈ Σ∗
1 is OutB(t) = o0o1 . . . on.

If B = (Σ2, AL, AR, ψ, ι) is a classical bimachine with final output, the def-
initions of execution and output for a string t = t1 . . . tn ∈ Σ∗

1 are the same
except that we define on = ι(Ln).

In this section we are going to present a construction of a classical bimachine
with final output given a FSR of some batch of rules. The next proposition
shows that extending classical bimachines with a ”final output” function does
not change their expressive power (except when the input string is empty).

Proposition 6.4. For every classical bimachine with final output B = (Σ2, AL, AR, ψ, ι),
there is a classical bimachine B′ = (Σ2, AL, A

′
R, ψ

′) such that B and B′ are
equivalent up to ϵ, i.e. (∀t ∈ Σ+

1)(OutB(t) = OutB′(t)).

Proof. Let B = (Σ2, AL, AR, ψ, ι) be a classical bimachine with final output.
Let s′R /∈ QR. We construct a classical bimachine B′ = (Σ2, AL, A

′
R, ψ

′) where

• A′
R = (Σ1, QR ∪ {s′R}, s′R, QR ∪ {s′R}, δ′R),

• δ′R(R, a) =

{
δR(R, a) R ̸= s′R
δR(sR, a) R = s′R

,

• ψ′(L, a,R) =

{
ψ(L, a,R) R ̸= s′R
ψ(L, a, sR) · ι(δL(L, a)) R = s′R

.

Let t = t1 . . . tn ∈ Σ+
1 . Let ((Li, oi, Ri))

n
i=0 be an execution of B over t and

((Li, o
′
i, R

′
i))

n
i=0 be an execution of B′ over t. Since

R′
n−1 = δ′R(R

′
n, tn) = δ′R(s

′
R, tn) = δR(sR, tn) = Rn−1

and there are no transitions in A′
R going into s′R (that is s′R /∈ Rng(δ′R)), it

follows that R′
i = Ri for all i < n. Therefore, for all i < n− 1,

o′i = ψ′(Li, ti+1, R
′
i+1) = ψ′(Li, ti+1, Ri+1) = ψ(Li, ti+1, Ri+1) = oi.

Furthermore,

o′n−1 = ψ′(Ln−1, tn, R
′
n) = ψ′(Ln−1, tn, s

′
R) = ψ(Ln−1, tn, sR) · ι(Ln),

o′n = ϵ.

On the other hand,

on−1 = ψ(Ln−1, tn, Rn) = ψ(Ln−1, tn, sR),

on = ι(Ln).

Thus we get OutB(t) = OutB′(t).

24

As mentioned earlier, we will now show that any regular function can be
represented by a two-step bimachine. For that purpose, we will show that for
any bimachine with final output, there exists an equivalent two-step bimachine.

Proposition 6.5. Let B = (Σ2, AL, AR, ψ, ι) be a classical bimachine with final
output. There exists a two-step bimachine A such that OutB = OutA.

Proof. Without loss of generality assume that AR is left-simple. We define
A = (Σ1,Σ2, AL, AR, QL, sL, δ, τ, ψ, ψτ) where:

• δ(q, a,R) = q,

• τ(q, L,R) = L,

• ψτ (q, L,R) =

{
ϵ R ̸= sR

ι(L) R = sR
.

Let t = t1 . . . tn ∈ Σ∗
1,

((Li, qi, qi, Ri, oi, oi))
n
i=0

be an execution of A over t and

((Li, o
′
i, Ri))

n
i=0

be an execution of B over t. Due to the definition of τ , we have qi = Li for each
0 ≤ i ≤ n. Note that, for 0 ≤ i < n,

oi+1 = ψ(qi, ti+1, Ri+1) = ψ(Li, ti+1, Ri+1) = o′i.

We also have that

on = ψτ (qn, Ln, Rn) = ψτ (qn, Ln, sR) = ι(Ln) = o′n.

Since AR is left-simple, for each i < n, we have Ri ̸= sR and thus oi = ϵ. We
can conclude that OutB(t) = OutA(t) (in particular, both sides of the equality
may be undefined).

Construction 6.6. Let (Tr/λr ρr)
m
r=1 be a BCRR over (Σ1,Σ2). Let ((Tr, Er, Aλr

, Aρr
))mr=1

be a FSR of (Tr/λr ρr)
m
r=1 (the input for the construction). The output of this

construction is a classical bimachine with final output B = (Σ1∪Σ2, AL, AR, ψ, ι),
where the right automaton AR = (Σ1, QR, sR, QR, δR) is exactly the same as in
construction 5.3.

Let Aλ, T dom
r , T dom, the set ∆T and the functions type, I, ν, J be as in

construction 5.3. Let L ⊆ Qλ, (R, g) ∈ QR and ϕ : QR 7→ QT . We define the
following predicates:

NonemptyMatchNotFinished(ϕ, (R, g))
def⇐⇒ ϕ((R, g)) ↓ & ϕ((R, g)) ∈ Rng(g) \ FT ,

NonemptyMatchFinished(ϕ, (R, g))
def⇐⇒ ϕ((R, g)) ↓ & ϕ((R, g)) ∈ FT ,

NonemptyMatchBegin(L, g)
def⇐⇒ I(L, g) ̸= ∅,

OutsideOfMatch(ϕ, (R, g))
def⇐⇒ ϕ((R, g)) ↑,

EmptyMatchBegin(L,R)
def⇐⇒ J(L,R) ̸= ∅.

25

The left automaton is AL = (Σ1, QL, sL, QL, δL) where:

• QL ⊆ P(Qλ)× {ϕ | ϕ : QR 7→ QT },

• sL := (Sλ, ϕ0), where ϕ0((R, g)) :=

{
ν(Sλ, g) NonemptyMatchBegin(Sλ, g)

↑ otherwise
,

• δL((L, ϕ), a) := (L′, ϕ′), for (L, ϕ) ∈ QL and a ∈ Σ1 where

– L′ := SuccAλ
(L, a),

– ϕ′((R′, g′)) :=

g′(µ(ϕ((R, g)), a, g′)) NonemptyMatchNotFinished(ϕ, (R, g))

g′(µ(ν(L, g), a, g′))
NonemptyMatchFinished(ϕ, (R, g)) &

NonemptyMatchBegin(L, g)

ν(L′, g′)

(OutsideOfMatch(ϕ, (R, g)) ∨
NonemptyMatchFinished(ϕ, (R, g))) &

¬NonemptyMatchBegin(L, g) &

NonemptyMatchBegin(L′, g′)

↑ otherwise

,

where

∗ (R, g) = δR((R
′, g′), a),

∗ µ(q, a, g′) = min{i′ | (q, a, g′(i′)) ∈ ∆Σ1

T }.

The output function ψ is defined as follows:

ψ((L, ϕ), a, (R′, g′)) :=

Output(ϕ((R, g)), a, ϕ′((R′, g′))) NonemptyMatchNotFinished(ϕ, (R, g))

Output(ν(L, g), a, ϕ′((R′, g′)))
NonemptyMatchFinished(ϕ, (R, g)) &

NonemptyMatchBegin(L, g)

Emin(J(L,R)) · a

(OutsideOfMatch(ϕ, (R, g)) ∨
NonemptyMatchFinished(ϕ, (R, g))) &

¬NonemptyMatchBegin(L, g) &

EmptyMatchBegin(L,R)

a otherwise

,

where

• (L′, ϕ′) = δL((L, ϕ), a),

• (R, g) = δR((R
′, g′), a),

26

L0 L1 L2

L3

L4

a[]

b[]

a[{5, 7, 9, 10}:ϵ, {4, 6, 8}:A]

b[]

a[{2, 3, 5, 7, 9, 10}:ϵ, {4, 6, 8}:A]

b[{2, 3, 5, 6, 7, 9, 10}:ϵ]

a[{2, 3, 5, 7, 9, 10}:ϵ, {4, 6, 8}:A]

b[]

b[]

a[]

Figure 6.1: The left automaton of the bimachine with final output from exam-
ple 6.7. The output function ψ is also shown. A transition from Li into Lj of
the form x[SET0:y0, . . . ,SETp:yp] denotes that

δL(Li, x) = Lj and (∀p′ ≤ p)(∀k ∈ SETp′)ψ(Li, x,Rk) = yp′ .

Unless otherwise specified, ψ(L, x,R) = x.

• Output(q, a, q′) = elem of{m | (q, (a,m), q′) ∈ ∆T }.

The function ι, producing the final output, is defined as follows:

ι((L, ϕ)) :=

{
Emin(J(L,SRU)) EmptyMatchBegin(L, SRU)

ϵ otherwise
,

where (SRU , gs) = sR.

Example 6.7. A possible result of applying construction 6.6 on the FSR ⟨(T1, E1, Aλ1 , Aρ1)⟩
from example 4.13 is B = ({a, b, A}, AL, AR, ψ, ι) where AL and ψ are shown in
figure 6.1, AR is the same as in example 5.4 and ι(L) = ϵ for all L ∈ QL.

The execution of B over t = aaaaaabaaab is shown on figure 6.2.

Proposition 6.8. Construction 6.6 correctly defines a classical bimachine with
final output.

Proof. For the correctness of AR, see proposition 5.5. Clearly, ϕ0 and ι are
correctly defined.

Let (L, ϕ) ∈ QL, a ∈ Σ1, (R
′, g′) ∈ QR and (R, g) = δR((R

′, g′), a). We will
show that

(L′, ϕ′) = δL((L, ϕ), a)

27

R10
a←− R10

a←− R10
a←− R10

a←− R7
a←− R8

a←− R5
b←− R10

a←− R7
a←− R4

a←− R2
b←− R0

L0
a−→ L1

a−→ L2
a−→ L3

a−→ L3
a−→ L3

a−→ L3
b−→ L0

a−→ L1
a−→ L2

a−→ L3
b−→ L0

a ϵ ϵ ϵ A ϵ b a A ϵ b

Figure 6.2: The execution of B over t = aaaaaabaaab.
OutB(t) = aϵϵϵAϵbaAϵb · ι(L0) = aAbaAb.

is correctly defined.
If NonemptyMatchNotFinished(ϕ, (R, g)), then ϕ((R, g)) ∈ Rng(g)\FT . We

can conclude that µ(ϕ((R, g)), a, g′) is defined in exactly the same way as in
the proof of the correctness for δ in proposition 5.5. Again, all elements of
{i′ | (ϕ((R, g)), a, g′(i′)) ∈ ∆Σ1

T } belong to the domain of g′ and in particular
µ(ϕ((R, g)), a, g′) does. Thus g′(µ(ϕ((R, g)), a, g′)) is defined.

If NonemptyMatchBegin(L, g), then I(L, g) ̸= ∅. Let q = ν(L, g). By the
definitions of I and ν, we have q ∈ ST and q ∈ Rng(g) which implies q ∈
Rng(g) \ FT . To see that g′(µ(ν(L, g), a, g′)) is defined, the same reasoning as
in the previous case can be used.

Finally, if NonemptyMatchBegin(L′, g′), immediately follows that ν(L′, g′)
is defined. Thus ϕ′ is correctly defined.

For ψ, if NonemptyMatchNotFinished(ϕ, (R, g)), then (ϕ((R, g)), a, ϕ((R′, g′))) ∈
∆Σ1

T , so
{m | (ϕ((R, g)), (a,m), ϕ((R′, g′))) ∈ ∆T } ≠ ∅

and hence Output(ϕ((R, g)), a, ϕ′((R′, g′))) is defined.
Similarly, if NonemptyMatchFinished(ϕ, (R, g))&NonemptyMatchBegin(L, g),

then
{m | (ν(L, g), (a,m), ϕ((R′, g′))) ∈ ∆T } ≠ ∅

and Output(ν(L, g), a, ϕ′((R′, g′))) is defined. If EmptyMatchBegin(L,R), it
follows directly from the definitions that Emin(J(L,R)) is defined. Thus ψ is
correctly defined.

Let A = (Σ1,Σ2, AL, AR, Q, qerr, δ, τ, ψδ, ψτ) be obtained from construc-
tion 5.3 and B = (Σ1 ∪ Σ2, A

′
L, AR, ψ, ι) be obtained from construction 6.6

applied on the same FSR ((Tr, Er, Aλr
, Aρr

))mr=1. We are going to show that A
and B are equivalent, i.e. for each input string t ∈ Σ∗

1, both A and B produce
the same output for t. For this purpose, we are going to prove a couple of
propositions which show the relationships between the two machines.

Let t = t1 . . . tn ∈ Σ∗
1,

((Li, qi, qi, (Ri, gi), oi, oi))
n
i=0

be an execution of A over t and

(((Li, ϕi), o
′
i, (Ri, gi)))

n
i=0

be an execution of B over t. Note that the executions of the right automata
of the two bimachines coincide since they both have the same automaton AR

28

as right automaton. Similarly, the Li components in both executions coincide
since they are constructed in one and the same way.

The first proposition will show the relationship between the states of A and
the ”selected” states by the functions ϕi.

Proposition 6.9. Let 0 ≤ i ≤ n. All of the following implications hold:

qi ∈ QT \ ST =⇒ ϕi((Ri, gi)) = qi, (3)

qi = qerr & qi = qerr =⇒ ϕi((Ri, gi)) ↑, (4)

qi /∈ FT & qi ∈ ST =⇒ ϕi((Ri, gi)) = qi. (5)

Proof. Assume that the implications hold for all j < i.

(3) Assume qi ∈ QT \ ST . Then i > 0 (q0 = qerr /∈ QT) and qi−1 ∈ Rng(gi−1) \
FT .

Case 1: qi−1 /∈ ST . Then qi−1 = qi−1 and hence qi−1 ∈ QT \ ST . By the
i.h. for (3), ϕi−1((Ri−1, gi−1)) = qi−1. Therefore ϕi−1((Ri−1, gi−1)) ↓
and ϕi−1((Ri−1, gi−1)) ∈ Rng(gi−1) \ FT , i.e.

NonemptyMatchNotFinished(ϕi−1, (Ri−1, gi−1)).

We conclude that

ϕi((Ri, gi)) = gi(µ(ϕi−1((Ri−1, gi−1)), ti, gi))

= gi(µ(qi−1, ti, gi)) = qi.

Case 2: qi−1 ∈ ST . Then qi−1 /∈ QT \ FT , I(Li−1, gi−1) ̸= ∅ and qi−1 =
ν(Li−1, gi−1). Therefore in this case we have NonemptyMatchBegin(Li−1, gi−1).

Case 2.1: qi−1 ∈ FT . But since FT ⊆ QT \ ST , by i.h. for (3) we
have ϕi−1((Ri−1, gi−1)) = qi−1. Thus NonemptyMatchFinished(ϕi−1, (Ri−1, gi−1))
holds. We conclude that

ϕi((Ri, gi)) = gi(µ(ν(Li−1, gi−1), ti, gi))

= gi(µ(qi−1, ti, gi)) = qi.

Case 2.2: qi−1 /∈ FT . Then qi−1 = qerr. By i.h. for (5), ϕi−1((Ri−1, gi−1)) =
qi−1. We have qi−1 ∈ ST ⊆ QT , so by proposition 5.6 we
get qi−1 ∈ Rng(gi−1) \ FT . Therefore, as in case 1, we have
NonemptyMatchNotFinished(ϕi−1, (Ri−1, gi−1)) and ϕi((Ri, gi)) =
qi.

(4) Assume qi = qi = qerr. Then I(Li, gi) = ∅, i.e. ¬NonemptyMatchBegin(Li, gi).

Case 1: i = 0. Then Li = L0 = Sλ, so ¬NonemptyMatchBegin(Sλ, gi)
and hence ϕi((Ri, gi)) ↑.

29

Case 2: i > 0. Then qi = qerr implies qi−1 = τ(qi−1, Li−1, (Ri−1, gi−1)) =
qerr. Therefore qi−1 /∈ QT \ FT and I(Li−1, gi−1) = ∅, i.e.

¬NonemptyMatchBegin(Li−1, gi−1).

Case 2.1: qi−1 ∈ FT . Then, since FT ⊆ QT \ST , by the i.h. for (3),
ϕi−1((Ri−1, gi−1)) = qi−1 /∈ Rng(gi−1) \ FT . Therefore

¬NonemptyMatchNotFinished(ϕi−1, (Ri−1, gi−1)).

Case 2.2: qi−1 /∈ FT . Then qi−1 = qerr. By the i.h. for (4),
ϕi−1((Ri−1, gi−1)) ↑. Therefore again

¬NonemptyMatchNotFinished(ϕi−1, (Ri−1, gi−1)).

We have shown that none of the three conditions for ϕi((Ri, gi)) to
be defined is satisfied, so ϕi((Ri, gi)) ↑.

(5) Assume qi /∈ FT and qi ∈ ST . Then qi /∈ QT \ FT , I(Li, gi) ̸= ∅ and qi =
ν(Li, gi). Therefore in this case we have NonemptyMatchBegin(Li, gi).
Since qi /∈ FT , we have qi = qerr.

Case 1: i = 0. Then Li = L0 = Sλ, so NonemptyMatchBegin(Sλ, gi)
and hence

ϕi((Ri, gi)) = ν(Sλ, gi) = ν(Li, gi) = qi.

Case 2: i > 0. In this case qi−1 = qerr. Therefore qi−1 /∈ QT \ FT and
I(Li−1, gi−1) = ∅, i.e. ¬NonemptyMatchBegin(Li−1, gi−1).

Case 2.1: qi−1 ∈ FT . Then, since FT ⊆ QT \ ST , by the i.h. for (3)
we get ϕi−1((Ri−1, gi−1)) = qi−1. Thus we have

NonemptyMatchFinished(ϕi−1, (Ri−1, gi−1)).

Case 2.2: qi−1 /∈ FT . Then qi−1 = qerr. By the i.h. for (4),
ϕi−1((Ri−1, gi−1)) ↑. Thus we have

OutsideOfMatch(ϕi−1, (Ri−1, gi−1)).

In either case ϕi((Ri, gi)) = ν(Li, gi) = qi.

The next two proposition show the relationship between the outputs of the
two bimachines at any particular step.

Proposition 6.10. Let 0 ≤ i < n. Then oi · oi+1 = o′i.

Proof. In the following proof we will tacitly use the result of proposition 5.19.

30

Case 1: qi+1 ∈ QT . Then qi ∈ Rng(gi) \ FT and oi+1 = Output(qi, ti+1, qi+1).
Note that qi+1 /∈ ST , so we can apply (3) to get ϕi+1((Ri+1, gi+1)) = qi+1.
We have τ(qi, Li, (Ri, gi)) = qi ̸= qerr, so oi = ϵ.

Case 1.1: qi /∈ ST . Then qi = qi ∈ QT \ ST . By (3), ϕi((Ri, gi)) = qi.
Note that qi /∈ FT and qi = qi, so ϕi((Ri, gi)) ∈ QT \ FT , that is

NonemptyMatchNotFinished(ϕi, (Ri, gi)).

Thus

o′i = ψ(Li, ti+1, (Ri+1, gi+1))

= Output(ϕi((Ri, gi)), ti+1, ϕi+1((Ri+1, gi+1)))

= Output(qi, ti+1, qi+1)

= Output(qi, ti+1, qi+1) = oi+1 = oi · oi+1.

Case 1.2: qi ∈ ST . Then qi /∈ QT \ FT , I(Li, gi) ̸= ∅ and qi = ν(Li, gi).
Therefore in this case we have NonemptyMatchBegin(Li, gi).

Case 1.2.1: qi ∈ FT . Then qi ∈ QT \ ST and by (3) we have
ϕi((Ri, gi)) = qi ∈ FT . This means

NonemptyMatchFinished(ϕi, (Ri, gi))

and thus

o′i = Output(ν(Li, gi), ti+1, ϕi+1((Ri+1, gi+1)))

= Output(qi, ti+1, qi+1) = oi+1 = oi · oi+1.

Case 1.2.2: qi /∈ FT . Then, by (5), ϕi((Ri, gi)) = qi ∈ ST ⊆ QT .
By proposition 5.6, qi ∈ Rng(gi)\FT , so ϕi((Ri, gi)) ∈ Rng(gi)\
FT . Therefore, we have

NonemptyMatchNotFinished(ϕi, (Ri, gi))

and thus

o′i = ψ(Li, ti+1, (Ri+1, gi+1))

= Output(ϕi((Ri, gi)), ti+1, ϕi+1((Ri+1, gi+1)))

= Output(qi, ti+1, qi+1) = oi+1 = oi · oi+1.

Case 2: qi+1 /∈ QT . Then qi+1 = qerr and oi+1 = ti+1. We also have that
qi = qerr, so qi /∈ QT \ FT and I(Li, gi) = ∅, i.e.

¬NonemptyMatchBegin(Li, gi).

If qi ∈ FT , then (by (3)) qi = ϕi((Ri, gi)) ∈ FT , that is

NonemptyMatchFinished(ϕi, (Ri, gi))

31

and
¬NonemptyMatchNotFinished(ϕi, (Ri, gi)).

Otherwise qi = qerr and (by (4)) ϕi((Ri, gi)) ↑. In either case we have

¬NonemptyMatchNotFinished(ϕi, (Ri, gi))

and

OutsideOfMatch(ϕi, (Ri, gi)) ∨NonemptyMatchFinished(ϕi, (Ri, gi)).

Case 2.1: J(Li, Ri) ̸= ∅ (EmptyMatchBegin(Li, Ri)). Then, since qi =
qerr, we have oi = Emin(J(Li,Ri)). In this case

o′i = Emin(J(Li,Ri)) · ti+1 = oi · oi+1.

Case 2.2: J(Li, Ri) = ∅ (¬EmptyMatchBegin(Li, Ri)). Then oi = ϵ. In
this case

o′i = ti+1 = oi+1 = oi · oi+1.

Proposition 6.11. on = o′n.

Proof. By proposition 5.7, τ(qn, Ln, (Rn, gn)) = qn = qerr. By definition,
(Rn, gn) = sR = (SRU , gs). Therefore, if J(Ln, Rn) ̸= ∅, then

on = Emin(J(Ln,Rn)) = Emin(J(Ln,SRU)) = o′n.

Otherwise on = o′n = ϵ.

We are now ready to show that A and B are equivalent.

Theorem 6.12. OutA(t) = OutB(t).

Proof. Applying proposition 6.10 n times gives

o0o1o1o2 . . . on−1on = o′0o
′
1 . . . o

′
n−1.

Finally, we use proposition 6.11 and the fact that o0 = ϵ by definition to get

OutA(t) = o0o0o1o1o2 . . . on−1onon = o′0o
′
1 . . . o

′
n−1o

′
n = OutB(t)

which completes the proof.

32

7 Complexity analysis

Proposition 7.1. Let Q be a finite set with |Q| ≥ 2. The number of the
enumerations of subsets of Q is less than 3 |Q|!.

Proof. Let n = |Q|. The number of the subsets of Q can be expressed as

n∑
k=0

(
n

k

)
.

A subset of k element has k! distinct enumerations (the permutations of the
elements), so the total number of enumerations is

n∑
k=0

k!

(
n

k

)
.

Using our assumption that |Q| ≥ 2 and the fact that (n−k)! ≥ 2n−k for k ≤ n−2
we obtain an upper bound for this total number of enumerations:

n∑
k=0

k!

(
n

k

)
=

n∑
k=0

n!

(n− k)!
= 2n! +

n−2∑
k=0

n!

(n− k)!

≤ 2n! +

n−2∑
k=0

n!

2n−k
= 2n! + n!

n∑
p=2

1

2p
< 3n! ∈ O(n!).

Proposition 7.2. Let A = (Σ1,Σ2, AL, AR, Q, qerr, δ, τ, ψδ, ψτ) be obtained from
construction 5.3 applied on some FSR ((Tr, Er, Aλr , Aρr))

m
r=1. Let Qρ =

⋃m
r=1Qρr .

Then

|QL| ≤ 2|Qλ|,

|δL| = |QL| · |Σ1| ≤ 2|Qλ| · |Σ1| ,
|QR| ≤ 2|Qρ| · 3 |QT |! ∈ O(2|Qρ| · |QT |!),
|δR| = |QR| · |Σ1| ≤ 2|Qρ| · 3 |QT |! · |Σ1| ,

|δ| = |ψδ| ≤ |Σ1| · 2|Qρ| · 3(|QT |+ 1)! ∈ O(|Σ1| · 2|Qρ| · (|QT |+ 1)!),

|τ | = |ψτ | ≤ 2|Qλ| · 2|Qρ| · 3(|QT |+ 1)! ∈ O(2|Qλ|+|Qρ| · (|QT |+ 1)!),

Rng(δ) ≤ |QT |+ 1,

Rng(τ) ≤ |QT |+ 1.

The total size of A is

|δL|+ |δR|+ |δ|+ |ψδ|+ |τ |+ |ψτ |
≤ (2|Qλ| + 2|Qρ| · 3 |QT |!) · |Σ1|+ 6 · 2|Qρ| · (|QT |+ 1)! · (2|Qλ| + |Σ1|)
∈ O(2|Qρ| · (|QT |+ 1)! · (2|Qλ| + |Σ1|) + 2|Qλ| · |Σ1|).

33

Proof. The number of states of Aλ is

|Qλ| =
m∑
r=1

|Qλr
| .

The number of states of AL is at most 2|Qλ|.
Assuming |QT | ≥ 2 (which is always the case unless the batch of rules is

empty), an obvious upper bound for the number of states of AR is

|QR| ≤ 2|QRU |
|QT |∑
k=0

k!

(
|QT |
k

)
≤ 2|QRU | · 3 |QT |! ∈ O(2|QRU | · |QT |!).

If we look more carefully, we can see that for each g ∈
⋃

Q⊆QT
Enum(Q), the

number of pairs (R, g) which may belong to QR is no greater than 2|Qρ|. This
is because, for any (R, g) ∈ QR, the states of QT which belong to R are exactly
the states in Rng(g). This observation gives us a more precise upper bound for
the states of QR:

|QR| ≤ 2|Qρ|
|QT |∑
k=0

k!

(
|QT |
k

)
≤ 2|Qρ| · 3 |QT |! ∈ O(2|Qρ| · |QT |!).

For the transition functions and the output functions of A we have the
following upper bounds:

|δ| = |ψδ| = (|QT |+ 1) · |Σ1| · |QR|
≤ (|QT |+ 1) · |Σ1| · 2|Qρ| · 3 |QT |! ∈ O(|Σ1| · 2|Qρ| · (|QT |+ 1)!),

|τ | = |ψτ | = (|QT |+ 1) · |QL| · |QR|
≤ (|QT |+ 1) · 2|Qλ| · 2|Qρ| · 3 |QT |! ∈ O(2|Qλ|+|Qρ| · (|QT |+ 1)!).

Proposition 7.3. Let B = (Σ1 ∪ Σ2, AL, AR, ψ, ι) be obtained from construc-
tion 6.6 applied on some FSR ((Tr, Er, Aλr

, Aρr
))mr=1. Let Qρ =

⋃m
r=1Qρr

.
Then

|QR| ≤ 2|Qρ| · 3 |QT |! ∈ O(2|Qρ| · |QT |!),
|δR| = |QR| · |Σ1| ≤ 2|Qρ| · 3 |QT |! · |Σ1| ,

|ι| = |QL| ≤ 2|Qλ| · (|QT |+ 1)3|QT |! ∈ O(2|Qλ| · |QT |3|QT |!
),

|δL| = |QL| · |Σ1| ≤ 2|Qλ| · (|QT |+ 1)3|QT |! · |Σ1| ,
|ψ| ≤ 2|Qλ|+|Qρ| · (|QT |+ 1)3|QT |! · |Σ1| · 3 |QT |!

∈ O(2|Qλ|+|Qρ| · |QT |3|QT |! · |Σ1| · |QT |!).

34

The total size of B is

|δR|+ |δL|+ |ι|+ |ψ|
≤ 2|Qρ| · 3 |QT |! · |Σ1|+ 2|Qλ| · (|QT |+ 1)3|QT |! · (|Σ1|+ 1) + 2|Qλ|+|Qρ| · (|QT |+ 1)3|QT |! · |Σ1| · 3 |QT |!
= 2|Qρ| · 3 |QT |! · |Σ1|+ 2|Qλ| · (|QT |+ 1)3|QT |! · (|Σ1|+ 1 + 2|Qρ| · |Σ1| · 3 |QT |!)
∈ O(2|Qλ|+|Qρ| · |QT |3|QT |! · |Σ1| · |QT |!).

Proof. The number of states of AR are as in proposition 7.2. The number of
subsets of Qλ is 2|Qλ| and the number of the partial functions ϕ : QR 7→ QT is
(|QT |+ 1)|QR|. Note that by the construction, if (L, ϕ) ∈ QL and (R, g) ∈ QR,
then ϕ((R, g)) only depends on the enumeration g and does not depend on the
states of Qρ in R, i.e. ϕ((R′, g)) = ϕ((R, g)) for any (R′, g) ∈ QR. This means
for any fixed L, the number of functions ϕ such that (L, ϕ) ∈ QL is no greater
than (|QT |+1)3|QT |!. This is because the number of the enumerations of subsets
of QT are less than 3 |QT |!. Therefore, we have the following upper bound for
the number of states of AL:

|QL| ≤ 2|Qλ| · (|QT |+ 1)3|QT |! ∈ O(2|Qλ| · |QT |3|QT |!
).

For the output function we have

|ψ| = |QL| · |Σ1| · |QR|
≤ 2|Qλ| · (|QT |+ 1)3|QT |! · |Σ1| · 2|Qρ| · 3 |QT |!
∈ O(2|Qλ|+|Qρ| · |QT |3|QT |! · |Σ1| · |QT |!).

Remark 7.4. Since for any q ∈ Q, a ∈ Σ1, (R
′, g′), (R′′, g′′) ∈ QR,

g′ = g′′ =⇒ δ(q, a, (R′, g′)) = δ(q, a, (R′′, g′′)),

one may store a function δ̃ : Q×Σ1×(QR/∼R) instead of δ, where ∼R⊆ QR×QR

is defined as
(R′, g′) ∼R (R′′, g′′) ⇐⇒ g′ = g′′

and
δ̃(q, a, [(R, g)]∼R

) = δ(q, a, (R, g)).

Clearly, this correctly defines a function δ̃ due to the definition of ∼R and the
observation above. The size of this function is∣∣∣δ̃∣∣∣ = (|QT |+ 1) · |Σ1| · |QR/∼R| ∈ O(|Σ1| · (|QT |+ 1)!),

thus eliminating the factor 2|Qρ|. Note that by using this, one may need to store
the projection (R, g) 7→ g for using it during the rewriting process. Same idea
can be applied for the functions ψδ, τ , ψτ and ψ.

35

Similarly, since for any q ∈ Q, L′, L′′ ∈ QL, R ∈ QR,

L′ ∩ Fλ = L′′ ∩ Fλ =⇒ τ(q, L′, R) = τ(q, L′′, R),

where Fλ = {fλ1
, . . . , fλr

}, one may store a function τ̃ : Q × (QL/ ∼L) × QR

instead of τ , where ∼L⊆ QL ×QL is defined as

L′ ∼L L
′′ ⇐⇒ L′ ∩ Fλ = L′′ ∩ Fλ

and
τ̃(q, [L]∼L

, R) = τ(q, L,R).

Again, it is clear that this correctly defines a function τ̃ . The size of this function
is

|τ̃ | = (|QT |+ 1) · |QL/∼L| · |QR| ∈ O(2r+|Qρ| · (|QT |+ 1)!),

thus replacing the factor 2|Qλ| with 2m. Note that by using this, one may need
to store the projection L 7→ L ∩ Fλ for using it during the rewriting process.
Same idea can be applied for the functions ψτ and ψ.

Of course, both optimization can be applied simultaneously in the obvious
way for the functions τ , ψτ and ψ.

Remark 7.5. It is not an easy task to see whether the presented upper bounds
are least. It is known that for every functional real-time transducer with n states
there is an equivalent bimachine which has at most O(2n) states [4]. However,
we do not work with the functional transducer for the leftmost-longest replace-
ment explicitly but only with the transducers for the functions of each individual
rule. As can be seen in [1], the regular function for the leftmost-longest replace-
ment and hence the corresponding transducer depend quite non-trivially on the
rules. If we can find the exact upper bound for the size of this transducer, we
may also be able to analyze more precisely the sizes of the bimachines based on
the known results. Unfortunately, we have not made any progress in solving this
so it remains an open problem.

8 Implementation

Despite the upper bounds given in section 7, it is still very hard to predict how
these constructions will perform in practice. The sizes of the obtained machines
vary greatly depending on the input batch of rules. In this section we are going
to compare both constructions empirically to get an idea of the strengths and
the weaknesses of each of them.

In our experiment we are going to use the Porter stemming algorithm [5],
which finds application in information retrieval. It was chosen not only because
it is complex enough for the task, but also as a demonstration of the usefulness
of these constructions for practical purposes.

As part of this work, the described constructions were implemented using
standard C++23. The implementation is briefly described in subsection 8.1.

36

Then, in subsection 8.2, the Porter stemmer is introduced and it is shown how
the algorithm is adapted for our experiment. Finally, the results and conclusions
are provided in subsection 8.3.

8.1 Implementation overview

The two main constructions presented in this thesis are implemented in C++ us-
ing object-oriented approach (though, some of the good OOP practices may have
been sacrificed in favor of performance). The program consists of several classes,
which are used to implement the two main constructions presented in this the-
sis. The input batch of rules is represented by regular expressions, which are
converted into finite-state machines using the function template regexToMFSA.
Then, a FSR is constructed for this batch of rules, which in turn is used as
an input for the TSBM/BMFO construction. The source code can be found at
https://github.com/StanimirSP/Masters-project.

MonoidalFSA. The class template MonoidalFSA implements a monoidal finite-
state automaton in which the operation is concatenation. It contains several
public member functions, which provide the basic functionalities needed for
these devices such as Union, Concatenation, KleeneStar, removeEpsilon5,
trim6, pseudoDeterm7, etc. The public member function pseudoMinimize

transforms the monoidal FSA into a pseudo-minimal8 one using the Hopcroft’s
minimization algorithm. The algorithm was modified to support minimization of
colored deterministic automata9. This is provided by the method coloredPseudoMinimize
and will be used for pseudo-minimizing bimachines.

ClassicalFSA. The class ClassicalFSA derives from MonoidalFSA and adds
functionalities specific to classical automata (e.g. intersection and complement
of automata).

Transducer. Similarly, the class template Transducer derives from MonoidalFSA

and adds functionalities specific to classical transducers (e.g. composition, trans-
forming to letter or real-time transducer, projections).

RegularExpression. The class template RegularExpression represents a
generalized regular expression such that it can be used for creating either a
classical automaton or a transducer, depending on its type. This is done by
converting the regular expression into reverse Polish notation (also known as
postfix notation) and then using the Thompson’s construction to obtain an
automaton or a transducer.

5transforms to e-free automaton, see definition 4.2
6see [2, definition 2.5.1]
7pseudo-determinization, see [2, definition 3.7.1]
8see [2, definition 3.7.3]
9see [2, section 3.6]

37

https://github.com/StanimirSP/Masters-project

ContextualReplacementRuleRepresentation. The class ContextualRe ⌋

placementRuleRepresentation constructs the FSR of a contextual replace-
ment rule. An array of ContextualReplacementRuleRepresentation is used
to represent a FSR of a batch of rules.

TSBM LeftAutomaton, TSBM RightAutomaton. The classes TSBM_LeftAutomaton
and TSBM_RightAutomaton represent the left and the right deterministic au-
tomaton respectively of a two-step bimachine. TSBM_RightAutomaton is reused
during the construction of bimachine with final output since the right au-
tomaton of both types of bimachines are constructed exactly the same way.
TSBM_LeftAutomaton is also reused as a helper for the construction of the left
automaton of a BMFO.

TwostepBimachine. The class TwostepBimachine provides the main func-
tionality of constructing a two-step bimachine given a FSR of batch of rules.
The functions δ, ψδ, τ and ψτ are represented by hash maps in order to have
O(1) lookup in the average case and hence achieve rewriting in linear time. The
functions are slightly compressed by having a default value for each of them. If
a tuple of arguments is mapped to the default value, this entry is not stored.
The functions τ and ψτ are implemented as a functions of two arguments only
(the states of the left automaton and the right automaton). The dependence on
the bimachine state q is trivial and can easily be separated in order to achieve
better space efficiency. This, however, leads to the need of storing the set FT

even after the construction process has completed and that is why it is included
in table 8.2. The construction is optimized by factorizing the states of AL based
on the final states they contain and the states of AR based on their enumeration
part (see remark 7.4). This makes the construction faster by considering indis-
tinguishable (with respect to the four functions) states only once. Additionally,
the two-step bimachines are pseudo-minimized using a modified version of the
algorithm described in [2, section 6.3].

BimachineWithFinalOutput. The class BimachineWithFinalOutput pro-
vides the main functionality of constructing a bimachine with final output given
a FSR of batch of rules. The optimizations used in this class during the con-
struction are very similar to these in TwostepBimachine.

8.2 Porter stemmer and its representation with contex-
tual replacement rules

The purpose of this subsection is to introduce the reader to the Porter stemming
algorithm [5] and the way we transformed its rules to fit into our model. The
next couple of paragraphs summarize the original paper.

Automatic suffix stripping is especially useful in the field of information re-
trieval (IR). In an IR system, documents are typically represented by the words
in their titles and possibly in their abstracts. When multiple words share a

38

common stem, such as
CONNECT,
CONNECTED,
CONNECTING,
CONNECTION,
CONNECTIONS,

they often have similar meanings. By stripping suffixes like ”-ED”, ”-ING”,
”-ION”, and ”-IONS”, these words can be merged into a single word ”CON-
NECT”, enhancing the performance of the IR system.

Various techniques for suffix stripping have been reported in literature. The
effectiveness of these techniques depends on different factors like whether a stem
dictionary or a suffix lists is used, and of course on the purpose for which the
suffix stripping is being done.

In cases where a stem dictionary is not used and the aim is to enhance
IR performance, a suffix stripping program is typically given an explicit list of
suffixes, and, with each suffix, the criterion under which it may be removed
from a word to leave a valid stem. This is the approach adopted in the Porter
stemming algorithm.

It is important to note that the algorithm presented by Porter is designed
simply to improve IR performance, and not as a linguistic exercise. In his
paper he states that it would not be at all obvious under what circumstances a
suffix should be removed, even if the suffixes of a word could be determined by
automatic means. The algorithm therefore is not linguistically correct and it
conflates together terms which may have quite distinct meanings (e.g. RELATE
and RELATIVITY in a context of theoretical physics). It may also fail to
conflate together terms which have similar meanings.

Originally, the algorithm was implemented by its author in a short BCPL
program. It consists of a series of rules grouped in 5 steps. Some of the steps
are further split into smaller substeps. The rules of the algorithm are copied
into appendix A in their original form. Each word from an input dictionary
goes through each step sequentially and the final result is the stripped word.

In our program, the steps of the algorithm were implemented using the
notion of contextual replacement rule. Since in the original paper the rules are
described in non-regular manner, some transformations were made to them in
order to be expressed as contextual replacement rules. The result is a sequence
of 9 batches of rules (see appendix B or PorterStemmer.hpp). A dictionary
of words should be sequentially rewritten according to each of them to get the
final result.

Each of these batches can be represented either by a classical bimachine
or by a two-step bimachine. Then the machines can be used for rewriting the
dictionary automatically. These 9 machines can be further composed into one,
but this goes out of the scope of this thesis.

39

step |QL| |δL| |QR| |δR| |ψ| total size / bytes
min. min. min. min. min. min.

#1 17 12 561 396 8 3 264 99 332 69 18 381 6732
#2 16 10 528 330 8 5 264 165 29 18 8085 5049
#3 104 57 3432 1881 26 3 858 99 115 106 42 405 21 318
#4 4 3 132 99 3 2 99 66 2 1 2145 1518
#5 179 55 5907 1815 68 20 2244 660 88 49 76 263 23 892
#6 29 21 957 693 30 15 990 495 101 75 20 856 13 167
#7 140 23 4620 759 43 19 1419 627 1679 238 109 758 20 328
#8 15 10 495 330 3 2 99 66 4 1 5478 3597
#9 8 6 264 198 5 3 165 99 8 7 4125 2904

287 496 98 505

Table 8.1: Size of the constructed bimachines with final output for Porter stem-
ming algorithm before after pseudo-minimization. The function ι is omitted
because it is empty at every step. Data structures overhead is not included in
the total size.

step |QL| |δL| |QR| |δR| |δ| |ψδ| |τ | |ψτ | |FT | total size / bytes

#1 4 132 8 264 14 6 13 1 5 4152
#2 4 132 8 264 15 8 8 0 4 4135
#3 5 165 26 858 68 25 25 0 6 11 240
#4 3 99 3 99 2 2 1 0 1 1890
#5 4 132 68 2244 256 56 84 0 42 27 736
#6 4 132 30 990 38 26 7 0 7 11 562
#7 7 231 43 1419 158 79 133 0 38 21 259
#8 13 429 3 99 4 4 3 0 2 4980
#9 6 198 5 165 6 6 7 0 2 3635

90 589

Table 8.2: Size of the constructed two-step bimachines for Porter stemming
algorithm. Data structures overhead is not included in the total size.

40

step
construction time / ms rewriting time / ms

FSR TSBM BMFO TSBM BMFO

#1 5 < 1 2 7 7
#2 16 < 1 1 7 8
#3 3 1 26 8 7
#4 5 < 1 < 1 6 6
#5 143 13 805 6 6
#6 47 1 10 6 6
#7 205 9 316 6 6
#8 17 < 1 < 1 5 6
#9 8 < 1 < 1 6 6

449 27 1159 57 58

Table 8.3: Construction times and times for rewriting voc.txt (≈ 186 KiB)
from [5] of the two-step bimachines (TSBM) and the bimachines with final
output (BMFO) for Porter stemming algorithm. All times are the average of 5
executions of the program and are rounded up to a millisecond.

8.3 Empirical results

Table 8.1 shows the sizes of the bimachines with final output for each step of the
algorithm. It also compares the sizes before and after pseudo-minimization. It
can be seen that the pseudo-minimization significantly reduces the size of these
machines.

Table 8.2 shows the sizes of the two-step bimachines for each step of the
same algorithm. The difference in sizes before and after pseudo-minimization is
negligible and it is not shown.

Table 8.3 compares the time taken to construct both types of bimachines and
the time taken to rewrite a sample dictionary of words provided in [5].10 The
experiment was conducted on Intel Core i7-8086K CPU. The code was compiled
using GCC 13.2.0 with flags -O3 -std=c++23.

From these results we can observe that while pseudo-minimization has almost
no effect on two-step bimachines, the presented construction already produces
them with sizes similar to the sizes of the pseudo-minimized bimachines with
final output. This not only results in faster construction, but also the memory
needed by the construction algorithm is significantly less in these cases. This
can be crucial for larger examples where the main memory is insufficient to
store the non-pseudo-minimized bimachine with final output, but it is sufficient
to store the two-step bimachine. The huge difference in the construction times
of both machines is also due to the fact that the left and the right automaton
of TSBM are independent, while for the BMFO, the left automaton depends on
the right so that during the construction of each left state, all of the right states

10Since our implementation of regular expressions does not support indication of the empty
string at the beginning/end of the line (ˆ and $ in POSIX regex), at least one whitespace
must be inserted before the first word and after the last word of the file.

41

have to be traversed.
In some cases it is possible that the rewriting with a two-step bimachine is

a little slower compared to the rewriting with a classical bimachine. This is due
to the fact that two-step bimachines may have to query multiple function at
each step in order to compute their next state and the corresponding output.
However, there is no noticeable difference in rewriting times between the two
types of bimachines in this example (due to small optimization which eliminates
the lookups in δ and ψδ when the two-step bimachine is in state qerr (i.e. it is
outside of match), and the lookups in τ and ψτ when the two-step bimachine is
in the middle of a match).

9 Conclusion

In this thesis we introduced the two-step bimachines and a construction which
creates a two-step bimachine given a finite-state representation of batch of rules.
The construction directly creates the two-step bimachine without a need to con-
struct the corresponding real-time functional transducer first. We proved the
correctness of the presented construction and saw that two-step bimachines rep-
resent exactly the class of regular functions. We showed a similar construction
which creates an equivalent bimachine with final output which in turn can be
expressed as an equivalent up to ϵ classical bimachine. We found upper bounds
for the sizes of the bimachines obtained from these constructions. It remains an
open question whether these upper bounds can be improved.

We implemented both constructions and compared how they perform in
practice. We used the rules of the Porter stemming algorithm as an example
and saw that in all steps that are complex enough to notice the difference, the
two-step bimachine was constructed much faster than the corresponding bima-
chine with final output. Namely, the total time for constructing the two-step
bimachines was about 40 times lower than the total time for constructing the bi-
machines with final output. We also observed that the sizes of the constructed
two-step bimachines are already similar to the sizes of the pseudo-minimized
bimachines with final output which suggests that the first construction can be
executed on machines having lower amount of internal memory. Lastly, we
saw that, in this example, the time for text rewriting with the two types of
bimachines is almost the same.

References

[1] Ronald M. Kaplan and Martin Kay. 1994. Regular Models of Phonological
Rule Systems. Computational Linguistics, 20(3):331–378.

[2] Stoyan Mihov and Klaus U. Schulz: Finite-State Techniques, Automata,
Transducers and Bimachines, Cambridge Tracts in Theoretical Computer
Science, Cambridge University Press, 2019.

42

[3] Gerdjikov, S., Mihov, S., Schulz, K.U. (2017). A Simple Method for Build-
ing Bimachines from Functional Finite-State Transducers. In: Carayol,
A., Nicaud, C. (eds) Implementation and Application of Automata. CIAA
2017. Lecture Notes in Computer Science(), vol 10329. Springer, Cham.
https://doi.org/10.1007/978-3-319-60134-2_10

[4] Gerdjikov, S., Mihov, S., Schulz, K.U. (2019). Space-efficient bimachine con-
struction based on the equalizer accumulation principle. https://doi.org/
10.1016/j.tcs.2019.04.027

[5] M. F. Porter (1980): The Porter Stemming Algorithm (An algorithm for
suffix stripping). https://tartarus.org/martin/PorterStemmer/

43

https://doi.org/10.1007/978-3-319-60134-2_10
https://doi.org/10.1016/j.tcs.2019.04.027
https://doi.org/10.1016/j.tcs.2019.04.027
https://tartarus.org/martin/PorterStemmer/

A Compact version of the original description
of the Porter stemming algorithm

In this appendix the rules of the Porter stemmer and the description of their
format are copied from [5]. This is only for comparison with our transformation
of them (appendix B).

A \consonant\ in a word is a letter other than A, E, I, O or U,

and other than Y preceded by a consonant. If a letter is not a

consonant it is a \vowel\.

A consonant will be denoted by c, a vowel by v. A list ccc... of

length greater than 0 will be denoted by C, and a list vvv... of

length greater than 0 will be denoted by V. Any word, or part of

a word, may be represented by the form

[C]VCVC ... [V]

where the square brackets denote arbitrary presence of their

contents. Using (VC){m} to denote VC repeated m times, this may

be written as

[C](VC){m}[V].

m will be called the \measure\ of any word or word part when

represented in this form.

The \rules\ for removing a suffix will be given in the for

(condition) S1 -> S2

The `condition' part may also contain the following:

*S - the stem ends with S (and similarly for the other

letters).

v - the stem contains a vowel.

*d - the stem ends with a double consonant (e.g. -TT,

-SS).

*o - the stem ends cvc, where the second c is not W, X

or Y (e.g. -WIL, -HOP).

In a set of rules written beneath each other, only one is obeyed,

and this will be the one with the longest matching S1 for the

given word.

Step 1a

44

SSES -> SS

IES -> I

SS -> SS

S ->

Step 1b

(m>0) EED -> EE

(*v*) ED ->

(*v*) ING ->

If the second or third of the rules in Step 1b is successful, the

following is done:

AT -> ATE

BL -> BLE

IZ -> IZE

(*d and not (*L or *S or *Z)) -> single letter

(m=1 and *o) -> E

Step 1c

(*v*) Y -> I

Step 2

(m>0) ATIONAL -> ATE

(m>0) TIONAL -> TION

(m>0) ENCI -> ENCE

(m>0) ANCI -> ANCE

(m>0) IZER -> IZE

(m>0) BLI -> BLE

(m>0) ALLI -> AL

(m>0) ENTLI -> ENT

(m>0) ELI -> E

(m>0) OUSLI -> OUS

(m>0) IZATION -> IZE

(m>0) ATION -> ATE

(m>0) ATOR -> ATE

(m>0) ALISM -> AL

(m>0) IVENESS -> IVE

(m>0) FULNESS -> FUL

(m>0) OUSNESS -> OUS

(m>0) ALITI -> AL

(m>0) IVITI -> IVE

(m>0) BILITI -> BLE

(m>0) LOGI -> LOG

Step 3

(m>0) ICATE -> IC

45

(m>0) ATIVE ->

(m>0) ALIZE -> AL

(m>0) ICITI -> IC

(m>0) ICAL -> IC

(m>0) FUL ->

(m>0) NESS ->

Step 4

(m>1) AL ->

(m>1) ANCE ->

(m>1) ENCE ->

(m>1) ER ->

(m>1) IC ->

(m>1) ABLE ->

(m>1) IBLE ->

(m>1) ANT ->

(m>1) EMENT ->

(m>1) MENT ->

(m>1) ENT ->

(m>1 and (*S or *T)) ION ->

(m>1) OU ->

(m>1) ISM ->

(m>1) ATE ->

(m>1) ITI ->

(m>1) OUS ->

(m>1) IVE ->

(m>1) IZE ->

Step 5a

(m>1) E ->

(m=1 and not *o) E ->

Step 5b

(m > 1 and *d and *L) -> single letter

46

B Porter stemming algorithm in form of contex-
tual replacement rules (PorterStemmer.hpp)

1 #ifndef PORTERSTEMMER_HPP

2 #define PORTERSTEMMER_HPP

3

4 #include <vector>

5 #include <string>

6 #include <cstddef>

7 #include "constants.hpp"

8 #include "contextualReplacementRule.hpp"

9

10 namespace PorterStemmer

11 {

12 inline const std::string

13 alphabet = "abcdefghijklmnopqrstuvwxyz \r\n\t\v\x01\x02",

14 letter = "(a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z)",

15 whitespace = "(|\r|\n|\t|\v)",

16 always_vowel = "(a|e|i|o|u)",

17 vowel_or_y = "(a|e|i|o|u|y)",

18 always_consonant = "(b|c|d|f|g|h|j|k|l|m|n|p|q|r|s|t|v|w|x|z)",

19 consonant_or_y = "(b|c|d|f|g|h|j|k|l|m|n|p|q|r|s|t|v|w|x|y|z)",

20 consonant_not_wxy = "(b|c|d|f|g|h|j|k|l|m|n|p|q|r|s|t|v|z)",

21

22 contains_vowel = '(' + letter + '*' + always_vowel + letter + "*|" +

23 letter + '*' + consonant_or_y + vowel_or_y + letter + "*)",

24 C = '(' + consonant_or_y + always_consonant + "*)",

25 V = '(' + vowel_or_y + always_vowel + "*)",

26 opt_C = '(' + C + "|_)",

27 opt_V = '(' + V + "|_)",

28 VC = '(' + V + C + ')',

29 V_starting_non_y = '(' + always_vowel + always_vowel + "*)",

30

31 m_gt_0 = "((" + C + VC + '|' + V_starting_non_y + C + ')' +

32 VC + '*' + opt_V + ')',

33 m_gt_1 = "((" + C + VC + '|' + V_starting_non_y + C + ')' +

34 VC + VC + '*' + opt_V + ')',

35 eps{Constants::Epsilon},

36 rctx{'\x02'};

37

38 using namespace std::string_literals;

39 inline const std::vector<ContextualReplacementRule> steps[] = {

40 { // 1a (#1)

41 {"[sses,ss]"s, eps, whitespace}, // SSES -> SS

42 {"[ies,i]"s, eps, whitespace}, // IES -> I

47

43 {"[ss,ss]"s, letter, whitespace}, // (length > 2) SS -> SS

44 {"[s,_]"s, letter + letter, whitespace}, // (length > 2) S ->

45 {"[_,\x02]"s, letter + letter + letter, whitespace}, // length > 2

46 },

47 { // 1b (#2) // '\x01' is used as a marker for whether step 1b' should take place

48 {"[eed,ee]"s, m_gt_0, rctx}, // (m>0) EED -> EE

49 {"[eed,eed]"s, eps, rctx}, // suppresses the rules below if the word ends in 'eed'

50 {"[ed,\x01]"s, contains_vowel, rctx}, // (*v*) ED ->

51 {"[ing,\x01]"s, contains_vowel, rctx}, // (*v*) ING ->

52 },

53 { // 1b' (#3)

54 {"[at\x01,ate]"s, eps, rctx}, // AT -> ATE

55 {"[bl\x01,ble]"s, eps, rctx}, // BL -> BLE

56 {"[iz\x01,ize]"s, eps, rctx}, // IZ -> IZE

57 {"([bb,b]|[cc,c]|[dd,d]|[ff,f]"

58 "|[gg,g]|[hh,h]|[jj,j]|[kk,k]"

59 "|[mm,m]|[nn,n]|[pp,p]|[qq,q]"

60 "|[rr,r]|[tt,t]|[vv,v]|[ww,w]"

61 "|[xx,x])[\x01,_]"s, eps, rctx

62 }, // (*d and not (*L or *S or *Z)) -> single letter

63 {"[\x01,e]"s, whitespace + C + vowel_or_y +

64 consonant_not_wxy, rctx

65 }, // (m=1 and *o) -> E

66 {"[\x01,_]"s, eps, rctx}, // deletes marker '\x01'

67 },

68 { // 1c (#4)

69 {"[y,i]"s, contains_vowel, rctx}, // (*v*) Y -> I

70 },

71 { // 2 (#5)

72 {"[ational,ate]"s, m_gt_0, rctx}, // (m>0) ATIONAL -> ATE

73 {"[ational,ational]"s, eps, rctx},

74 {"[tional,tion]"s, m_gt_0, rctx}, // (m>0) TIONAL -> TION

75 {"[tional,tional]"s, eps, rctx},

76 {"[enci,ence]"s, m_gt_0, rctx}, // (m>0) ENCI -> ENCE

77 {"[enci,enci]"s, eps, rctx},

78 {"[anci,ance]"s, m_gt_0, rctx}, // (m>0) ANCI -> ANCE

79 {"[anci,anci]"s, eps, rctx},

80 {"[izer,ize]"s, m_gt_0, rctx}, // (m>0) IZER -> IZE

81 {"[izer,izer]"s, eps, rctx},

82 {"[bli,ble]"s, m_gt_0, rctx}, // (m>0) BLI -> BLE

83 {"[bli,bli]"s, eps, rctx},

84 {"[alli,al]"s, m_gt_0, rctx}, // (m>0) ALLI -> AL

85 {"[alli,alli]"s, eps, rctx},

86 {"[entli,ent]"s, m_gt_0, rctx}, // (m>0) ENTLI -> ENT

87 {"[entli,entli]"s, eps, rctx},

88 {"[eli,e]"s, m_gt_0, rctx}, // (m>0) ELI -> E

48

89 {"[eli,eli]"s, eps, rctx},

90 {"[ousli,ous]"s, m_gt_0, rctx}, // (m>0) OUSLI -> OUS

91 {"[ousli,ousli]"s, eps, rctx},

92 {"[ization,ize]"s, m_gt_0, rctx}, // (m>0) IZATION -> IZE

93 {"[ization,ization]"s, eps, rctx},

94 {"[ation,ate]"s, m_gt_0, rctx}, // (m>0) ATION -> ATE

95 {"[ation,ation]"s, eps, rctx},

96 {"[ator,ate]"s, m_gt_0, rctx}, // (m>0) ATOR -> ATE

97 {"[ator,ator]"s, eps, rctx},

98 {"[alism,al]"s, m_gt_0, rctx}, // (m>0) ALISM -> AL

99 {"[alism,alism]"s, eps, rctx},

100 {"[iveness,ive]"s, m_gt_0, rctx}, // (m>0) IVENESS -> IVE

101 {"[iveness,iveness]"s, eps, rctx},

102 {"[fulness,ful]"s, m_gt_0, rctx}, // (m>0) FULNESS -> FUL

103 {"[fulness,fulness]"s, eps, rctx},

104 {"[ousness,ous]"s, m_gt_0, rctx}, // (m>0) OUSNESS -> OUS

105 {"[ousness,ousness]"s, eps, rctx},

106 {"[aliti,al]"s, m_gt_0, rctx}, // (m>0) ALITI -> AL

107 {"[aliti,aliti]"s, eps, rctx},

108 {"[iviti,ive]"s, m_gt_0, rctx}, // (m>0) IVITI -> IVE

109 {"[iviti,iviti]"s, eps, rctx},

110 {"[biliti,ble]"s, m_gt_0, rctx}, // (m>0) BILITI -> BLE

111 {"[biliti,biliti]"s, eps, rctx},

112 {"[logi,log]"s, m_gt_0, rctx}, // (m>0) LOGI -> LOG

113 {"[logi,logi]"s, eps, rctx},

114 },

115 { // 3 (#6)

116 {"[icate,ic]"s, m_gt_0, rctx}, // (m>0) ICATE -> IC

117 {"[ative,_]"s, m_gt_0, rctx}, // (m>0) ATIVE ->

118 {"[alize,al]"s, m_gt_0, rctx}, // (m>0) ALIZE -> AL

119 {"[iciti,ic]"s, m_gt_0, rctx}, // (m>0) ICITI -> IC

120 {"[ical,ic]"s, m_gt_0, rctx}, // (m>0) ICAL -> IC

121 {"[ful,_]"s, m_gt_0, rctx}, // (m>0) FUL ->

122 {"[ness,_]"s, m_gt_0, rctx}, // (m>0) NESS ->

123 },

124 { // 4 (#7)

125 {"[al,_]"s, m_gt_1, rctx}, // (m>1) AL ->

126 {"[al,al]"s, eps, rctx},

127 {"[ance,_]"s, m_gt_1, rctx}, // (m>1) ANCE ->

128 {"[ance,ance]"s, eps, rctx},

129 {"[ence,_]"s, m_gt_1, rctx}, // (m>1) ENCE ->

130 {"[ence,ence]"s, eps, rctx},

131 {"[er,_]"s, m_gt_1, rctx}, // (m>1) ER ->

132 {"[er,er]"s, eps, rctx},

133 {"[ic,_]"s, m_gt_1, rctx}, // (m>1) IC ->

134 {"[ic,ic]"s, eps, rctx},

49

135 {"[able,_]"s, m_gt_1, rctx}, // (m>1) ABLE ->

136 {"[able,able]"s, eps, rctx},

137 {"[ible,_]"s, m_gt_1, rctx}, // (m>1) IBLE ->

138 {"[ible,ible]"s, eps, rctx},

139 {"[ant,_]"s, m_gt_1, rctx}, // (m>1) ANT ->

140 {"[ant,ant]"s, eps, rctx},

141 {"[ement,_]"s, m_gt_1, rctx}, // (m>1) EMENT ->

142 {"[ement,ement]"s, eps, rctx},

143 {"[ment,_]"s, m_gt_1, rctx}, // (m>1) MENT ->

144 {"[ment,ment]"s, eps, rctx},

145 {"[ent,_]"s, m_gt_1, rctx}, // (m>1) ENT ->

146 {"[ent,ent]"s, eps, rctx},

147 {"[ion,_]"s, "((" + C + VC + '|' + V_starting_non_y + C + ')' +

148 VC + '*' + V + opt_C + "(s|t))", rctx

149 }, // (m>1 and (*S or *T)) ION ->

150 {"[ion,ion]"s, eps, rctx},

151 {"[ou,_]"s, m_gt_1, rctx}, // (m>1) OU ->

152 {"[ou,ou]"s, eps, rctx},

153 {"[ism,_]"s, m_gt_1, rctx}, // (m>1) ISM ->

154 {"[ism,ism]"s, eps, rctx},

155 {"[ate,_]"s, m_gt_1, rctx}, // (m>1) ATE ->

156 {"[ate,ate]"s, eps, rctx},

157 {"[iti,_]"s, m_gt_1, rctx}, // (m>1) ITI ->

158 {"[iti,iti]"s, eps, rctx},

159 {"[ous,_]"s, m_gt_1, rctx}, // (m>1) OUS ->

160 {"[ous,ous]"s, eps, rctx},

161 {"[ive,_]"s, m_gt_1, rctx}, // (m>1) IVE ->

162 {"[ive,ive]"s, eps, rctx},

163 {"[ize,_]"s, m_gt_1, rctx}, // (m>1) IZE ->

164 {"[ize,ize]"s, eps, rctx},

165 },

166 { // 5a (#8)

167 {"[e,_]"s, m_gt_1, rctx}, // (m>1) E ->

168 {"[e,_]"s, whitespace + "((" +

169 '(' + always_vowel + always_vowel + "*)" + C + opt_V + ")|(" +

170 C + VC + V + ")|(" +

171 C + V + always_vowel + C + opt_V + ")|(" +

172 C + V + "(w|x|y)" + ")|(" +

173 C + V + C + always_consonant + opt_V +

174 "))", rctx

175 }, // (m=1 and not *o) E ->

176 },

177 { // 5b (#9)

178 {"[l,_]"s, "((" + C + VC + '|' + V_starting_non_y + C + ')'

179 + VC + '*' + V + opt_C + "l)", rctx

180 }, // (m > 1 and *d and *L) -> single letter

50

181 {"[\x02,_]"s, eps, whitespace}, // deletes the marker '\x02'

182 },

183 };

184 inline constexpr std::size_t steps_cnt = sizeof(steps) / sizeof(*steps);

185 }

186

187 #endif

51

	Introduction
	Formal preliminaries
	Contextual replacement rules
	Finite-state automata and transducers
	Two-step bimachines
	Classical bimachines
	Complexity analysis
	Implementation
	Implementation overview
	Porter stemmer and its representation with contextual replacement rules
	Empirical results

	Conclusion
	Compact version of the original description of the Porter stemming algorithm
	Porter stemming algorithm in form of contextual replacement rules (PorterStemmer.hpp)

