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Prologue
Learnability as a notion in computable theory was introduced by Gold,

[Gol67], who defined the first type of learning - learnability in the limit. A
Turing machine, fed only with examples of a language, is expected after some
finite amount of time (and mind changes) to ”prove” its knowledge by giving a
correct description of the language. Later other scientists in the field, influenced
by Gold, started to use as model the behaviour of a child, who learns a language,
and started to adapt that behaviour into the field of computable learnability.

A lot of results about learnability types are considered in the case of gram-
mars, or r.e. functions, whereas we will consider learnability of structures.
Couple of results of learnability of structures has emerged. Nikolay Bazhenov,
Ekaterina Fokina and Luca San Mauro, in [FKSM19], showed which classes
of equivalence structures are InfEx-learnable(or learnable in the limit, when
information presentation contains positive and negative information about a
structure). Later they, in [BFM20], extended their result to arbitrary classes of
computable structures, showing that the InfEx-learnable classes are one which
can be differentiated by their Σinf

2 -theories.
In this Master thesis our goal will be to present couple of learnability types

and see when a learner (a Turing machine), when fed with information about a
structure from a given class, will reach a correct conclusion about the structure.
A conclusion for us will mean an index for that structure. Interesting learn-
ability types occur when constraints on the learnability process are presented.
As children behave differently, when faced with various challenges trough their
learning process, researchers are interested to explore which of those ”chal-
lenges” weakness or strenghtens the learnability power.

This Master thesis provides some introductionary concepts of structural
learnability. First we will define two ways of providing information to a learner.
We will be interested in learnbility from text(see def. 2.1.1), and learnability
from informant(see def. 2.1.2). When only positive information (or elements
from a structure) is given to a learner, the information presentation is said
to be from text, whereas when giving a positive and negative information to
a learner (or elements from a structure and its complement), the information
presentation is said to be from informant. After that we turn our attention to
learnability types, based on the number of mind changes allowed to a learner.
Those types expand the notion of learnability in the limit, presented by Gold,
adding two new notions - finite learnability and behaviourly correct learnabil-
ity. Here we will present Finite(see def. 2.3.1), Explanatory(see def. 2.3.2),
and Behaviourly correct (see def. 2.3.3) learning. In Finite learning, a learner
is expected to make conclusion once, whereas an Explanatory one can change
its mind finitely many times, before a correct guess is reached. A BC-learner is
similar to Ex, with the difference that it can provide more than one index for a
c.e. set of an atomic diagram. Next we turn attention to types of learnability
on which a constraint over the relation of made conjectures are presented. We
will consider Strong-monotonic learnability(see def. 2.3.10), Monotonic learn-



ability(see def. 2.3.10) and Weak-monotonic learnability(see def. 2.3.10). A
Strong-monotonic learner is expected to strictly improve its learnability conclu-
sions over time. Monotonic learners can conclude indecies for sets which have
some exceptions, but those exceptions are expected to dissapear over time. A
Weak-monotonic learner behaves as a strong monotonic one, as long as the made
conclusion doesn’t contradict the presented information to the learner. After
that our focus will turn to the arrangment of data given to a learner. When we
are not interested from the order of the data of a specific structure, the learn-
ability type is called Set-driven(see def. 2.3.11), whereas when we add only
the length of the data as constraint, the new criteria is called Rearrangment-
independent learning(see def. 2.3.12). We introduce three notions of different
hypothesis spaces in the case of arrangment of data. We consider Exact learn-
ability, Class-preserving learnability and Class-comprising learnability(see def.
2.1.4). In the case of exact learning we expect that the hypothesis space coin-
cides with the class being learnt, whereas in the class-preserving the hypothesis
space is expected to contain the class under consideration with some suitably
chosen enumeration. In the last case the hypothesis space contains at least the
class under consideration, with some appropriate enumeration. Next we move
on memory limitation and we show that finite learners have the same learnabil-
ity power as memory limited learners. Lastly we will consider learnability type
which show the weakness of behaviourly correct learning. We will consider a
type called Non-U-Shaped learnability(see def. 2.3.14), where a learner is for-
bidden of going trough a correct-incorrect-correct behaviour.

The Master thesis is divided in two parts:
I part gives some basic notions of computable structure theory. We will look at
what a structure is, and how two (or more) structures can be represented by
one another. We will present the notion of Atomic diagram of a structure. We
will look at some notions concerned with relations and connect the notion of
computable structure theory with relations and then structures. We will give
the notion of jump of a structure, and finally we will define the theory of a
structure.
II part will present some learnability types, where the focus will be on learn-
ability of structures. Here we will define the notion of learnability, present some
learnbility types and make a comparisson between them.
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1 Basic notions

1.1 Computable structure theory

Our first task will be to give some basic notions from mathematical logic. When
using ⟨.⟩ brackets we will denote an ordered n-tuple, for some n ∈ ω, while when
using ⌈.⌉ we will mean a Gödel number for the content under consideration.

Definition 1.1.1. (Signature) A signature (or a language) L is an n-ordered
tuple, for n ∈ ω, where L = ⟨Func,Const,Pred,#⟩, and

� Func is a set of function symbols,

� Const is a set of constants,

� Pred is a set of predicate symbols,

� # is an arity function, s.t. # : Func∪Pred→ ω. The arity function, for
a given functional or predicate symbol, returns the number of arguments
which the function or predicate accepts.

Definition 1.1.2. (Structure) Let L = ⟨{fi}i∈ω, {ci}i∈ω, {Pi}i∈ω⟩ be a lan-
guage. A structure A with language L, is defined as a tuple

A = ⟨A, {fAi }i∈ω, {cAi }i∈ω, {PA
i }i∈ω⟩,

where:

� A ̸= ∅, is a non-empty set, called an universum(domain) of A,

� Each fAi , c
A
i , P

A
i ∈ L is interpreted in the universum of A

Structures will be denoted by A,B, and etc. When universum of a structure is
not specified, we will use their respective uppercase bolded letter symbols in
latin alphabet. For example for a structure A we will use the symbol A, for a
structure B we will use B, and etc.

Definition 1.1.3. (Substructure) Let A be a structure with language L. A sub-
structure of A is a structure B, s.t.:

� B ⊆ A

� for each function f, predicate p or constant c, we have that

– fB ⊆ fA

– cB = cA

– pB ⊆ pA
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1.1.1 Presentations

A way by which we can find a connection between two structures is known as
isomorphism.

Definition 1.1.4. (Isomorphism) Let A,B be two structures with language L.
We say that A is isomorphic to B if there is a bijection h: A→ B, s.t. :

� For each function f ∈ L, and for each n-tuple ā ∈ An, we have that
h(fA(ā)) = fB(h(ā)).

� For each constant c ∈ L, we have that h(cA) = cB.

� For each predicate p ∈ L, and for each n-tuple ā ∈ An, we have that
ā ∈ pA ⇐⇒ ⟨h(a1), h(a2), ..., h(an)⟩ ∈ pB.

To denote isomorphism between two structures we will use the relation ∼=, i.e.
if A,B are isomorphic structures, that will be denoted by A ∼= B. An iso-
morphism between two structures is not necessary computable. If one of the
structures is not computable, then there is no computable way by which we can
go from one of those structures to the other.

By O,E we will denote the set of odd, and even numbers respectively.

Example 1.1.1. Let L = {≤} be a language. Let A,B be two structures with
language L. Let A has universum the set O, and let B has universum the set E.
We define a bijective function from A to B as h: O → E, where for a number
o ∈ O, h(o) = o − 1. Then h−1(e) = e + 1, for e ∈ E. The given function is
clearly an isomoprhism.

� For each two numbers o1, o2 ∈ O, where o1 ̸= o2, we have that h(o1) ̸=
h(o2), which gives us that h is injective.

� For each number e ∈ E, exists a number o ∈ O, s.t. h(o) = e, which gives
us that h is surjective.

As we are going to work with structures with domain ω a question which
arises is how to present a structure with a different countable universum to a
structure with domain ω.

Definition 1.1.5. (ω-presentation ) A be a countable structure with language
L. A structure B with language L and domain ω is said to be an ω-presentation
of A, if A ∼= B.

Remark: We will suppose that we are going to work only with relational
structures. A relational structure is one in which functions are represented by
their graphs.

We need a way by which a structure can be represented computationally and
by which we can make conclusions about its computable properties. The notion
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which will be used troughout this Master thesis is known as atomic diagram. An
atomic diagram of a structure is a set, which contains information about which
atomic formulae (or negations of atomic formulae) are true in that structure.
The convention which we will use here, will represent the atomic diagram for a
structure A as a set containing codes, where each code represents an index of an
atomic formulae or negation of it from the language of A and arguments which
make that formulae true in A.
Let A be a structure with language L. Let {ϕate }e∈ω be an effective enumeration
of all atomic formulae of L, with free variables from the list {x0, x1, x2, ...}.

Definition 1.1.6. (Atomic diagram) An atomic diagram for a structure A with
language L is defined as a subset of ω,

DA = {⌈e, ān, 1⌉ | A |= ϕate [xj → j : j ∈ ān], ān ∈ ωn} ∪
{⌈e, ān, 0⌉ | A ̸|= ϕate [xj → j : j ∈ ān], ān ∈ ωn}.

The atomic diagram for a structure A will be denoted by DA. The complexity
of a structure A will be determined from the complexity of DA, i.e. a structure
A is computable, if its atomic diagram is. A positive atomic diagram is defined
as D+

A = {⌈e, ān⌉ | A |= ϕate [xj → j : j ∈ ān], ān ∈ ωn}.

In order to provide a finite information about a structure we need two notions.

Definition 1.1.7. (Finite approximation of a structure, [Mon21]) Let A be a
structure with language L. The sequence {As : s ∈ ω}, of finite substructures of
A, is called a finite approximation of the structure A.

Because we are interested in presenting a structure computationally, we will
connect the approximation of a structure to approximation of its atomic dia-
gram.
By | A | we will denote the size of a set A ⊆ ω. If A is finite, then there is n ∈ ω,
s.t. | A |= n, otherwise | A |=∞.

Definition 1.1.8. (Approximation of Atomic diagram) Llet A be a structure
with language L. Let {As : As ⊆ A} be an approximation of the structure A.
Approximation of the atomic diagram DA of A is defined as a set of codes
{DAs

: DAs
⊆ DA}.

In other words, each DAs for a structure A, contains information about all
atomic formulae with indecies ≤ s and are true for numbers ≤ s.

1.1.2 Relations

Computability

Computational properties of a structure depend from computational prop-
erties of its predicates and functions. A structure is considered computable if
all its functions and predicates are.
Before considering different types of computation, we need to give some basic
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notions, which will be needed later.
A partial computable function ϕ is computable by a Turing machine, defined
for a proper subset of ω. A computable function is a partial computable with
domain omega, i.e. total.
In order to connect computability theory notions with sets, we need to find a
way to ”compute” them. We connect the notion of a function with the notion of
a set, where we observe the computability of sets depending from the problem
which they represent. The notion which we will present is called a characteristic
function of a set. When there is a computable way by which, for each number
from ω, we can say whether the number is from the set under consideration
or not, then the characteristic function is called total characteristic function,
otherwise the characteristic function is called partial characteristic function.
We define the total characteristic function of a set A ⊆ ω as:

χA(x) =

{
1, if x ∈ A
0, otherwise

The partial characteristic function of a set A ⊆ ω is defined in the following
way:

CA(x) =

{
1, if x ∈ A
↑, otherwise

We say that a set A ⊆ ω is decidible(computable), if its characteristic function
is computable, semidecidable(c.e.) if its partial characteristic function is partial
computable. It’s accepted that domains of computable functions to be denoted
by We, where e is the code for a Turing machine computing ϕe.

Definition 1.1.9. (Oracle Turing machine, [Soa16]) An oracle Turing machine
is a Turing machine, which contains an extra ”read only” tape, called an oracle
tape, on which the characteristic function of some set A ⊆ ω is written.

Definition 1.1.10. (Turing operator, [Soa16]) If an oracle Turing machine
with a set A ⊆ ω<ω (or a function) on its oracle tape and input x ∈ ω halts with
output y ∈ ω, then we write

ΦA
e (x) = y.

The function ΦA
e is called Turing operator.

An operator Φ is c.e. if Φ is a c.e. subset of ω<ω × ω × ω.

Definition 1.1.11. (Relativizing computability, [Soa16]) A partial computable
function θ is Turing computable in a set A ⊆ ω (or A-Turing computable),
written θ ≤T A, if there is a program with index e such that

∀x∀y(ΦA
e (x) ↓= y ⇐⇒ θ(x) = y).

A set B ⊆ ω is Turing reducible to A ( B ≤T A) if the characteristic function
of the set B, χB ≤T A.

Definition 1.1.12. (R.i.c.e. computable, [Mon21]) Let A be a structure with
language L. A relation R, R ⊆ ω×ωn, for n ∈ ω, is called relatively intrinsically
computably enumerable in the structure A (r.i.c.e. for short), if for every copy
(B, RB) of (A, R), the relation RB is c.e. in DB.
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Example 1.1.2. (Linear ordering, [Mon21]) Let A be a linear ordering,
A = ⟨A,≤⟩. Two elements in x, y ∈ A are considered adjacent, written as
Adj(x, y), if there is no element between them and x < y. The complement of
this relation, ¬Adj(x, y), is c.e. in DA. Let B be an arbitrary ω-presentation
of A. At each step s, we observe only first s elements of B. When observing
each two elements, say a, b of B, and find a third element between them, the
pair ⟨a, b⟩ is enumerated into ¬AdjB. Becase we are considering an arbitrary
ω-presentation, it follows that ¬Adj is r.i.c.e.

Definition 1.1.13. (Uniformly R.i.c.e, [Mon21]) Let A be a structure with
language L. A relation R, R ⊆ ω × ωn, for n ∈ ω, is called uniformly r.i.c.e.
(u.r.i.c.e. for short) in the structure A if there is a c.e. operator W such that
RB = WDB for all (B, RB) ∼= (A, R).

Definition 1.1.14. (R.i. computable, [Mon21]) Let A,B be structures with
language L. A relation R, R ⊆ ω×ωn, for n ∈ ω, is called relatively intrinsically
computable in the structure A (r.i. computable for sort) if RB is computable in
the atomic diagram of the structure B, i.e. DB, whenever (B, RB) is a copy of
(A, R).

Syntatical characterization

Here we will show how to connect computational properties of a relation
and the notion of arithmetical hierarchy. The arithmetical hierarchy is a way
by which we can classify the problem which a set represents by a logical for-
mula. The level in the hierarchy, at which a problem falls in, shows how hard a
solution for that problem can be found. We divide each level by classes, where
it’s accepted those classes to be denoted by greek letters Σn,Πn,∆n. The sub-
script n ∈ ω shows the level in the arithmetical hierarchy, where those classes
reside. The bottom level of the hierarchy, n = 0, contains all sets which are
decidible and can be described by a quantifier free formulae. A Σn class, for
n > 0, contains those sets which are definable by a formula which start with
∃-quantifier, followed by alternations of n− 1 ∀,∃ quantifiers. A Πn, for n > 0,
class contains those sets which can be defined by a formulae which start with
∀-quantifier, followed by n− 1 altenration of quantifiers ∃,∀ quantifiers. A ∆n

class contains those sets which are definable by a Σn, and Πn formula.

Definition 1.1.15. (Σn,Πn-formulae) The defition will be made by induction
on n ∈ ω:

� n = 0, then Σ0 = Π0 are all quantifier-free formulae.

� n > 0, then
Σn are all formulae starting with at least one ∃ quantifier(s), followed

by a Πβ formulae, for β < n,
βn are all formulae starting with at least one ∀ quantifier(s), followed

by a Σα formula, for α < n.
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Our focus in this Master thesis will be over computation of relations of
structures. A computable relation is one for which a Turing machine (or program
for computing it) exists.

Definition 1.1.16. (Infinitary language, [Mon18]) The infinitary language Lω1,ω

is defined as a set of formulae in the following way:

� All first order L-formulae are in Lω1,ω .

� If {ϕ0, ϕ1, ...} ⊆ Lω1,ω and altogether they use only finitely many free
variables, then

∧
i∈ω ϕi and

∨
i∈ω ϕi ∈ Lω1,ω

� If ϕ ∈ Lω1,ω then ∀xϕi ∈ Lω1,ω and ∃xϕi ∈ Lω1,ω.

Definition 1.1.17. (Infinitary formulae, [Mon18])We will make an induction
on n ∈ ω.

� n = 0
The Σinf

0 and Πinf
0 formulae are quantifier free formulae.

� n > 0
The Σinf

n formulae are defined as
∨

i∈ω ∃x̄ϕi(x̄, ȳ), where ϕi(x̄, ȳ) is Πinf
m

formula for some m < n.
The Πinf

n formulae are defined as
∧

i∈ω ∀x̄ϕi(x̄, ȳ), where ϕi(x̄, ȳ) is Σinf
m

formula for some m < n.

A formula ϕ ∈ Lω1,ω is a computable Σc
n(Π

c
n) if all its conjunctions or dis-

junctions are c.e.
Now we will see what properties a relation should have in order to be Σc

1−definable.
Definition 1.1.18. (Σc

1−definability, [Mon21]) Let A be a structure with lan-
guage L. A relation R, R ⊆ ω×ωn, for n ∈ ω, is Σc

1−definable in the structure
A with parameters, if there is a tuple pm ∈ ωm and a computable sequence of
Σc

1−formulae ψi,n(x1, ..., xm, y1, ..., yn), for i ∈ ω, such that
R = {⌈i, b⌉ ∈ ω × ωn : A |= ψi,|b|(pm, b)}.

Theorem 1.1.1. (Ash, Knight, Manasse, and Slaman [Ash+89]; Chisholm
[Chi90]) Let A be a structure with language L, and let R,
R ⊆ ω × ωn, for n ∈ ω, a relation on it. The following are equivalent:

� R is r.i.c.e. computable

� R is Σc
1−definable in A with parameters.

Proof: A nice proof is given in Theorem 2.1.16, [Mon21]. □

Corollary 1.1.1. (Corollary 2.1.19, [Mon21]) Let A be a structure with lan-
guage L, and let R,R ⊆ ω × ωn, for n ∈ ω, a relation on it. The following are
equivalent:

� R is uniformly r.i.c.e. computable

� R is Σc
1−definable in A without parameters.

Proof: see Corollary 2.1.19, [Mon21] □
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1.1.3 Relativization

We know from computable theory that relativization is a notion used for
showing how a solution for a problem, which a set represents, can be found with
the help of another set. The difference between both theories - computable and
computable structure theory, is that structures by themselves are more compli-
cated objects, defined over a(n) (in)finite language.

Let A be a structure with language L.

Definition 1.1.19. (Relativizing r.i.c.e., [Mon21]) Given a relation
R ⊆ ω × ωn and a relation Q ⊆ ω × ωn, we say that R is r.i.c.e. in Q if R is
r.i.c.e. in the structure (A, Q), i.e. RB is c.e. in the atomic diagram DB

⊕
QB

for every copy (B, RB, QB) of (A, R,Q). R is r.i. computable in Q, written as
R ≤rT Q (rT - relatively Turing) if R is r.i. computable in the structure (A, Q).

We define the operation
⊕

for two relations R, Q by: R
⊕
Q = {⟨2x, 2y⟩ |

⟨x, y⟩ ∈ R} ∪ {⟨2x + 1, 2y + 1⟩ | ⟨x, y⟩ ∈ Q}. If R and Q contain multiple
arguments we can apply the same idea to them.

Definition 1.1.20. (Relativizing r.i., [Mon21]) Given a relation R ⊆ ω × ωn

and a relation Q ⊆ ω × ωn, for n ∈ ω, we say that R is r.i.c.e. in Q if R
is r.i.c.e. in the structure (A, Q), i.e. RB is c.e. in DB

⊕
QB for every copy

(B, RB, QB) of (A, R,Q). R is r.i. computable in Q, written as R ≤rT Q (rT
- relatively Turing) if R is r.i. computable in the structure (A, Q).

Next example demnostrates the usage of relative intrinsic computability.

Example 1.1.3. ([Mon21]) Let A = {A,≤} be a linear ordering, consider
the relation given by the pairs of elements which have at least two elements in
between:

T = {⟨a, b⟩ ∈ A2 : a < b ∧ ∃c, d(a < c < d < b)}
Then T ≤rT Adj. This follows from the following fact: Let ⟨a, b⟩ ∈ A2, where
a < b, and we want to decide whether ⟨a, b⟩ ∈ T by using Adj. First we check
whether Adj(a,b) and if so, then we know that ⟨a, b⟩ /∈ T . If the condition is not
satisfied then we search for an element c ∈ A for which we have that
Adj(a, c) and Adj(c, d). If the last condition is satisfied then we again know
that ⟨a, b⟩ /∈ T . In all other cases we know that ⟨a, b⟩ ∈ T .

1.1.4 Jump of a structure

In computable structure theory, jump of a structure is defined by adding to
the structure a complete list of Σc

n or Πc
n-relations. A complete Σc

n (or Πc
n) class

of relations is a class C of relations, where all Σc
n (or Πn) are C-computable.

Couple of ways defining the jump emerged trough time. A. Soskova and I.
Soskov, in [SS09], define the jump of a structure connecting the notion of degree
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spectra and jump spectra. A. Montalban, in [Mon09], adds a complete list of
Πc

n relations to a structure. Later, in [Mon21], Montalban defines the notion for
first jump, by adding to a structure a complete list of Σc

1-definable relations. S.
Vatev, in [Vat11], defines the jump by using conservative extensions.
Here we are going to use the notion of jump defined in [Mon21], who extends a
structure with a complete list of Σc

1-definable relations.

Definition 1.1.21. (Kleene’s complete r.i.c.e. relation, [Mon21]) The complete
r.i.c.e. relations on A is the set of all Σc

1-definable relations:

K⃗ = {⟨i, b̄⟩ : A |= ϕi,|b̄|(b̄)} ⊆ ω × ωn, for n ∈ ω.

Definition 1.1.22. (Jump of a structure, [Mon21]) We define the jump of A
by adding to the structure the complete set of r.i.c.e. relations. That is, we let

A′ = (A, K⃗A).

1.1.5 Theory of a structure

A theory of a structure is nothing more than a set containing all sentences
true in the given structure. In the arithmetical hierarchy the theory of a struc-
ture is splitted by the levels of the hierarchy.

Definition 1.1.23. Let A be a structure with language L. The theory of A, for
n > 0 is defined as a set of closed formulae:

� n = 1

� Σ1-Th(A) = {∃xϕ | A |= ∃xϕ}, where ϕ is quantifier free formula.

� Π1-Th(A) = {∀xϕ | A |= ∀xϕ}, where ϕ is quantifier free formula.

� n > 1

– Σn-Th(A) = {∃xϕ | A |= ∃xϕ} where ϕ are Πβ-formula, for some
β < n.

– Πn-Th(A) = {∀xϕ | A |= ∀xϕ} where ϕ are Σβ-formula, for some
β < n.

For a sructure A with langage L, by Σc
n -Th and Πc

n-Th, for n ∈ ω, we will
abbreviate all Σn, or Πn sentences true in A.
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2 Learnability

In a typical scenario of learnability, the process of learning involves a con-
cept to be learned, a learner, who will learn the concept, and a teacher, who
will introduce information to the learner about the concept. The learnability
process is considered successful, if the learner reaches a moment at which it
masters the concept. A closer look at the learnability process, shows that the
success of a learner depends on its abailities to grasp new information, the way
information is presented to the learner, what restrictions it faces, and etc.
Influenced by those aspects of learnability, Gold [Gol67], adapted the notion of
learning in computational theory. He introduced learning in the limit of dif-
ferent kinds of languages, where the learner is a mechanical device (a Turing
machine). The learner receives information about a target language and based
on that information is expected to make hypothesis about it. Wrong guesses
are allowed, but it’s expected to reach a moment after which all hypotheses are
correct. The notion today is known as explanatory learning.
Later other theorists, from different branches of science followed his example,
and introduced learnability into their field of interest.
In order to introduce some results, which emerged as a result from Gold’s model
of learnability, we will answer some questions. As a model of learnability we
will focus on learnability of classes of structures instead of languages.
The first question is concerned with the so called hypothesis space, or in what
way a Turing machine will introduce a description of a structure as answer. For
us a hypothesis space will be a c.e. set containing indecies of atomic diagrams of
structures. We differentiate between three cases of learnability concerned with
hypothesis space. When a hypothesis space coincides with the class being learnt,
the learnablity type is called Exact learnability(see def. 2.1.4). When a hypoth-
esis space contains at least the class of structures under consideration, where its
enumeration may varies, the learnability type is called Class-comprising learn-
ability(see def. 2.1.4). When a hypothesis space contains suitably chosen enu-
meration of the class of structures under consideration, the learnability type is
called Class-preserving learnability (see def. 2.1.4).
In this Master thesis we will expect that our learner will give as guess an index
for a c.e. set, representing the atomic diagram of a structure under considera-
tion.
The next question is concerned with how we will present information to a learner.
At each time a finite information about a structure (finite piece of its atomic
diagram) will be presented to a learner. The information can be either positive
information (or finite part of the atomic diagram of the structure), or combina-
tion of positive and negative information (elements from the atomic diagram,
and elements from its complement). If only a positive information for a struc-
ture is provided, the information presentation is said to be from text(see def.
2.1.1, Txt for short), if a positive and negative information is provided for a
structure, then the information presentation is said to be from informant(see
def. 2.1.2, Inf for short).
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Next we focus on the behaviour of a learner.
When enough information is provided to a learner, and there is a restriction on
the number of mind changes which the learner can make, the learnability type
can be either Finite(Fin, see def. 2.3.1), Explanatory(Ex, see def. 2.3.2), or
Behaviourly correct(BC, see def. 2.3.3). A Fin-learner is allowed to make guess
once, when enough information about a structure is given to it and is forbidden
of making any mind changes from that moment on. An Ex-learner can change
its mind finitely many times, but it’s expected to reach a moment after which
it will output only a correct guess. A BC-learner can change its mind infinitely
often over an infinite set of indecies describing the same structure under con-
sideration.
Then we can observe learner’s behaviour depending on the previously made con-
jectures. Here we will look at Strong-monotonic learnability(see def. 2.3.10),
Monotonic learnability(see def. 2.3.10) and Weak-monotonic learnability(see
def. 2.3.10). In the strong case a learner is expected to improve its gueses in
increasing manner. A monotonic learner can make conjectures for structures
containing elements not in the target structure, but is expected wrong elements
to dissapear over time. A weakly monotonic learner is expected to act as a
strong monotonic learner as long as the information available to it doesn’t con-
tradict the made guess.
A type of learnaility concerned with memory limitation adds the notion of Mem-
ory limited learnability(see def. 2.3.13).
A question concerned with order of the data adds two new notions to the field
- Set driven learning (see def. 2.3.11), and Rearrangement independent learn-
ing(see def. 2.3.12). In both types of learnability the order of data doesn’t
matter, where the difference between both types is that a rearrangement inde-
pendent learner is interested from the length of data available to it.
The last type of learnability which we are going to look at is connected with
behaviourly correct learnability and the behaviour of a learner when is forbid-
den to change its mind from a correct to incorrect behaviour and turn back
to the correct behaviour, which is known as non-U-shaped behaviourly correct
learnability(see def. 2.3.14).
By combining different types from questions mentioned above, one gets interest-
ing properties and conclusions about each class of structures learnable under the
resulted type. Other interesting criteria, and results about connection between
them can be found in [AS16], [OSW86].

2.1 Basic notions

We turn our attention to learnability of structures. There are two major
ways of information presentation, which we will present here and use troughtout
this Master thesis. When only information for a structure is given to a learner,
the information presentation is said to be from text(Txt for short). When
information provided to a learner contains elements from a structure as well as
elements from its complement, the information presentation is said to be from
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informant(Inf for short). We will suppose that information provided to a learner
can contain elements given to the learner at some time before, i.e. repetition of
elements is allowed.
Sometimes no new information will be given to a learner, in this case a special
symbol is introduced #. We call the symbol a pause symbol, and when is given
to a learner it will mean that no new information is given at that moment.
Another use case for # symbol is the possibility of learning the empty structure.

Definition 2.1.1. (Text, [AS16]) Text is a computable function
t: ω → ω ∪ {#}.

In other words text is a function which at each step n, n ∈ ω, generates a code,
a finite approximation of the positive atomic diagram of a structure, or gives a
pause symbol for no new data.
A content for a text t is defined by content(t) = range(t) \ {#}. A text for a
structure A then is defined as content(t) = DA, where DA is the atomic diagram
of the structure A. If DA for a structure A is empty,i.e. there is no positive
information for the structure, then the text will contain only #.

Definition 2.1.2. (Informant, [BFM20]) Informant is a computable function
I: ω → ω ∪ {#}.

In other words an Informant is a function, which at each step n, n ∈ ω,
generates a finite approximation of the full atomic diagram of a structure.

Remark: When we work with texts, we will suppose that for us DA = D+
A,

whereas when we work with informant we will suppose that we will work with
the full diagram (with positive and negative information).

Definition 2.1.3. (Hypothesis space, HS) Let
L = {Ai}i∈ω be a class of computable structures with language L. We define a
hypothesis space of the class L as

HS = {e : We = DAi
∧ Ai ∈ L}.

Gold, in [Gol67], gives two ways by which a language can be found in a
given hypothesis space. The first way, which calls a ”generator”, uses a func-
tion which generates the language under consideration. The second way, which
he calls a ”tester”, represents the characteristic function of the language. In our
case we can use either generator, with range the set of an atomic diagram for
a structure under consideraton, or the characteristic function of the set of an
atomic diagram of that structure.

Observation 2.1.1. As mentioned in [BFM20], p.6 , there are classes of struc-
tures for which it was shown that it can be really hard to be enumerated upto
isomorphism. This rises problems when considering the exact learnability, in
which a class of structures is enumerated depending from the structures in the
class.
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A class of structures is considered to be an indexed family iff there exists a
computable function h, s.t. h(e, ⌈i, x⌉) = 1 ⇐⇒ ⌈i, x⌉ ∈ DAe . We use the idea
represented in [LZ93a] in order to give the next definition.

Definition 2.1.4. (Learnabilty, based on the Hypothesis space) Let L = {Ai}i∈ω

be an indexed family of c.e. structures with language L. Let HS be a hypothesis
space.

� (Exact-learnability) We say that L is Exact-learnable, if L = HS, i.e. the
indexing of the class L coincides with the hypothesis space.

� (Class-preserving learnability) We say that L is Class-preserving-learnable,
if HS = {Gj}j∈ω and Gj describes a structure from L and a learner M
learns the class L with respect to the hypothesis space HS. In this case
a learner is required to describe a structure from the class L, but the hy-
pothesis space can define or enumerate differently each structure in the
original class.

� (Class-comprising learnability) We say that L is Class-comprising-learnable,
if HS contains at least a description of each structure in the class L.

For a text t (or informant I), when we refer to a tn (or In), for some n ∈ ω
we will mean the first n elements from a given text(or informant), available to a
learner. When we use n+ k as index for a text t (or informant I), we will mean
tn+k, for some k ∈ ω, i.e. we proceed with stages of revealing the text to the
learner. When we use a subscript n for an index of a structure, we will mean
an index found which agrees with the data seen so far at stage n.
A segment of a text t (or informant I) is defined as a finite part of a text (or
informant). It’s accepted segments to be denoted by lower greek letters, i.e.
σ, τ , and etc. The set of all segments of all texts (or informants) is denoted by
SEQ. The length of a segment will be denoted by ln(σ). For σ, τ ∈ SEQ for a
structure A with language L, σˆτ is defined as a new segment σ′ ∈ SEQ which
contains σ and τ in this order. When σ ∈ SEQ is an initial segment for a text
t, that will be denoted by σ ⊑ t. A proper initial segment σ for a text t, is an
initial segment σ′ of t, s.t. σ′ = tm, and σ′′ = tn, for m,n ∈ ω,m < n, and
tm ̸= tn. If σ ∈ SEQ is a proper initial segment of a text t, that will be denoted
by σ ⊏ t.

Definition 2.1.5. (Learner, [AS16]) A learner M is a computable function, s.t.
M: ω → ω ∪ {?}.

In other words a learner M is a Turing machine, which at every step n ∈ ω gets
as input a code for a sequence σ ∈ SEQ, and based on that information tries
to find an index for the structure under consideration.

Definition 2.1.6. (Locking sequence, Text) Let A be a structure with language
L and let M be a learner for the structure A. Let t be a text for A. Let σ ∈ SEQ,
s.t. σ ⊏ t. The segment σ is a locking sequence for M of A, if
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i content(σ) ⊆ DA

ii WM(⌈σ⌉ = DA

iii ∀τ ∈ SEQ(τ ⊏ t→ content(τ) ⊆ DA ∧M(⌈σˆτ⌉) =M(⌈σ⌉)) holds.

2.2 An Example

Here we are going to show a basic example of learnability of structures. The
example is taken from [BFM20]. But before giving it, we will try to explain, in
an abstract way, how a Turing machine (learner) works trough the stages of the
learnability process.

Let M be a learner and let L be a class of structures.
Let t be a text for a structure A ∈ L. Let σ ∈ SEQ, where σ ⊏ t, be a finite
initial segment available to M.
Let Alg: ω → ω ∪ {?} be a computable function. Here Alg will be a function
which applies certain steps over σ and outputs an index for an atomic diagram
of a structure, or will output ′?′ if such index is not found.
Let Pr be a type of learnability.
Let’s give an abstract description of a way in which a learner behaves troughout
the learnability process.
M = ”On input σ ∈ SEQ

guess ← Alg(σ)
output guess as answer
proceed with computation depending from Pr”

We will suppose that our learner behaves in the way expected from the learn-
ability type under consideration.

Let’s turn our attention to the example from [BFM20]. The example repre-
sents an TxtEx-learning(Informant def. 2.1.2, Explanatory def. 2.3.2). In other
words when a learner receive positive information(Text, 2.1.1) for a strucutre,
can the learner give a correct guess after some finite amount of time, provided
that the learner is permitted to make incorrect guesses before a correct one is
reached(Explanatory learning, 2.3.2). We can never say when our guess will be
correct, but the ”built in” idea of Ex-learning provide us with the idea that if a
learner behaves in the expected way, then such moment of ”truthness” exists.

Example 2.2.1. Let L = {Gi}i∈ω be a class of structures, where i > 2, and
each structure is defined as an undirected graph over a language L = {Edge},
where Edge is a binary predicate. Each structure contains a simple cycle of size
i and eventually cycles of size < i. Let t be a text for a structure Gi ∈ L; i ∈ ω.
The atomic diagram of Gi is defined as DGi

= {⌈e, ⌈a, b⌉⌉ | Gi |= ϕate (a, b)}
Where ϕate (a, b), for a, b ∈ Gi, is an atomic formula representing the predicate
Edge.
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An algorithm (learner) M which TxtEx-learns the class L can be defined in the
following way.

M(⌈tx⌉) = ”j ← SizeOfLongestCycle(tx)
if j = ∅

output ′?′, and request next input
otherwise, output j and request next input”

SizeOfLongestCycle(tx) = ”
cycles← ∅
checked← ∅
foreach Edge(a, b) in tx

if ¬checked(Edge(a, b))
cycles ← GetCycle(Edge(a, b), tx)
checked← Edge(a, b)

i ←MaxSizeCycle(cycles)
output i

The algorithm SizeOfLongestCyclesfinds all simple cycles from the informa-
tion provided by tx, in the form of edges between elements from the universum
of a given structure Gi, and get the one with a maximum size. We can change
our mind a finitely many times until we find the maximum one. This shows
that the learner is TxtEx-learner.

2.3 Types of learnability

2.3.1 [ Finite, Explanatory, Behaviourly Correct ]

We will start with learnability types based on the behaviour of a learner,
when a restriction over number of mind changes is presented.
Suppose that a learner has received enough information to take a decision.
If a learner is allowed to make only one guess, the learnability type is called
Finite(Fin). If a learner can change its mind only finitely many times, the
learnability type is called Explanatory (Ex). A BC-learner is similar to Ex,
with the difference that it can provide more than one index for a c.e. set of an
atomic diagram.

Definition 2.3.1. (Fin-learnability, [AS16])
A learner M TxtFin(InfFin)-learns a sructure A, from a text t for A (or an
informant I for A), if there is a number n0 ∈ ω, s.t.

∀n < n0(M(⌈tn⌉) =?)∧
∀n ≥ n0(M(⌈tn⌉) =M(⌈tn0

⌉) ∈ ω) ∧DA = WM(⌈tn0
⌉).

Definition 2.3.2. (Ex-learnability, [AS16])
A learner M TxtEx(InfEx)-learns a structure A, if t is a text for A(or an infor-
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mant I for A) , and there is a number n0 ∈ ω, s.t.
∀n ≥ n0(M(⌈tn⌉) =M(⌈tn0⌉) ∈ ω) ∧DA = WM(⌈tn0⌉)

Definition 2.3.3. (BC-learnability, [AS16])
A learner M TxtBC(InfBC)-learns a structure A, if t is a text for A(I is an
informant for A), and there is a number n0 ∈ ω, s.t.

∀n ≥ n0(M(⌈tn⌉) ∈ ω ∧DA = WM(⌈tn⌉))

Definition 2.3.4. Let Pr be a type of learnability, and let X ∈ {Txt, Inf}.

� A learner M XPr-learns a class of structures L, if M XPr-learns each
structure A ∈ L.

� A class of structures L is XPr-learnable if there is a XPr-learner M which
XPr-learns the class L.

Properties of learnability types

Here we will consider some properties of [Fin,Ex,BC]-learnability types. Prop-
erties given in this subsection are taken from [AS16], and modified in the case
for structures.
We will define couple of classes of structures for later use. Here, for simplicity,
we will focus on structures over a language with one unary relation. Let A be a
structure.

� L+
A = {Ai}i∈ω ∪ {A}, s.t. DAi = DA ∪ {⌈e, x⌉}, where i = ⌈e, x⌉, i.e.

Ai |= ϕe(x).

� L−
A = {Ai}i∈ω ∪{A}, where for each i, DAi = DA \ {⌈e, x⌉}, for i = ⌈e, x⌉,

i.e. Ai ̸|= ϕe(x).

� L∗
A = {Â =∗ A}, where A is an arbitrary c.e. structure. The class contains

all finite variants(see def. 2.3.9) of the structure A.

� LA = L+
A ∪ L−

A .

Theorem 2.3.1. (Theorem 3, [LZ92a]) Let L be a c.e. class of computable
structures with language L. Then L ∈ TxtF in if and only if there is a c.e.
family (Tj)j∈ω of finite non-empty sets, s.t.

� Ti ⊆ DAi
, for all i ∈ ω, for Ai ∈ L.

� For all k, j ∈ ω, if Tk ⊆ DAj , then DAk
= DAj , where Ak,Aj ∈ L.

One important result, from [Ang80], is concerned with learnability from text.
While information presentation from informant is shown to be more powerful,
because it gives positive and negative information for a structure, the same
doesn’t remain true for information presentation from text. We can’t rely on
locking sequences every time when we are learning from text, as we can have a
class containing substructures. In order to choose the correct structure from a
class, we can rely on the following fact.
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Theorem 2.3.2. (Theorem 1, [Ang80]) Let L be a c.e. class of nonempty
computable structures. Then L ∈ TxtEx, if and only if there exists a c.e.
family (Tj)j∈ω of finite non-empty sets, which satisfy the following conditions:

1. Ti ⊆ DAi
, for Ai ∈ L, and

2. for all j ≥ 1, if Ti ⊆ DAj then DAj ̸⊂ DAi , where Ai,Aj ∈ L.

Proof: See thm. 1, [Ang80]. □

Lemma 2.3.1. (Monotonicity Lemma, Lemma 5.13, [AS16])
Let Y ∈ {Txt, Inf}, and let X ∈ {Y Fin, Y Ex, Y BC} and let Li and Lj be c.e.
families of computable structures such that Li ⊆ Lj ; i, j ∈ ω. If a learner M X-
learns Lj then M X-learns Li. Hence, if Lj is X-learnable then Li is X-learnable
too.

Proof: Assume otherwise, that there is a structure in Li, which can not be X-
learnt.
We have that Li is contained in Lj , and the class Lj is X-learnable. So each
structure A ∈ Li is X-learnable. A contradiction. □

Lemma 2.3.2. (Lemma 5.15, [AS16]) Let A and B be two computable struc-
tures with language L, and let A ⊂ B. Then {A,B} /∈ TxtF in.

Proof: Let L = {A,B}, where both structures are defined over a language L.
Suppose t0, t1 are both texts for A,B respectively.
Let M be a TxtFin-learner which learns the class L. Then M when fed t0, t1 is
expected to learn both structures, depending from the given input.
Suppose that M is fed with t0. Then there is a stage n0 at which M will start
to output an index for A.
Let’s define a new text t based on the following idea:

∀n < n0(tn = t0 ↾ n) ∧ ∀n ≥ 0(tn0+n = t1 ↾ n).
When M receives t as input, at moment n0 it will start to output an index for
A instead of B. Clearly M will fail to identify the class L. □

Corollary 2.3.1. Let L = {Ai}i∈ω be a c.e. class of computable structures
with language L, s.t. there are at least two structures Ai,Aj, for i, j ∈ ω, s.t.
Ai ⊆ Aj. Then L /∈ TxtF in.

In the case of languages, an informant provides information about elements
from a language as well as elements not in it (see [AS16]). In our case, when we
use informant, we just provide full information (positive and negative) about a
struture, i.e. arguments which make a structure true in some relation, or false
in it. Because of this, the next lemma, while for the case of languages is not
true, in our case it is.

Lemma 2.3.3. Let A and B be two computable structures with language L, and
let A ⊂ B. Then {A,B} /∈ InfF in.
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Proof: In order to prove this lemma, we will use the same idea as in lemma
2.3.2, but in the case of informant.
Let L = {A,B} be a class of computable structures, where both structures are
defined over a language L.
Suppose I0, I1 are both informants for A,B respectively.
Let M be an InfFin-learner for the class L. When M receives information from
I0, I1, it’s expected to learn both structures, depending from the input which
receives.
Suppose M receives information from I0. Then at some stage, say n0, M will
start to output an index for A.
Based on that, we will define a new informant I ′, with the idea when M receives
it as input, M to make a wrong guess. Let’s define such informant I ′:

∀n < n0(In = I0 ↾ n) ∧ ∀n ≥ 0(In0+n = I1 ↾ n)
In other words, when M receives I ′ as input, M will wrongly guess that the
structure provided to it is A, but not B. As M is InfFin-learner, M is forbidden
of changing is mind. Then M will fail to identify the class L. □

Definition 2.3.5. (Translation function, [AS16]) Let gi : ω → Ai(i ∈ {0, 1}) be
a numbering, where Ai be a set of countable objects. Then g0 is reducible to g1
(or vice versa), denoted by g0 ≤ g1, if there is a computable function f : ω → ω,
s.t. g0 = g1 ◦ f .

In other words if we have two functions g0, g1, s.t. g0 ≤ g1 by a computable
function f, and x ∈ dom(g0), then f translates x to an element n ∈ dom(g1), and
g1(n) = y, then g0(x) = g1(f(x)) = g1(n) = y. A computable function f with
such property is called translation function from g0 to g1.
A cannonical index of a finite set is a computable function γ : ω → ω, defined
as γ(⟨a0, a1, ..., an⟩) =

∑n
i=0 2

ai , where ā ∈ ωn and a0 < a1 < ... < an.
By the Sm

n theorem there is a computable function f such that Wf(e) = De,
where De is the finite set with cannonical index e.
Recall that L+

A = {Ai}i∈ω ∪ {A}, s.t. A ⊆ Ai for an arbitrary c.e. structure A,
where DAi = DA ∪ {⌈e, x⌉}, and i = ⌈e, x⌉.

Lemma 2.3.4. (Lemma 5.16, [AS16]) Let A be a c.e. structure with language
L. Then the class L+

A ∈ TxtBC.

Proof: A successful TxtBC-learner M is based on the following idea: When M
makes a guess for a structure Ai ∈ L+

A, for i ∈ ω, we will consider the behaviour
of M correct with some finite exceptions.
In other words for a text t, if trough the learning process we find that
⌈e, x⌉ ∈ DA, then for i = ⌈e, x⌉. DAi

= DA. Hence for all n ≥ n0 we will have
that DA = DA ∪ content(tn). Otherwise if ⌈e, x⌉ /∈ DA, then there should be a
least numer n0, s.t. ⌈e, x⌉ ∈ content(tn0).
Then for all n ≥ n0, DAi = DA ∪ content(tn).
Let’s define such a learner M more formally. Let Vj ⊆ ω be a c.e. set defined
in the following way Vj = DA ∪ Dj , where Dj ⊂ ω is finite, with canonical
index j. By the Sm

n theorem, there is a a computable function f, such that
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Vj = Wf(j). Let g be a computable function, which maps σ ∈ SEQ, where
σ ⊑ t, to the canonical index of content(σ). Then M = f ◦ g is computable and
M TxtBC-learns the class L+

A. □

By Frec we will denote the class of all partial computable functions.

Lemma 2.3.5. (Padding lemma, Lemma 2.34, [AS16]) Let ϕe ∈ Frec be a
partial computable function. Then there is a one-to-one computable function
f: ωn+1 → ω, such that, for any e ∈ ω, s̄ ∈ ωn, ϕf(e,s̄) = ϕe.

Proof: See Lemma 2.34, [AS16]. □

Suppose that M is the learner defined in lemma 2.3.4.
As given in ([AS16], p. 57), we can not argue that the class defined in the
lemma 2.3.4 can be TxtEx-learnt by M. Suppose that f is a one-to-one function
(assumed by the Padding Lemma, see lemma 2.3.5). For an infinite structure
Aj ∈ L+

A, for j ∈ ω, M can not TxtEx-learn L+
A.

In this case, we will have that for each i ∈ ω, and any text t for a structure Ai,
there exists an infinite sequence n0 < n1 < n2 < ..., s.t.

content(tn0) ⊂ content(tn1) ⊂ content(tn2) ⊂ ....
As for each index i ∈ ω, we will have that g(⌈tni

⌉) are different (we output a
canonical index), then f(g(⌈tn⌉)) will be different too. In other words M changes
its mind infinitely often, and never reaches a moment at which correctly will
guess a structure, which contradicts the definition of Ex-learnability. It follows
that L /∈ TxtEx.

Lemma 2.3.6. (Lemma 5.17, [AS16]) Let A be a computable structure with
language L. Then the class L+

A ∈ TxtEx.

Proof: A successful TxtEx-learner M for the class L+
A first checks computably,

of a text t for a structure of L+
A, which structure σ describes.

Let f : ω → ω be a computable function, s.t. Wf(⌈e,x⌉) = DAj , where j = ⌈e, x⌉,
and DAj

= DA ∪ {⌈e, x⌉}.
For each step we check if content(ts) ⊂ DA. If it is, then M(⌈ts⌉) = i, where
i is the fixed index of DA. If there is ⌈e, x⌉ ∈ content(ts), which is not from
DA(DA is computable), then M(⌈ts⌉) = f(j), where j = ⌈e, x⌉.

□

For a struture A and a text t for A, by t(n), for some n ∈ ω, we will denote the
element which can be found at the n-th position of the text.
Next theorem was presented in [BB75](see Theorem 5.25), and was proven for
languages. Here we will prove it for structures. By λ we will denote the empty
segment.

Theorem 2.3.3. Let L be a finite TxtEx-learnable family of computable struc-
tures with language L. Let M be a TxtEx-learner for the family L. Then there
is a locking sequence for M on each structure A ∈ L.
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Proof: Let t be a text for a structure Ai ∈ L, i ∈ ω. We will prove the theorem
by contradiction. Suppose that there is no locking sequence for M on Ai.Then
for every segment σ ∈ SEQ, s.t. σ ⊑ t, the following is true:

(*) content(σ) ⊆ DAi
→ ∃τ(content(τ) ⊆ DAi

∧M(⌈σ⌉) ̸=M(⌈σˆτ⌉))
In other words, if σ is not a locking sequence for M on Ai, then there is a
segment τ ∈ SEQ, s.t. τ ⊑ t, and σ ⊏ τ , and M(⌈σˆτ⌉) is an index for Ai,
since M learns TxtEx Ai.
On the other hand if M(⌈σ⌉) is an index for Ai, by condition we have that σ is
not a locking sequence for M on Ai and such segment τ exists.
We can use (*) to inductively define such segments σn, n ∈ ω:

� σn ⊏ σn+1

� t(n) ∈ σn+1

� content(σn) ⊆ DAi

� M(⌈σn⌉) ̸=M(⌈σ⌉) for some σ ∈ SEQ with σn ⊑ σ ⊑ σn+1

Let σ0 = λ, σn+1 = σnˆτˆt(n), where τ is the least segment for which
content(τ) ⊆ DAi

and M(⌈σn+1⌉) ̸=M(⌈σnˆτ⌉).
First three conditions guarantee that indeed t is a text for the structure Ai.
The last one satisfies the requirement from (∗). It follows that M does not
TxtEx-learn L which contradicts the choice of M. □

Theorem 2.3.4. (Theorem 5.29, [AS16]) Let A be a non-computable c.e. struc-
ture with language L. Then L+

A /∈ TxtEx.

Proof: We will prove the theorem by contradiction. Assume that M is a TxtEx-
learner for the class L+

A. Suppose t is a text for A. Let σ ∈ SEQ, σ ⊑ t, be a
locking sequence for M on A. We will prove that D̄A is c.e. We shall show that
for any x ∈ ω:

(*) ⌈e, x⌉ /∈ DA ⇐⇒ ∃n(M(⌈σ⌉) ̸=M(⌈σˆ⌈e, x⌉ˆ(tn)⌉)
(→) Suppose that ⌈e, x⌉ /∈ DA. Then DA ̸= DA ∪ {⌈e, x⌉} and σˆ⌈e, x⌉ˆt is a
text for a structure with atomic diagramDA∪{⌈e, x⌉}. Let Aj be that structure.
By definition of L+

A, we have that Aj ∈ L+
A. Furthermore, by assumption, the

learner M TxtEx-learns the class. Then there is n0 ∈ ω, s.t.
WM(⌈σˆ⌈e,x⌉ˆ(tn)⌉) = DAj , for all n ∈ ω, n ≥ n0. We have that σ is a locking
sequence for M on A, then WM(⌈σ⌉) = DA. So M(⌈σ⌉) ̸= M(⌈σˆ⌈e, x⌉ˆtn⌉).
Hence D̄A is not c.e.
(←) Assume that ⌈e, x⌉ ∈ DA. Then for every n ≥ 0, where n ∈ ω, M(⌈σ⌉) =
M(⌈σˆ⌈e, x⌉ˆ(tn)⌉). □

Corollary 2.3.2. (Corollary 5.26, Angluin, [AS16]) Let L be a finite TxtEx-
learnable class of computable structures with language L. Then for any structure
A ∈ L there is a finite substructure F, such that F ⊆ A and

(*) ∀Â ∈ L(F ⊆ Â ⊆ A→ Â = A) holds.
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Proof: Suppose that M is a TxtEx-learner for the class L.
Let A ∈ L, let σ ∈ SEQ, be the least locking sequence for M on A such that
DF = content(σ).

Let Â ∈ L be a structure, such that F ⊆ Â ⊆ A and let t be a text for Â.
By assumption content(σ) = DF ⊆ Â, so σˆt is a text for Â, too.

As we have that M TxtEx-learns the structure Â, then WM(⌈σˆtn⌉) = DÂ for all
sufficiently large n ∈ ω.
On the other hand, we have that Â ⊆ A, i.e. content(tn) ⊆ DA. By assumption
σ is a locking sequence for M on A, so we get that
DA = WM(⌈σ⌉) = WM(⌈σˆtn⌉). Hence A = Â. □

By FINL we will denote all finite structures with language L.

Theorem 2.3.5. (Theorem 5.19, Gold, [AS16]) Let A be an infinite structure
with language L. Then FINL ∪ {A} /∈ TxtBC.

Proof: Let’s assume that M is a learner which TxtBC-learns the class FINL.
We will define a text t for A s.t. for infinitely many k ∈ ω, M(⌈tk⌉) is not an
index for A.
Let f be a one-to-one function, with range the atomic diagram DA. Since M
TxtBC-learns any finite structure from FINL we can inductively define num-
bers mn ≥ 1, s.t.

WM(⌈f(0)m0f(1)m1 ...f(n)mn⌉) = {f(0), f(1), ..., f(n)}.
(Namely, since f(0)ω is a text for the finite set {f(0)}, then WM(⌈f(0)m⌉) =
{f(0)} for almost all m ∈ ω, let m0 be the least such m ≥ 1. Similarly
given m0,m1, ...,mn−1, f(0)

m0 ...f(n − 1)mn−1f(n)ω is a text for the finite set
{f(0), ..., f(n)}, whence WM(⌈f(0)m0 ...f(n−1)mn−1f(n)m⌉) = {f(0), ..., f(n)} for
almost all m ∈ ω, and let mn be the least such m ≥ 1).
So the text defined as t = f(0)m0f(1)m1 .... of the atomic diagram of A has the
desired properties. □

We can convert a TxtEx-learner from Corollary 2.3.2 to a TxtBC-learner in
the following way:

� If in thm. 2.3.3 we replace M to a non-computable c.e. learner, the
theorem remains true.

� For any TxtBC-learner M, for a family L, we can convert M to a non-
computable c.e. TxtEx-learner M̂ in the following way:
For an input σ ∈ SEQ, for which M(⌈σ⌉) ↓, M̂(⌈σ⌉) = M(⌈σn⌉), where
n < ln(σ), s.t. WM(⌈σn⌉) = WM(⌈σ⌉). This ensures that if M semantically

converges on a text t to indices for a structure A, then M̂ will (sintatically)
converges on t to a fixed index for A.

Corollary 2.3.3. (Corollary 5.27, [AS16]) Let L be a TxtBC-learnable class of
c.e. structures. For any structure A ∈ L there is a finite substructure F such
that F ⊆ A and the condition in Corollary 2.3.2 holds.
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Proof: By the second observation from above, we don’t have necessarily com-
putable learner M which TxtEx-learns L.
By the first observation from above, for any structure A ∈ L there is a locking
sequence σ ∈ SEQ for M on A. If we let DF = WM(⌈σ⌉) for the least such σ,
then F ⊆ A and we can argue as in thm. 2.3.2 that the condition holds. □

Recall that a class of structures L, is TxtFin-learnable when for each two
structures A and B from L we have that both structures are incomparable
(see lemma 2.3.2 and corollary 2.3.1 for more information). Now when we
replace information presentation from text with information presentation from
informant, we can expand the family of learnable classes under the new type of
learnability InfFin. When a class L of structures contains structures which have
elements in common, but both still contain information with which a difference
can be made, an InfFin-learner M will use that information in order to reach a
correct conclusion.

Definition 2.3.6. (Limit point, def. 2.21, [AS16]) Let F be a family of total
functions (of type ω → ω). A function f is a limit point of the family F, if f ∈ F
and ∀x ≥ 0∃g ∈ F(g ̸= f ∧ ∀y ≤ x[f(y) = g(y)]) holds.

Lemma 2.3.7. (Limit point, lemma 6.7, [AS16]) Let L be a InfFin-learnable
class of computable structures. Then L doesn’t have any limit point, i.e. for
any structure Ae ∈ L, there is n ∈ ω s.t.

∀Âj ∈ L(DÂj
↾ n = DAe ↾ n→ DÂj

= DAe)

Proof: Let M be an InfFin-learner for L. Suppose that A ∈ L is a limit point
of L and I is an informant for A.
Fix n ∈ ω, s.t. M(⌈In⌉) is an index for A.
By assumption An ∈ L. Suppose I ′ is an informant for An, s.t. I

′
n = In, but

An ̸= A. Then M(⌈I ′n⌉) is defined, but is not an index for An. It follows that
M doesn’t learn An from informant. But An ∈ L. Then M doesn’t InfFin-learn
the class L. A contradiction. □

Theorem 2.3.6. (Theorem 6.8, [AS16])

(a) L+
A ∈ TxtFin ⇐⇒ DA = ω (in other words all atomic formulae of the

atomic diagram of A are true for all numbers in ω).

(b) L+
A ∈ TxtEx ⇐⇒ DA is computable.

Proof:

(a) If DA = ω then L+
A = {A}.

On the other hand if DA ̸= ω, then for any number ⌈e, x0⌉ /∈ DA, we have
that the structures DA0

= DA and DA1
= DA ∪ {⌈e, x0⌉} are in L+

A and
A0 ⊂ A1. So by lemma 2.3.2 L+

A /∈ TxtF in.

(b) This follows from lemma 2.3.6 and theorem 2.3.4.

□
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Definition 2.3.7. A set A ⊆ ω is autoreducible if there is a Turing functional
Ψ such that A(x) = ΨA\{x}(x) for all numbers x.

Definition 2.3.8. A structure A is autoreducible if there is a Turing functional
Ψ such that χDA

(⌈e, x⌉) = ΨDA\{⌈e,x⌉}(⌈e, x⌉), for all ⌈e, x⌉ ∈ DA.

A join operation between two atomic diagrams DA,DB of two structures
A,B with language L is defined as DA ⊕DB = {2x : x ∈ DA} ⊕ {2x+ 1 : x ∈
DB}.

In other words a structure is autoreducible if it can be reduced to itself by
a Turing machine, which doesn’t ask its own input to the oracle. In computable
theory autoreducibility is used to separate the polynomial-time hierarchy from
polynomial space. The way separation is made is by showing that all Turing-
complete sets for certain levels of the exponential-time hierarchy are autore-
ducible, but there exist some Turing-complete sets for doubly exponenital space
that is not, see [Buh+00].
Any computable structure is autoreducible, because it can be computed without
using an oracle.
For an arbitrary c.e. structure A, which for simplicity think as having one rela-
tion, the structure
DA ⊕ DA = {2x : x ∈ DA} ∪ {2x + 1 : x ∈ DA} is autoreducible. In order to
compute 2x from DA \ {2x} ask whether 2x+ 1 is in the oracle set.

Theorem 2.3.7. (Theorem 6.18, [AS16]) The following are equivalent:

1. L+
A is InfEx-learnable.

2. DA is autoreducible.

Proof: See Theorem 6.18, [AS16]. □

Definition 2.3.9. (Finite variants) Let A,B be two computable structures with
language L. A and B are said to be finite variants of each other, if the set
{DA \DB} ∪ {DB \DA} is finite.

When two structures, say A and B over the same language are finite variants
of each other, we will denote that by A =∗ B.

Recall that L∗
A = {Â =∗ A}, where A is an arbitrary c.e. structure. The class

L∗
A contains all finite variants of the structure A.

Theorem 2.3.8. (Theorem 6.23, [AS16]) For any c.e. structure A, we have
that L∗

A ∈ InfBC.

Proof: Let A ∈ L∗
A be a c.e. structure. Let I be an informant for a structure

A. A succesful InfBC-learner M, which learns the class L∗
A, is based on the

following idea: The learner M will suppose that the structure given to it, say

22



Â, differs from the structure A only on an initial segment revealed to it so far.
In other words the output of M(⌈σ̂⌉); σ̂ ⊑ I, and ln(σ) = n, where I is an

informant for the structure Â, is an index for the set
{⌈e, x, i⌉ : ⌈e, x, i⌉ ∈ content(σ)} ∪ {⌈e, x, i⌉ : ⌈e, x, i⌉ > n ∧

A |= ϕe(x) ∨ A ̸|= ϕe(x)}.
Moreover, given Â ∈ L∗

A, we have that Â is a finite variant of A and hence

M(⌈σ̂⌉) is an index for Â for sufficiently large n, n ∈ ω. □

Recall that FINL denotes the class containing all finite substructures of struc-
tures with language L.

Theorem 2.3.9. (Theorem 6.12, [AS16]) Let A be an infinite computable struc-
ture with language L. Then FINL ∪ {A} ∈ InfEx.

Proof: A successful InfEx-learner M for the class L = FINL ∪ {A} works in
the following way. Let I be an informant for a structure Aj ∈ L. Suppose I is
such that numbers in it are arranged in ascending order. Furhtermore, let f be a
computable function, which maps a finite segment σ ⊑ I to the canonical index
for a structure Ai ∈ L. At each step s, we check whether content(Is) = DAj ↾ s.
If it is, we output an index for Aj . Otherwise we get the canonical index for a
structure Ak, where content(Is) = DAk

, i.e. M(⌈Is⌉) = f(Is). □

Comparison between [Fin, Ex, BC]

Proposition 2.3.1. TxtFin ⊊ TxtEx ⊊ TxtBC.

Proof:

� TxtFin ⊊ TxtEx

– TxtF in ⊆ TxtEx.
Suppose L is TxtFin-learnable class of computable structures. We
define a TxtEx-learner M for the class L. Suppose M ′ is a TxtFin-
learner for the class L. What M does is to simulateM ′ on each input
which receives. The learnerM ′ outputs an index for a structure, once
enough information is provided to it. As M ′ is TxtFin-learner, M ′

will output an index once, and never change its mind. By assumption
the class is TxtFin-learnable, and M ′ is TxtFin-learner. Hence M
will output only one index from the moment at which M ′ outputs
an index. But M satisfies the requirements of TxtEx-learnability,
i.e. M doesn′t change its mind from the first moment on. Hence
L ∈ TxtEx.

– TxtEx ⊈ TxtF in.
Let L = {A,B}, where A ⊂ B. Then by lemma 2.3.2 L /∈ TxtF in.
But L ∈ TxtEx. Suppose M is a TxtEx-learner for the class L. Let
M be provided with information about B, but arranged in such a
way that at first receives information for A. Then from thm. 2.3.2,
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M at first will output an index for A, and once when information for
B, not contained in DA, is provided to M, then M will switch its
output to an index for B. As M changes it’s mind only once, and M
correctly identifies each structure in the class, then M will correctly
learn the class L. Hence L ∈ TxtEx.

� TxtEx ⊊ TxtBC
It follows from lemma 2.3.4 and lemma 2.3.6.

□

Proposition 2.3.2. (Lemma 6.3., [AS16]) InfFin ⊊ InfEx ⊊ InfBC.

Proof:

� InfFin ⊊ InfEx

– InfFin ⊆ InfEx
Let L be an InfFin-learnable c.e. class of computable structures over
a language L. We define a new learner M which InfEx-learns the class
L. Suppose M ′ is an InfFin-learner for the class L. Once enough in-
formation about a structure from L is provided to M ′, then M ′ will
output an index, and won’t change its guess from that point on.
Hence once M starts to output a guess, it will not change its mind,
too. By assumption the class L is InfFin-learnable class, and M ′ is
InfFin-learner for the class. Hence M ′ will be correct on each input,
hence so M. As M doesn’t change its mind from the point when made
a guess, then M satisfies the requirements for InfEx-learnability.Then
M will correclty identify L. Hence L ∈ InfEx.

– InfEx ⊈ InfF in
We can use the same argument from proposition 2.3.1, from the case
TxtF in ⊊ TxtEx, but only changing the way of information presen-
tation.

� InfEx ⊊ InfBC.

– InfEx ⊆ InfBC
This follows by definition of Explanatory and Behaviourly correct
learnability.

– InfBC ⊈ InfEx
We prove this direction using the class L+

A.
We have that L+

A ∈ InfEx, if A is autoreducible, which follows from
thm. 2.3.7.
But L+

A ∈ InfBC, if A is any c.e. structure, which follows from thm.
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2.3.8, as L+
A ⊆ L∗

A. As is shown in Appendix 7, from [AS16], there
are c.e. sets, which are not autoreducible. Hence this direction is
proved.

□

Lemma 2.3.8. (Lemma 6.4., [AS16]) For X ∈ {Fin,Ex,BC} we have that
TxtX ⊊ InfX.

Proof:
(→) For each X ∈ {Fin,Ex,BC}, TxtX ⊆ InfX.
Suppose that L is a c.e. class of computable structures which is TxtX-learnable.
Suppose that M is a TxtX-learner for the class L. Based on the behaviour of M,
we define an InfEx-learner M̂ for the class L. What M̂ does, is to simulate M
only on positive information from its input and output whatever M does. As the
class L is TxtX-learnable, the definition of M̂ gives us that L is InfX-learnable
too. Hence L ∈ InfX.
(←) For each X ∈ {Fin,Ex,BC}, InfX ⊈ TxtX.
We will prove this direction for each case.

� InfFin ⊈ TxtFin
Let L be a class of computable structures. Suppose there are two atomic
diagrams A, B, s.t. D+

A ⊆ D+
B, but DA ∩ DA ̸= ∅, i.e. both diagrams

contains the same positive information (with some exceptions), wile their
full diagram differs in their negative information.
Then from lemma 2.3.2 we know that the class is not TxtFin-learnable.
But the class is InfFin, as an InfFin-learner can use that information in
order to find the correct structure.

� InfEx ⊈ TxtEx
It follows from 6.22 from [AS16], that L−

A ∈ TxtEx iff DA is finite, and
L−
A ∈ InfEx if DA is autoreducible.

� InfBC ⊈ TxtBC
L−
A ∈ TxtBC if A is finite. Assume otherwise i.e. that A is infinite. Than

for any finite substructure F ⊂ A, there is a finite variant Â of A, such
that F ⊂ Â ⊂ A. By definition the class L−

A contains all finite variants, in

which a number is removed from the atomic diagram of A, so Â ∈ LA. By
corollary 2.3.3 we get that L−

A /∈ TxtBC.
L−
A ∈ InfBC for an arbitrary c.e. structure A.

As L−
A ⊆ L∗

A and from 2.3.8 we get that L−
A ∈ InfBC.

□

Recall that we are working with atomic diagrams of structures, so our negative
information in case of atomic diagrams provides us with information which rela-
tions in a structure don’t hold over given arguments. Based on that observation,
the next lemma is true in our case, while doesn’t hold for languages.
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Lemma 2.3.9. InfFin # TxtEx

Proof:

� InfF in ⊈ TxtEx
Let L be an InfFin-learnable class of computable structures with language
L. Furthermore, suppose that there are two structures from the class,
which positive atomic diagram is equivalent, but they differ only on its
negative information. On a text t then for one of those structures, a
TxtEx-learner M can not make a difference which atomic diagram is pro-
vided to it. Hence M will fail to identify correctly both structures in the
class. Hence L /∈ TxtEx.

� TxtEx ⊈ InfF in
Let L = {A,B} be a c.e. class of computable structures. Suppose A ⊂ B.
We have that L /∈ InfF in, from lemma 2.3.3.
But L ∈ TxtEx, from thm. 2.3.2.

□

Corollary 2.3.4. (Corollary 6.13, [AS16]) InfEx ⊈ TxtBC.

Proof: This follows from thm. 2.3.5 and thm. 2.3.9. □

2.3.2 [ Monotonic, Strong-monotonic, Weak-monotonic]

Learnability types, which we are going to present here, are concerned with
the behaviour of a learner and the relation between conjectures made from it.
Here we will be interested from learnability types in which a learner is expected
to improve its conjectures over time. The stronger the monotonicity constraint
is, the less anomalies the learnability type allows. If a monotonic learner is
expected to improve its conjecture in increasing manner, but no anomalies are
permitted, the learnability type is called strongly monotonic. When a mono-
tonic learner is allowed to made conjectures to structures which differ from the
expected one, but improve its guess over time, the learnability type is called
monotonic. When a monotonic learner changes its mind only when an incon-
sistency with its current guess appears, the learnability type is calld weakly-
monotonic learnability.

Recall that for a text t (or informant I) by tx(Ix) we refer to t ↾ x(I ↾ x),
for some x ∈ ω. When we use x + k as index, we will mean adding to a text
(Informant) k more elements from an atomic diagram of a structure. For a
structure A, when we refer to Ax, we will mean an index, found at stage x ∈ ω,
for the structure A.

Definition 2.3.10. (Definition 3, [LZK96]) A learner M is said to identify a
c.e. family of structures L from text(or informant)
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� strong-monotonically

� monotonically

� weak-monotonically

iff M TxtEx(InfEx) identifies L, and for any text t(or informant I) of a structure
A ∈ L as well as for any two consecutive hypothesis jx, jx+k; x, k ∈ ω, which M
has produced, when fed tx and tx+k (Ix and Ix+k), the following conditions are
satisfied:

� (Strong monotonically) DAx
⊆ DAx+k

� (Monotonically) DAx ∩DA ⊆ DAx+k
∩DA, where we will suppose that A

corresponds to the structure expected to be learnt

� (Weak monotonically) if content(tx+k) ⊆ DAx
, then DAx

⊆ DAx+k

(content+(Ix+k) ⊆ DAx
then DAx

⊆ DAx+k
)

Necessary Properties

Here we are going to give couple of extra conditions of learnability which we
will need later when we compare different monotonic learnability criteria.

Theorem 2.3.10. (Theorem 1, [LZ92b]) Let L be a c.e. class of computable
structures with language L. Then L ∈WMonTxt if and only if there are a space
of hypothesis ĜL = (Âi)i∈ω, where each Âi ∈ L, and a c.e. family (T̂i)i∈ω of
finite non-empty sets such that

1. HSL = ĜL.

2. For all i ∈ ω, T̂i ⊆ DÂi

3. For all i, k ∈ ω, if T̂i ⊆ DÂk
, then DÂk

̸⊂ DÂi
.

Proof: See Theorem 1, [LZ92b]. □

Theorem 2.3.11. (Theorem 2, [LZ92b]) Let L be a c.e. class of computable
structures with language L. Then L ∈ SMonTxt, if and only if there is a space
of hypothesis ĜL = (Âj)j∈ω, where each Aj ∈ L, and a c.e. family (T̂j)j∈ω of
finite non-empty sets such that

1. HSL = ĜL.

2. T̂j ⊆ DÂj
for all j ∈ ω

3. For all j, z ∈ ω, if T̂j ⊆ DÂz
, then DÂj

⊆ DÂz
.

Proof: See Theorem 2, [LZ92b]. □
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Theorem 2.3.12. (Theorem 4, [LZ92b]) Let L be a c.e. class of computable
structures with language L. Then L ∈ MonTxt, if and only if there is a space
of hypothesis ĜL = (Âj)j∈ω, where each Aj ∈ L, and a c.e. family (T̂j)j∈ω of
finite non-empty sets such that

1. HSL = ĜL

2. For all A ∈ L and all i ∈ ω

� T̂i ⊆ DAi

� if T̂i ⊆ DA, then DA ̸⊂ DAi

� For all A ∈ L and all i, j ∈ ω,
– if i < j, then T̂i ⊂ T̂j
– if i < j, T̂j ⊆ DA, then DAi

∩DA ⊆ DAj
∩DA.

� For all A ∈ L, there is no infinite sequence (kj)j∈ω such that for all

j ∈ ω, kj < kj+1 and
⋃

j T̂kj
= DA.

Proof: See Theorem 4, [LZ92b]. □

Comparison between types

Recall that O is the set of odd numbers, and E is the set of even numbers. We
suppose again that our structures are with one unary relation.

We define the following classes of structures:

� L−
A = {Ai}i∈ω be a class of structures, where

DA1
= {⌈e, o⌉ | o ∈ O},

DAi = DA1 \ {⌈e, 2x+ 1⌉}, for all i > 1 and i = ⌈e, x⌉ ∈ ω.

� L⟨.,.⟩ = {Ai}i∈ω, n ∈ ω, where
DAi

= {⌈e, n⌉ | n ∈ (O \ {ō} ∪ {ē})},
where ō = {oi1 , oi2 , ..., oin}, and ē = {ei1 , ei2 , ..., ein}, s.t. i1 < i2..., < in,
ō ∈ On, ē ∈ En, ik, k, n ∈ ω, and by ē we can find effectively the index of
a structure Ai.

� Lrestr = {Ai}i∈ω, where
D1 = {⌈e, o⌉ | o ∈ O}
Di = {⌈e, n⌉ | n ∈ (O \ {2i+ 1} ∪ E ↾ (2i+ 1)), i ∈ ω, i > 1}.

Next theorem shows a connection between different monotonic-like learnabil-
ity types. Strong-monotonic learnability will be denoted by SMon, monotonic
learnability by Mon and weak-monotonic learnability by WMon.

Theorem 2.3.13. (Theorem 1, [LZK96]) SMonTxt ⊂MonTxt ⊂ WMonTxt

Proof:
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� SMonTxt ⊊ MonTxt
(→) SMonTxt ⊆MonTxt
Suppose L is SMonTxt-learnable c.e. class of computable structures. Sup-
pose M is a SMonTxt-learner for the class L. We can define a MonTxt-
learner M ′ for the class L using the learner M. As by assumption the
class L is SMonTxt-learnable and M is SMonTxt-learner for the class,
then there is a finite sequence of indecies s.t. (∗)Ai1 ⊆ Ai2 ⊆ ...Ain ,
where in ∈ ω is the expected answer. But for any structure Aj ∈ L,
and by definition of MonTxt-learnability we will have that (∗∗)Ai1 ∩Aj ⊆
Ai2 ∩ Aj ⊆ ...Ain = Aj . Hence on any input for a structure Aj ∈ L
and from (∗) M will correctly identify Aj , so M ′. From (∗∗) we will
have that M ′ satisfies the requirements for Mon-learnability. Hence M ′ is
MonTxt-learner for the class L, which gives us that L ∈MonTxt. As the
class was an arbitrary SMonTxt-learnable class, this proves this direction.
(←)MonTxt ⊈ SMonTxt
We prove this direction by showing that the class L⟨.,.⟩ ∈ MonTxt, but
the same class L⟨.,.⟩ /∈ SMonTxt.
Let t be a text for a structure A ∈ L⟨.,.⟩. We define a MonTxt-learner M
for the class L⟨.,.⟩ based on the following idea:
Suppose at some stage M receives a number ek ∈ E. Then M will
change its mind for a structure A, s.t. the maximum even number in
the atomic diaram is ek(at position k). Suppose at later stage M re-
ceives another even number en ∈ E, s.t. n > k. Then again M will
change its mind for a structure, s.t. the maximum even number is en,
and contains ek. As M will receive a finite number of even numbers, then
M will change its mind finitely many times. Let’s see now that M is a
monotonic learner. Suppose M receives information for a structure Ak,
s.t. k = ⌈⌈i, ej1⌉, ...⌈i, ejn⌉⌉, where {jn}n∈ω ⊂ ω, {ej}j∈{jn} ∈ E and
i ∈ ω. Suppose at some stage M receives its first even number, say em, s.t.
em < ejn . Then M will change its mind for the structure Am. Suppose
at later stage M receives a number en, s.t. em < en < ejn , then M will
change again its mind to the structure An. Continuing in this manner
we will get a finite sequence of even numbers, until we reach ejn . It can
be seen that DAm

∩ DAjn
⊆ DAn

∩ DAjn
⊆ ... ⊆ DAx

= DAjn
. Hence

M is indeed a monotonic learner, and M identifies the class L⟨.,.⟩. Hence
L⟨.,.⟩ ∈MonTxt.
Now we show that L⟨.,.⟩ /∈ SMonTxt.
Let t be a text for a structure Aj ∈ L⟨.,.⟩, for j ∈ ω. Suppose that M
is a SMonTxt-learner for the class L⟨.,.⟩. Let’s follow the reaction of M
on text for a structure A ∈ L. Suppose the first even number en ∈ E,
for some n ∈ ω, appears in the text. Then the learner M will output a
canonical index for the structure An, in order to not miss that case, or M
will fail to identify the structure and hence the class. Suppose at some
later stage the learner M receives new even number, et ∈ E, for some t
∈ ω, s.t. et > en. Then the learner M is supposed to change its mind
to an index for a structure ⌈⟨i, en⟩, ⟨i, et⟩⌉, but by definition of SMonTxt-
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learnability is forbidden of doing so, because the structure An ⊈ At, as
both structures are defined for odd numbers not defined in the other struc-
ture. Hence the learner M fails to SMonTxt-learn the class L⟨.,.⟩. Hence
L⟨.,.⟩ /∈ SMonTxt.

� MonTxt ⊊WMonTxt
(→) MonTxt ⊆WMonTxt
Let L be a MonTxt-learnable class. We define a WMonTxt-learner M for
the class L. As the class is MonTxt-learnable, then from thm. 2.3.10 we
know that there is a family c.e. family (Tj)j∈ω.
M(⌈tx⌉) = ”Search for the least i, s.t.

Ti ⊆ content(tx) ⊆ DAi

if such i is found, output i and request next input,
otherwise output ’?’ and request next input.”

Let’s prove that M indeed identifes L and that M is WMonTxt-learner.
Claim 1: The learner M correctly identifies the class L.
Suppose otherwise, i.e. that M has output a wrong guess. Suppose i is
the final answer of M, and j is the expeted guess, i ̸= j. This means that
the learner M has failed with the test Tj ⊆ content(tx) ⊆ DAj

. In other
words, we will have that Tj ⊈ content(tx) or content(tx) ⊈ DAj

. In both
cases, from the definition of M, then M will find a least index j, which
passes the test, and will output it as a guess. By assumption the class is
MonTxt-learnable and the family (Tj)j∈ω satisfies the requirements from
thm. 2.3.12. Then if j is the expected guess and i is the last given output,
we will have that i = j. A contradiciton. Hence M works correctly, and it
identifies the class L.
Claim 2: The learner M is WMonTxt-learner.
Suppose otherwise, i.e. M is not a WMonTxt-learner for the class L.
Then either M doesn’t correctly identify the class L, which we proved is
not possible from the previous case, or M changes it mind infinitely often.
If M changes its mind and never stops, then the class L is not MonTxt-
identifiable, which contradicts our assumption. Hence M is WMonTxt-
learnable.
(←)WMonTxt ⊈MonTxt
We will prove this direction by showing that Lrestr /∈ MonTxt, but L ∈
WMonTxt.

– Lrestr /∈MonTxt.
Assume by contradiction that Lrestr ∈MonTxt. Suppose that M is a
MonTxt-learner for Lrestr. Let t be a text for a structure Ai ∈ Lrestr.
Suppose at first the learner M receives only numbers from O, then M
will give as guess the structure A1(if M doesn’t output index for A1,
then when M receives it as input, M will fail to learn it as the class
is infinite). Suppose an ej ∈ E appears, s.t. j < i. Then the learner
M is supposed to change its guess for the structure Aj (at first the
learner M doesn’t know which structure receives, so it doesn’t know
the maximum even number). When M outputs it as guess, then M
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will fail to be monotonic, because DA1 ∩DAi ⊈ DAj ∩DAi . Hence
Lrestr /∈MonTxt.

– Lrestr ∈WMonTxt
A WMonTxt-learner M for the class Lrestr is defined in the following
way. Let Ai ∈ L and let t be a text for Ai. At first M outputs a
canonical index for the set O, i.e. an index for the structure A1. In
case an even number ez ∈ E appears in t, the learner M changes its
mind to an index for a structure Az. If a new number en > ez, where
en ∈ E appears, then M changes its mind to the structure containing
the new element. The learner M changes its mind every time when
a new greatest even number appears, which is not contained in its
current guess. As each set of even numbers is finite, M will change
its mind finitely many times. Hence Lrestr ∈WMonTxt.

□

Theorem 2.3.14. For X ∈ {SMon,Mon,WMon}, we have that XTxt ⊊ XInf.

Proof:

� XTxt⊆ XInf.
Let L ∈ XTxt be a c.e. class of computable structures. Let M be a XTxt-
learner for the class L. We define a XInf-learner M ′ for the class L by
using the behavour of M. Suppose I is an informant for A ∈ L. Suppose
σ ∈ SEQ, s.t. σ ⊑ I. What M ′ does is to provide to M all positive
examples from σ, ignoring all negative ones. As M is a learner for the
class L, then M will learn each structure A ∈ L from a text in any order.
Hence M ′ will correctly identify each structure A ∈ L. Hence XTxt⊆
XInf.

� XInf ⊈ XTxt.

– SMonInf ⊈ SMonTxt.
Let L′ be a c.e. class of computable structures defined in the following
way: Di = {⌈e, n⌉ | n ∈ ω} \ {⌈e, x⌉}, where i = ⌈e, x⌉. Then
L′ ∈ SMonInf , but L′ /∈ SMonTxt.
(1) L′ ∈ SMonInf .
A SMonInf-learner M for the class L′ will wait for the first negative
example to appear, say xi and will output and index for Axi

. As
there is only one negative example, M will not change its mind from
that point on. Hence L′ ∈ SMonInf .
(2) L′ /∈ SMonTxt.
Suppose otherwise, i.e. L′ ∈ SMonTxt. Suppose M ′ is a SMonTxt-
learner for the class L′. Let t be a text for a structure Ai ∈ L′. As t
is a text for a structure Ai, then there is a stage, say n0 ∈ ω, when
M will correctly identify the structure Ai. Suppose n0 is the stage at
which M doesn’t receive the ith number, say ⌈e,m⌉. Based on this
behaviour we construct a new text t′, where we rearrange t in such
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a way to fool M. We define t′ based on the following idea:
∀n < n0(t

′(n) = t(n)) ∧ (t′(n0) = t(n0 + k)) ∧ (t′(n0 + k) = t(n0)) ∧
∀n > n0(t

′(n) = t(n)), for some k ∈ ω.
The idea is to define t′ in such a way that to foolM ′ in thinking that
it has received information for another structure, and to wrongly
identify that structure. Once M outputs an index for it, M will
fail from that point on to be a strong monotonic learner, as the
requirement DAi

⊆ DAj
is not satisfied. Hence M ′ fails to strongly

identify the class L. Hence L /∈ SMonTxt.

– MonInf ⊈ MonTxt.
We prove this direction by showing that L−

A ∈MonInf and
L−
A /∈MonTxt.

(1) L−
A ∈MonInf .

A MonInf-learner M for the class L−
A at first will output an index

for A1. At later moment, when a negative example appears, say
ni, M will change its mind for a structure with index i = ⌈e, ni⌉. As
DA1∩DAi ⊆ DAi , the learner M will correctly identify each structure
in the class. Hence L−

A ∈MonInf .
(2) L−

A /∈MonTxt.
Suppose t is a text for the structure A1. We will construct a modified
text tfool of t, with which we will make a MonTxt-learner M to
wrongly output indecies j1, j2 ̸= i, by which we will make M to fail
to be a monotonic learner. Suppose t is arranged in ascending order.
Suppose n0 ∈ ω is the stage at which on input t M identifies the
structure A1. At first we give M an input t(2), ..., t(n) until M wrongly
guesses that the structure provided to it is Ai, s.t. i = ⌈e, 1⌉. Then
we provide to M an input t(2), ..., t(n), t(1), t(r+1), ...t(r+n−1) until
M again makes a wrong output for the structure Aj where j = ⌈e, r⌉.
Based on this idea we can define tfool in the followowing way”
tfool = t(2), ..., t(n), t(1), t(r), ...t(r+n1), t(r), t(r+1).... On this text
M at first will output a guess for the structure Ai, once when M finds
the missing elements, M will output an index for Aj . But M will fail
to be monotonic, because DAi

∩DA1
⊈ DAj

∩DA1
. Hence M can’t

identify the class L−
A . Hence L−

A /∈MonTxt.

– WMonInf ⊈ WMonTxt.
To prove this direction we will use the class L−

A . We have that
L−
A ∈ WMonInf , as an WMonInf-learner at first will output an in-

dex for A1, and once when it receives a negative example will switch
to the correct index.
But L−

A /∈WMonTxt. Suppose otherwise, i.e. that L−
A ∈WMonTxt.

Then from thm. 2.3.10 we have a c.e. family (Tj)j∈ω of finite non-
empty sets, satisfying the requirements from the theorem. Suppose
then T0 ⊆ DA1

. Let m = max{n | n = k, where ⌈e, k⌉ ∈ T0}. Then
from the definition of the class and requirements in the theorem we
have that T0 ⊆ DAm , but (∗)DAm ⊆ DA1 . From (∗) we get a contra-
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diction with the 3th case in the theorem. Hence the class can not be
WMonTxt-identified. Hence L−

A /∈WMonTxt.

□

Theorem 2.3.15. For X ∈ {Txt, Inf}, we have that

� XFin ⊊ SMonX

� WMonX = XEx

Proof: We prove this theorem only for text, where for informant can be proved
in analogous way.

� TxtF in ⊊ SMonTxt
(←)TxtF in ⊆ SMonTxt
Suppose L is a TxtFin-learnable class of structures with language L. Sup-
pose M is TxtFin-learner for the class L. Once M receives enough evidence
for a structure A ∈ L, the learner M will output an index for A and will
stop computation. We define a SMonTxt-learner M ′ for the class L based
on the behaviour of M. On input σ ∈ SEQ, if M produces an output, an
index for a structure, then M ′ produces the same output. As M learns
each structure in the class L, then on each input σ ∈ SEQ, M will give
the same correct answer. Then M ′ can either be defined as ignoring the
input once when M has produced an output, or it can simulate M on each
input given the previous observation.
M ′ = ”On input σ ∈ SEQ, s.t. σ ⊑ t,

output ←M(⌈σ⌉)
if output ̸=′?′

give output as answer and request next input,
else request next input”

As M outputs a guess only once, M ′ will satisfy the requirements for
SMonTxt-learnability. It follows that L ∈ SMonTxt. Hence this direc-
tion is proved.
(→)SMonTxt ⊈ TxtF in
Let L = {A,B} be a c.e. class of computable structures, s.t. A ⊂ B.
Then we have that L ∈ SMonTxt, which follows from thm. 2.3.11.
But L /∈ TxtF in, which follows from lemma 2.3.2.

� WMonTxt = TxtEx It follows from thm. 2.3.10 and thm. 2.3.2.

□

By # we will denote that two learnable classes are different, i.e. for a class A,
and a class B, we have that A ⊈ B and B ⊈ A.

Theorem 2.3.16. (Theorem 8, [LZK96])

1. MonInf#TxtEx
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2. MonInf#WMonTxt

3. SMonInf#MonTxt

4. InfF in#SMonTxt

Proof:

1. MonInf#TxtEx
(→)MonInf ⊈ TxtEx
We will prove this direction by showing that L−

k ∈ MonInf , but L−
k /∈

TxtEx.

� L−
A ∈MonInf .

A MonInf-learner M works in the following way: At first M outputs a
cannonical index j1 for A1. If at some step of the learnability process,
some number k ∈ ω appears, which doesn’t make the relation of a
structure true, M changes its mind to a cannonical index for the
structure Ak. Because A1 ∩Ak = Ak, for each k > 1, this shows that
the learner M works monotonically.

� L−
A /∈ TxtEx.

Suppose otherwise, i.e. that L−
A ∈ TxtEx. Then from thm. 2.3.2, we

have a c.e. family of computable non-empty sets (Tj)j∈ω satisfying
the requirements in theorem. Here we need to show that there is no
such set in the family for the structure A1, with which we will prove
this direction. Suppose otherwise, i.e. that there is T0 ⊆ DA1 . Let
z = max{k | k = n, where ⌈e, n⌉ ∈ T0}. Then from the definition
of the class, we get that T0 ⊆ DAz

. But again from the definition
of L we have that DAz

⊆ DA1
, which contradicts the 2d case from

the theorem. We reach a contradiction. Hence the class can not be
TxtEx-identified, and L−

A /∈ TxtEx.

(←)TxtEx ⊈MonInf
We prove this direction by showing that Lrestr ∈ TxtEx, but Lrestr /∈
MonInf .

� Lrestr ∈ TxtEx.
A TxtEx-learner M when given an initial segment σ from the set O
starts to output an index for the structure A1. Once after a number
ez ∈ E appears, the learner M will switch to an index for the structure
Az. After that the learner M will change its guess when a new en ∈ E
appears, when en > ez. As E is finite, the learner M will reach a
moment when correctly will output only one guess from that moment
on. Hence Lrestr ∈ TxtEx.

� Lrestr /∈MonInf .
Assume by contradiction that M is MonInf-learner for the class Lrestr.
Suppose I is an informant for a structure Ai ∈ Lrestr. Suppose at
first M receives only positive examples from the set O. Then M will
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output an index for the structure A1, in order to not miss a chance to
guess the structure A1. Suppose M receives a number ez ∈ E. Now
if ez is a positive example, and z ≤ i, M is supposed to change its
mind to the structure Az. If M doesn’t, then M will fail to learn the
structure Ai, as we don’t know the maximum even number for the
structure. But if z < i, then the learner M will fail to be monotonic,
because we will have that O∩Ai ⊈ Az∩Ai. Hence Lrestr /∈MonInf .

2. MonInf#WMonTxt

� MonInf ⊈ WMonTxt
From corollary 2.3.15 we have thatWMonTxt = TxtEx. From thm.
2.3.16, 1. we proved that L−

k /∈ TxtEx, but L−
k ∈ MonInf . Hence

this direction is proved.

� WMonTxt ⊈MonInf
We showed that Lrestr /∈ MonInf in the case of MonInf#TxtEx.
We have Lrestr ∈WMonTxt from thm. 2.3.13.

3. SMonInf#MonTxt
(→)SMonInf ⊈MonTxt
Let L be a c.e. class of computable structures defined in the following
way:
Let DA1 = {⌈e, n⌉ | n ∈ ω}.
Let for j > 1:
DAj

= {⌈e, n⌉ | n ∈ (O ↾ j ∪ {ej})}, where ej ∈ E.
DAj+1

= {⌈e, n⌉ | n ∈ (O ↾ (j + 1) ∪ {ej , ej+1})}, where ej+1 ∈ E.

� L ∈ SMonInf .
A SMonInf-learner M is based on the following observation: In order
to identify the structure A1, M needs to wait for two non-consecutive
or three positive even numbers en ∈ E. If at first M finds one positive
even number, say ek ∈ E, then M will change its mind for a structure
Ak. If at later stage ez ∈ E appears M can do the following: if
z = k+1, then M will change its guess to a structure Az, if z > k+1,
M will change its guess to the structure A1. From the definition of
L and the behaviour of M we get that Ak ⊆ Az ⊆ A1. But the
behaviour of M is correct for any other structure, as M just needs
to check the condition on which it is. Hence L can be correctly
SMonInf-identified. Hence L ∈ SMonInf .

� L /∈MonTxt.
Suppose otherwise, i.e. that L ∈ MonTxt. Then from thm. ?? we
have that there is a c.e. family (Tj)j∈ω. The idea here will be to prove
that there is no set Ti from the family, for the structure A1. Suppose
otherwise, i.e. that there is T0 ⊆ DA1

. Let m = max{n | n =
k, where⌈e, k⌉ ∈ T0}. By the definition of L we have T0 ⊆ DAk

. But
we reach a contradiction with thm. ??, case 2, because DAk

⊆ DA1
.
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Hence there is no such Tj ∈ (Ti)i∈ω for the structure A1. Hence L
can not be MonTxt-identified. Hence L /∈MonTxt.

(←)MonTxt ⊈ SMonInf
We have that L⟨.,.⟩ ∈MonTxt from thm. 2.3.10.
We now show that L⟨.,.⟩ /∈ SMonInf . Suppose otherwise, i.e. that there
is a SMonInf-learner M for the class L⟨.,.⟩. Suppose M receives a number
ei ∈ E and ei is a positive example, then M will output an index for the
structure Ai. Suppose at later stage another positive example ek ∈ E
appears, s.t. ek > ei. Then M is supposed to change its guess to the
structure Ak, but is forbidden of doing so as by assumptuion M is SMonInf-
learner, and changing its mind will break the requirement of SMonInf-
learnability. Hence L /∈ SMonInf.

4. InfF in#SMonTxt
(→)InfF in ⊈ SMonTxt.
Let L be a finite class of structures with language L.
Let A⌈i,1⌉ be s.t. DA⌈i,1⌉ = {⌈e, n⌉ | n ∈ (ω \ {⌈i, 1⌉})}, and let for each
j > 1, and i < j, A⌈i,j⌉ be s.t. DA⌈i,j⌉ = {⌈e, n⌉ | n ∈ {ω \ {⌈e, i⌉, ⌈e, i +
1⌉..., ⌈e, j − 1⌉, ⌈e, j⌉}}}.
We show then that L ∈ InfF in, but L /∈ SMonTxt.

� L ∈ InfF in.
An InfFin-learner M is based on the following idea. Let I be an
informant for a structure A ∈ L. The learner M needs to wait a finite
amount of time before making a correct guess(as by assumption the
class is finite, see lemma ... and the negative information for each
structure is finite). So L ∈ InfF in.

� L /∈ SMonTxt.
Suppose t is a text for the structure A⌈i,j⌉. Let i ̸= 1 and j ̸= 6.
We will construct a modified text t′ of t, with which we will fool a
SMonTxt-learner. Suppose we feed M with t t(7), t(8), ..., t(z), until
M outputs a wrong guess j⌈e,1⌉,⌈e,2⌉,...⌈e,6⌉.
We set t′ = t(7), t(8), ..., t(z), t(1), t(2), ..., t(6), .... We are done. On
input t′ M will wrongly output an index for a structure A⌈1,6⌉ ̸=
A⌈i,j⌉, and will fail to be strongly monotonic. Hence L /∈ SMonTxt.

(←)SMonTxt ⊈ InfF in
Let L be an infinite c.e. class of computable strutures, where for each
i, j ∈ ω, s.t. i < j, we have that DA⌈i,j⌉ = {⌈e, n⌉ | n ∈ (O ↾ i ∪ E ↾ j)}.
The class is SMonTxt-learnable. Suppose M is a SMonTxt-learner for the
class L. We define M based on the following idea: Suppose M has received
an odd number on ∈ O, and even number ej ∈ E. Then M will output an
index for a structure ⌈i, j⌉, where on and ej are the maximum elements.
Suppose at later stage a new odd ok ∈ O, or even number em ∈ E appears,
s.t. on < ok, or ej < em. Then if we have the case on < ok, M will search
for a structure ⌈i′, j′⌉, which maximum odd number is ok, and is defined
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for the least en′ ∈ E(as we have that by definition of the class L, i′ < j′).
The other case is analogous. Hence M wil change its mind in increasing
number, when it will reach a moment at which will correctly identify the
structure under consideration. Hence L ∈ SMonTxt.
But L /∈ InfF in. This follows from lemma ... and lemma 2.3.7.

□

2.3.3 [ Set-driven, Rearrangment independent ]

Here we will look at two types of learnability, when the order of data
doesn’t matter. When we are not interested from the arrangment of data, the
learnability type is called set-driven learning. When we add as constraint only
the length of the available data, but the arrangment of data still doesn’t matter
the learnability type is called rearrangment independent.

Definition 2.3.11. (Set-driven, [LZ04]) A learner M is said to be set-driven iff
its output depends only on the range of its input; that is, iff M(⌈tx⌉) =M(⌈t′y⌉)
(or for informant M(⌈Ix⌉) = M(⌈Iy⌉)), for all x, y ∈ ω, all texts t, t

′
(or

informants I, I ′), provided that content(tx) = content(t
′

y) (or content(Ix) =
content(Iy)).

Definition 2.3.12. (Rearrangment independent, [LZ04]) A learner M is said
to be rearrangment independent iff its output depends on the range and on the
length of its input; that is iffM(⌈tx⌉) =M(⌈t′x⌉) (or for informants (M(⌈Ix⌉) =
M(⌈I ′

x⌉)) for all x ∈ ω, all texts t, t
′
(or informants I, I ′) provided content(tx) =

content(t
′

x) (or content(Ix) = content(I
′

x)).

Set-driven learnability will be denoted by Sd. Rearrangment-independent
learning will be denoted by r.

Comparison between types

While in the case of grammars it was shown that most types, concerned
with hypothesis space, coinside (see [LZ04]), it’s an open problem what is the
relationship, when we observe classes of c.e. structures. First we will define
three sets, which we will use trough the subsection.
Let

� D1 = {n | n ∈ ω ∧ n mod 3 = 2},

� D2 = {n | n ∈ ω ∧ n mod 3 = 1},

� D3 = {n | n ∈ ω ∧ n mod 3 = 0}.

We define the halting problem by K = {⌈k, k⌉ | ϕk(k) ↓}, where {ϕk}k∈ω is an
effective enumeration of all partial computable functions. By ξk(n), for n ∈ ω,
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we will denote a function, which measures the number of steps for which a
partial function with index k and input n converges (if it does), or we will have
that ξk(n) =∞ if that function doesn’t converge.
All theorems here will be proved for the case of text, where for the case of
informant can be proved in analogous way.

Theorem 2.3.17. For X ∈ {Txt, Inf}, we have that SdXFin = XFin.

Proof: Let L be a c.e. TxtFin-learnable class of computable structures with
language L.
We will use the c.e. class (Tj)j∈ω from thm. 2.3.1. We know that such class
exists, as by assumption the class is TxtFin-learnable.
Let t be a text for a structure A ∈ L. We define a SdTxtFin-learner M for the
class L in the following way:
M(⌈tx⌉) = ”if ln(tx) = 0 or ln(tx) > 0,

and there is no output for tx−1

then execute instruction (A1)
(A1): Search for the least index j,
for which content(tx) ⊆ DAj .
check whether or not Tj ⊆ content(tx)

In case such j is found, output j and stop.
Otherwise output nothing and request next input. ”

In order to prove that L ∈ SdTxtF in we will prove the following two claims:

Claim 1: The learner M identifies finitely L.
Let Ai ∈ L and let t be a text for Ai. Our purpose will be to show that the learner
M stops sometimes, with output j, and that Ai = Aj . Suppose M has stopped
with output k ∈ ω. Then by definition of M and the c.e. family (Tj)j∈ω, there
must be an x ∈ ω, for which learner M has verified that Tk ⊆ content(tx) ⊆ DAk

.
The only way which will prevent M stopping is if there exists k′ < k, for which
DAk

⊂ DAk′ and Tk′ ⊈ DAk
. But in this case, from the definition of M, we will

have that M has found that Tk′ ⊆ content(ty) ⊆ DAk′ . But the only way M to
output a hypothesis in this case will be only when DAk

= DAk′ . Hence M will
stop sometimes.
Suppose M when fed with tx stops and outputs a hypothesis, say i. Hence
from the definition of M, M has checked that Ti ⊆ content(tx) ⊆ DAi . Hence
Tj ⊆ DAk

. From second clause of thm. 2.3.1 we get that DAi
= DAk

. Hence
Claim 1 is proved.

Claim 2: The learner M is set-driven.
Let A,A′ ∈ L. Let t, t′ be texts for A and A′ respectively. Let x, y ∈ ω be two
numbers, s.t. tx = t′y.
We need to show that M(⌈tx⌉) =M(⌈t′y⌉). Suppose at stage x on text t, M has
outputted an index i, and at stage y on t′, M has outputted j. From the last
it follows that content(tx) ⊆ DAi

, and content(t′y) ⊆ DAj
. By assumption we

have that tx = t′y, hence i = j.
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Suppose M has stopped on tx−1. Then M has output a hypothesis, say j. We
need to show then that M(⌈t′y⌉) = j. The learner M is a finite learner for the
class L. Then when M has output an index j, then by definition M has verified
that Tj ⊆ content(tz) ⊆ DAj

, for some z < x. By assumption tx = t′y, and
hence tz ⊆ t′y. We need to observe two cases:
Case 1: M on input t′y−1 doesn’t stop.
By definition then M will execute stage y on input t′y. We have that j is
the least index for which Tj ⊆ content(tz) ⊆ DAj

and j is the correct in-
dex for the given structure, hence we can conclude that content(tx) ⊆ DAj

.
By assumption tx = ty, and Tj ⊆ content(tz) ⊆ content(t′y), it follows that
Tj ⊆ content(t′y) ⊆ DAj

. Then on input t′y, M has output a hypothesis, say
i ∈ ω and to stop. Suppose that i ̸= j. Then from Tj ⊆ content(t′y) ⊆ DAj ,
we obtain that i < j. On the other hand tz ⊆ t′y and content(t′y) ⊆ DAi imply
content(tz) ⊆ DAi

. Therefore if Ti ⊈ content(tr), for all r < x, then M doesn’t
stop on input tx−1. But by assumption M has stopped, which means it has
verified that Ti ⊆ content(tz), since z < x. Hence M has to infer the structure
Ai, but i ̸= j, a contradiction. Hence M on stage y outputs an index j and
stops.
Case 2: M on input t′y−1 stops.
By definition M has to infer a hypothesis, say i and to stop. Hence M has verified
that Ti ⊆ content(t′r) ⊆ DAi

. We need to show that i = j. Suppose otherwise,
that i ̸= j. As j is a least index which satisfies Tj ⊆ content(tz) ⊆ DAj

and
because the structure Aj is under consideration and by assumptuon tx = t′y,
we can conclude that content(t′r) ⊆ DAj . Hence i ̸= j implies i < j. As
content(tx) = content(t′y) ⊆ DAi , it follows that content(tz) ⊆ DAi . But
M(⌈tz⌉) = j, and i ̸= j. A contradiction. Hence j = i. □

Theorem 2.3.18. (Theorem 2, [LZ96]) For X ∈ {Txt, Inf}, we have that
SdXEx ⊊ XEx.

Proof: Let L be a c.e. class of computable structures with language L, defined
in the following way:
DA⌈k,0⌉ = {⌈e, n⌉ | n ∈ (O ↾ k ∪ E)}. Let m = 2.

For each k ∈ ω and all j ∈ ω+ we distinguish the following cases:
Case 1: ¬ξk(k) ≤ j
Then we set DA⌈k,j⌉ = DA⌈k,0⌉ .
Case 2: ξk(k) ≤ j
DA⌈k,j⌉ = {⌈e, n⌉ | n ∈ (O ↾ k ∪ {m})}.

Claim 1: L /∈ SdTxtEx.
We prove this Claim by showing that if L ∈ SdTxtEx, then we can construct
an algorithm for solving the halting problem.

Lemma 1: Suppose M is a SdTxtEx-learner for the class L. Then we can
use M to solve the halting problem.
Proof: We define an algorithm Alg using M, for solving the halting problem,
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in the following way:
Alg: ”On input k execute (A1).

(A1) Simulate M on input tx, s.t.
content(tx) = {⌈e, n⌉ | n ∈ (O ↾ k ∪ {m})}.
If M requests an input without outputting a hypothesis,
output ϕk(k) ↑, and stop.
Otherwise, let z =M(⌈tx⌉).
Execute instruction (A2).
(A2) Test whether or not {⌈e, n⌉ | n ∈ (O ↾ k ∪ {m, 4})} ⊆ DAz

,
In case it is, output ϕk(k) ↑, and stop.
Else output ϕk(k) ↓ and stop.”

By assumption, the learner M is expected to learn the class L. By definition
M is a set-driven learner, so on input content(tx) = {⌈e, n⌉ | n ∈ (O ↾ k∪{m})},
M is supposed to make a correct guess for the structure A⌈k,j⌉. In other words,
M on t, must output an index ⌈k, j⌉, s.t. DA⌈k,j⌉ = {⌈e, n⌉ | n ∈ (O ↾ k∪{m})}.
Therefore, Alg terminates on every input k.
Let’s show that Alg is correct. Suppose otherwise, i.e. Alg has output ϕk(k) ↑,
but was expected to output ϕk(k) ↓. Then ¬ξk(k) ≤ j. But then we will have
that DA⌈k,j⌉ = {⌈e, n⌉ | n ∈ (O ↾ k ∪ E)}. But by asumption M is a set-driven
learner for the class L, so the behaviour of Alg is correct.
Suppose now that Alg has output ϕk(k) ↓. Then we know that j ̸= 0, and
DA⌈k,j⌉ = {⌈e, n⌉ | n ∈ (O ↾ k ∪ {m})}. From the definition of L we then get
that ξk(k) ≤ j. Hence ϕk(k) is indeed defined.
But we have that the halting problem is unsolvable. Then from the definition
of L and the behaviour of M, M will wrongly guess an index for a structure.
Hence M is not a SdTxtEx-learner for L. From this it follows that the class is
not SdTxtEx-learnable. This proves Lemma 1.

Claim 2: L ∈ TxtEx.
We define a TxtEx-learnerM ′ for the class L. Suppose t is a text for a structure
A ∈ L.
M(⌈tx⌉) = ”

Determine the maximum k, s.t.
ok = max{o | o = n, where⌈e, n⌉ ∈ content(tx)},
if there is not such k, output nothing and request next input
otherwise test whether or not ξk(k) ≤ x.
In case it is, go to (1).
Otherwise, output index ⌈k, 0⌉ and request next input.
(1) Check whether or not content(tx) contains a number
two numbers ⌈e, n1⌉ s.t. n1 ∈ E, s.t.
n1 ̸= m.
In case it is output ⌈k, 0⌉ and request next input.
Otherwise go to (2).
(2) check whether m ∈ content(tx)
In case it is, output ⌈k, x⌉, and request next input.
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Otherwise output nothing, and request next input. □

Theorem 2.3.19. For X ∈ {Txt, Inf}, we have that SdWMonX ⊊ WMonX.

Proof: We have by thm. 2.3.15 that WMonX = TxtEx. Then we can use the
same argument as in thm. 2.3.18 in order to prove this theorem. □

Theorem 2.3.20. For X ∈ {Inf, Txt}, we have that SdSMonX ⊊ SMonX.

Proof: Let L be a c.e. class of computable structures with language L. For all
k, i ∈ ω, we set
DA⌈k,0⌉ = {⌈e, n⌉ | n ∈ (O ↾ k ∪ E)}, where A⌈k,i⌉ ∈ L. For each k ∈ ω and all

j ∈ ω+ we distinguish the following cases:
Case 1: ¬ξk(k) ≤ j
Then we set DA⌈k,i⌉ = DA⌈k,0⌉ .
Case 2: ξk(k) ≤ j
DA⌈k,i⌉ = {⌈e, n⌉ | n ∈ (O ↾ k ∪ {m}}, where m = 4. Case 1: L /∈ SdSMonTxt.
We prove this Claim, by showing that if L ∈ SdSMonTxt, then we can con-
struct an algorithm for solving the halting problem.
We define an algorithm Alg in the following way:
Alg: ”On input k execute (B1) and (B2).

(B1): For z ∈ ω,
generate successively the canonical text t of A⌈k,0⌉
until M on input tz
outputs for the first time a hypothesis j
s.t. content(tz) ∪ {O ↾ k ∪ {m}} ⊆ DAj

.
(B2): Test whether ξk(k) ≤ z + 1.
In case it is, output ϕk(k) ↓, and stop.
Otherwise output ϕk(k) ↑, and stop.

The learner M is suppose to output an index for a structure Aj ∈ L. on input tz
outputs an index j, which satisfies the test (∗)content(tz)∪{O ↾ k∪{m}} ⊆ DAj

.
Furthermore the test (*), can be effectively performed, since the membership
in DAj

is uniformly decidable. By assumption (B2) is effectively executable.
Hence Alg is computable.
Let’s see that ϕk(k) ↑, if ξk(k) ≤ z + 1. Suppose otherwise, i.e. there exists a
y > z+1, s.t. ξk(k) = y. By definition of L, we have that tz is an initial segment
of a text t̂ for a structure Ai ∈ L, s.t. i ̸= ⌈k, 0⌉. The learner M is set-drivent
and strongly monotonic, which means that M is supposed to output an index
for the structure Ai, satisfying the requirements of strong monotonicity. But M
doesn’t identify Ai from its text t̂, as M outputs an indexM(⌈tz+r⌉) = j, where
j = ⌈k, 0⌉;∀r ∈ ω. Hence M fails to identify L.

Claim 2: L ∈ SMonTxt.
We define the following MonTxt-learner for the class L, with which the claim
will be proved and hence the theorem. Let t be a text for a structure A ∈ L.
M(⌈tx⌉) = ”
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find the maximum k, s.t. ok = max{o | o = n∧⌈e, n⌉ ∈ content(tx)∧n ∈ O}
Test whether or not ξk(k) ≤ x.
In case it is, go to (1).
Otherwise, output nothing and request next input.
(1) Test whether or not there is n ̸= m,
s.t. ⌈e, n⌉ ∈ content(σ)
In case it is output ⌈k, 0⌉ and request next input. Otherwise go to (2).
(2) Check if ⌈e,m⌉ ∈ content(tx).
in case it is, output ⌈k, x⌉ and request next input.
Otherwise output nothing, and request next input. □

When comparing strong monotonic learnbility with rearrangment independent
learnability, we see that both have the same learnability power.

Theorem 2.3.21. (Theorem 8, [LZ04]) For X ∈ {Txt, Inf}, we have that
rSMonX = SMonX.

Proof: Let L ∈ SMonTxt be a c.e. class of computable structures. By applying
thm. 2.3.11 to structures, we get a c.e. family (Tj)j∈ω of finite non-empty texts
satisfying the requirements from the theorem.
Using the family (Tj)j∈ω we define a rSMonTxt machine M, which learns the
class L. Let A ∈ L, and let t be a text for A, let x ∈ ω.
M(⌈tx⌉) = ”Search for the least j ≤ x for which Tj ⊆ content(tx) ⊆ DAj

.
If such j is found,
output j and request next input.
Otherwise, output ’?’ and request next input. ”

The machine M is defined as rMonTxt-learner(see def. 2.3.12).

Next step is to show that M is SMonTxt-learner for the class L.
Claim 1: The learner M learns the structure A on text t.
Let j ∈ ω be the least, s.t. DAj

= DA. Then there is a least n ∈ ω, for which
Tj ⊆ content(tn). By condition we have that for all k < j, DAk

⊂ DA (oth-
erwise we will have DAk

= DAj
= DA from the clause (2) from thm. 2.3.11).

Then there exists a stage y ∈ ω for which content(ty) ⊈ DAk
for all k < j, for

which DAk
⊆ DA. Hence M(⌈ty+z⌉) = j, for all z ∈ ω.

Claim 2: The learner M is a strong monotonic learner.
Let M(⌈tx⌉) = j and M(⌈tx+r⌉) = k for some x, j, k ∈ ω, r ∈ ω+. Then M
first has found that Tj ⊆ content(tx) ⊆ DAj

, and later has changed its mind
to a new index k, s.t. Tk ⊆ content(tx) ⊆ DAk

. But the family (Tj)j∈ω sat-
isfies the requirements from thm. 2.3.11. Hence we will have that Tj ⊆ DAk

,
hence DAj

⊆ DAk
. From the last we get that M is indeed a strong monotonic

learner. □

An obvious observation is:

Corollary 2.3.5. For X ∈ {Txt, Inf}, XFin ⊊ rSMonX.
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For a set D ⊆ ω, by D[m] we will refer to the m-th element of the set D, for
m ∈ ω.
Recall that for a segment σ ∈ SEQ, where ln(σ) we have that σ− = σ ↾ (n−1),
if n > 1, and σ− = σ, otherwise.
While rearrangment independence does not restrict strong monotonic learnabil-
ity, it restricts monotonic learnaility type. Based on Theorem 10 from [LZ93b]
we can prove that.

Theorem 2.3.22. For X ∈ {Txt, Inf}, rMonX ⊊MonX.

Proof:

(←)rMonTxt ⊆MonTxt
Let L be a c.e. class of computable structures, s.t. L ∈ rMonTxt. We
define a learner M which MonTxt-identifies L. Let t be a text for a struc-
ture A ∈ L. Based on thm. 2.3.12, we use the family (Tj)j∈ω, which we
know it exists as the class is rMonTxt-learnable.

M(⌈tx⌉) = ”Search for the least index i,
s.t. Ti ⊆ content(tx) ⊆ DAi

.
If such i is found,
output i and request next input.
Otherwise output ’?’ and request next input.”

We prove that M MonTxt-identifies the class L.

Case 1: M learns each structure in L.
Suppose otherwise, i.e. that there is a structure A ∈ L, which M fails to
identify. Suppose Ai is that structure. Then by definition M has failed
with the test Ti ⊆ content(tx) ⊆ DAi . I.e. M has found an index j < i,
s.t. Tj ⊆ content(tx) ⊆ DAj

. Then by definition of (Tj)j∈ω, we will have
that Tj ∩ DAj

⊆ Ti ∩ DAj
, and DAi

∩ DAj
⊆ DAj

. But in order M to
learn the structure Ai, then at some moment M has received elements not
contained in Aj and by definition M has found an index which passes the
test, which is different from j. I.e. the test Tj ⊆ content(tx) ⊆ DAj has
failed at some moment and M will identify the next index which will pass
the test based on the information available to M. Based on that observa-
tion and the fact that (Tj)j∈ω is defined based on thm. 2.3.12, we get that
M is correct.

Case 2: M is monotonic.
Suppose otherwise, i.e. there are indecies j1, j2, j1 < j2, s.t. DAj1

∩DA ⊈
DAj2

∩ DA. Then M has failed with the test Tj1 ⊆ content(tx) ⊆ DAj1
.

But then we have that Tj1 ⊆ Tj2 and Tj2 ⊆ content(tx) ⊆ DAj2
, i.e.

content(tx) contains an element not contained in previous stages. Hence
M correctly changes its mind. As each Tj in the family (Tj)j∈ω satisfies
the requirements from thm. 2.3.12, M is monotonic. Hence L ∈MonTxt.

(→)MonTxt ⊈ rMonTxt
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To prove this direction we will use the sets D1,D2 and D3.
We define a class of c.e. structures L based on their atomic diagrams in
the following way:

DA4k+z
=


{⌈e, x⌉ | x ∈ (D1 ↾ k ∪ {D2[k]} ∪ Ak)}, , if z = 0
{⌈e, x⌉ | x ∈ (D1 ↾ k ∪ {D3[k]} ∪ Bk)}, , if z = 1
{⌈e, x⌉ | x ∈ (D1 ↾ k ∪ {D2[k]} ∪ {D3[k]) ∪ Ak)}, , if z = 2
{⌈e, x⌉ | x ∈ (D1 ↾ k ∪ {D2[k]} ∪ {D3[k]) ∪ Bk)}, , if z = 3

where we define the sets Ak and Bk with their respective characteristic
functions.

χAk
(n) =

{
1, n ∈ (D2 ↾ k ∪ {D1[m]}) ∧ ξk(k) = m
0, otherwise

χBk
(n) =

{
1, n ∈ (D3 ↾ k ∪ {D1[m]}) ∧ ξk(k) = m
0, otherwise

Now we prove that:
(1) L ∈MonTxt
(2) L /∈ rMonTxt

Claim 1: L ∈MonTxt.
We define a monotonic learner M, which for each text t for a structure
A ∈ L, will give as output an index for A. Let t be a text for a structure
A ∈ L.
M = ”On input σ ∈ SEQ, s.t. σ ⊑ t,

if σ = ∅, or M(⌈σ−⌉) =′?′,
then execute (1)
else execute (2)

(1) Check whether or not for some k ∈ ω:,
(a1){⌈e, x⌉ | x ∈ (D1 ↾ k ∪ {D2[k]})} ⊆ content(σ) or
(a2){⌈e, x⌉ | x ∈ (D1 ↾ k ∪ {D3[k]})} ⊆ content(σ).

If (a1) is true, output 4k and request next input,
else output 4k + 1 and request next input.

(2) Let j =M(⌈σ−⌉).
(a1) Check whether or not content(σ) ⊆ DAj .

If (a1) is true, output j and request next input,
otherwise go to (3).

(3) If j = 4k or j = 4k + 1, output j + 2 and request next input,
else if j = 4k + 2 output 4k + 3 and request next input,
otherwise output 4k + 2 and request next input.”

From the definition of the learner M, it can be seen that for a custom k
∈ ω, for an abitrary text t for a structure with index 4k or 4k + 1, M
works monotonically. It remains to show that for an arbitrary text t for
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a structure with index 4k + 2 or 4k + 3, M remains monotonic. Let t be
an arbitrary text for a structure with index 4k + 2 or 4k + 3. We need to
observe two cases:
Case 1: ϕk(k) ↑
Then we get that DA4k+2

= DA4k+3
. As we have that t is a text for a

structure with index 4k+2, then there is a moment n ∈ ω, and σ ∈ SEQ,
s.t. σ = tn and content(σ) ⊆ DA4k+2

. This gives us that for all r ∈ ω+,
M(⌈tn+r⌉) = j, where j is an index for a structure A4k+2. Furthermore
the learner M has changed its mind at most once. Hence M is monotonic.
Case 2: ϕk(k) ↓
We have that DA4k+2

and DA4k+3
are finite sets, and can be seen that the

learner M will give a correct guess. There are subceses to observe.
Subcase 2.1.: t is a text for DA4k+2

.
If the learner M first outputs 4k, then M will need only one mind change
to correctly output 4k + 2. Hence M is monotonic.
On the other hand if M first gives as guess 4k + 1, then M produces the
hypotheses 4k + 1, 4k + 3, 4k + 2. By definition of this type of monotonic
learnability, we get that DA4k+1

∩ DA4k+2
⊆ DA4k+3

∩ DA4k+2
⊆ DA4k+2

.
This shows that M is monotonic.
Subcase 2.2.: t is a text for DA4k+3

.
If the learner M first produces output 4k + 1, then again M will need one
mind change to output a correct guess 4k + 3.
Otherwise M will produce as guess 4k, 4k+2, 4k+3. In both cases we get
that M works monotonically.

Claim 2: L /∈ rMonTxt.
Suppose that there is a rMonTxt − learner M which witnesses that
L ∈ rMonTxt.

Claim 3: Given any algorithm for the learner M which witnesses that
L ∈ rMonTxt one can define an algorithm solving the halting problem.
Let’s define such algorithm.
Alg = ”On input k execute (A1)

until one of both (a1) or (a2) is successful.
After that execute (A2).

(A1) : for x ∈ ω execute (a1) and (a2) simultaneously, until one of them
becomes successful.

(a1) Test whether ξk(k) ≤ x.
(a2) Simulate M on inputs tn and t̂n, where

{⌈e, x⌉ | x ∈ (D1 ↾ k ∪ D2[k])} ⊆ content(tn),
and {⌈e, x⌉ | x ∈ (D1 ↾ k ∪ D3[k])} ⊆ content(t̂n).

If M on both inputs outputs two different hypothesis,
say j and ĵ, then test whether

{⌈e, x⌉ | x ∈ (D1 ↾ k ∪ D2[k])} ⊆ DAj
,

⌈e,D3[k]⌉ /∈ DAj
,
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{⌈e, x⌉ | x ∈ (D1 ↾ k ∪ D3[k])} ⊆ DAĵ
,

⌈e,D2[k]⌉ /∈ DAĵ
.

(A2): If (a1) happens first, output ϕk(k) ↓ and stop.
Otherwise simultaneously execute (b1) and (b2) until one of them becomes
successful.

(b1) Test whether ξk(k) ≤ x+ y.
(b2) Test whether M generates a consisent hypothesis n,

i.e. M(⌈tx+y⌉) = n and content(tx+y) ⊆ DAn .
If (b1) happens first, then output ϕk(k) ↓ and stop.
Otherwise output ϕk(k) ↑ and stop.

Both (a1) and (b1) can be effectively performed. Furthermore member-
ship is uniformly decidable which from which it follows that (a2) and (b2)
can be effectively performed, too. From this it follows that Alg is com-
putable.
Let’s see that Alg terminates for all k ∈ ω. Assume otherwise, i.e. that
there exists k ∈ ω, s.t. (A1) doesn’t terminate. Then ϕk(k) diverges. Be-
cause (a2) will never terminate successfully, then M will fail to identify one
of the sets D1 ↾ k∪{D2[k]} or D1 ↾ k∪{D3[k]}. We reach a contradiction.
The same argument applied to (A2) gives us a contradiction. Hence Alg
is defined for all k ∈ ω.

Let’s see that Alg works correctly.
When the algorithm stops with ϕk(k) ↓, then ϕk(k) is defined. Assume
otherwise, that ϕk(k) ↑, but ϕk(k) is defined. From the definition of Alg
it follows that there exists x ∈ ω, s.t. M(⌈tx⌉) = n and M(⌈t̂x⌉) = n̂,
where tx is a text for A4k and t̂x is a text for A4k+1. Furthermore there
exists y ∈ ω, s.t. M(⌈tx+y⌉) = n and M(⌈t̂x+y⌉) = n (which we get as
result, because M is rearrangment independent).

Because we have that D1 ↾ k ∪ {D2[k]} ∪ {D3[k]} ⊆ DAn , where An ∈ L,
we distinguish two cases.
Case 1: Ak = A4k+2. The text t̂x+y is an initial segment of a text
for A4k+3, too. In some subsequent step of its computation, M has al-
ready generated hypothesis m and n. As ϕk(k) is defined, then DA4k+1

∩
DA4k+3

⊈ DA4k+2
∩DA4k+3

. Hence M is not a monotonic learner.
Case 2: Ak = A4k+3. We use the same argument as before, and get that
M is not a monotonic learner.
With this we prove the correctness of our algorithm. Furthermore we have
that the halting problem is undecidable. Hence the lemma is proved.

□

From thm. 2.3.22 we can conclude that.

Corollary 2.3.6. For X ∈ {Txt, Inf}, SdMonX ⊊MonX.
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Theorem 2.3.23. (Theorem 3, [LZ04]) There exists a class of computable
structures L, s.t. for X ∈ {Txt, Inf}:

� L ∈ rSMonX

� L /∈ SdXEx

Proof: Let L be a c.e. class of computable structures with language L. For each
k ∈ ω, s.t. Ak ∈ L, we set DA⌈k,0⌉ = {⌈e, n⌉ | n ∈ (O ↾ k ∪ E), where n < k}.
For each k ∈ ω and all j ∈ ω+ we distinguish the following cases:
Case 1: ¬ξk(k) ≤ j
We set DA⌈k,j⌉ = DA⌈k,0⌉ .
Case 2: ξk(k) ≤ j
We set DA⌈k,j⌉ = {⌈e, n⌉ | n ∈ (O ↾ k ∪ {m}}, where m = 6.

Claim 1: L ∈ rSMonTxt.
We define a rSMonTxt-learner M for the class L. Let t be a text for a structure
A ∈ L.
M(⌈tx⌉) = ”find the maximum k, s.t. ok = max{o | o = n, where ⌈e, n⌉ ∈
content(tx) ∧ n ∈ O.

if k is not found, output nothing and request next input.
check wether m = en, and ⌈e, en⌉ ∈ content(tx)
and en is the only even number.
In case such en is found, execute (A1).
Otherwise, check if there are n1, n2 ∈ E, s.t.
n1 = en1

, and n2 = en2
, where

⌈e, en1⌉ ∈ content(tx) and ⌈e, en2⌉ ∈ content(tx) In case it is, output
⌈k, 0⌉.

Otherwise, output nothing and request next input.
(A1) Test whether or not ¬ξk(k) ≤ x.
In case it is output nothing and request next input.

Otherwise output ⌈k, ξk(k)⌉ and request next input.

It can be seen that the learner M is rearrangment independent. To prove that
L ∈ rSMonTxt, we look at the following cases.
Case 1: ϕk(k) ↑.
From the definition of the class L we get that DA⌈k,0⌉ = DA⌈k,j⌉ for all j ∈ ω.
As t is a text for a structure A ∈ L, then there is a stage x, s.t. content(tx) ⊈
{⌈e, n⌉ | n ∈ (O ↾ k ∪ {m})}. The learner M, after having seen the text tx, it
will always output ⌈k, 0⌉, which is a correct hypothesis. This shows that in this
case M works strong-monotonically.

Case 2: ϕk(k) ↓.
We have two possibilities:
DA⌈k,j⌉ = {⌈e, n⌉ | n ∈ (O ↾ k ∪ {m})}. Then the learner M will always execute
instruction (A1). Furthermore there is a stage n0 ∈ ω, s.t. ξk(k) ≤ x for all
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x ≥ n0. Then the learner M after having seen tn0 will always output ⌈k, χk(k)⌉,
and will be correct.
DA⌈k,j⌉ = DA⌈k,0⌉ . We have two subcases. Like in Case 1, M can find a
stage at which to output ⌈k, 0⌉, which means that M has found at some stage
n0 ∈ ω, that content(tn0

) ⊈ {⌈e, n⌉ | n ∈ (O ↾ k ∪ {m})}, and will be cor-
rect. The second subcase is if M at first finds an initial segment of t, s.t.
content(tx) ⊆ {⌈e, n⌉ | n ∈ (O ↾ k ∪ {m})}, then M will output ⌈k, χk(k)⌉.
Then at some later stage M will find more even numbers and will correctly
switch to an index for ⌈k, 0⌉. It can be seen that this mind change doesn’t
break the strong-monotonicity requirement. Hence M works correctly and is
strong-monotonic.

Claim 2: L /∈ SdTxtEx.
We prove this Claim, by showing that if L ∈ SdTxtEx, then we can construct
an algorithm for solving the halting problem.
Lemma: Let M be a SdTxtEx-learner for the class L. Then M can be used to
solve the halting problem.
Proof: We define an algorithm Alg in the following way:
Alg: ”On input k execute instruction (a1).

(a1): Simulate M on input content(σ) = {⌈e, n⌉ | n ∈ {O ↾ k ∪ {m}}.
If M doesn’t output a hypothesis, output ϕk(k) ↑, and stop.
Otherwise, let z =M(⌈σ⌉). Execute (a2).
(a2) Test whether or not there is m2 ∈ E, s.t. m ̸= m2, where
content(σ) ∪ {⌈e,m2⌉} ⊆ DAz .
In case it is, output ϕk(k) ↑.
Else output ϕk(k) ↓ and stop.”

Let’s see that Alg behaves correctly. Suppose Alg outputs ϕk(k) ↑, but we
have that ϕk(k) ↓. Then as M is set-driven, M has to output a correct hy-
pothesis, but it doesn’t, as Alg terminates with a wrong behaviour. With this
contradiciton, we get that Alg behaves correctly.
Let’s assume that Alg terminates with ϕk(k) ↓. Then the test in (a2) will give
us DAz

= {⌈e, n⌉ | n ∈ (O ↾ k ∪ {m})}. Hence ϕk(k) ↓.
□

Theorem 2.3.24. (Theorem 9, [LZ04]) Fox X ∈ {Txt, Inf}, we have that
SdMonX ⊊ rMonX.

Proof:

� SdMonX ⊆ rMonX.
We use thm. 2.3.12 in order to prove this direction.
Suppose L is a SdMonX-learnable. We define a rMonX-learner M for the
class L.
M(⌈tx⌉) = ”Search for the least i ≤ ln(tx),

s.t. Ti ⊆ content(tx) ⊆ DAi
,
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where Ai ∈ L.
If such i is found, output i and request next input.
Otherwise output ’?’ and request next input.”

It can be seen that M is rearrangment independent.
Let’s see that M correctly identifies L and that M is indeed a monotonic
learner.
Case 1: The learner M correctly identifies the class L.
Suppose that M has output an index j1, and that M is wrong, i.e. it has
to output an index i < j1. But by definition of M, there has to be an
element n /∈ DAi

, when M changes its mind. Hence M is correct.
Case 2: The learner M is monotonic.
Suppose otherwise, i.e. M has output indecies j1, j2, where j1 < j2, s.t.
DAj1

∩DA ⊈ DAj2
∩DA.

But by assumption (Tj)j∈ω satisfies the requirements in thm. 2.3.12. By
definition M, on input σ, will output an index satisfying the test. As M
changes its mind only on elements not contained in previous guesses M
correctly will identify each structure in L. As each (Tj)j∈ω satisfies the
monotonicity requirements hence M does too. Hence L ∈ rMonTxt.

� rMonX ⊈ SdMonX.
From thm. 2.3.23 we have that rMonX ⊈ SdXEx. From thm. 2.3.13
and thm. 2.3.15, we can conclude that SdMonX ⊊ SdXEx. Hence
rMonX ⊈ SdMonX.

□

Theorem 2.3.25. For X ∈ {Txt, Inf}, we have that rXEx = XEx.

Proof:

� rTxtEx ⊆ TxtEx.
Let L be a rTxtEx-learnable class. Suppose M is a rTxtEx-learner for
the class L. We define a TxtEx-learner M ′ for the class L based on the
behaviour of M. What M ′ does is just to wait M to output an answer.
As M correctly ideintifies each structure in the class L, the so M ′. Hence
L ∈ TxtEx.

� TxtEx ⊆ rTxtEx.
We use the thm. 2.3.2 in order to prove this direction.
Let L ∈ TxtEx. We define a rTxtEx-learner M for the class L by which
we will prove this direction.
Suppose t is a text for a structure A ∈ L, and σ ⊑ t then:
M(⌈σ⌉) = ”Search for the least index i ≤ ln(σ),

s.t. Ti ⊆ content(σ) ⊆ DAi .
If such i is found output i as answer and request next input,
otherwise output ’?’ and request next input.

By def. of rearrangment independent learnability, the learner M is clearly
rearrangment independent (see def. 2.3.12).
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Claim: The learner M TxtEx-learns the structure A from a text t.
Proof: Let i ∈ ω be the least index for which we have that DAi = DA.
Then there is a least n ∈ ω, for which Ti ⊆ content(tn). For all j < i,
we will have that DAj

⊂ DAi
(or they will be equal, from the second

clause of the thm. 2.3.2). The least part means there exists a stage z,
for which content(tz) ⊈ DAk

, for all k < i, where DAj ⊆ DAi . Hence
M(⌈tz+r⌉) = i, for all r ∈ ω.

□

Theorem 2.3.26. For X ∈ {Txt, Inf}, we have that rWMonX = WMonX.

Proof: We can use the same idea as in thm. 2.3.25. □

From thm. 2.3.17 and by definition of rearrangment independent (see def.
2.3.12), we can conclude that.

Corollary 2.3.7. For X ∈ {Txt, Inf}, we have that SdXFin = rXFin.

From thm. 2.3.18 and thm. 2.3.25 we can conclude that.

Corollary 2.3.8. For X ∈ {Txt, Inf}, SdXEx ⊊ rXEx.

By using lemma 2.3.8 and thm. 2.3.14.

Corollary 2.3.9. For X ∈ {Fin,Ex, SMon,Mon,WMon} and Y ∈ {r, Sd},
we have that Y TxtX ⊊ Y InfX.

2.3.4 [ Memory limitation ]

Here we will look at a type of learnability concerned with restricting the
information available to a learner. This type of learnability was influenced from
learning from children, who (with high probability) can forget about a given
sentence, once when processed.

Recall that for a segment σ ∈ SEQ, σ− is a segment in which the last element of
σ is removed, if σ has at least one element. Then, for n ∈ ω, we define σ−n as a
new segment σ′ ∈ SEQ in which first n elements from σ are removed, provided
that ln(σ) ≥ n, or σ−n = σ otherwise.

Definition 2.3.13. (n-memory limited learner, [OSW86]) Let L be a class of
structures with language L. Let M be a learner for the class L. Let t be a text
for a structure A ∈ L (or I be an informant for A ∈ L). For n ∈ ω, M is said to
be n-memory limited learner, if for all σ, τ ∈ SEQ, s.t. σ, τ ⊑ t (or σ, τ ⊑ I),
if σ−n = τ−n and M(⌈σ−⌉) =M(⌈τ−⌉), then M(⌈σ⌉) =M(⌈τ⌉).

By n-MLim we will denote the classes of structures which are learnt by an
n-memory limited machines, where n ∈ ω.
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Recall that, from lemma 2.3.5, if ϕe is a partial computable function with pro-
gram with index e, then there is a one-to-one computable function f: ωn → ω,
s.t. for any e ∈ ω, and x̄ ∈ ωn−1, we have that ϕf(e,x̄) = ϕe.

Lemma 2.3.10. (Lemma 4.4.1A, [OSW86]) 1 −MLim = n −MLim, for an
arbitrary n ∈ ω.

Proof:
(→)1−MLim ⊆ n−MLim. This direction is trivial.
(←)n−MLim ⊆ 1−MLim.
Suppose that L is a class of structures with language L, which is n −MLim-
learnable. We define M a 1-MLim learner for the class L.
To prove this direction we will make a modification to the input of M.
For a number m ∈ ω, by mk we will denote the repetion of m k-times in a given
text, for some k ∈ ω. Let σ ∈ SEQ, s.t. σ ⊑ t, where t is a text for a structure
A ∈ L. We define a new segment σ̂ which modifies σ, in such a way to guarantee
the learnability of the class L by M, and hence by a 1-MLim-learner.
We define σ̂ in the following way σ̂ = σ(0)nˆσ(1)ˆσ(0)nˆ...ˆσ(ln(σ))ˆσ(0)n.
We define the learner M as follows:

M(⌈σ⌉) =
{
i, ϕf(i,σ) = ϕi, s.t. content(σ) ⊆Wi

?, otherwise
Let’s see why M learns the class L and that indeed M is 1-MLim.
By the way we modify the input to M, we get that for any text t for a structure
A ∈ L, the modified text t̂ is also a text for A, as we don’t contradict the condi-
tions of n−MLim-learnability. With this we prove that M learns the class L.
We will show now that M is 1-MLim. Suppose that for two segments σ, τ ∈
SEQ, s.t. σ, τ ⊑ t, we have that M(⌈σ−⌉) =M(⌈τ−⌉) and σ−1 = τ−1.
As we modify both segments before providing them to M, we will get that
M(⌈σ̂−⌉) =M(⌈τ̂−⌉) and σ̂−1 = τ̂−1. Then by definition of n-MLim learnabil-
ity we get that indeed M 1-MLim identifies the class L. □

Proposition 2.3.3. (Proposition 5.6.3A, [OSW86]) MLimTxt ⊊MLimInf .

Proof:

(→) MLimTxt ⊆MLimInf .
Let L be a MLimTxt-learnable class of structures. Let M be a MLimTxt-
learner for the class L. We define an MLimInf-learner M ′, which provides
input to M, only the positive information from an informant I, and outputs
whatever M does. As M identifies each structure A ∈ L, the behaviour of
M ′ will be correct. Hence L ∈MLimInf .

(←)MLimInf ⊈ MLimTxt. Let L be a class of computable structures
with language L, with one unary relation, defined in the following way:
DA1

= {⌈e, n⌉ | n ∈ O},

DAj
=

{
{⌈e, n⌉ | n ∈ (O ∪ {ej−1})}, if j%2 = 0
{⌈e, n⌉ | n ∈ (O \ {j} ∪ {ej})}, if j%2 ̸= 0

We will prove this direction for 1-MLimTxt.
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– L ∈MLimInf
A successful MLimInf-learner M for the class L is based on the fol-
lowing idea: M needs to check whether an even number ej ∈ E is
provided to it, and whether there is a negative information about an
element oj ∈ O is given to it. At first if M gets only positive examples
from the set O M will output an index for A1, once an even number
ej ∈ E appears, or negative example oj ∈ O appears M will switch
either to A2j , or A2j−1. Hence M will identify each structure Ai ∈ L.
Hence L ∈MLimInf .

– L /∈MLimTxt
Suppose otherwise, i.e. that L ∈MLimTxt. Let M be a 1-MLimTxt-
learner for the class L. Suppose that σ is a locking sequence for
DA1 . Let σ

′
= σˆ⌈e, ej⌉, and σ

′′
= σˆ⌈e, oj⌉ˆ⌈e, ej⌉, where ej ∈ E

and oj ∈ O, s.t. oj /∈ content(σ). Then we have that M(⌈σ′⌉) =
M(⌈σ′′⌉) as σ is a locking sequence for DA1

, and M is 1-MLimTxt.
We define two texts t1, t2 for DA2j

and DA2j−1
respectively. Let t1 =

σ′ˆ⌈e, 1⌉ˆ⌈e, 3⌉ˆ...ˆ⌈e, 2i−1⌉, and t2 = σ′′ˆ⌈e, 1⌉ˆ⌈e, 3⌉ˆ...ˆ⌈e, 2i−1⌉,
for all i ̸= j. Then M on both texts will output the same index as
σ is a locking sequence for DA1

. Thus M will fail to identify both
structures A2j and A2j−1. Hence M will fail to learn the class L.
Hence L /∈MLimTxt.

□

Theorem 2.1. For X ∈ {Inf, Txt} and Y ∈ { Fin, Ex, BC, SMon, Mon,
WMon, SdFin, SdEx, SdSMon, SdMon, SdWMon, rSMon, rMon, rWMon },
we have that MLimX = XY.

Proof:

� XY ⊆ MLimX Let L be a class of structures. Let M be an XY-learner for
the class L. We define a new MLimX-learner M ′, where we modify the
input of M ′ in order to get the desired result.
For simplicity let M ′ be a 1-MLim memory machine, and let t be a text
for a structure A ∈ L (the same technique can be used in the case of infor-
mant). For each segment σ ⊑ t, we modify σ = ⟨⌈e, n1⌉, ⌈e, n2⌉, ..., ⌈e, nk⌉⟩
in the following way:
σ′ = ⟨⌈e, n1⌉, ⌈e, n1⌉, ⌈e, n2⌉, ⌈e, n2⌉, ..., ⌈e, nk⌉, ⌈e, nk⌉⟩. In such a way M ′

will never forget an element and will correctly identify the structure A
under the desired criteria. Hence L ∈ MLimX.

� MLimX ⊆ XY As we remove elements(by def. of MLimX-learnability) and
we correctly idenfity a class of structures, is not hard to see that defining a
XY-learnability machine outputting the same guess as an MLimX-learner
for the given class will correctly identify the same class, too.

□
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2.3.5 [ NUShapedBC ]

Here we will consider a behaviour of a learner, which emerged from the
behaviour of a child, learning language. In the case of english, it was found that
children often learn correctly past tense forms, but for some reason abandons
that correct behaviour and start to make mistakes. Then again they start to
correctly determine the right form of forming verbs.
If we forbidden a child of such correct-incorrect-correct behaviour a type of
learnability occurs known as Non-U-Shaped learnability. This type of learn-
ability decreases the learnability power when considering it under Behaviourly
correct learning.

Definition 2.3.14. (NUShBC) Let X ∈ {Inf, Txt}. Let L be a class of struc-
tures with language L. A XBC-learner M for L is non-U-shaped (denoted by
NUShTxtBC, or NUShInfBC), iff for every A ∈ L, there are no three inde-
cies k, m, n such that k < m < n and WM(⌈tk⌉) = DA, WM(⌈tm⌉) ̸= DA and
WM(⌈tn⌉) = DA.

Comparison between types

Theorem 2.3.27. (Theorem 2.7, [Car+05]) NUShTxtBC ⊂ TxtBC

Proof:

� NUShTxtBC ⊆ TxtBC
Follows by definition of TxtBC-learnability.

� TxtBC ⊈ NUShTxtBC
We use the idea given in Theorem 4, [FJO94].
Suppose {Mi}i∈ω is a c.e. set of all partial computable learners. Let L
be a c.e. class of c.e. structures with language L, defined in the following
way:
For all j ∈ ω, we set DAj

= {⌈e, n⌉ | n ∈ ω}.
For all j, k ∈ ω, let the atomic diagram of Aj+1

⌈j,k⌉ be defined as

Dj+1
A⌈j,k⌉

= {⌈e, n⌉ | n ≤ k}, and let the atomic diagram of Aj+2
⌈j,k⌉ be defined

as Dj+2
A⌈j,k⌉

= WMj(⌈σj,k⌉), where σj,k = {⌈j, 0⌉, ...⌈j, k⌉}.
If there is a least k ∈ ω and n ∈ ω for which

(∗)Dj+1
A⌈j,k⌉

⊆ Dj+2
A⌈j,k⌉

↾ n ⊆ DAj
,

then let k0 ∈ ω be that k.
If such k0 exists let the class of structures Lj = {Aj+1

⌈j,k0⌉,A
j+2
⌈j,k0⌉}, otherwise

let Lj = {Aj}. We set L =
⋃

j∈ω{Lj}.

Claim 2.3.1. L ∈ TxtBC

Proof: In order to prove this part, we will define a learner M, which
TxtBC-learns the class L. We define a TxtBC-learner M in the following
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way:
M = ”On input σ ∈ SEQ, s.t. ln(σ) = n

let j ∈ ω be such that content(σ) ⊆ DAj

if n ≤ 1
then let M(⌈σ⌉) = e, where We = DAj

else
let c = {k ≤ n | Dj+1

A⌈j,k⌉
⊂Wn

Mj(⌈j,k⌉) ↾ ln(σ) ⊆ DAj}
if c = ∅
then let M(⌈σ⌉) = e, where We = DAj

else
let k0 = min(c)
if content(σ) ⊆ Dj+1

A⌈j,k0⌉

then let WM(⌈σ⌉) = Dj+1
A⌈j,k0⌉

else if content(σ) ⊆ Dj+2
A⌈j,k0⌉

then let WM(⌈σ⌉) = Dj+2
A⌈j,k0⌉

else let WM(⌈σ⌉) = DAj

endif
endif

endif
end”

We observe 3 cases in order to prove the claim. Suppose t is a text for Aj .

Case 1: If there is no such k ∈ ω for which (*) holds.
We have two cases: either there is a k′ and an index j′ < j for which (∗)
holds, i.e. Dj′+1

A⌈j′,k′⌉
⊆ Dj′+2

A⌈j′,k′⌉
↾ n ⊆ DAj′ . Then from the definition of M,

at first we will output an index for Dj′+1
A⌈j′,k′⌉

, until we get an element not

contained in Dj′+1
A⌈j′,k′⌉

. Then M will check whether content(tx) ⊆ Dj′+2
A⌈j′,k′⌉

.

In case this happens, M will output an index for Dj′+2
A⌈j′,k′⌉

. Then again

M can receive an element n ∈ DAj′ \ D
j′+2
A⌈j′,k′⌉

, and will fall in the third

clause from its definition. But we have that DAj′ = DAj
, hence M will

be correct as M is TxtBC-learner. If there is no such k′, M can output
an index for DAj′ = DAj . From the definition of TxtBC, M again will be
correct.

Case 2: There is a k ∈ ω for which (*) holds.
Let k0 ∈ ω be the least such k. Then:
Case 2.1. : If content(tx) ⊆ Dj+1

A⌈j,k0⌉
. Then M will output an index for

Dj+1
A⌈j,k0⌉

. Then at later stage, M will get an element n ∈ DAj
\Dj+1

A⌈j,k0⌉
.

If n is contained in Dj+2
A⌈j,k0⌉

, M will output an index for it, otherwise M
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will output an index for DAj . We can have either that Dj+2
A⌈j,k0⌉

= DAj ,

or Dj+2
A⌈j,k0⌉

∩ DAj
̸= ∅. In the first case we will always pass the second

test from the definition of M, and will be correct as M is TxtBC-learner.
In the second case, there will be a moment at which we will receive an
element n ∈ DAj

\Dj+2
A⌈j,k0⌉

and will pass the third test from the definition

of M. Hence the behaviour of M will be correct. Hence M will identify
each structure Aj ∈ L. Hence L ∈ TxtBC.

Case 2.2.: If content(tx) ⊆ Dj+2
A⌈j,k0⌉

. Then M will output an index for

Dj+2
A⌈j,k0⌉

.

Then we have two possibilities. EitherDj+2
A⌈j,k0⌉

= DAj , orD
j+2
A⌈j,k0⌉

∩DAj ̸=
∅. In the first case, we will always output an index for Dj+2

A⌈j,k0⌉
, and as

M is TxtBC-learner, M will be correct. In the second case, at some later
stage M will receive an element n ∈ DAj \D

j+2
A⌈j,k0⌉

, as t is a text for DAj .

In both cases M will correctly identify each structure DAj ∈ L.

From both cases it follows that M will correctly identify each structure
Aj ∈ L. Hence L is TxtBC-learnable. Hence L ∈ TxtBC. □

Claim 2.3.2. L /∈ NUShTxtBC

Proof: Suppose otherwise, i.e. there is a learner M which NUShTxtBC-
learns the class L.
Suppose t is a text for a structure Aj ∈ L. We look at the following cases.
Case 1: If there is no k ∈ ω for which (*) holds, then either there are

k′ and j′ < j for which we can find structures for which Dj′+1
A⌈j′,k′⌉

⊆

Dj′+2
A⌈j′,k′⌉

↾ ln(tx) ⊆ DAj
or there are not such k′, j′. If there are, then M

will output an index for Dj′+1
A⌈j′,k′⌉

, at later stage if M receives an element

n ∈ Dj′+2
A⌈j′,k′⌉

\Dj′+1
A⌈j′,k′⌉

, M will switch to an index for Dj′+2
A⌈j′,k′⌉

. Suppose

Dj′+2
A⌈j′,k′⌉

∩ DA⌈j′,k′⌉ ̸= ∅, then M will fail to be NUShTxtBC-learner for

DA⌈j′,k′⌉ as M changed its mind to an incorrect guess. Now if there are

not such k′, j′, then we can not guarantee that at some later point M will
not change its mind to an incorrect guess. Hence this case is proved.
Case 2: If on the other hand there is such a k, then let k0 ∈ ω be the least
such k. Now we have that the structures Aj+1

⌈j,k0⌉,A
j+2
⌈j,k0⌉ ∈ L.

Suppose at first M has received σj,k0 ⊏ t, s.t. content(σj,k0) ⊆ Dj+1
A⌈j,k0⌉

.

Then M will output an index for Dj+1
A⌈j,k0⌉

. Suppose at later stage M

receives an input σ′
j,k0

⊏ t, s.t. Dj+1
A⌈j,k0⌉

⊂ content(σ′
j,k0

) ⊆ Dj+2
A⌈j,k0⌉

↾

ln(σ′
j,k0

) ⊆ DAj
and that Dj+2

A⌈j,k0⌉
∩ DAj

̸= ∅. Then M will output an

index for Dj+2
A⌈j,k0⌉

. Hence M will wrongly output an index for Dj+2
A⌈j,k0⌉

,
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until turns back again to DAj . Hence M will fail to NUShTxtBC-identify
Aj . Hence L /∈ NUShTxtBC.

□

□
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