
Sofia University ”St. Kliment Ohridski”

Faculty of Mathematics and Informatics
Department of Mathematical Logic and Applications

Master Thesis

Web System for Satisfiability of
Quantitative Contact Logics

Martin Stoev
Logic and Algorithms (Informatics)

Faculty number: 25790

supervised by
Prof. Tinko Tinchev

March 1, 2023

Contents
1 Introduction 2

2 Tableaux Method 3
2.1 Propositional logic tableau . 3
2.2 Rules . 4

3 Region-based Contact Logics 8
3.1 Syntax . 8
3.2 Semantics . 9
3.3 Formula Properties . 10
3.4 Formula Satisfiability . 12

4 Quantitative Contact Logics 16
4.1 System of Inequalities . 17
4.2 System Construction . 17
4.3 Measure formula satisfiability . 18
4.4 Formal System . 21

5 Implementation Introduction 22
5.1 Syntax . 22
5.2 Formula parsing . 23

5.2.1 Abstract Syntax Tree . 23
5.2.2 Tokenizer . 25
5.2.3 Parser . 26

5.3 Formula refinement . 29
5.3.1 Visitor Pattern . 29
5.3.2 Visitors Overview . 32

5.4 Formula building . 34
5.4.1 Optimizations . 34
5.4.2 Layout . 35
5.4.3 Hashing . 36
5.4.4 Conversion from AST . 37

6 Tableaux Implementation 38
6.1 Tableaux Step . 38
6.2 Rules . 38
6.3 Implementation . 39
6.4 Handy methods . 42
6.5 Tableaux Satisfiable Step Implementation 44

7 Model Implementation 50
7.1 Modal point representation . 50
7.2 Contacts representation . 53
7.3 Valuation representation . 53
7.4 Handy methods . 53

7.5 Modal points constructors . 60
7.6 Building algorithm . 64

8 Quantitative Contact Logics Implementation 65
8.1 System of Inequalities Implementation 65
8.2 Measured Less Operator Representation 66
8.3 Building Algorithm . 68

9 Rest Server 71

1

1 Introduction
The modal logics are in a constant exploration and extended by the today’s researchers.
The contact modal logics are one such topic with increasing interest. This paper works
its way to an algorithm which for a given contact modal logic formula with measure
constructs a model which satisfies the formula. If such a model does not exist, then the
algorithm provides a proof that the formula is not satisfiable.

The model construction process begins with a formal proof procedure to decompose
the formula to a simpler state. For this, the tableau method is used. The tableau method
branches the formula in many paths where each path can derive a valid model for
the formula. The procedure of model building is done for each path until a model is
successfully constructed. This procedure creates modal points, the relations between
them and the variables valuations in order to find a proof for a model satisfying the
formula.

As of today, an algorithm that can solve this problem in a polynomial time is
not existant. This is because the problem of constructing a satisfiable model for a
quantitative contact formula is at least as hard as the Boolean satisfiability problem
(SAT). That is why each optimization during the formula proving process significantly
reduces the algorithm execution time.

2

2 Tableaux Method
The tableau is a formal proof procedure that can be found in many variants and for
different logics. In modal logics, the tableau method is quite common and is mostly
used as a search procedure for models meeting certain conditions. Formally, the tableau
procedure is used as a refutation procedure; to prove that a formula X is satisfied, we
begin the process with some syntactical assertion that the formula is not satisfiable.
After that, the assertion stating that the formula is false, is broken down syntactically,
in most cases breaking the formula into several cases. This decomposition of the initial
formula is called the tableau expansion stage and can be thought as a generalization of
disjunctive normal form expansion.

During the expansion stage of the tableau, impossible cases can be met, where the
same formula is marked as true and false. These cases are said to be closed, and if each
case of the tableau is closed, then we say that the tableau is closed.

For our purposes, we will use a slightly different version of the method described
above; namely with the help of the expansion stage, we will try to find a model with
specific properties in which the given formula will be satisfied.

In this paper, we shall follow the definitions for the tableau method described in The
Handbook of Tableau methods [2]. In the handbook, there are two types of tableaux
given, namely signed and unsigned. For our purposes, we will use the signed version.

2.1 Propositional logic tableau
The tableau method for propositional logic is mainly defined based on the presentation
of Raymond Smullyan. In its simplest form, it is defined with the syntactical assertion
for the formula’s truth and definition of the expansion stage. To reach this goal, we need
to improve our syntactical arsenal to be able to assert the truth of a formula. In order
to accomplish this, we shall introduce two signs. These signs, when combined with a
formula, will assert whether the formula is to be true or false. Formally, the two signs
are {T, F}. Let 𝜑 be a formula, then

• T𝜑 - asserts that the formula 𝜑 is true

• F𝜑 - asserts that the formula 𝜑 is false

The tableau of a formula 𝜑 begins with F𝜑. The intuition behind it is that we
start with an assertion that 𝜑 is not true in some model. By decomposing the formula
during the tableau process, we seek for contradictions in the formals produced during
the expansion stage. If such a contradiction exists, then the initial claim that the formula
is not true is not possible; therefore, the formula must be true. On the other hand, if a
contradiction does not exist, then the formula is not true. As mentioned above, in our
case, the tableau will be used the other way around; namely for a given formula we will
decompose it as much as possible (or until a contradiction is found), and then when
there are no more possible ways to decompose the formula further, we are going to seek
a possible model which satisfies the formula 𝜑.

The expansion stage is a set of tableau steps which decompose the initial formula
into signed atomic formulas. A tableau expansion step applies one of the tableau rules

3

to slightly simplify the given formula. There are two rules for each operation in the
logic. In the case of propositional logic with the following operations {¬,∨,∧,→,↔},
there are ten rules. Each rule decomposes the formula in at most two formulas which
depend on the arity of the operation. The expansion process forms branches. A branch
contains signed formulas that have been asserted in the decomposition process.

A tableau rule which decomposes the formula into two formulas may require the
assertion of only one of the produced formulas to be satisfied. In this case, we will
say that the branch is split into two branches. However, in some terminologies, this is
noted as a new branch spawned from the original branch or as two new branches are
created. For the sake of simplicity, we will use the terminology of branch splitting. In a
scenario where the branch is split, all asserted formulas in the branch are copied in the
split branch together with the newly asserted formula from the tableau rule. The newly
asserted formulas depend on the tableau rule.

2.2 Rules
Negation Rule The rules for negations are straightforward. When a negation opera-
tion is encountered, the sign of the captured formula changes.

T(¬𝜑), 𝑋
F(𝜑), 𝑋

F(¬𝜑), 𝑋
T(𝜑), 𝑋

Conjunction Rule This is a binary operation, which means that the output of these
rules is more complex than the negation rules. The conjunction rule for a formula signed
as true decomposes the formula into two formulas and assert that both of them are true.
On the other hand, the conjunction rule for a formula signed as false splits the branch
into two branches and asserts that the formula is false in each branch, respectively.

T(𝜑 ∧ 𝜓), 𝑋
T𝜑,T𝜓, 𝑋

F(𝜑 ∧ 𝜓), 𝑋
F𝜑, 𝑋 F𝜓, 𝑋

Disjunction Rule The disjunction rule for a formula signed as true splits the branch
into two branches and asserts that the formula is true in each branch, respectively. On
the other hand, the disjunction rule for a formula signed as false decomposes the formula
into two formulas and asserts that the formula is false in both of them.

T(𝜑 ∨ 𝜓), 𝑋
T𝜑, 𝑋 T𝜓, 𝑋

F(𝜑 ∨ 𝜓), 𝑋
F𝜑, F𝜓, 𝑋

Implication The implication as well is a binary operation, and depending on the
asserting sign, it decomposes the formula into two formulas or splits into two separate
branches.

T(𝜑 → 𝜓), 𝑋
F𝜑, 𝑋 T𝜓, 𝑋

F(𝜑 → 𝜓), 𝑋
T𝜑, F𝜓, 𝑋

4

Equivalence Both of the equivalence rules split the branch into separate branches;
the details can be observed in the following equations.

T(𝜑 ↔ 𝜓), 𝑋
T𝜑,T𝜓, 𝑋 F𝜑, F𝜓, 𝑋

F(𝜑 ↔ 𝜓), 𝑋
T𝜑, F𝜓, 𝑋 F𝜑,T𝜓, 𝑋

Definition 2.1 (Closed branch). A branch is said to be closed if and only if it contains
the same formula signed as true and false.

Definition 2.2 (Atomic branch). A branch is said to be atomic if it is not possible to
apply any of the tableau rules. This means that each formula in the branch is an atomic
formula.

Definition 2.3 (Finished tableau). A tableau is said to be finished if it has only closed
and atomic branches.

Tautology formula The process to determine if a formula is a tautology is as follows:
Let 𝜑 be a formula

1. Sign the formula as false, namely, let F𝜑 be the initial formula in the tableau
process

2. Execute the expansion stage until the finished tableau is reached.

3. If all branches are closed, then the formula is a tautology. Otherwise it is not.

In most definitions of the tableau process, the rules are non-deterministic; however
sometimes, the tableau rules are prioritized. This narrows the non-determinism to a
deterministic approach, but this is not generally considered to be basic to a tableau
system. For a non-deterministic tableau at each stage on a branch, a signed formula
occurrence is chosen, and the tableau rule is applied. Since the order of choice is
arbitrary, there can be many tableaus for a single signed formula.

The tableau method is best explained through examples. First, let us see an exam-
ple of a formula which is a tautology.

5

Consider the following formula ((¬𝑋 ∧ (𝑌 → 𝑋)) → ¬𝑌

1. F(((¬𝑋 ∧ (𝑌 → 𝑋)) → ¬𝑌)
2. T((¬𝑋 ∧ (𝑌 → 𝑋)), F¬𝑌
3. T((¬𝑋 ∧ (𝑌 → 𝑋)),T𝑌
4. T¬𝑋,T(𝑌 → 𝑋),T𝑌
5. F𝑋,T(𝑌 → 𝑋),T𝑌

6. F𝑌 7. T𝑋

The first step of our tableau method for proving if a formula is a tautology is to
sign it as false and analyze it. This means that at 1. This signed formula is added to
the root of the tableau method. In the next step, there is only one possibility, namely, to
decompose the only formula currently in the tableau process. This formula is decom-
posed into two formulas present in 2. At this point, there are two possible outcomes;
the first one is to decompose the formula T((¬𝑋 ∧ (𝑌 → 𝑋)). The second one is to
decompose the formula F¬𝑌 . In this example, we have chosen the second approach,
and the result is present in step 3, namely F¬𝑌 after a tableau step is T𝑌 . From step 3
to step 4, there is only one possibility. The T¬𝑋 formula is decomposed to F𝑋 . in step
5. Now, the decomposition of the formula T(𝑌 → 𝑋) will split the tableau branch into
two branches. F𝑌 will be added in one of the branches, which in turn will contradict
with T𝑌 , which can be observed from step 3. This means that the branch closes. In the
other branch, T𝑋 is added, which contradicts F𝑋 from the previous step. This as well
means that the second branch closes. Having a tableau with all branches closed proves
that the initial assumption to sign the formula as false was wrong; hence the formula is
a tautology.

The following tableau method is not closed, and after the tableau process reaches all
basic formulas a model in which the formula is false can be constructed. The formula
used is 𝑋 → (𝑌 ∨ (¬(𝑋 ∨ 𝑌) ∧ 𝑌)).

1. F(𝑋 → (𝑌 ∨ (¬(𝑋 ∨ 𝑌) ∧ 𝑌)))
2. T𝑋, F(𝑌 ∨ (¬(𝑋 ∨ 𝑌) ∧ 𝑌)))
3. T𝑋, F𝑌, F(¬(𝑋 ∨ 𝑌) ∧ 𝑌)))

4. F¬(𝑋 ∨ 𝑌) 5. F𝑌
6. T𝑋 ∨ 𝑌

8. T𝑋 9. T𝑌
In step 1, the input formula is signed as false and added to the tableau. This signed

formula is decomposed into two signed formulas in step 2. Where one of them is
already a basic formula and can not be decomposed into simpler signed formulas, the

6

second one is decomposed, and the results can be seen in step 3. Again, one of the
newly signed formulas is a basic formula. The only formula that can be decomposed is
F(¬(𝑋 ∨ 𝑌) ∧ 𝑌))), which splits the tableau branch. In the split branch, F𝑌 is added;
this is step 5. This formula does not cause a contradiction in the branch, and since
there are no more possible decompositions, it follows that the branch is not closed. At
this point, we know that the tableau is not closed. However, for the purposes of this
example, let us examine the rest of the tableau process. In step 4, we can observe the
additionally signed formula which was added to the main branch. This signed formula
is decomposed with the usage of one of the negation rules, as seen in step 6. Applying
the disjunction rule for a formula signed as true on the formula in step 6 cases a branch
split. Only one of the branches closes, namely the formula added in step 8. From this
follows that the tableau is not closed and that the initial assumption was true; namely
the formula is not a tautology.

7

3 Region-based Contact Logics
The region-based theory of space has the notion of region and relations between regions
as one of the basic primitive notions of the theory. A region is defined as a set of elements
in some space. Union and intersection are used as primary operations over regions.
Two relations are introduced part-of relation and contact relation. The part-of relation
constructs the structural dependencies between regions; namely the part-of relations
define the mereology of regions. The contact relation defines the topological relation of
connection. We will abstract ourselves from the inner relation between two connected
regions; namely this relation might be defined as "region A and region B are neighbors".
It is important for us the relation to be reflexive and symmetrical.

3.1 Syntax
Boolean variable represents a region. Two predefined variables shall be used in order
to simplify the notation.

• W represents the whole world, namely the biggest region, which contains all
elements.

• ∅ represents the empty region

The V𝑎𝑟 set will be used to denote a countable set of all variables used in a formula.

Boolean constants are defined for W and ∅, namely, 1 represents the world, while 0
represents the empty region.

Boolean operations are operations over regions. The followings are boolean opera-
tions:

• ⊓, denotes boolean intersection

• ⊔, denotes boolean union

• * , denotes boolean complement

Term is defined with the following inductive definitions:

• Boolean constant is a term

• 𝑝 ∈ V𝑎𝑟 is a term

• If x is a term, then *x is a term

• If x and y are terms, then 𝑥 𝜎 𝑦 is a term,
where 𝜎 ∈ {⊓,⊔}

Propositional constants ⊤ and ⊥

8

Propositional connectives ¬,∨,∧,→,↔

Atomic formula is defined by the following forms, where a and b are two terms:

• C(a, b)

• 𝑎 ≤ 𝑏

Formula is defined by the following inductive definition:

• Each propositional Constant is a formula

• Each atomic formula is a formula

• If 𝜑 is a formula, then ¬𝜑 is a formula as well

• If 𝜑 and 𝜓 are formulas, then 𝜑 𝜎 𝜓 is a formula as well,
where 𝜎 ∈ {∨,∧,→,↔}

Abbreviations which are commonly used in this paper. Let a and b be two terms,
then:

• 𝑎 = 𝑏, if (𝑎 ≤ 𝑏) ∧ (𝑏 ≤ 𝑎)

• 𝑎 ≠ 𝑏, if ¬(𝑎 = 𝑏)

• 𝑎 ≰ 𝑏, if ¬(𝑎 ≤ 𝑏)

3.2 Semantics
A relational system is defined as F = (𝑊, 𝑅), where 𝑊 ≠ ∅. In most modal logic
theories, F is called a frame. In many systems, F is also called an adjacency relation,
where the cells are modeled with W and the adjacency relation is modeled with R.
Simple example of such an adjacency space is our planet, where the cells are the
countries and two countries are adjacent if they have a common point. In most cases
is assumed that R is reflexive and symmetric. However it is more natural for R to be
an arbitrary relation. In our example, we might specify for countries x and y that x be
adjacent to y on the right (east), on the top (north), etc. Regions in one such adjacency
system are arbitrary subsets of W and two sets a, b are in contact 𝐶𝑅 (𝑎, 𝑏), if for some
𝑥 ∈ 𝑎 and 𝑦 ∈ 𝑏 we have xRy. This relational definition of the contact suggests that we
give the following relational semantics.

Boolean variable valuation Let F be a frame; then a boolean variable valuation is
any function 𝓋 assigning to each Boolean variable a subset 𝑣(𝑎) ⊆ 𝑊 . The valuation is
then extended inductively to all Boolean terms as follows:

• 𝓋(0) = ∅

• 𝓋(1) = 𝑊

9

• 𝓋(𝑎 ⊓ 𝑏) = 𝓋(𝑎) ∩ 𝓋(𝑏)

• 𝓋(𝑎 ⊔ 𝑏) = 𝓋(𝑎) ∪ 𝓋(𝑏)

• 𝓋(∗𝑎) = 𝑊\𝓋(𝑎)

Model The tuple M = (F ,𝓋) is called a model. The truth of a formula 𝜑 in M (in
symbols M |= 𝜑) is defined inductively as follows:

• M ̸|= ⊥

• M |= ⊤

• M |= 𝑎𝐶𝑏 iff (∃𝑥 ∈ 𝓋(𝑎)), (∃𝑦 ∈ 𝓋(𝑏)) (𝑥𝑅𝑦)

• M |= 𝑎 ≤ 𝑏 iff 𝓋(𝑎) ⊆ 𝓋(𝑏)

• M |= ¬𝜑 iffM ̸|= 𝜑

• M |= 𝑎 ∨ 𝑏 iff M |= 𝑎 or M |= 𝑏

• M |= 𝑎 ∧ 𝑏 iff M |= 𝑎 and M |= 𝑏

In the previously defined semantics, we evaluate formulas not locally at points, as it
is in the standard modal semantics, but globally in the whole model, and this is one
of the main differences between the present modal approach with the standard Kripke
approach.

A model M is a model of a formula 𝜑 if 𝜑 is true in M, in such a case we say that
M satisfies 𝜑, in symbolsM |= 𝜑;M is a model of a set of formulas A ifM is a model
of all formulas from A, in symbols M |= 𝐴. A formula 𝜑 is true in a frame F , or that
F is a frame for 𝜑, in symbols F |= 𝜑, ifM |= 𝜑 for all modelsM based on F , i.e. for
all evaluations 𝓋 we have F ,𝓋 |= 𝜑. If Σ is a class of frames, we say that 𝜑 is true in
Σ, in symbols Σ |= 𝜑, if 𝜑 is true in all frames in Σ. We say that a set of formulas A is
satisfiable in Σ, or A is Σ-consistent, if there is a model M = (F ,𝓋) with F ∈ Σ such
thatM is a model of A.

3.3 Formula Properties
Property 3.1 (Contact reflexivity). Let b be a term, then

M |= 𝑏 ≠ 0 ⇐⇒ M |= 𝑏𝐶𝑏

Property 3.2 (Contact symmetry). Let a and b be two terms, then

M |= 𝑎𝐶𝑏 ⇐⇒ M |= 𝑏𝐶𝑎

Property 3.3 (Term equality). Let a and b be two terms and let 𝓋 be a valuation, then

M |= 𝑎 = 𝑏 ⇐⇒ 𝓋(𝑎) = 𝓋(𝑏)

10

Property 3.4 (Zero term formula). Let a and b be two terms, then

M |= 𝑎 ≤ 𝑏 ⇐⇒ M |= 𝑎 ⊓ 𝑏∗ = 0

The formula 𝑎 ⊓ 𝑏∗ = 0 will be called zero term formula. Since 𝑎 ⊓ 𝑏∗ is a new term,
it can be assigned a variable 𝑠 = 𝑎 ⊓ 𝑏∗, and now the zero term formula above can be
written as 𝑠 = 0 which is with better readability and can be straightforwardly grasped
in proofs and definitions.

Property 3.5 (Non-zero term). Let a and b be two terms, then

M |= ¬(𝑎 ≤ 𝑏) ⇐⇒ M |= 𝑎 ⊓ 𝑏∗ ≠ 0

Property 3.6 (Contact monotonicity). Let a and b be two terms, then

M |= 𝑎𝐶𝑏 ∧ 𝑎 ≤ 𝑎′ ∧ 𝑏 ≤ 𝑏′ =⇒ M |= 𝑎′𝐶𝑏′

Property 3.7 (Contact distributivity). Let a and b be two terms, then

M |= 𝑎𝐶 (𝑏 ⊔ 𝑐) ⇐⇒ M |= 𝑎𝐶𝑏 ∨ 𝑎𝐶𝑐

Property 3.8 (Trivial implications). The following trivial implications are of huge
importance for the model construction algorithm since they are trivial to be applied
and can in some cases eliminate a lot of computations. This is because they can be
applied over a complex term or formula to reduce it to something simple.
Let a, b, c be three terms and let 𝜑 and 𝜓 be two formulas, then

• 𝜑 ∧ 𝑇 =⇒ 𝜑, 𝑇 ∧ 𝜑 =⇒ 𝜑, 𝜑 ∧ 𝐹 =⇒ 𝐹, 𝐹 ∧ 𝜑 =⇒ 𝐹

• 𝜑 ∨ 𝑇 =⇒ 𝑇 , 𝑇 ∨ 𝜑 =⇒ 𝑇 , 𝜑 ∨ 𝐹 =⇒ 𝜑, 𝐹 ∨ 𝜑 =⇒ 𝜑,

• 𝑎 ⊓ 1 =⇒ 𝑎, 1 ⊓ 𝑎 =⇒ 𝑎, 𝑎 ⊓ 0 =⇒ 0, 0 ⊓ 𝑎 =⇒ 0,

• 𝑎 ⊔ 1 =⇒ 1, 1 ⊔ 𝑎 =⇒ 1, 𝑎 ⊔ 0 =⇒ 𝑎, 0 ⊔ 𝑎 =⇒ 𝑎,

• (𝑎 ⊔ 𝑏)𝐶𝑐 ⇐⇒ 𝑎𝐶𝑐 ∨ 𝑏𝐶𝑐

• (𝑎 ⊔ 𝑏) ≤ 𝑐 ⇐⇒ 𝑎 ≤ 𝑐 ∧ 𝑏 ≤ 𝑐

• 𝑎𝐶𝑏 =⇒ 𝑎 ≠ 0 ∧ 𝑏 ≠ 0

• 𝑎 ⊓ 𝑏 ≠ 0 =⇒ 𝑎𝐶𝑏

• 𝑎 = 0 ∨ 𝑏 = 0 =⇒ ¬(𝑎𝐶𝑏)

• 0 ≤ 𝑎 =⇒ 𝑇

• 𝑎 ≤ 1 =⇒ 𝑇

• 0𝐶0 =⇒ 𝐹

• 𝑎𝐶0 =⇒ 𝐹

• 1𝐶1 =⇒ 𝑇

• 𝑎𝐶1 =⇒ 𝑎 ≠ 0

• 𝑎 ≠ 0 =⇒ 𝑎𝐶𝑎

11

3.4 Formula Satisfiability
The satisfiability verification or sometimes called a satisfiability proof for a given
formula, is done by constructing a model. The formula is satisfiable only if such a
model exists. The model construction is done in several steps. Foremost, the tableau
method is used to simplify the problem and to detect contradictions earlier in the process,
even before the model construction begins. If each branch in the produced tableau is
closed as per definition 2.2, then a model in which the given formula is satisfiable does
not exist. If there are open branches in the tableau result, then semantical reasoning
shall be done in order to construct a model if such a model exists. Let us define a few
definitions before we dive into the procedure for the satisfiability proof of a formula.

Tableau Branch Conjunction A branch from the tableau method consists of signed
atomic formulas. For a formula to be satisfiable, it means that all atomic formulas in a
tableau branch should be satisfied. This, in terms, can be represented as a conjunction
of the atomic formulas. Let us call it branch conjunction.
Definition 3.1. Let 𝜑 be a formula and let T be a tableau applied over the 𝜑 formula.
Then a branch of the tableau method is defined with the following notation:

𝐵 = {T𝐶 (𝑎𝑖 , 𝑏𝑖) | 𝑖 ∈ {1, . . . , 𝐼}} ∪ {F𝐶 (𝑒𝑘 , 𝑓𝑘) | 𝑘 ∈ {1, . . . , 𝐾}}∪
{F𝑑 𝑗 = 0 | 𝑗 ∈ {1, . . . , 𝐽}} ∪ {T𝑔𝑙 = 0 | 𝑙 ∈ {1, . . . , 𝐿}}

For the sake of simplicity we can remove the signed symbols T and F, in which case
the branch conjunction of the tableau method branch is defined as:

𝐼∧
𝑖=1

𝐶 (𝑎𝑖 , 𝑏𝑖) ∧
𝐾∧
𝑘=1

¬𝐶 (𝑒𝑘 , 𝑓𝑘) ∧

𝐽∧
𝑗=1

𝑑 𝑗 ≠ 0 ∧
𝐿∧
𝑙=1

𝑔𝑙 = 0

Definition 3.2. Let B be a branch conjunction, then the set of all variables used in all
atomic formulas in B is defined as V𝑎𝑟𝐵 and it has a normal ordering of the variables.
Meaning that we can represent them in a sequence 𝑥1, 𝑥2, ..., 𝑥𝑛.

Definition 3.3. Let B be a branch conjunction and let V𝑎𝑟𝐵 be the set of all variables
in B, then the variable valuation 𝑝 defines a mapping from V𝑎𝑟𝐵 to a boolean value,
namely:

𝑝 : V𝑎𝑟𝐵 → {false, true}
The variable valuation can be thought as a boolean array where the indexes are the

variables from V𝑎𝑟𝐵. This way, a true element in the array at index i corresponds to a
true valuation of the variable represented with index i . Having in mind that the size of
V𝑎𝑟𝐵 is n, we know that there are 2𝑛 possible valuations.

For the purposes of our algorithm, the elements of W will be such variable valua-
tions. The variable valuations depend on the number of variables in the formula; this
bounds the world W to have at most 2𝑛 possible elements. From now on, we will use
the term modal point and variable valuation interchangeably.

12

Boolean valuation Let 𝑝 be a variable valuation and let T𝑠 be the set of all terms,
then the function b𝑝 : T𝑠 → {false, true} is called a boolean valuation and is defined
inductively as:

• b𝑝 (0) = false

• b𝑝 (1) = true

• b𝑝 (𝑝) = 𝑝(𝑝), where 𝑝 ∈ V𝑎𝑟𝐵
• b𝑝 (𝑎 ⊓ 𝑏) = b𝑝 (𝑎) and b𝑝 (𝑏)

• b𝑝 (𝑎 ⊔ 𝑏) = b𝑝 (𝑎) or b𝑝 (𝑏)

• b𝑝 (𝑎∗) = not b𝑝 (𝑎)

Modal Point Construction Constructing a valid model for a given branch conjunc-
tion of a formula consists of finding W, R and the model valuation function 𝓋. The
model construction depends on the atomic formulas in a branch conjunction. The algo-
rithm to validate that a branch conjunction produces a model where the given formula
is satisfiable iterates over the atomic formulas and extends the model in such a way
that, at any point in time, the model does not contain contradictions. If, on some
step, a contradiction occurs, then the valuation 𝓋 is modified in order to remove the
contradiction. When there are no possibilities for further modifications, then the branch
conjunction is closed, and a model does not exist for that branch conjunction. The
number of modal points generated in the model depends on the contacts and non-zero
terms. The goal is to search for a model with enough modal points in order to make sure
that all possible models which are not duplicated are considered. Duplicated modal
points lead to additional unnecessary computation.

Let V𝑎𝑟𝐵 be the set of all variables in a branch conjunction B and let a be a term.
Then we will say that a modal point p is constructed, when a variable valuation p is
generated, such that p is valid:

b𝑝 (𝑎) = true

Let n be the number of variables inV𝑎𝑟𝐵, then all possible variants of variable valuations
are 2𝑛. It is of huge importance for us to be able to determine the number of points
required in order to construct a valid model. The number of modal points is determined
from the atomic formulas in the tableau branch. Let B be a branch conjunction as:

𝐼∧
𝑖=1

𝐶 (𝑎𝑖 , 𝑏𝑖) ∧
𝐾∧
𝑘=1

¬𝐶 (𝑒𝑘 , 𝑓𝑘) ∧

𝐽∧
𝑗=1

𝑑 𝑗 ≠ 0 ∧
𝐿∧
𝑙=1

𝑔𝑙 = 0

The following atomic formulas require modal point existence:
• 𝐶 (𝑎𝑖 , 𝑏𝑖), for 𝑖 < 𝐼

• 𝑑 𝑗 ≠ 0, for 𝑗 < 𝐽

13

Contact modal point construction step Let B be a branch conjunction and𝐶 (𝑎, 𝑏) ∈
𝐵, where a and b are two terms. Then two modal points are generated p and q such that:

• b𝑝 (𝑎) = true

• b𝑞 (𝑏) = true

To validate that the newly generated modal points for this contact satisfy the non-
contacts, the following must be true.

¬𝐶 (𝑒, 𝑓) ∈ 𝐵 : (b𝑝 (𝑒) = false or b𝑞 (𝑓) = false) and
(b𝑝 (𝑓) = false or b𝑞 (𝑒) = false) and
(b𝑝 (𝑒) = false or b𝑝 (𝑓) = false) and
(b𝑞 (𝑒) = false or b𝑞 (𝑓) = false)

To validate that the newly generated modal points satisfy the equal to zero terms,
the following must be true:

𝑡 = 0 ∈ 𝐵 : b𝑝 (𝑡) = false and b𝑞 (𝑡) = false

Along with the generation of a valid variable valuation, the R relations is extended
as well, namely the following relations are added:

• pRp - reflexivity of the modal point p

• qRq - reflexivity of the modal point q

• pRq - symmetric relation between p and q

• qRp - symmetric relation between q and p

The constructed points and the relation between them is best seen on a diagram

p

a

q

b

Generated modal points and their relations for contact C(a, b)

Non-zero term modal point construction step Let B be a branch conjunction and
𝑎 ≠ 0 ∈ 𝐵, where a is a term. Then one modal point p is generated, such that:

• b𝑝 (𝑎) = true

14

To validate that the newly generated modal point satisfies the equal to zero terms,
the following must be true:

𝑡 = 0 ∈ 𝐵 : b𝑝 (𝑡) = false

To validate that the modal point satisfies the non-contacts, the following must be true:

¬𝐶 (𝑒, 𝑓) ∈ 𝐵 : (b𝑝 (𝑒) = false and b𝑝 (𝑓) = false)

The R relation is extended as follows:

• 𝑝𝑅𝑝 - reflexivity of the modal point 𝑝

The constructed point diagram:

𝑝

a

Generated modal point and its relation for not equal zero term 𝑎 ≠ 0

Definition 3.4. let T𝑠 be the set of all terms and let F be a frame constructed with the
Contact and Non-zero term modal point construction steps. Then the model valuation
𝓋 : T𝑠 → 𝒫(𝑊) is defined inductively as:

• 𝓋(0) = ∅

• 𝓋(1) = 𝑊

• 𝓋(𝑝) = {𝑝 | 𝑝 ∈ 𝑊 and 𝑝(𝑝) = true}

• 𝓋(𝑎 ⊓ 𝑏) = 𝓋(𝑎) ∩ 𝓋(𝑏)

• 𝓋(𝑎 ⊔ 𝑏) = 𝓋(𝑎) ∪ 𝓋(𝑏)

• 𝓋(𝑎∗) = 𝑊 \ 𝓋(𝑎)

The tuple (𝑊, 𝑅,𝓋) is called a model.

Lemma 3.9. Let a be a term and let 𝑝 be a variable valuation, by the definitions of b
and 𝓋, the following holds:

b𝑝 (𝑎) = 𝑡𝑟𝑢𝑒 ↔ 𝑝 ∈ 𝓋(𝑎)

In such a case when b𝑝 (𝑎) = true we will say that the point 𝑝 is valid.

15

4 Quantitative Contact Logics
The quantitative contact logic is basically the region-based contact logic with the
addition of quantitative measures. This is done by assigning a positive real number to
each of the model points in the model. The assignment (restriction) of the weight is
done with an atomic measure formula.

Measure function A measure function will denote a function which maps a region
to a positive real number.

` : 𝒫(𝑊) −→ R+

The quantitative measure between two terms is represented with the following
atomic formula:

• a ≤` 𝑏

Where ` is a measure function and a, b are two terms.

Measure model semantics Let ` be a measure function. Let M = (F , `,𝓋) be a
model. The model is extended to a measure model with the addition of the following
inductive satisfiability definition:

• M |= 𝑎 ≤` 𝑏, iff `(𝓋(𝑎)) ≤ `(𝓋(𝑏))

Property 4.1 (Trivial measure model implications). Let a, b, c be three terms and let
𝜑 and 𝜓 be two formulas, then

• 0 ≤` 𝑎 =⇒ 𝑇

• 𝑎 ≤` 1 =⇒ 𝑇

• (𝑎 = 0) ⇐⇒ (𝑎 ≤` 0)

• (𝑎 = 1) ⇐⇒ (1 ≤` 𝑎)

• (𝑎 ≤` 𝑏) ∨ (𝑏 ≤` 𝑎) =⇒ 𝑇

• 𝑎1 ≤` 𝑎2 ∧ 𝑎2 ≤` 𝑎3 =⇒ 𝑎1 ≤` 𝑎3

16

4.1 System of Inequalities
The system of inequality has the following structure:

∑
𝑖1 𝑋𝑖1 ≤

∑
𝑗1 𝑋 𝑗1

. . .∑
𝑖𝑛 𝑋𝑖𝑛 ≤

∑
𝑗𝑛 𝑋 𝑗𝑛∑

𝑘1 𝑋𝑘1 >
∑
𝑙1 𝑋𝑙1

. . .∑
𝑘𝑚 𝑋𝑘𝑚 >

∑
𝑙𝑚 𝑋𝑙𝑚

4.2 System Construction
A formula with multiple measure atomic formulas produces a system of inequalities.
This system of inequalities must have a solution in order for a model to satisfy the given
formula.

Let 𝑀 = (𝑊, 𝑅, `,𝓋) be a model. The system of inequalities is constructed from a
formula by evaluating each of the terms in the ≤` and <` atomic formulas. The number
of points in the model are 𝑁 = | 𝑊 |. Let us enumerate the points 𝑝0, 𝑝1, ..., 𝑝𝑁 . The
system will have N different variables 𝑋0, 𝑋1, ..., 𝑋𝑁 , where ∀𝑖 < 𝑁 : 𝑋𝑖 is mapped to
point 𝑝𝑖 .
Definition 4.1. Let x and y be two terms, then the formula ≤` (𝑥, 𝑦) is transformed to
an inequality as follows: ∑︁

𝑖:𝑝𝑖∈𝓋(𝑥)
𝑋𝑖 ≤

∑︁
𝑗:𝑝 𝑗 ∈𝓋(𝑦)

𝑋 𝑗

Lemma 4.2. Let x and y be two terms and let ℐ𝑞 be the inequality produced from
≤` (𝑥, 𝑦). Then the inequality ℒ𝑞 can be simplified by removing all variables present
on both sides of the equation. This can be written as:∑︁

𝑖:𝑝𝑖∈𝓋(𝑥)\𝓋(𝑦)
𝑋𝑖 ≤

∑︁
𝑗:𝑝 𝑗 ∈𝓋(𝑦)\𝓋(𝑥)

𝑋 𝑗

Definition 4.2. Let x and y be two terms, then the formula <` (𝑥, 𝑦) is transformed to
an inequality as follows: ∑︁

𝑖:𝑝𝑖∈𝓋(𝑥)
𝑋𝑖 <

∑︁
𝑗:𝑝 𝑗 ∈𝓋(𝑦)

𝑋 𝑗

Lemma 4.3. Let x and y be two terms and let ℐ𝑞 be the inequality produced from
<` (𝑥, 𝑦). Then the inequality ℒ𝑞 can be simplified by removing all variables present
on both sides of the equation. This can be written as:∑︁

𝑖:𝑝𝑖∈𝓋(𝑥)\𝓋(𝑦)
𝑋𝑖 <

∑︁
𝑗:𝑝 𝑗 ∈𝓋(𝑦)\𝓋(𝑥)

𝑋 𝑗

17

Definition 4.3. Let 𝑀 = (𝑊, 𝑅, `,𝓋) be a model. Let 𝒮 be the system of inequalities
defined by

• inequalities for all ≤` fromulas by lemma 4.2

• inequalities for all <` fromulas by lemma: 4.3

• inequality 0 < 𝑋𝑖 for each 0 ≤ 𝑖 < 𝑁

If the system of inequalities 𝒮 has a solution, then we say that the system is valid.

4.3 Measure formula satisfiability
Finding a model to satisfy a formula with measure atomic formulas follows the same
initial steps as the formula satisfiability in 3.4, namely the tableau method is used to
simplify the formula and to create tableau branch conjunctions. The tableau branch
conjunction for the quantitative contact logic contains the signed contact, zero term and
measure atomic formula. For the rest of this section, the term formula will be used to
indicate a formula that might be defined with atomic measure formulas.

Definition 4.4. Let 𝜑 be a formula and let T be a tableau applied over the 𝜑 formula.
Then a branch of the tableau method is defined with the following notation:

𝐵 = {T𝐶 (𝑎𝑖 , 𝑏𝑖) | 𝑖 ∈ {1, . . . , 𝐼}} ∪ {F𝐶 (𝑒𝑘 , 𝑓𝑘) | 𝑘 ∈ {1, . . . , 𝐾}}∪
{F𝑑 𝑗 = 0 | 𝑗 ∈ {1, . . . , 𝐽}} ∪ {T𝑔𝑙 = 0 | 𝑙 ∈ {1, . . . , 𝐿}}∪

{T𝑚𝑝 ≤` 𝑛𝑝 | 𝑝 ∈ {1, . . . , 𝑃}} ∪ {F𝑢𝑞 ≤` 𝑣𝑞 | 𝑞 ∈ {1, . . . , 𝑄}}

To simplify it further, we can remove the signed symbols T and F, in which case
the branch conjunction of the tableau method branch is defined as:

𝐼∧
𝑖=1

𝐶 (𝑎𝑖 , 𝑏𝑖) ∧
𝐾∧
𝑘=1

¬𝐶 (𝑒𝑘 , 𝑓𝑘) ∧

𝐽∧
𝑗=1

𝑑 𝑗 ≠ 0 ∧
𝐿∧
𝑙=1

𝑔𝑙 = 0 ∧

𝑃∧
𝑝=1

𝑚𝑝 ≤` 𝑛𝑝 ∧
𝑄∧
𝑞=1

𝑢𝑞 <` 𝑣𝑞

Having measure atomic formulas in a branch conjunction makes it difficult to define
an approach where a suitable point valuation is created for each term in the atomic
formulas in that branch conjunction. The measure atomic formulas require some
weight to be computed over all existing points. To find a model satisfying the branch
conjunction, the algorithm tries each subset of the modal points.

Definition 4.5. Let B be a branch conjunction. We say that the modal point 𝑝 is valid
over B, if the following statements hold:

18

• 𝑡 = 0 ∈ 𝐵 : b𝑝 (𝑡) = false

• ¬𝐶 (𝑒, 𝑓) ∈ 𝐵 : b𝑝 (𝑒) = false or b𝑝 (𝑓) = false

The number of all unique valid modal points has an upper bound of 2𝑛, where n is
the number of different variables in the branch conjunction.

Definition 4.6. Let B be a branch conjunction and let x and y be two valid modal points.
We say that ⟨𝑥, 𝑦⟩ is a valid relation if the following holds:

¬𝐶 (𝑒, 𝑓) ∈ 𝐵 :(b𝑝 (𝑒) = false or b𝑞 (𝑓) = false) and
(b𝑝 (𝑓) = false or b𝑞 (𝑒) = false)

Definition 4.7. Let B be a branch conjunction and let W be the set of valid modal points
over B. Then we can define a model M = (𝑊, 𝑅, 𝑣) over B where:

𝓋(𝑡) = {𝑝 | 𝑝 ∈ 𝑊 and b𝑝 (𝑡) is true},
where t is a term from the atomic formulas in B

𝑅 = {⟨𝑥, 𝑦⟩ | 𝑥, 𝑦 ∈ 𝑊 and ⟨𝑥, 𝑦⟩ is a valid relation}

M is a model where the equal to zero and non-contact formulas are satisfied. ForM
to be a model for the branch conjunction B, it must satisfy the contacts and non-equal
to zero formulas from B and to have a solution for the system of inequalities defined
over M and B.

In case the system of inequalities over M and B has a solution, then this model
satisfies the initial formula. However, in the opposite scenario, where the contacts and
non-equal to zero formulas from B are not satisfied or the system of inequalities does
not have a solution, it does not mean that the branch conjunction B does not construct
a valid model.

It is possible that the satisfying model has fewer modal points, This imposes that
we should test the satisfiability of the branch conjunction against each subset of W.

Testing the satisfiability for each subset of W creates a lot of combinations, which is
why having a structural approach to eliminate multiple combinations at once is a huge
performance optimization. The following lemmas provide such optimizations.

Lemma 4.4 (Impossible subset models). Let M = (𝑊, 𝑅,𝓋) be a model, where W is a
set of valid modal points. Let M′ = (𝑊 ′, 𝑅′,𝓋′) be a model, where 𝑊 ′ ⊆ 𝑊, 𝑅′ ⊆ 𝑅,
then the following statements hold:

1. M ̸|= 𝑡 ≠ 0 =⇒ M′ ̸ |= 𝑡 ≠ 0

2. M ̸|= 𝐶 (𝑎, 𝑏) =⇒ M′ ̸ |= 𝐶 (𝑎, 𝑏)

Proof. Let us have two such models M = (𝑊, 𝑅,𝓋) and M′ = (𝑊 ′, 𝑅′,𝓋′) where
𝑊 ′ ⊆ 𝑊 .

19

1. LetM ̸|= 𝑡 ≠ 0
⇒ 𝓋(𝑡) = ∅
⇒ 𝓋(𝑡) ∩𝑊 ′ = ∅
⇒ 𝓋

′ (𝑡) = ∅
⇒ M′ ̸ |= 𝑡 ≠ 0

2. LetM ̸|= 𝐶 (𝑎, 𝑏)
⇒ (�𝑥 ∈ 𝓋(𝑎)) and (�𝑦 ∈ 𝓋(𝑏)) 𝑥𝑅𝑦
⇒ (�𝑥 ∈ 𝓋(𝑎) ∩𝑊 ′) and (�𝑦 ∈ 𝓋(𝑏) ∩𝑊 ′) 𝑥𝑅𝑦
⇒ (�𝑥 ∈ 𝓋

′ (𝑎)) and (�𝑦 ∈ 𝓋
′ (𝑏)) 𝑥𝑅′𝑦

M′ ̸ |= 𝐶 (𝑎, 𝑏)

□

Lemma 4.5 (Valuation deduction). Let M = (𝑊, 𝑅,𝓋) be a model, where W is a set of
valid modal points. Let M′ = (𝑊 ′, 𝑅′,𝓋′) be a model, defined from𝑊 ′ ⊆ 𝑊 , then the
following holds:

𝓋
′ (𝑡) = 𝓋(𝑡) ∩𝑊 ′

Proof. Let M = (𝑊, 𝑅,𝓋) be a model, where W is a set of valid modal points and let
M′ = (𝑊 ′, 𝑅′,𝓋′) be a model, where𝑊 ′ ⊆ 𝑊 and 𝑅′ ⊆ 𝑅.
Let us take an arbitrary term t, then:

=⇒ Let us take an arbitrary valid modal point 𝑝 ∈ 𝓋
′ (𝑡), then by definition of 𝓋′

it follows that:

⇒ 𝑝 ∈ 𝑊 ′ and b𝑝 (𝑡) = true
⇒ Since𝑊 ′ ⊆ 𝑊 ⇒ 𝑝 ∈ 𝑊
⇒ 𝑝 ∈ 𝓋(𝑡) ∩𝑊 ′

⇐= Let us take an arbitrary valid modal point 𝑝 ∈ 𝑣(𝑡) ∩𝑊 ′, then:

⇒ 𝑝 ∈ 𝓋(𝑡) and 𝑝 ∈ 𝑊 ′

⇒ 𝑝 ∈ 𝑊 and b𝑝 (𝑡) = true
⇒ 𝑝 ∈ 𝑣(𝑡)

□

This lemma implies that the valuation for each subset of W can be deduced from 𝓋

with less computations.

Measure formula satisfiability algorithm The satisfiability of a measure formula 𝜑
is defined with the following steps:

Loop over the following steps for each branch conjunction B in the tableau procedure,
until a satisfying model for 𝜑 is produced or all possibilities are exhausted.

20

1. Generate the modelM of all valid model points W over B.

2. Let P = P(𝑊). We are going to look at𝑊 ′ ∈ P starting from the once with most
elements. W’ implies a model M′ computed by lemma 4.5. Test if M′ satisfies
the non-equal to zero terms and contacts from B:

(a) In case the non-equal to zero terms and contacts from B are satisfied byM′,
verify whether the system of inequalities over B and M′ has a solution. If
the system has a solution then a valid model M′ = (𝑊 ′, 𝑅′, `,𝓋′) for the
formula is constructed, where ` is defined from the result of the system of
inequalities.
Otherwise W’ is removed from P.

(b) If W’ does not satisfy the non-equal to zero terms and contacts then by
lemma 4.4 all subsets of W’ are removed from P.

3. If W’ is not found in step 2., then a measure model to satisfy the formula B does
not exist.

If such a model does not exist for each branch conjunction, then ¬∃M : M |= 𝜑

4.4 Formal System
So far we have considered the syntax and semantics of contact logic. Also, with mul-
tiple steps in between we have arrived at an algorithm that constructs a valid measure
model for a given formula if such a model exists.
Now we are ready to support the following statement.

Let 𝜑 be a measure formula. Then 𝜑 is universally valid if for the negation of 𝜑
the measure formula satisfiability algorithm does not produce a model in which the ¬𝜑
measure formula is satisfiable.
This means that there does not exist a measure modelM, such thatM |= ¬𝜑, which is
a proof in the formal system that 𝜑 is tautology.

21

5 Implementation Introduction
The main programming language is C++. Flex & Bison are used to parse the input
formula. The formula prover is a C++ library. The unit and performance tests are C++
applications. The user application is a Web page. The Web server is implemented
with the third party CppRestSDK library. The satisfiability checking runs on the server.
There is a feature to interrupt an ongoing process. Can be triggered by the user via a
button. There is a user disconnecting detection which cancels the requested formula
proving.
The project repository is at:
https://github.com/Anton94/modal_logic_formula_prover.

Each commit is build and tested on a various compilers (Windows and Linux OS).

5.1 Syntax
The formula should be easy and intuitive to write. Only the keyboard keys should be
used. The legend below describes the formula’s syntax:

Terms
0 0 Boolean constant 0
1 1 Boolean constant 1
- * Boolean complement
* ∩ Boolean meat
+ ∪ Boolean join
() () Parentheses

[a-zA-Z0-9]+ 𝑥1 Boolean variable. Syntax 𝑥1, 𝑌42, 𝑉𝑎𝑟101
Formulas

F ⊥ Propositional constant false
T ⊤ Propositional constant true
∼ ¬ Negation
& ∧ Conjunction
| ∨ Disjunction
-> ⇒ Implication
<-> ⇔ Equivalence
C C Contact, syntax C(𝑡1, 𝑡2)
<= ≤ Part of , syntax <= (𝑡1, 𝑡2)
<=m ≤𝑚 Measured Part of, syntax <= 𝑚(𝑡1, 𝑡2)
=0 =0 Zero term, syntax 𝑡1 = 0
() () Parentheses

These are a few examples of formulas:

• 𝐶 (𝑥1 ∗ 1, 𝑥2 + 𝑦1)

• 𝐶 (𝑥1 + 0, (−𝑥2 + 𝑥3) ∗ 𝑥1)

• 𝐶 (𝑥1, 𝑥2) & 𝐶 (𝑥2, 𝑥3) & ∼ 𝐶 (𝑥1, 𝑥3)

22

https://github.com/Anton94/modal_logic_formula_prover

• 𝐶 (𝑥1, 𝑥2) & <= (𝑥1, 𝑥3) & ∼ 𝐶 (𝑥2, 𝑥3)

• 𝐶 (𝑥1, 𝑥2) -> 𝐶 (𝑥2, 𝑥1)

• 𝐶 (𝑥1, 𝑥2) & 𝐶 (𝑥2, 𝑥3) => 𝐶 (𝑥1, 𝑥3)

• 𝐹 -> 𝐶 (𝑥1, 𝑥2) & ∼ 𝐶 (𝑥1, 𝑥2)

5.2 Formula parsing
The formula is a sequence of characters. These characters do not give us any information
for the formula’s structure. It should be analyzed. Flex and Bison are used to parse it
into an AST (Abstract Syntax Tree). Flex is used as a tokenizer. Bison is used as the
parser. Detailed information for Flex and Bison can be found in the following references
[4], [5].

5.2.1 Abstract Syntax Tree

The AST is a binary tree. Each node has an operation type and up to two children.
The formula nodes are prior term nodes. A formula node could have term node as
children. Term nodes could not have a formula node as a child. The leaves are variables
or constants.

Let 𝜙 = (𝐶 (𝑥1, 𝑥2) & <= (𝑥2, 𝑥3)) => 𝐶 (𝑥1, 𝑥3). The following is an AST of 𝜙:
=>

&

C

x1 x2

<=

x2 x3

C

x1 x3

23

Operation types Enum structure is used to represent the type of formulas and terms
in a memory efficient way.

ast.h
enum c l a s s f o rmu l a _ o p e r a t i o n _ t
{

c o n s t a n t _ t r u e ,
c o n s t a n t _ f a l s e ,
c o n j u n c t i o n ,
d i s j u n c t i o n ,
n ega t i on ,
imp l i c a t i o n ,
e q u a l i t y ,
c o n t a c t ,
l e s s _ eq ,
measu r ed_ l e s s_eq ,
eq_ze ro

} ;

enum c l a s s t e rm_ o p e r a t i o n _ t
{

c o n s t a n t _ t r u e ,
c o n s t a n t _ f a l s e ,
union_ , / / un ion i s a keyword
i n t e r s e c t i o n ,
complement ,
v a r i a b l e

} ;

24

Node types There are two types of nodes. Formula nodes and term nodes. They are
defined with separate classes.

ast.h
c l a s s Node
{

. . .
} ;

c l a s s NFormula : pub l i c Node
{
pub l i c :

NFormula (f o rmu l a _ o p e r a t i o n _ t op ,
Node∗ l e f t = n u l l p t r , Node∗ r i g h t = n u l l p t r) ;

. . .

f o rmu l a _ o p e r a t i o n _ t op ;
Node∗ l e f t ;
Node∗ r i g h t ;

} ;

c l a s s NTerm : pub l i c Node
{
pub l i c :

NTerm (t e rm_ o p e r a t i o n _ t op ,
NTerm∗ l e f t = n u l l p t r , NTerm∗ r i g h t = n u l l p t r) ;

. . .

t e rm_ o p e r a t i o n _ t op ;
NTerm∗ l e f t ;
NTerm∗ r i g h t ;
s t d : : s t r i n g v a r i a b l e ;

} ;

5.2.2 Tokenizer

The tokenizer is responsible for demarcating the special symbols in the input formula.
After the symbols are identified, a token is created for each of them, or at least for those
significant to the semantic of the input formula. For example, the whitespaces are not
significant, and a token is not created for them. We shall use Flex as a tokenizer.

Grammar The tokenizer’s grammar is composed of two types of tokens. Single
character and multi character tokens.

The Single character tokens are directly matched in the input formula and are
representing the token itself. Themulti character token is a sequence of characterswhich
have some meaning when bundled together. This tokenizer’s grammar is unambiguous,
and each input formula is uniquely tokenized.

The tokens’ derivation is explained in details in the following table with Flex syntax.
Thematched symbol represents the symbol from the input formula, and the output token
is the newly created token for the matched symbol.

25

Matched sequence Output token
[\t\n] ;
[,TF01()C&| *+-] yytext[0];
"<=" T_LESS_EQ;
"<=m" T_MEASURED_LESS_EQ;
"= 0" T_EQ_ZERO;
"->" T_FORMULA_OP_IMPLICATION;
"<->" T_FORMULA_OP_EQUALITY;
[a-zA-Z0-9]+ T_STRING;
. yytext[0];

Let us review the table above. All white spaces, tabulations and newlines are ignored.
The syntax for it is the ; character.

All single character tokens are passed as their ASCII code. The syntax for it is
yytext[0]. It gives the matched character. That way, it will be easy to use them in the
parser.

The multi character tokens are converted to unique identifiers. For example, the
"<=" sequence is converted to T_LESS_EQ. The sequence of letters and numbers is
converted to T_STRING. Later, it will be used as a term variable.

The last matched symbol in the table represents everything else, if nothing has been
matched then just return the text itself. The parser will use it to prompt where the
unrecognized symbol was found, and the symbol itself can be printed out.

5.2.3 Parser

The single character tokens are passed as their ASCII symbol to Bison. As discussed
above, the multi character tokens need more clearance in order to represent the literal
from the input text symbols. The followings are definition of literals for multi character
tokens:

• %token <const char*> T_STRING is the literal for "string"

• %token T_LESS_EQ is the literal for "<="

• %token T_MEASURED_LESS_EQ is the literal for "<=m"

• %token T_EQ_ZERO is the literal for "=0"

• %token T_FORMULA_OP_IMPLICATION is the literal for "->"

• %token T_FORMULA_OP_EQUALITY is the literal for "<->"

The followings are definitions of priority and associativity of the operation tokens. The
priority is from low to high (w.r.t. the line order in which they are defined)

• %left T_FORMULA_OP_IMPLICATION T_FORMULA_OP_EQUALITY

• %left ’|’ ’+’

26

• %left ’&’ ’*’

• %right ’~’ ’-’

• %nonassoc ’(’ ’)’

Grammar With the usage of the Parser literals, the input formula can be parsed to an
Abstract Syntax Tree(AST). The AST contains all the data from the input string formula
in a more structured way. On the AST additional optimizations can be done which will
simplify the initial formula. It will produce better performance when a model is sought
in the satisfiability algorithms.

For convenience, we will define two helper methods. Namely, create_term_node
and create_formula_node. Both method construct AST nodes.

The create_term_node method creates an AST term node. Its arguments are an
operation and up to two child terms. Depending on the operation arity.

The create_formula_node is analogous to the create_term_node method. Creates
an AST formula node.

Few special symbols to define beforehand:

• $$ is the return value to the ’parent’. Later, the parent can use it, e.g. as a child.

• $i is the return value of the i-th matched element in the matcher sequence.

Algorithm The following is the parser algorithm, which produces an Abstract Syntax
Tree.

parser.y
f o rmu l a / / ’ f o rmu la ’ non−t e r m i n a l

: ’T ’ { / / ma tch ing t o k en ’T ’
$$ = c r e a t e _ f o rmu l a _ nod e (c o n s t a n t _ t r u e) ;

}
| ’F ’ {

$$ = c r e a t e _ f o rmu l a _ nod e (c o n s t a n t _ f a l s e) ;
}
| ’C ’ ’ (’ t e rm ’ , ’ te rm ’) ’ {

$$ = c r e a t e _ f o rmu l a _ nod e (c o n t a c t , $3 , $5) ;
}
| "<=" ’ (’ t e rm ’ , ’ te rm ’) ’ {

$$ = c r e a t e _ f o rmu l a _ nod e (l e s s _ eq , $3 , $5) ;
}
| "<=m" ’ (’ te rm ’ , ’ te rm ’) ’ {

$$ = c r e a t e _ f o rmu l a _ nod e (measu r ed_ l e s s_eq , $3 , $5) ;
}
| t e rm "=0 " {

$$ = c r e a t e _ f o rmu l a _ nod e (eq_zero , $1) ;
}
| ’ (’ f o rmu l a ’&’ fo rmu l a ’) ’ {

$$ = c r e a t e _ f o rmu l a _ nod e (c o n j u n c t i o n , $2 , $4) ;
}
| f o rmu l a ’&’ fo rmu l a {

$$ = c r e a t e _ f o rmu l a _ nod e (c o n j u n c t i o n , $1 , $3) ;

27

}
| ’ (’ f o rmu l a ’ | ’ f o rmu l a ’) ’ {

$$ = c r e a t e _ f o rmu l a _ nod e (d i s j u n c t i o n , $2 , $4) ;
}
| f o rmu l a ’ | ’ f o rmu l a {

$$ = c r e a t e _ f o rmu l a _ nod e (d i s j u n c t i o n , $1 , $3) ;
}
| ’∼ ’ f o rmu l a {

$$ = c r e a t e _ f o rmu l a _ nod e (n ega t i on , $2) ;
}
| ’ (’ f o rmu l a "−>" fo rmu l a ’) ’ {

$$ = c r e a t e _ f o rmu l a _ nod e (imp l i c a t i o n , $2 , $4) ;
}
| f o rmu l a "−>" fo rmu l a {

$$ = c r e a t e _ f o rmu l a _ nod e (imp l i c a t i o n , $1 , $3) ;
}
| ’ (’ f o rmu l a "<−>" fo rmu l a ’) ’ {

$$ = c r e a t e _ f o rmu l a _ nod e (e q u a l i t y , $2 , $4) ;
}
| f o rmu l a "<−>" fo rmu l a {

$$ = c r e a t e _ f o rmu l a _ nod e (e q u a l i t y , $1 , $3) ;
}
| ’ (’ f o rmu l a ’) ’ {

$$ = $2 ;
}

;
te rm

: ’ 1 ’ {
$$ = c r e a t e _ t e rm_nod e (c o n s t a n t _ t r u e) ;

}
| ’ 0 ’ {

$$ = c r e a t e _ t e rm_nod e (c o n s t a n t _ f a l s e) ;
}
| " s t r i n g " {

$$ = c r e a t e _ t e rm_nod e (t e rm_ o p e r a t i o n _ t : : v a r i a b l e) ;
$$−>v a r i a b l e = s t d : : move (∗ $1) ;
/ / t h e s t r i n g i s a l l o c a t e d from t h e
/ / t o k e n i z e r and we need t o f r e e i t
f r e e _ l e x e r _ s t r i n g ($1) ;

}
| ’ (’ t e rm ’∗ ’ t e rm ’) ’ {

$$ = c r e a t e _ t e rm_nod e (i n t e r s e c t i o n , $2 , $4) ;
}
| t e rm ’∗ ’ t e rm {

$$ = c r e a t e _ t e rm_nod e (i n t e r s e c t i o n , $1 , $3) ;
}
| ’ (’ t e rm ’+ ’ te rm ’) ’ {

$$ = c r e a t e _ t e rm_nod e (union_ , $2 , $4) ;
}
| t e rm ’+ ’ te rm {

$$ = c r e a t e _ t e rm_nod e (union_ , $1 , $3) ;
}
| ’− ’ t e rm {

$$ = c r e a t e _ t e rm_nod e (complement , $2) ;
}
| ’ (’ t e rm ’) ’ {

$$ = $2 ;

28

}
;

5.3 Formula refinement
The AST can be easily modified and optimized. One of the modifications is removing
the implications and equivalences. They are replaced by conjunction, disjunction and
negation. This is convenient because it simplifies the tableau method. It does not have
to handle implication and equivalence operations. The following is a modified AST of
𝜙 5.2.1 without the implication:

|

∼

&

C

x1 x2

<=

x2 x3

C

x1 x3

5.3.1 Visitor Pattern

The AST modification is best achieved with the visitor pattern. It uses double virtual
dispatching. Separates the algorithm from the object structure on which it operates.
Allows new visitors to be added in a simple manner. Each AST modification will be
implemented as a visitor. Detailed explanation of this design pattern is given in [6].
In essence, the visitor pattern requires the AST nodes to implement a virtual accept
method. This method accepts a visitor as argument and calls the visitor’s virtual visit
method with the real node’s type. This is the double virtual dispatching. One virtual
call to find the node’s real type. Another to find the visitor’s real type. Now, adding a
new visitor requires only adding its class. Does not require changes in the AST node
classes or other visitor classes.

29

visitor.h
. . .
c l a s s V i s i t o r
{
pub l i c :

v i r t u a l vo id v i s i t (NFormula& f) = 0 ;
v i r t u a l vo id v i s i t (NTerm& t) = 0 ;

} ;

/ / Example v i s i t o r (a g l o r i t h m) which w i l l p r i n t t h e AST t r e e .
c l a s s VP r i n t e r : pub l i c V i s i t o r
{
pub l i c :

void v i s i t (NFormula& f) o v e r r i d e
{

/ / P r i n t t h e f o rmu la node ’ s da ta .
}
void v i s i t (NTerm& t) o v e r r i d e
{

/ / P r i n t t h e term node ’ s da ta .
}

} ;

c l a s s Node
{
pub l i c :

v i r t u a l vo id a c c e p t (V i s i t o r& v) = 0 ;
} ;

c l a s s NFormula : pub l i c Node
{
pub l i c :

void a c c e p t (V i s i t o r& v) o v e r r i d e { v . v i s i t (∗ t h i s) ; }

. . .
} ;

c l a s s NTerm : pub l i c Node
{
pub l i c :

void a c c e p t (V i s i t o r& v) o v e r r i d e { v . v i s i t (∗ t h i s) ; }

. . .
} ;

30

It’s worth showing the implementation of the VPrinter visit methods. They are
simple and a good illustration of the pattern. Shows how the AST tree is traversed by
calling the VPrinter instance with the AST’s root node.

visitor.cpp
void VP r i n t e r : : v i s i t (NFormula& f)
{

sw i t ch (f . op)
{

case f o rmu l a _ o p e r a t i o n _ t : : c o n s t a n t _ t r u e :
ou t_ << "T" ; / / ou t_ i s an o u t p u t s t ream , e . g . s t d : : c ou t .
break ;

case f o rmu l a _ o p e r a t i o n _ t : : c o n s t a n t _ f a l s e :
ou t_ << "F" ;
break ;

case f o rmu l a _ o p e r a t i o n _ t : : c o n j u n c t i o n :
ou t_ << " (" ;
f . l e f t −>a c c e p t (∗ t h i s) ;
ou t_ << " ␣&␣" ;
f . r i g h t −>a c c e p t (∗ t h i s) ;
ou t_ << ") " ;
break ;

case f o rmu l a _ o p e r a t i o n _ t : : d i s j u n c t i o n :
/ / Analogous t o c o n j u n c t i o n . The symbol i s ’ | ’ .

case f o rmu l a _ o p e r a t i o n _ t : : i m p l i c a t i o n :
/ / Analogous t o c o n j u n c t i o n . The symbol i s ’−>’.

case f o rmu l a _ o p e r a t i o n _ t : : e q u a l i t y :
/ / Analogous t o c o n j u n c t i o n . The symbol i s ’<−>’.

case f o rmu l a _ o p e r a t i o n _ t : : n e g a t i o n :
ou t_ << "∼" ;
f . l e f t −>a c c e p t (∗ t h i s) ;
break ;

case f o rmu l a _ o p e r a t i o n _ t : : l e s s _ e q :
ou t_ << " <=(" ;
f . l e f t −>a c c e p t (∗ t h i s) ;
ou t_ << " , ␣ " ;
f . r i g h t −>a c c e p t (∗ t h i s) ;
ou t_ << ") " ;
break ;

case f o rmu l a _ o p e r a t i o n _ t : : mea su r ed_ l e s s _ eq :
ou t_ << "<=m(" ;
f . l e f t −>a c c e p t (∗ t h i s) ;
ou t_ << " , ␣ " ;
f . r i g h t −>a c c e p t (∗ t h i s) ;
ou t_ << ") " ;
break ;

case f o rmu l a _ o p e r a t i o n _ t : : eq_ze ro :
ou t_ << " (" ;
f . l e f t −>a c c e p t (∗ t h i s) ;
ou t_ << ")=0 " ;
break ;

case f o rmu l a _ o p e r a t i o n _ t : : c o n t a c t :
ou t_ << "C(" ;
f . l e f t −>a c c e p t (∗ t h i s) ;
ou t_ << " , ␣ " ;
f . r i g h t −>a c c e p t (∗ t h i s) ;

31

ou t_ << ") " ;
break ;

d e f a u l t :
a s s e r t (f a l s e && " Unrecogn ized . ") ;

}
}

void VP r i n t e r : : v i s i t (NTerm& t)
{

sw i t ch (t . op)
{

case t e rm_ o p e r a t i o n _ t : : c o n s t a n t _ t r u e :
ou t_ << " 1 " ;
break ;

case t e rm_ o p e r a t i o n _ t : : c o n s t a n t _ f a l s e :
ou t_ << " 0 " ;
break ;

case t e rm_ o p e r a t i o n _ t : : v a r i a b l e :
ou t_ << t . v a r i a b l e ;
break ;

case t e rm_ o p e r a t i o n _ t : : un ion_ :
ou t_ << " (" ;
t . l e f t −>a c c e p t (∗ t h i s) ;
ou t_ << " ␣+␣ " ;
t . r i g h t −>a c c e p t (∗ t h i s) ;
ou t_ << ") " ;
break ;

case t e rm_ o p e r a t i o n _ t : : i n t e r s e c t i o n :
/ / Analogous t o un ion_ . The symbol i s ’∗ ’ .

case t e rm_ o p e r a t i o n _ t : : complement :
ou t_ << "−" ;
t . l e f t −>a c c e p t (∗ t h i s) ;
break ;

d e f a u l t :
a s s e r t (f a l s e && " Unrecogn ized . ") ;

}
}

5.3.2 Visitors Overview

The following are the supported visitors. Their implementation is close to a thousand
lines of code and can be checked in the repository.

VReduceConstants Removes all unnecessary children of And/Or/Negation opera-
tions of the following type:

32

• ~T ≡ F • C(0,0) ≡ F • ~F ≡ T • C(1,1) ≡ T
• (T & T) ≡ T • C(a,0) ≡ F • (F | F) ≡ F • C(0,a) ≡ F
• (g & T) ≡ g • -1 ≡ 0 • (g | T) ≡ T • -0 ≡ 1
• (T & g) ≡ g • (1 * 1) ≡ 1 • (T | g) ≡ T • (0 + 0) ≡ 0
• (g & F) ≡ F • (t * 1) ≡ t • (g | F) ≡ g • (t + 1) ≡ 1
• (F & g) ≡ F • (1 * t) ≡ t • (F | g) ≡ g • (1 + t) ≡ 1
• 0=0 ≡ T • (t * 0) ≡ 0 • 1=0 ≡ F • (t + 0) ≡ t
• <=(0,a) ≡ T • (0 * t) ≡ 0 • <=(a,1) ≡ T • (0 + t) ≡ t

VConvertContactsWithConstantTerms Converts C with constant 1 terms in !=0
atomic formulas. This visitor is best used after the contacts are reduced, via VReduce-
Constants

• C(a,1) ≡ ~(a=0)

• C(1,a) ≡ ~(a=0)

VConvertLessEqContactWithEqualTerms Converts C and <= atomic formulas
with identical terms:

• <=(a,a) ≡ T,
since (a * -a = 0))

• C(a,a) ≡ ~(a=0)

VReduceDoubleNegation Removes the double/tripple/etc negations. This visitor is
best used after all visitors which might add additional negations!

• -(-g) ≡ g

• -(-t) ≡ t

VConvertImplicationEqualityToConjDisj Converts all formula nodes of type im-
plication and equality to nodes which are using just conjunction and disjunction. The
main reason for this visitor is to simplify the formula operations. This visitor simplifies
the formula to contain only conjunctions, disjunctions and negation operations.

• (f -> g) ≡ (~f | g)

• (f <-> g) ≡ ((f & g) | (~f & ~g))

VConvertLessEqToEqZero Converts a <= formula to an equal to zero atomic for-
mula

• <=(a,b) ≡ (a * -b) = 0

33

VSplitDisjInLessEqAndContacts Divides C and <= atomic formulas with a dis-
junction term into two simpler formulas

• C(a + b, c) ≡ C(a, c) | C(b, c)

• C(a, b + c) ≡ C(a, b) | C(a, c)

• <=(a + b, c) ≡ <=(a,c) & <=(b,c)

There are few visitors which only collect or print information from the formula

• VVariablesGetter - gets all variables from the formula (as string)

• VPrinter - prints the formula to some provided output stream

5.4 Formula building
The formula is a binary tree. A subformula is a subtree in the formula’s tree. The
process of building a satisfiable model is computational heavy. A part of it is lexical
comparing and traversing subformulas. The AST is convenient to modify the formula.
These modifications are a preprocessing step. After them, the formula will not be
modified. A few optimizations could be done.

5.4.1 Optimizations

Reducing formula operations The formula operations could be reduced to not have
implication, equivalence and less equal. The VConvertImplicationEqualityToConjDisj
and VConvertLessEqToEqZero visitor should be applied.

Variable substitution The variables are a sequence of characters, i.e. strings. It is
slow to compare them. An integer ID could be assigned to each variable. One way to
do it is via the VVariablesGetter visitor. Retrieve all unique variables in a vector and
use their positions as IDs.

Hashing subformulas Conducting a test whether two subformulas are equal in a
lexical way is an important procedure for the sake of performance. Such equality
checks are required in various situations. One of which is checking if a subformula
exists in a set of subformulas.

Have in mind that the naive solution to do an equality check is to compare the whole
subformula structure. The complexity is O(n), where n is the size of the subformula.
To reduce this complexity, a precalculated hash value shall be used. For each formula
node an additional hash variable is stored. The hash is computed recursively through
the formula’s structure. The hash of a parent node depends on the hashes of its children
nodes. The equality comparison first checks the hash codes. The full equality checking
is done only for matching hash codes.

34

5.4.2 Layout

The formula structure will be similar to the AST. A couple of changes reflecting the
optimizations above. The following is the final formula node’s layout.

formula.h / term.h
c l a s s f o rmu l a {

. . .
enum c l a s s o p e r a t i o n _ t y p e : char {

c o n s t a n t _ t r u e ,
c o n s t a n t _ f a l s e ,
c o n j u n c t i o n ,
d i s j u n c t i o n ,
n ega t i on ,
measu r ed_ l e s s_eq ,
eq_zero ,
c ,
i n v a l i d ,

} ;

o p e r a t i o n _ t y p e op_ ;
s t d : : s i z e _ t hash_ ;

s t r u c t c h i l d _ f o rmu l a s {
fo rmu l a ∗ l e f t ;
f o rmu l a ∗ r i g h t ;

} ;
s t r u c t c h i l d _ t e rm s {

te rm ∗ l e f t ;
t e rm ∗ r i g h t ;

} ;

union {
/ / Holds on l y one o f t h e d e s c r i b e d o b j e c t s .
/ / Depending on t h e o p e r a t i o n t y p e t h e
/ / c h i l d _ f _ or c h i l d _ t _ i s " v a l i d " .
c h i l d _ f o rmu l a s c h i l d _ f _ ;
c h i l d _ t e rm s c h i l d _ t _ ;

} ;
} ;

c l a s s t e rm {
. . .
enum c l a s s o p e r a t i o n _ t y p e : char
{

c o n s t a n t _ t r u e ,
c o n s t a n t _ f a l s e ,
union_ ,
i n t e r s e c t i o n ,
complement ,
v a r i a b l e ,
i n v a l i d ,

} ;

o p e r a t i o n _ t y p e op_ ;
s t d : : s i z e _ t hash_ ;

35

s t r u c t c h i l d r e n
{

te rm ∗ l e f t ;
t e rm ∗ r i g h t ;

} ;
union {

/ / Holds e i t h e r c h i l d r e n or v a r i a b l e i d .
/ / Depending on t h e node ’ s o p e r a t i o n t y p e .
c h i l d r e n c h i l d r e n _ ;
s i z e _ t v a r i a b l e _ i d _ ;

} ;
} ;

5.4.3 Hashing

The following is the implemented hash construction procedure for the term node. The
formula node is analogous.

term.h
void t e rm : : c o n s t r u c t _ h a s h ()
{

sw i t ch (op_)
{
case o p e r a t i o n _ t : : c o n s t a n t _ t r u e :
case o p e r a t i o n _ t : : c o n s t a n t _ f a l s e :

break ;
case o p e r a t i o n _ t : : un ion_ :
case o p e r a t i o n _ t : : i n t e r s e c t i o n :

hash_ = ((c h i l d r e n . l e f t −>ge t _h a sh () & 0xFFFFFFFF) ∗ 2654435761) +
c h i l d r e n . r i g h t −>ge t _h a sh () & 0xFFFFFFFF) ∗ 2654435741) ;

break ;
case o p e r a t i o n _ t : : complement :

hash_ = (c h i l d r e n . l e f t −>ge t _h a sh () & 0xFFFFFFFF) ∗ 2654435761;
break ;

case o p e r a t i o n _ t : : v a r i a b l e :
hash_ = (v a r i a b l e _ i d _ & 0xFFFFFFFF) ∗ 2654435761;
break ;

d e f a u l t :
a s s e r t (f a l s e && " Unrecogn ized . ") ;

}

/ / Add t h e o p e r a t i o n t y p e t o t h e hash .
cons t auto op_code = s t a t i c _ c a s t <unsigned >(op_) + 1 ;
hash_ += (op_code & 0xFFFFFFFF) ∗ 2654435723;

}

Let 𝜏1 and 𝜏2 be two terms. Let ℎ1 be the precalculated hash of 𝜏1 and ℎ2 be the
precalculated hash of 𝜏2. The equality check procedure follows the following steps:

• if ℎ1 ≠ ℎ2, then the terms are not equal

• if ℎ1 = ℎ2, then recursively compare the children.

36

5.4.4 Conversion from AST

The formula building from an AST is straightforward. Recursive depth first iteration
over the AST. For each AST node, a corresponding formula/term node is constructed.
The implementation could be found in term.cpp and formula.cpp in the repository.

37

6 Tableaux Implementation
The Tableaux process is a decision procedure. Recursively breaks down a given formula
into basic components. Based on that, a decision can be concluded. The recursive step
breaks down a formula part into one or two subformulas. Continuously applying the
recursive step produces a binary tree. The nodes are the formulas, and the links represent
the recursive step.

All formulas in a branch are considered to be in conjunction. Contradiction may
arise in a same branch if there exists a formula and its negation.

The main principle of the tableaux is to break a complex formula into smaller ones
until complementary pairs of atomic formulas are produced.

Definition 6.1. A set of only signed formulas represents a signed formula set. The letter
X is usually used for its representation.

6.1 Tableaux Step
The Tableaux Step takes as input a formula and a signed formulas set and produces as
output one or two new formulas, depending on the operation. The signed formulas set
consists of the broken down formulas by previous tableaux steps. The output of the
tableaux step depends on the rule applied to the formula.

6.2 Rules
Only negation conjunction and disjunction operations will be handled. The implication
and equivalence are converted.

Negation

T(¬𝜑), 𝑋
F(𝜑), 𝑋

F(¬𝜑), 𝑋
T(𝜑), 𝑋

Conjunction

T(𝜑 ∧ 𝜓), 𝑋
T𝜑,T𝜓, 𝑋

F(𝜑 ∧ 𝜓), 𝑋
F𝜑, 𝑋 F𝜓, 𝑋

Disjunction

T(𝜑 ∨ 𝜓), 𝑋
T𝜑, 𝑋 T𝜓, 𝑋

F(𝜑 ∨ 𝜓), 𝑋
F𝜑, F𝜓, 𝑋

38

For our case, the functionality of the tableaux process shall be extended. If the
branch is not closed, there are additional calculations needed in order to verify that
there is no contradiction. Namely, to verify that there is no contradiction on Term
level. This means that there exists a satisfiable model. This verification can be done in
different manners. Depending on the algorithm type. The best way to think about it is
that the tableaux process returns a not-closed branch and if there is a model for the set
of atomic formulas in this branch, then the formula is satisfiable, otherwise the tableaux
process proceeds with the next not-closed branch. If such branch does not exist, then
the formula is not satisfiable.

6.3 Implementation
The program implementation of the tableaux method follows the standard tableaux
process. The first interesting design decision is to keep all true signed formulas in one
data set, and all false signed formulas in another data set. This enables fast searches
whether a formula has been signed as true or false.

Definition 6.2. Let X be a set of formulas, then X is called signed formula collection
if and only if all formulas in X are signed as true or all formulas are signed as false.

This collection is implemented with std::unordered_set (hashset), which stores the
formulas by pointers to their root nodes. The hashing uses the node’s precalculated
hash. The comparing is via the node’s operator==. That way, different pointers to
subformulas with the same structure will be treated as identical.

The average complexity for search, insert and erase in this collection is O(1). There
is no formula copying. So, almost no memory overhead for keeping the formulas in the
set.

There are 8 signed formula collections:

• formulas_T - contains only non-atomic formulas signed as true

• formulas_F - contains only non-atomic formulas signed as false,
For example, if ¬𝜑 is encountered as an output of the tableaux step, then only 𝜑
is inserted into the formula_F

• contacts_T - contains only atomic contact formulas signed as true

• contacts_F - contains only atomic contact formulas signed as false

• zero_terms_T - contains only formulas of type 𝜑 ≤ 𝜓 signed as true

• zero_terms_F - contains only formulas of type 𝜑 ≤ 𝜓 signed as false

• measured_less_eq_T - contains only formulas of type 𝜑 ≤𝑚 𝜓 signed as true

• measured_less_eq_F - contains only formulas of type 𝜑 ≤𝑚 𝜓 signed as false

These collections are unordered sets of points to the formulas/terms.

types.h

39

us ing f o rmu l a s _ t = s t d : : u no r d e r e d_ s e t <
cons t f o rmu l a ∗ ,
f o rmu l a _ p t r _ h a s h e r ,
f o rmu l a _p t r _ compa r a t o r > ;

us ing t e rm s _ t = s t d : : u no r d e r e d_ s e t <
cons t t e rm ∗ ,
t e rm_p t r _ h a s h e r ,
t e rm_p t r _ compa r a t o r > ;

tableau.h
f o rmu l a s _ t fo rmulas_T_ ;
f o rmu l a s _ t fo rmu la s_F_ ;
f o rmu l a s _ t c on t a c t s _T_ ;
f o rmu l a s _ t c o n t a c t s _F_ ;
t e rm s _ t ze ro_ t e rms_T_ ;
t e rm s _ t ze ro_ t e rms_F_ ;
f o rmu l a s _ t measu red_ l e s s_eq_T_ ;
f o rmu l a s _ t measu r ed_ l e s s_eq_F_ ;

Definition 6.3. Let 𝜑 be a signed formula, then 𝜑 is causing a contradiction if any of
the following is true:

• 𝜑 is a non-atomic signed as true and 𝜑 belongs to 𝑓 𝑜𝑟𝑚𝑢𝑙𝑎𝑠_𝐹

• 𝜑 is a non-atomic signed as false and 𝜑 belongs to 𝑓 𝑜𝑟𝑚𝑢𝑙𝑎𝑠_𝑇

• 𝜑 is a contact formula signed as true and 𝜑 belongs to 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠_𝐹

• 𝜑 is a contact formula signed as false and 𝜑 belongs to 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠_𝑇

• 𝜑 is a zero terms formula signed as true and 𝜑 belongs to 𝑧𝑒𝑟𝑜_𝑡𝑒𝑟𝑚𝑠_𝐹

• 𝜑 is a zero terms formula signed as false and 𝜑 belongs to 𝑧𝑒𝑟𝑜_𝑡𝑒𝑟𝑚𝑠_𝑇

• 𝜑 is a measured less formula signed as true and 𝜑 belongs to𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑_𝑙𝑒𝑠𝑠_𝑒𝑞_𝐹

• 𝜑 is a measured less formula signed as false and 𝜑 belongs to𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑_𝑙𝑒𝑠𝑠_𝑒𝑞_𝑇

Invariant
At any time, all formulas in all eight signed formula collections do not contradict.

A contradiction may occur if a formula is split and some resulting components
causes a contradiction.

Example

Let us assume that 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠_𝑇 = {𝐶 (𝑎, 𝑏)} and let us have a look at the following
formula T(𝑇 ∧ ¬𝐶 (𝑎, 𝑏)).
By the rules of decomposition, namely the (∧) rule produces T𝑇 and T¬𝐶 (𝑎, 𝑏).

Then the T¬𝐶 (𝑎, 𝑏) will be decomposed to F𝐶 (𝑎, 𝑏) by the (¬) rule, which causes
a contradiction since 𝐶 (𝑎, 𝑏) is already present in 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠_𝑇 formulas.

40

Tableaux Algorithm

Given a formula 𝜑, the following algorithm determines the atomic formulas in all
branches of the tableaux process.

As a first step if the formula 𝜑 is the constant F, then false is returned directly,
otherwise the whole formula 𝜑 is inserted in 𝑓 𝑜𝑟𝑚𝑢𝑙𝑎𝑠_𝑇 .

Remarks

• true boolean value is used to represent the formula constant T

• false boolean value is used to represent the formula constant F

• Contact atomic formula is commutative, meaning that: 𝐶 (𝑎, 𝑏) ⇐⇒ 𝐶 (𝑏, 𝑎)

Few lemmas which will provide a much more efficient contradiction finding in the
tableaux process.

Emptiness Lemma

Let x be a term. Suppose that the atomic formula 𝑥 = 0 has already been signed as true.
Then marking the following formulas as true will lead to contradiction:

• C(x,y)

• C(y,x)
for any term y.

Inverse Emptiness Lemma

Let x, y and z be terms. Suppose that the atomic formulas C(x,y) or C(z, x) has already
been signed as true, then marking the formula x = 0 as true will lead to contradiction.

Time Complexity Emptiness Lemma and Inverse Emptiness Lemma

The algorithmic complexity to check whether a new formula leads to contradiction
by Emptiness Lemma and Inverse Emptiness Lemma is done effectively. Namely, in
constant time with the usage of one new collection 𝑐𝑜𝑛𝑡𝑎𝑐𝑡_𝑇_𝑡𝑒𝑟𝑚𝑠_. It keeps the
terms of the true contacts. Namely, the contacts in the collection 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠_𝑇 . This
means that for each T(𝐶 (𝑥, 𝑦)), the terms x and y are in the mentioned collection of
true terms. The 𝑐𝑜𝑛𝑡𝑎𝑐𝑡_𝑇_𝑡𝑒𝑟𝑚𝑠_ is a multiset and keeps track of all added terms,
meaning that if the term x is added twice and then removed only once, there will still
be an entry of that x in the 𝑐𝑜𝑛𝑡𝑎𝑐𝑡_𝑇_𝑡𝑒𝑟𝑚𝑠_ collection. Removing a true contact
appears when moving up the tableau tree, i.e. switching to another branch.

To check if a new formula leads to contradiction by Emptiness Lemma or Inverse
Emptiness Lemma, the following method is used:
auto h a s _ b r o k e n _ c o n t a c t _ r u l e (cons t f o rmu l a ∗ f) cons t −> bool ;

41

6.4 Handy methods
Search for formula signed as true

auto f i n d_ i n_T (cons t f o rmu l a ∗ f) cons t −> bool

Checks existence of formula 𝜑 in any positive collection depending on the type of 𝜑.
Namely, if 𝜑 is of type:

• 𝐶 (𝑥, 𝑦): returns whether 𝜑 ∈ 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠_𝑇

• 𝑥 = 0: returns whether 𝜑 ∈ 𝑧𝑒𝑟𝑜_𝑡𝑒𝑟𝑚𝑠_𝑇

• 𝑥 ≤𝑚 𝑦: returns whether 𝜑 ∈ 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑_𝑙𝑒𝑠𝑠_𝑒𝑞_𝑇

• non-atomic formula: returns whether 𝜑 ∈ 𝑓 𝑜𝑟𝑚𝑢𝑙𝑎𝑠_𝑇

Search for formula signed as false

auto f i n d _ i n _F (cons t f o rmu l a ∗ f) cons t −> bool

Checks existence of formula 𝜑 in any negative collection depending on the type of 𝜑.
Namely, if 𝜑 is of type:

• 𝐶 (𝑥, 𝑦): returns whether 𝜑 ∈ 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠_𝐹

• 𝑥 = 0: returns whether 𝜑 ∈ 𝑧𝑒𝑟𝑜_𝑡𝑒𝑟𝑚𝑠_𝐹

• 𝑥 ≤𝑚 𝑦: returns whether 𝜑 ∈ 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑_𝑙𝑒𝑠𝑠_𝑒𝑞_𝐹

• non-atomic formula: returns whether 𝜑 ∈ 𝑓 𝑜𝑟𝑚𝑢𝑙𝑎𝑠_𝐹

Adding

Mark formula as true

void add_fo rmula_ to_T (cons t f o rmu l a ∗ f)

Adds the formula 𝜑 as true in in the respective positive collection. Namely, if 𝜑 is of
type:

• C(x, y): 𝜑 is added to 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠_𝑇 , and the terms x and y are added to the
𝑐𝑜𝑛𝑡𝑎𝑐𝑡_𝑇_𝑡𝑒𝑟𝑚𝑠_

• 𝑥 = 0: x is added in 𝑧𝑒𝑟𝑜_𝑡𝑒𝑟𝑚𝑠_𝑇

• 𝑥 ≤𝑚 𝑦: 𝜑 is added to 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑_𝑙𝑒𝑠𝑠_𝑒𝑞_𝑇

• non-atomic formula: 𝜑 is added to 𝑓 𝑜𝑟𝑚𝑢𝑙𝑎𝑠_𝑇

42

Mark formula as false

void add_ fo rmu la_ to_F (cons t f o rmu l a ∗ f)

Adds the formula 𝜑 as false in the respective negative collection. Namely, if 𝜑 is of
type:

• C(x, y): 𝜑 is added to 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠_𝐹

• 𝑥 = 0: x is added in 𝑧𝑒𝑟𝑜_𝑡𝑒𝑟𝑚𝑠_𝐹

• 𝑥 ≤𝑚 𝑦: 𝜑 is added to 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑_𝑙𝑒𝑠𝑠_𝑒𝑞_𝐹

• non-atomic formula: 𝜑 is added to 𝑓 𝑜𝑟𝑚𝑢𝑙𝑎𝑠_𝐹

Removing

Remove formula signed as true

void remove_formula_from_T (cons t f o rmu l a ∗ f)

Removes the formula 𝜑 from the respective positive collection. Namely if 𝜑 is of type:

• C(x, y): 𝜑 is removed from 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠_𝑇 , and the terms x and y are removed from
the 𝑐𝑜𝑛𝑡𝑎𝑐𝑡_𝑇_𝑡𝑒𝑟𝑚𝑠_.

• 𝑥 = 0: x is removed from 𝑧𝑒𝑟𝑜_𝑡𝑒𝑟𝑚𝑠_𝑇

• 𝑥 ≤𝑚 𝑦: 𝜑 is removed from 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑_𝑙𝑒𝑠𝑠_𝑒𝑞_𝑇

• non-atomic formula: 𝜑 is removed from 𝑓 𝑜𝑟𝑚𝑢𝑙𝑎𝑠_𝑇

Remove formula signed as false

void remove_formula_f rom_F (cons t f o rmu l a ∗ f)

Removes the formula 𝜑 from the respective negative collection. Namely if 𝜑 is of type:

• C(x, y): 𝜑 is removed from 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠_𝐹

• 𝑥 = 0: x is removed from 𝑧𝑒𝑟𝑜_𝑡𝑒𝑟𝑚𝑠_𝐹

• 𝑥 ≤𝑚 𝑦: 𝜑 is removed from 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑_𝑙𝑒𝑠𝑠_𝑒𝑞_𝐹

• non-atomic formula: 𝜑 is removed from 𝑓 𝑜𝑟𝑚𝑢𝑙𝑎𝑠_𝐹

43

6.5 Tableaux Satisfiable Step Implementation
The Tableaux satisfiable step is the whole Tableaux algorithm.

tableau.cpp
auto t a b l e a u : : s a t i s f i a b l e _ s t e p () −> bool
{

/ / The bo t tom o f t h e r e c u r s i v e a l g o r i t h m i s when we have
/ / on l y a tomic f o rmu l a s (which does no t c o n t r a d i c t s) .
/ / Then we can run a l g o r i t h m s f o r model c o n s t r u c t i o n .
i f (fo rmulas_T_ . empty () && formula s_F_ . empty ())
{

/ / Th i s i s t h e method which t r i e s
/ / t o c o n s t r u c t s a t i s f i a b l e model .
re turn h a s _ s a t i s f i a b l e _m o d e l () ;

}

i f (! fo rmulas_T_ . empty ())
{

/ / Choosing some fo rmu la t o hand l e i n t h i s s t e p .
/ / I f t h i s branch does no t produce a v a l i d s a t i s f i a b l e path ,
/ / t h en t h i s f o rmu la w i l l be r e t u r n e d t o fo rmu las_T_ .
auto f = ∗ fo rmulas_T_ . beg in () ;

cons t auto op = f−>g e t _ o p e r a t i o n _ t y p e () ;
i f (op == op_ t : : n e g a t i o n)
{

/ / T (∼X) −> F(X)
auto X = f−>g e t _ l e f t _ c h i l d _ f o rm u l a () ;
i f (X−> i s _ c o n s t a n t ())
{

/ / F (T) i s no t s a t i s f i a b l e
i f (X−> i s _ c o n s t a n t _ t r u e ())
{

re turn f a l s e ;
}
/ / F (F) i s s a t i s f i a b l e , c o n t i n u e w i t h t h e r e s t .
re turn s a t i s f i a b l e _ s t e p () ;

}

i f (f i n d_ i n_T (X))
{

/ / C o n t r a d i c t i o n , we want t o s a t i s f y F (X)
/ / bu t we a l r e a d y have t o s a t i s f y T (X) .
re turn f a l s e ;

}

i f (f i n d _ i n _F (X)) / / S k i p add ing F(X) m u l t i p l e t i m e s .
{

re turn s a t i s f i a b l e _ s t e p () ;
}

add_ fo rmu la_ to_F (X) ;
auto r e s = s a t i s f i a b l e _ s t e p () ;
/ / R e v e r t i t on t h e way back .
remove_formula_f rom_F (X) ;

44

re turn r e s ;
}

45

i f (op == op_ t : : c o n j u n c t i o n)
{

/ / T (X & Y) −> T (X) & T (Y)
T_ c o n j u c t i o n _ c h i l d X(∗ t h i s , f−>g e t _ l e f t _ c h i l d _ f o rm u l a ()) ;
T _ c o n j u c t i o n _ c h i l d Y(∗ t h i s , f−>g e t _ r i g h t _ c h i l d _ f o rm u l a ()) ;

/ / Checks i f X b r eak s t h e c o n t a c t r u l e
/ / or b r i n g s a c o n t r a d i c t i o n
i f (!X. v a l i d a t e ())
{

re turn f a l s e ;
}
X. add_to_T () ; / / Adds X t o T c o l l e c t i o n

i f (!Y. v a l i d a t e ())
{

X. remove_from_T () ;
re turn f a l s e ;

}
Y. add_to_T () ;

auto r e s = s a t i s f i a b l e _ s t e p () ;
X. remove_from_T () ;
Y. remove_from_T () ;

re turn r e s ;
}

a s s e r t (op == op_ t : : d i s j u n c t i o n) ;
/ / T (X v Y) −> T (X) v T (Y)
auto X = f−>g e t _ l e f t _ c h i l d _ f o rm u l a () ;
auto Y = f−>g e t _ r i g h t _ c h i l d _ f o rm u l a () ;
t r a c e () << " Wi l l ␣ s p l i t ␣ t o ␣ two␣ s u b t r e e s : ␣ "

<< ∗X << "␣and␣ " << ∗Y;

/ / T (T) i s s a t i s f i a b l e and we can s k i p t h e o t h e r branch
i f (X−> i s _ c o n s t a n t _ t r u e () | | Y−> i s _ c o n s t a n t _ t r u e ())
{

t r a c e () << "One␣ of ␣ t h e ␣ c h i l d s ␣ i s ␣ c o n s t a n t ␣ t r u e " ;
re turn s a t i s f i a b l e _ s t e p () ;

}

46

auto p r o c e s s _ T _ d i s j _ c h i l d = [&] (cons t f o rmu l a ∗ c h i l d) {
i f (c h i l d −> i s _ c o n s t a n t _ f a l s e () | | / / T (F) i s no t s a t i s f i a b l e

f i n d _ i n _F (c h i l d) | | h a s _ b r o k e n _ c o n t a c t _ r u l e (c h i l d))
{

re turn f a l s e ;
}

i f (f i n d_ i n_T (c h i l d)) / / s k i p add ing i t m u l t i p l e t i m e s
{

re turn s a t i s f i a b l e _ s t e p () ;
}

add_fo rmula_ to_T (c h i l d) ;
cons t auto r e s = s a t i s f i a b l e _ s t e p () ;
remove_formula_from_T (c h i l d) ;
re turn r e s ;

} ;

t r a c e () << " S t a r t ␣ o f ␣ t h e ␣ l e f t ␣ s u b t r e e : ␣ " << ∗X << "␣ of ␣ " << ∗ f ;
i f (p r o c e s s _ T _ d i s j _ c h i l d (X))
{

/ / There was no c o n t r a d i c t i o n i n t h e l e f t path ,
/ / so t h e r e i s no need t o c o n t i n u e w i t h t h e r i g h t pa th .
re turn true ;

}

t r a c e () << " S t a r t ␣ o f ␣ t h e ␣ r i g h t ␣ s u b t r e e : ␣ " << ∗Y << "␣ of ␣ " << ∗ f ;
re turn p r o c e s s _ T _ d i s j _ c h i l d (Y) ;

}

/ / A lmos t ana logous bu t t a k i n g a fo rmu la from Fs

/ / Choosing some fo rmu la t o hand l e i n t h i s s t e p .
/ / I f t h i s branch does no t produce a v a l i d s a t i s f i a b l e path ,
/ / t h en t h i s f o rmu la w i l l be r e t u r n e d t o formulas_F_
auto f = ∗ fo rmu la s_F_ . beg in () ;

cons t auto op = f−>g e t _ o p e r a t i o n _ t y p e () ;
i f (op == op_ t : : n e g a t i o n)
{

/ / F (∼X) −> T (X)
auto X = f−>g e t _ l e f t _ c h i l d _ f o rm u l a () ;
i f (X−> i s _ c o n s t a n t ())
{

/ / T (F) i s no t s a t i s f i a b l e
i f (X−> i s _ c o n s t a n t _ f a l s e ())
{

re turn f a l s e ;
}
/ / T (T) i s s a t i s f i a b l e , c o n t i n u e w i t h t h e r e s t
re turn s a t i s f i a b l e _ s t e p () ;

}

47

i f (f i n d _ i n _F (X))
{

/ / C o n t r a d i c t i o n , we want t o s a t i s f y T (X)
/ / bu t we a l r e a d y have t o s a t i s f y F (X) .
re turn f a l s e ;

}
/ / We w i l l add T (X) where X migh t be Con tac t or =0 term ,
/ / so we need t o v e r i f y t h a t we w i l l no t break t h e c o n t a c t r u l e .
i f (h a s _ b r o k e n _ c o n t a c t _ r u l e (X))
{

re turn f a l s e ;
}

i f (f i n d_ i n_T (X)) / / s k i p add ing i t m u l t i p l e t i m e s
{

re turn s a t i s f i a b l e _ s t e p () ;
}

add_fo rmula_ to_T (X) ;
auto r e s = s a t i s f i a b l e _ s t e p () ;
remove_formula_from_T (X) ;
re turn r e s ;

}

i f (op == op_ t : : d i s j u n c t i o n)
{

/ / F (X v Y) −> F(X) & F(Y)
F _ d i s j u n c t i o n _ c h i l d X(∗ t h i s , f−>g e t _ l e f t _ c h i l d _ f o rm u l a ()) ;
F _ d i s j u n c t i o n _ c h i l d Y(∗ t h i s , f−>g e t _ r i g h t _ c h i l d _ f o rm u l a ()) ;

/ / Checks t h a t X does no t b r i n g a c o n t r a d i c t i o n
i f (!X. v a l i d a t e ())
{

re turn f a l s e ;
}
X. add_to_F () ;

i f (!Y. v a l i d a t e ())
{

X. remove_from_F () ;
re turn f a l s e ;

}
Y. add_to_F () ;

auto r e s = s a t i s f i a b l e _ s t e p () ;

X. remove_from_F () ;
Y. remove_from_F () ;

re turn r e s ;
}

48

a s s e r t (op == op_ t : : c o n j u n c t i o n) ;
/ / F (X & Y) −> F(X) v F(Y)
auto X = f−>g e t _ l e f t _ c h i l d _ f o rm u l a () ;
auto Y = f−>g e t _ r i g h t _ c h i l d _ f o rm u l a () ;

t r a c e () << " Wi l l ␣ s p l i t ␣ t o ␣ two␣ s u b t r e e s : ␣ " << ∗X << "␣and␣ " << ∗Y;

/ / F (F) i s s a t i s f i a b l e and we can s k i p t h e o t h e r branch
i f (X−> i s _ c o n s t a n t _ f a l s e () | | Y−> i s _ c o n s t a n t _ f a l s e ())
{

t r a c e () << "One␣ of ␣ t h e ␣ c h i l d s ␣ i s ␣ c o n s t a n t ␣ f a l s e " ;
re turn s a t i s f i a b l e _ s t e p () ;

}

auto p r o c e s s _ F _ c o n j _ c h i l d = [&] (cons t f o rmu l a ∗ c h i l d) {
i f (c h i l d −> i s _ c o n s t a n t _ t r u e () | | / / F (T) i s no t s a t i s f i a b l e

f i n d_ i n_T (c h i l d))
{

re turn f a l s e ;
}
i f (f i n d _ i n _F (c h i l d)) / / s k i p add ing i t m u l t i p l e t i m e s
{

re turn s a t i s f i a b l e _ s t e p () ;
}

add_ fo rmu la_ to_F (c h i l d) ;
cons t auto r e s = s a t i s f i a b l e _ s t e p () ;
remove_formula_f rom_F (c h i l d) ;
re turn r e s ;

} ;

t r a c e () << " S t a r t ␣ o f ␣ t h e ␣ l e f t ␣ s u b t r e e : ␣ " << ∗X << "␣ of ␣ " << ∗ f ;
i f (p r o c e s s _ F _ c o n j _ c h i l d (X))
{

/ / There was no c o n t r a d i c t i o n i n l e f t path ,
/ / so t h e r e i s no need t o c o n t i n u e w i t h t h e r i g h t pa th .
re turn true ;

}

t r a c e () << " S t a r t ␣ o f ␣ t h e ␣ r i g h t ␣ s u b t r e e : ␣ " << ∗Y << "␣ of ␣ " << ∗ f ;
re turn p r o c e s s _ F _ c o n j _ c h i l d (Y) ;

}

49

7 Model Implementation
Tableaux branch output
As stated above the ouput of a branch in the tableaux process is a set of atomic formulas.
These atomic formulas are grouped in six sets:

• Contacts (𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠_𝑇)

• Non-Contacts (𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠_𝐹)

• Equal to Zero Terms (𝑧𝑒𝑟𝑜_𝑡𝑒𝑟𝑚𝑠_𝑇)

• Not Equal to Zero Terms (𝑧𝑒𝑟𝑜_𝑡𝑒𝑟𝑚𝑠_𝐹)

• Meassured Equal to Zero Terms (𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑_𝑙𝑒𝑠𝑠_𝑒𝑞_𝑇)

• Meassured Not Equal to Zero Terms (𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑_𝑙𝑒𝑠𝑠_𝑒𝑞_𝐹)

All atomic formulas in the branch should be satisfied. So, they are in a conjunction.
Can be represented with the following formula:∧

𝑖
𝐶 (𝑎𝑖 , 𝑏𝑖) ∧

∧
𝑗
¬𝐶 (𝑒 𝑗 , 𝑓 𝑗) ∧∧

𝑘
𝑑𝑘 = 0 ∧

∧
𝑙
𝑔𝑙 ≠ 0 ∧∧

𝑠
<=𝑚 (𝐻𝑠 , 𝑂𝑠) ∧

∧
𝑢
¬(<=𝑚 (𝑄𝑢, 𝑅𝑢))

Model output
The model building algorithm should produce a set of modal points. The contacts
between them and to define the valuation for each boolean variable.

7.1 Modal point representation
The modal points are variable evaluations. The variables are converted to an identifier
from 0 to N - 1, where N is the number of different boolean variables. The variable
evaluation is a sequence of N 1s and 0s. Thus, all different evaluations are 2𝑁 . It is
implemented via the boost::dynamic_bitset. Which is an optimized vector of N boolean
elements. The memory for N elements is roughly N bits. The element at position X is
the evaluation for the variable with identifier X.

Theremight be variables in the formulawhich are not used in the branch conjunction.
The evaluations for those variables are not needed. So, the variable evaluations will
be only over the used variables. Let the used variables count is K. Then, all different
modal points will be 2𝐾 .

It is crucial to have an iterative algorithm for generating all modal points. The
modal point representation is similar to the binary numbers. Therefore, the plus one
binary operation is simulated over the bitset. It allows a generation of the next modal
point. It is convenient for the model construction.

The following is the implementation of the variable evaluation:

50

variables_evaluations_block.h/cpp
us ing v a r i a b l e s _ma s k _ t = boo s t : : d y n am i c _b i t s e t < >;
us ing v a r i a b l e s _ e v a l u a t i o n s _ t = boo s t : : d y n am i c _b i t s e t < >;
us ing s e t _ v a r i a b l e s _ i d s _ t = s t d : : v e c t o r < s i z e _ t > ;

c l a s s v a r i a b l e s _ e v a l u a t i o n s _ b l o c k {
pub l i c :

v a r i a b l e s _ e v a l u a t i o n s _ b l o c k (cons t v a r i a b l e s _ma s k _ t& v a r i a b l e s) ;

auto g e t _ v a r i a b l e s () cons t −> v a r i a b l e s _ma s k _ t ;
auto g e t _ e v a l u a t i o n s () −> v a r i a b l e s _ e v a l u a t i o n s _ t &;
auto g e t _ e v a l u a t i o n s () cons t −> cons t v a r i a b l e s _ e v a l u a t i o n s _ t &;

auto g e t _ s e t _ v a r i a b l e s _ i d s () cons t −> cons t s e t _ v a r i a b l e s _ i d s _ t &;
auto g e n e r a t e _ n e x t _ e v a l u a t i o n () −> bool ;
void r e s e t _ e v a l u a t i o n s () ;

p r i v a t e :
void i n i t () ;

v a r i a b l e s _ma s k _ t v a r i a b l e s _ ;
v a r i a b l e s _ e v a l u a t i o n s _ t e v a l u a t i o n s _ ;

/ / Caching t h e s e t v a r i a b l e s .
/ / For g e n e r a t i n g t h e n e x t e v a l u a t i o n s i n o rde r t o make i t
/ / O (| s e t v a r a i b l e s |) i n s t e a d o f O (| a l l v a r i a b l e s i n t h e mask |)
s e t _ v a r i a b l e s _ i d s _ t s e t _ v a r i a b l e s _ i d s _ ;

} ;

51

. . .
auto v a r i a b l e s _ e v a l u a t i o n s _ b l o c k : : g e n e r a t e _ n e x t _ e v a l u a t i o n () −> bool
{

i f ((v a r i a b l e s _ & e v a l u a t i o n s _) == v a r i a b l e s _)
{

/ / I f t h e e v a l u a t i o n f o r t h e v a r i a b l e s i s on l y 1 s
/ / t h en we canno t g e n e r a t e a new one ,
/ / i . e . we have a l r e a d y g en e r a t e d a l l o f them .
re turn f a l s e ;

}

/∗
∗ W i l l g e n e r a t e t h e e v a l u a t i o n s i n t h e f o l l o w i n g orde r :
∗ 0 . . . 0 0 , 0 . . . 0 1 , 0 . . . 1 0 , . . . , 1 1 . . . 1 0 , 1 1 . . . 1 1 .
∗ Th i s i s v e r y s i m i l a r t o t h e i n c r em en t (+1) o p e r a t i o n o f i n t e g e r
∗ numbers i n t h e i r b i n a r y r e p r e s e n t a t i o n .
∗ For t h e b i n a r y number an a l g o r i t h m cou ld be t h e f o l l o w i n g :
∗ I t e r a t e a l l b i t s s t a r t i n g from t h e l e a s t s i g n i f i c a n t .
∗ − b i t (i) == 1 => b i t (i) = 0
∗ − b i t (i) == 0 => b i t (i) = 1 & s t o p
∗ In our case i t i s s i m i l a r , we want t o make t h e i n c r emen t
∗ o p e r a t i o n on l y on t h e s e t b i t s i n t h e v a r i a b l e s _ mask .
∗ s e t _ v a r i a b l e s _ i d s _ has t h e i d s o f t h e s e t b i t s
∗ i n t h e v a r i a b l e s mask i n r e v e r c e o rde r .
∗ /

f o r (cons t auto i d : s e t _ v a r i a b l e s _ i d s _)
{

i f (! e v a l u a t i o n s _ [i d])
{

e v a l u a t i o n s _ . s e t (i d) ;
break ;

}
e l s e
{

e v a l u a t i o n s _ . s e t (id , f a l s e) ;
}

}

re turn true ;
}

model.h
us ing p o i n t s _ t = s t d : : v e c t o r < v a r i a b l e s _ e v a l u a t i o n s _ b l o c k > ;
p o i n t s _ t p o i n t s _ ;

52

7.2 Contacts representation
The contact relations are implemented via a standard adjacency matrix. The elements
of the matrix indicate whether pairs of points are in contact or not. Their values are 0
or 1. Thus, the optimized boost::dynamic_bitset is used again.
us ing mod e l _ p o i n t s _ s e t _ t = boo s t : : d y n am i c _b i t s e t < >;
us ing c o n t a c t s _ t = s t d : : v e c t o r <mod e l _ p o i n t s _ s e t _ t > ;
c o n t a c t s _ t c o n t a c t _ r e l a t i o n s _ ;

7.3 Valuation representation
The valuation 𝜐𝑛 requires to define it for each boolean variable. It’s implemented via a
NxM bit matrix. N is the number of boolean variables and M is the number of modal
points. The matrix element at position (𝑖, 𝑗) indicates whether the valuation for the
variable with id 𝑖 contains the modal point 𝑗 .
us ing mod e l _ p o i n t s _ s e t _ t = boo s t : : d y n am i c _b i t s e t < >;
us ing v a r i a b l e _ i d _ t o _ p o i n t s _ t = s t d : : v e c t o r <mod e l _ p o i n t s _ s e t _ t > ;

/ / A v e c t o r o f b i t s e t s r e p r e s e n t i n g t h e va l u e o f v (v a r i a b l e _ i d) .
v a r i a b l e _ i d _ t o _ p o i n t s _ t v a r i a b l e _ e v a l u a t i o n s _ ;

7.4 Handy methods
Contact matrix filling

The algorithm for building a model creates a pair of points for each contact in the
branch conjunction. Therefore, these points should be in contact. In addition to that,
each modal point is in contact with itself (reflexivity).

53

imodel.h/cpp
/ / U s e f u l f o r models which have t h e i r f i r s t 2∗ @number_o f_con tac t s p o i n t s
/ / i n c o n t a c t (p o i n t 2k i s i n c o n t a c t w i t h p o i n t (2 k +1))
/ / I n s e r t s 1 s i n t h e c o n t a c t r e l a t i o n s m a t r i x be tween p o i n t s 2k and 2k+1
/ / (f o r each k i n range [0 , @number_o f_con tac t s))
/ / I n s e r t s 1 s i n t h e c o n t a c t r e l a t i o n s m a t r i x be tween
/ / each p o i n t and i t s e l f (r e f l e x i v i t y) .
void imode l : : c r e a t e _ c o n t a c t _ r e l a t i o n s _ f i r s t _ 2 k _ i n _ c o n t a c t (

s i z e _ t numbe r_o f_po in t s ,
s i z e _ t numbe r _o f _ con t a c t s)

{
c o n t a c t _ r e l a t i o n s _ . c l e a r () ;
/ / F i l l NxN m a t r i x w i t h 0 s .
c o n t a c t _ r e l a t i o n s _ . r e s i z e (numbe r_o f_po in t s ,

mo d e l _ p o i n t s _ s e t _ t (numbe r_o f_po i n t s)) ;
f o r (s i z e _ t k = 0 ; k < numbe r _o f _ con t a c t s ; ++k)
{

cons t auto a = 2 ∗ k ;
cons t auto b = a + 1 ;
c o n t a c t _ r e l a t i o n s _ [a] . s e t (b) ; / / S e t s t h e b−t h b i t t o 1 .
c o n t a c t _ r e l a t i o n s _ [b] . s e t (a) ;

}

/ / Add a l s o t h e r e f l e x i v i t y .
f o r (s i z e _ t i = 0 ; i < numbe r_o f_po i n t s ; ++ i)
{

c o n t a c t _ r e l a t i o n s _ [i] . s e t (i) ;
}

}

54

Variable evaluation filling

Fills the 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒_𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛𝑠_ matrix based on the current modal points.

imodel.h/cpp
void model : : c a l c u l a t e _ t h e _mo d e l _ e v a l u a t i o n _ o f _ e a c h _ v a r i a b l e ()
{

cons t auto p o i n t s _ s i z e = p o i n t s _ . s i z e () ;
v a r i a b l e _ e v a l u a t i o n s _ . c l e a r () ;
/ / I n i t i a l i z e each v a r i a b l e e v a l u a t i o n as t h e empty s e t .
v a r i a b l e _ e v a l u a t i o n s _ . r e s i z e (

mgr_−>g e t _ v a r i a b l e s () . s i z e () ,
m o d e l _ p o i n t s _ s e t _ t (p o i n t s _ s i z e)) ;

/ / C a l c u l a t e t h e v a l u a t i o n o f each v a r i a b l e ,
/ / i . e . each v a r i a b l e _ i d
/ / v (Pi) = { p o i n t | p o i n t _ e v a l u a t i o n [Pi] == 1 } ,
/ / i . e . t h e e v a l u a t i o n o f v a r i a b l e w i t h i d Pi i s 1
/ / (t h e b i t a t p o s i t i o n Pi i s 1)
f o r (s i z e _ t p o i n t = 0 ; p o i n t < p o i n t s _ s i z e ; ++ p o i n t)
{

cons t auto& po i n t _ e v a l u a t i o n = p o i n t s _ [p o i n t] . g e t _ e v a l u a t i o n s () ;

/ / I t e r a t e on l y s e t b i t s (1 s)
auto Pi = p o i n t _ e v a l u a t i o n . f i n d _ f i r s t () ;
whi le (P i != v a r i a b l e s _ e v a l u a t i o n s _ t : : npos)
{

/ / Adds t h e p o i n t t o t h e v (Pi) s e t .
v a r i a b l e _ e v a l u a t i o n s _ [P i] . s e t (p o i n t) ;
P i = p o i n t _ e v a l u a t i o n . f i n d _ n e x t (P i) ;

}
}

}

55

Evaluating a term

The implementation of the boolean valuation is in the term class. The details are in
the term.cpp file. The boolean valuation assigns a constant true or false to the term for
some variable evaluation. This variable evaluation assigns a constant true or false to
each boolean variable in the term.

term.h
c l a s s t e rm {
. . .
s t r u c t e v a l u a t i o n _ r e s u l t
{

enum c l a s s r e s u l t _ t y p e : char
{

none ,
c o n s t a n t _ t r u e ,
c o n s t a n t _ f a l s e ,

} ;

auto i s _ c o n s t a n t _ t r u e () cons t −> bool ;
auto i s _ c o n s t a n t _ f a l s e () cons t −> bool ;

r e s u l t _ t y p e t ype { r e s u l t _ t y p e : : none } ;
. . . .

} ;
. . .
} ;

/ / I gno r e t h e second argument f o r sub te rm c r e a t i o n .
/ / I t i s a s u p p o r t f o r a p a r t i a l v a r i a b l e e v a l u a t i o n b l o c k
/ / which does no t e v a l u a t e a l l boo lean v a r i a b l e s i n t h e term .
/ / Then i t w i l l e v a l u a t e a l l known v a r i a b l e s and r educe s t h e c o n s t a n t s .
/ / R e t u rn s i t as a sub te rm .
/ / I t i s no t used because i t was needed
/ / f o r an o ld model b u i l d i n g a l g o r i t h m .
auto t e rm : : e v a l u a t e (

cons t v a r i a b l e s _ e v a l u a t i o n s _ b l o c k& ev a l u a t i o n _ b l o c k ,
bool s k i p _ s u b t e rm_ c r e a t i o n = t rue) cons t −> e v a l u a t i o n _ r e s u l t ;

56

Zero terms satisfiability

Checkswhether amodal point(variable evaluation) does not conflict with the zero terms.
The point should not be part of any zero term evaluation. So, the point should evaluate
all zero terms to constant false.

utils.h/cpp
/ / / R e t u rn s t r u e i f t h e e v a l u a t i o n e v a l u a t e s a l l z e r o t e rms t o f a l s e .
auto a r e _ z e r o _ t e rm s _ T _ s a t i s f i e d (

cons t t e rm s _ t& zero_ te rms_T ,
cons t v a r i a b l e s _ e v a l u a t i o n s _ b l o c k& e v a l u a t i o n) −> bool

{
/ / The e v a l u a t i o n shou l d e v a l u a t e a l l z e r o t e rms t o c o n s t a n t f a l s e .
/ / That way i t w i l l no t p a r t i c i p a t e i n any o f t h e i r e v a l u a t i o n s .
f o r (cons t auto& z : ze ro_ t e rms_T)
{

i f (! z−>e v a l u a t e (e v a l u a t i o n) . i s _ c o n s t a n t _ f a l s e ())
{

re turn f a l s e ;
}

}
re turn true ;

}

57

Non-contacts satisfiability

Checks whether a modal point (or a pair of points) does not conflict with the non-
contacts. It is split to two components. Based on the reflexivity and connectivity
rules.

For the reflexivity, it is sufficient to verify that the point is not part of the both
non-contact terms evaluations. So, the point should not evaluate both terms to constant
true.

For the connectivity, it is sufficient to verify that the pair of points does not partici-
pate in the non-contact terms evaluations. So, the points should not evaluate the terms
to constant true.

utils.h/cpp
auto i s _ c o n t a c t s _ F _ r e f l e x i v e _ r u l e _ s a t i s f i e d (

cons t f o rmu l a s _ t& con t a c t s _F ,
cons t v a r i a b l e s _ e v a l u a t i o n s _ b l o c k& e v a l u a t i o n) −> bool

{
f o r (cons t auto& c : c o n t a c t s _ F)
{

/ / The e v a l u a t i o n shou l d no t be pa r t h o f bo th
/ / non−c o n t a c t term ’ s e v a l u a t i o n s .
cons t auto l e f t _ t = c−>g e t _ l e f t _ c h i l d _ t e r m () ;
cons t auto r i g h t _ t = c−>g e t _ r i g h t _ c h i l d _ t e rm () ;
i f (l e f t _ t −>e v a l u a t e (e v a l u a t i o n) . i s _ c o n s t a n t _ t r u e () &&

r i g h t _ t −>e v a l u a t e (e v a l u a t i o n) . i s _ c o n s t a n t _ t r u e ())
{

re turn f a l s e ;
}

}
re turn true ;

}

auto i s _ c o n t a c t s _ F _ c o n n e c t i v i t y _ r u l e _ s a t i s f i e d (
cons t f o rmu l a s _ t& con t a c t s _F ,
cons t v a r i a b l e s _ e v a l u a t i o n s _ b l o c k& eva l_a ,
cons t v a r i a b l e s _ e v a l u a t i o n s _ b l o c k& eva l _b) −> bool

{
f o r (cons t auto& c : c o n t a c t s _ F)
{

/ / I n o rde r t h e e va l _a and eva l _b t o no t c o n f l i c t w i t h a
/ / non−c o n t a c t t h e y shou l d no t p a r t i c i p a t e i n t h e non−c o n t a c t
/ / t e rm ’ s e v a l u a t i o n s . In o t h e r words , bo th e v a l u a t i o n s
/ / s hou l d no t e v a l u a t e bo th t e rms t o t r u e .
cons t auto l = c−>g e t _ l e f t _ c h i l d _ t e r m () ;
cons t auto r = c−>g e t _ r i g h t _ c h i l d _ t e rm () ;
i f ((l−>e v a l u a t e (e v a l _ a) . i s _ c o n s t a n t _ t r u e () &&

r−>e v a l u a t e (eva l _b) . i s _ c o n s t a n t _ t r u e ()) | |
(l−>e v a l u a t e (eva l _b) . i s _ c o n s t a n t _ t r u e () &&
r−>e v a l u a t e (e v a l _ a) . i s _ c o n s t a n t _ t r u e ()))

{
/ / The r e f l e x i v i t y case i s no t t a k en i n t o accoun t here .
re turn f a l s e ;

}
}

58

re turn true ;
}

59

7.5 Modal points constructors
Construction modal points for non-zero terms

Creates a modal point for each non-zero term in the branch conjunction. The point
should not conflict with any zero term or non-contact.

model.h/cpp
auto model : : c o n s t r u c t _ n o n _ z e r o _mod e l _ p o i n t s (

cons t t e rm s _ t& ze ro_ te rms_F , cons t f o rmu l a s _ t& con t a c t s _F ,
cons t t e rm s _ t& ze ro_ t e rms_T) −> bool

{
f o r (cons t auto& z : ze ro_ t e rms_F)
{

/ / I t w i l l be o v e r r i t e n i f s ucceed .
v a r i a b l e s _ e v a l u a t i o n s _ b l o c k e v a l (v a r i a b l e s _ma s k _ t (0)) ;
i f (! c r e a t e _ p o i n t _ e v a l u a t i o n (z , eva l , c on t a c t s _F , ze ro_ t e rms_T))
{

re turn f a l s e ;
}
p o i n t s _ . push_back (s t d : : move (e v a l)) ;

}

re turn true ;
}

auto model : : c r e a t e _ p o i n t _ e v a l u a t i o n (
cons t t e rm ∗ t , v a r i a b l e s _ e v a l u a t i o n s _ b l o c k& ou t _ e v a l u a t i o n ,
cons t f o rmu l a s _ t& con t a c t s _F ,
cons t t e rm s _ t& ze ro_ t e rms_T) cons t −> bool

{
o u t _ e v a l u a t i o n = v a r i a b l e s _ e v a l u a t i o n s _ b l o c k (u s e d _ v a r i a b l e s _) ;

re turn d o e s _ p o i n t _ e v a l u a t i o n _ s a t i s f i e s _ b a s i c _ r u l e s (
t , o u t _ e v a l u a t i o n , c on t a c t s _F , ze ro_ t e rms_T) | |

g e n e r a t e _ n e x t _ p o i n t _ e v a l u a t i o n (
t , o u t _ e v a l u a t i o n , c on t a c t s _F , ze ro_ t e rms_T) ;

}

auto model : : d o e s _ p o i n t _ e v a l u a t i o n _ s a t i s f i e s _ b a s i c _ r u l e s (
cons t t e rm ∗ t ,
cons t v a r i a b l e s _ e v a l u a t i o n s _ b l o c k& ev a l u a t i o n ,
cons t f o rmu l a s _ t& con t a c t s _F ,
cons t t e rm s _ t& ze ro_ t e rms_T) cons t −> bool

{
re turn t−>e v a l u a t e (e v a l u a t i o n) . i s _ c o n s t a n t _ t r u e () &&

a r e _ z e r o _ t e rm s _ T _ s a t i s f i e d (ze ro_ te rms_T , e v a l u a t i o n) &&
i s _ c o n t a c t s _ F _ r e f l e x i v e _ r u l e _ s a t i s f i e d (

c on t a c t s _F , e v a l u a t i o n) ;
}

60

auto model : : a r e _ z e r o _ t e rm s _ T _ s a t i s f i e d (
cons t t e rm s _ t& zero_ te rms_T ,
cons t v a r i a b l e s _ e v a l u a t i o n s _ b l o c k& e v a l u a t i o n) cons t −> bool

{
f o r (cons t auto& z : ze ro_ t e rms_T)
{

i f (! z−>e v a l u a t e (e v a l u a t i o n) . i s _ c o n s t a n t _ f a l s e ())
{

re turn f a l s e ;
}

}
re turn true ;

}

auto model : : g e n e r a t e _ n e x t _ p o i n t _ e v a l u a t i o n (
cons t t e rm ∗ t , v a r i a b l e s _ e v a l u a t i o n s _ b l o c k& ou t _ e v a l u a t i o n ,
cons t f o rmu l a s _ t& con t a c t s _F ,
cons t t e rm s _ t& ze ro_ t e rms_T) cons t −> bool

{

whi le (o u t _ e v a l u a t i o n . g e n e r a t e _ n e x t _ e v a l u a t i o n ())
{

i f (d o e s _ p o i n t _ e v a l u a t i o n _ s a t i s f i e s _ b a s i c _ r u l e s (
t , o u t _ e v a l u a t i o n , c on t a c t s _F , ze ro_ t e rms_T))

{
re turn true ;

}
}
re turn f a l s e ;

}

61

Construction modal points for contacts

Creates a pair of modal points for each contact in the branch conjunction.

model.h/cpp
auto model : : c o n s t r u c t _ c o n t a c t _mo d e l _ p o i n t s (

cons t f o rmu l a s _ t& con t a c t s _T , cons t f o rmu l a s _ t& con t a c t s _F ,
cons t t e rm s _ t& ze ro_ t e rms_T) −> bool

{
f o r (cons t auto& c : c o n t a c t s _T)
{

i f (! c o n s t r u c t _ c o n t a c t _ p o i n t s (c , c on t a c t s _F , ze ro_ t e rms_T))
{

re turn f a l s e ;
}

}

re turn true ;
}

62

auto model : : c o n s t r u c t _ c o n t a c t _ p o i n t s (
cons t f o rmu l a ∗ c , cons t f o rmu l a s _ t& con t a c t s _F ,
cons t t e rm s _ t& ze ro_ t e rms_T) −> bool

{
cons t auto l e f t = c−>g e t _ l e f t _ c h i l d _ t e r m () ;
cons t auto r i g h t = c−>g e t _ r i g h t _ c h i l d _ t e rm () ;

/ / I t w i l l be o v e r r i d d e n i f s ucceed .
v a r i a b l e s _ e v a l u a t i o n s _ b l o c k l e f t _ e v a l (v a r i a b l e s _ma s k _ t (0)) ;
i f (! c r e a t e _ p o i n t _ e v a l u a t i o n (

l e f t , l e f t _ e v a l , c on t a c t s _F , ze ro_ t e rms_T))
{

re turn f a l s e ;
}

do
{

v a r i a b l e s _ e v a l u a t i o n s _ b l o c k r i g h t _ e v a l (v a r i a b l e s _ma s k _ t (0)) ;
i f (! c r e a t e _ p o i n t _ e v a l u a t i o n (

r i g h t , r i g h t _ e v a l , c on t a c t s _F , ze ro_ t e rms_T))
{

re turn f a l s e ;
}

do
{

i f (i s _ c o n t a c t s _ F _ c o n n e c t i v i t y _ r u l e _ s a t i s f i e d (
c on t a c t s _F , l e f t _ e v a l , r i g h t _ e v a l))

{
p o i n t s _ . push_back (s t d : : move (l e f t _ e v a l)) ;
p o i n t s _ . push_back (s t d : : move (r i g h t _ e v a l)) ;
re turn true ;

}
} whi le (g e n e r a t e _ n e x t _ p o i n t _ e v a l u a t i o n (

r i g h t , r i g h t _ e v a l , c on t a c t s _F , ze ro_ t e rms_T)) ;
} whi le (g e n e r a t e _ n e x t _ p o i n t _ e v a l u a t i o n (

l e f t , l e f t _ e v a l , c on t a c t s _F , ze ro_ t e rms_T)) ;

re turn f a l s e ;
}

63

7.6 Building algorithm
The building algorithm is simple. Creates a pair of suitable modal points for each
contact. Creates a suitable modal point for each non-zero term. Lastly, updates the
boolean variable valuation and connectivity matrix.

model.h/cpp
auto model : : c r e a t e (

cons t f o rmu l a s _ t& con t a c t s _T , cons t f o rmu l a s _ t& con t a c t s _F ,
cons t t e rm s _ t& zero_ te rms_T , cons t t e rm s _ t& ze ro_ te rms_F ,
cons t v a r i a b l e s _ma s k _ t& u s e d _ v a r i a b l e s ,
cons t formula_mgr∗ mgr) −> bool

{
. . .
i f (! c o n s t r u c t _ c o n t a c t _mo d e l _ p o i n t s (

con t a c t s _T , c on t a c t s _F , ze ro_ t e rms_T) | |
! c o n s t r u c t _ n o n _ z e r o _mod e l _ p o i n t s (

ze ro_ te rms_F , c on t a c t s _F , ze ro_ t e rms_T))
{

re turn f a l s e ;

}

i f (p o i n t s _ . empty () &&
! c o n s t r u c t _ p o i n t (c on t a c t s _F , ze ro_ t e rms_T))

{
re turn f a l s e ;

}

c a l c u l a t e _ t h e _mo d e l _ e v a l u a t i o n _ o f _ e a c h _ v a r i a b l e () ;
c r e a t e _ c o n t a c t _ r e l a t i o n s _ f i r s t _ 2 k _ i n _ c o n t a c t (

p o i n t s _ . s i z e () , c o n t a c t s _T . s i z e ()) ;
re turn true ;

}

64

8 Quantitative Contact Logics Implementation
Model Valuation of a Term

The implementation of the model valuation ?? is in the term class. The details are in the
term.cpp file. The model valuation assigns a set of points to the term for some variable
valuation.

term.h
c l a s s t e rm {
. . .
auto t e rm : : e v a l u a t e (

cons t v a r i a b l e _ i d _ t o _ p o i n t s _ t& v a r i a b l e _ e v a l u a t i o n s ,
cons t s i z e _ t p o i n t s _ c o u n t) cons t −> mod e l _ p o i n t s _ s e t _ t ;

8.1 System of Inequalities Implementation
The implementation of the system of inequality is located in a separate class, named sys-
tem_of_inequalities.h. To calculate these systems of inequalities, a third party library is
used, which is specialized to solve systems of inequalities. The library’s name is Kiwi.
Since the system of inequalities are of a special type only two operations are introduced:

system_of_inequalities.h
enum c l a s s i n e q u a l i t y _ o p e r a t i o n
{

LE , / / l e s s or equa l
G, / / g r e a t e r

} ;

An inequality is added to the system with the method:

system_of_inequalities.h
/∗
∗ Re t u rn s t r u e i f t h e s y s t em i s s o l v a b l e and t h e added i n e q u a l i t y
∗ does no t makes t h e s y s t em u n s o l v a b l e .
∗ /

auto a d d _ c o n s t r a i n t (cons t v a r i a b l e s _ s e t& lhs ,
cons t v a r i a b l e s _ s e t& rhs ,
i n e q u a l i t y _ o p e r a t i o n op) −> bool ;

The check whether the system has a solution is done with:

system_of_inequalities.h
/∗
∗ Re t u rn s t r u e i f t h e s y s t em i s s t i l l s o l v a b l e .
∗ /

auto i s _ s o l v a b l e () cons t −> bool ;

The final result when the system of inequalities is solvable can be taken with the fol-
lowing method:

65

system_of_inequalities.h
/∗
∗ I f t h e s y s t em i s s o l v a b l e , r e t u r n s a v e c t o r o f va l ue s ,
∗ which s a t i s f y t h e s y s t em .
∗ Element a t p o s i t i o n ’ i ’ i s t h e va l u e o f t h e i−t h v a r i a b l e .
∗ I f t h e s y s t em i s no t s o l v a b l e , r e t u r n s an empty v e c t o r .
∗ /

auto g e t _ v a r i a b l e s _ v a l u e s () cons t −> s t d : : v e c t o r <double >;

8.2 Measured Less Operator Representation
All of the researched third party libraries for solving systems of inequalities work only
with less or equal than (≤) inequalities. This means that the greater than inequalities
must be simulated with the usage of less or equal than inequalities.
This absence is solved with the addition of a really small variable while converting the
greater inequality to less or equal inequality.

Let us have the following inequality{∑
𝑖1 𝑋𝑖1 >

∑
𝑗1 𝑋 𝑗1

then this inequality is transformed into:{
−∑

𝑖1 𝑋𝑖1 +
∑
𝑗1 𝑋 𝑗1 + 𝜖 ≤ 0

where 𝜖 is a small value.

The inequality𝑋 > 0, where X is a variable is transformed into:{
0≤ 𝑋 − 𝜖

Google’s linear solver Glop (OR-Tools) was one of the tested libraries and it has preci-
sion around 1 ∗ 10−7. Kiwi’s precision is around 1 ∗ 10−8.

These results are based on simple empirical testing, namely:
A simple system of only one inequality 𝑋 > 0 which is converted to 𝑋 − 𝜖 >= 0.
While testing the 𝜖 value was slowly decreasing and when it gets smaller than 1 ∗ 10−7

(1 ∗ 10−6 for google’s Glop (OR-Tools)) the solver gave a wrong answer.

Besides this anomaly, the precision is good enough for the purposes of finding so-
lutions for the special type

Building the System of Inequalities The system construction is done by adding con-
straints for all measured atomic formulas. This is done by the
create_system_of_inequalities method:

measured_model.h

66

auto measured_model : : c r e a t e _ s y s t em _ o f _ i n e q u a l i t i e s (
cons t mod e l _ p o i n t s _ s e t _ t& po i n t s ,
cons t t e rm_ t o _moda l _ p o i n t s _ t& t e rm_ e v a l u a t i o n s ,
s y s t em _ o f _ i n e q u a l i t i e s& sys tem) cons t −> bool

{
/ / For each <=m(a , b) c a l c u l a t e v (a) and v (b) , t h en we w i l l c r e a t e
/ / an i n e q u a l i t y o f t h e f o l l o w i n g t y p e : SUM_I Xi <= SUM_J Xj ,
/ / where I i s v (a) and J i s v (b) .
/ / For each ∼<=m(a , b) c a l c u l a t e v (a) and v (b) , t h en we w i l l c r e a t e
/ / an i n e q u a l i t y o f t h e f o l l o w i n g t y p e : SUM_I Xi > SUM_J Xj ,
/ / where I i s v (a) and J i s v (b) .
/ / Each i n e q u a l i t y i s a row i n t h e s y s t em o f i n e q u a l i t i e s .
/ / I f t h i s s y s t em has a s o l u t i o n , t h en we are good .
sys tem . c l e a r () ;

auto a d d _ c o n s t r a i n t = [] (auto& s , cons t auto& formula ,
cons t auto& po i n t s , cons t auto& t e rm_ e v a l u a t i o n s ,
cons t auto& op) −> bool

{
cons t auto a = formula−>g e t _ l e f t _ c h i l d _ t e r m () ;
cons t auto b = formula−>g e t _ r i g h t _ c h i l d _ t e rm () ;
cons t auto e v a l _ i t _ a = t e rm_ e v a l u a t i o n s . f i n d (a) ;
cons t auto e v a l _ i t _ b = t e rm_ e v a l u a t i o n s . f i n d (b) ;
a s s e r t (e v a l _ i t _ a != t e rm_ e v a l u a t i o n s . end ()) ;
a s s e r t (e v a l _ i t _ b != t e rm_ e v a l u a t i o n s . end ()) ;

/ / The e v a l u a t i o n s c o n t a i n s a l l v a l i d modal p o i n t s ,
/ / so r e s t r i c t them t o t h e p ro v i d ed s u b s e t @points .
cons t auto ev a l _ a = e v a l _ i t _ a −>second & p o i n t s ;
cons t auto eva l _b = e v a l _ i t _ b −>second & p o i n t s ;

re turn s . a d d _ c o n s t r a i n t (eva l_a , eva l_b , op) ;
} ;

f o r (cons t auto& m : measu red_ l e s s_eq_T_)
{

i f (! a d d _ c o n s t r a i n t (system , m, po i n t s , t e rm_ e v a l u a t i o n s ,
s y s t em _ o f _ i n e q u a l i t i e s : : i n e q u a l i t y _ o p e r a t i o n : : LE))

{
re turn f a l s e ;

}
}

f o r (cons t auto& m : measu r ed_ l e s s_eq_F_)
{

i f (! a d d _ c o n s t r a i n t (system , m, po i n t s , t e rm_ e v a l u a t i o n s ,
s y s t em _ o f _ i n e q u a l i t i e s : : i n e q u a l i t y _ o p e r a t i o n : :G))

{
re turn f a l s e ;

}
}

re turn sys tem . i s _ s o l v a b l e () ;
}

67

8.3 Building Algorithm
The building algorithm using the described methods. Follows the Lemma ??.

measured_model.h/cpp
auto measured_model : : c r e a t e (

cons t f o rmu l a s _ t& con t a c t s _T ,
cons t f o rmu l a s _ t& con t a c t s _F ,
cons t t e rm s _ t& zero_ te rms_T ,
cons t t e rm s _ t& ze ro_ te rms_F ,
cons t f o rmu l a s _ t& measu red_ les s_eq_T ,
cons t f o rmu l a s _ t& measu red_ le s s_eq_F ,
cons t v a r i a b l e s _ma s k _ t& u s e d _ v a r i a b l e s ,
cons t v a r i a b l e s _ t& va r i a b l e _n ame s)
−> bool

{
t r a c e () << " S t a r t ␣ c r e a t i n g ␣a␣measured ␣model . " ;
c l e a r () ;

v a r i a b l e _n ame s_ = va r i a b l e _n ame s ;
u s e d _ v a r i a b l e s _ = u s e d _ v a r i a b l e s ;

measu red_ l e s s_eq_T_ = measu r ed_ l e s s_eq_T ;
measu r ed_ l e s s_eq_F_ = measu r ed_ l e s s_eq_F ;

c o n s t e x p r cons t auto max_u s e d_v a r i a b l e s _ s u ppo r t = 25 ;
i f (u s e d _ v a r i a b l e s _ . coun t () >= max_u s e d_v a r i a b l e s _ s u ppo r t)
{

re turn f a l s e ;
}

cons t auto a l l _ v a l i d _ p o i n t s = c o n s t r u c t _ a l l _ v a l i d _ p o i n t s (
u s e d _ v a r i a b l e s _ , c on t a c t s _F , ze ro_ t e rms_T) ;

i f (a l l _ v a l i d _ p o i n t s . empty ())
{

re turn f a l s e ;
}

i f (a l l _ v a l i d _ p o i n t s . s i z e () > max_va l i d_moda l _po i n t s _ coun t _)
{

re turn f a l s e ;
}

cons t auto v a r i a b l e _ e v a l u a t i o n s _ o v e r _ a l l _ v a l i d _ p o i n t s =
g e n e r a t e _ v a r i a b l e _ e v a l u a t i o n s (a l l _ v a l i d _ p o i n t s ,

u s e d _ v a r i a b l e s _ . s i z e ()) ;

cons t auto a l l _ v a l i d _ c o n t a c t _ r e l a t i o n s =
b u i l d _ c o n t a c t _ r e l a t i o n s _m a t r i x (c on t a c t s _F ,

v a r i a b l e _ e v a l u a t i o n s _ o v e r _ a l l _ v a l i d _ p o i n t s) ;

/ / So fa r , t h e z e ro t e rms and non−c o n t a c t s are s a t i s f i e d .
/ / From now on , no new r e l a t i o n s , n e i g t h e r p o i n t s w i l l be added ,
/ / t h e r e f o r e t h e z e ro t e rms and non−c o n t a c t s s a t i s t f a c t i o n
/ / w i l l be p r e s e r v e d .

68

/ / Cache a l l t erm e v a l u a t i o n s which w i l l be r e q u e s t e d l a t e r on .
t e rm_ t o _moda l _ p o i n t s _ t t e rm_ e v a l u a t i o n s ;
a d d _ t e rm_ e v a l u a t i o n s (t e rm_ e v a l u a t i o n s , ze ro_ te rms_F ,

v a r i a b l e _ e v a l u a t i o n s _ o v e r _ a l l _ v a l i d _ p o i n t s) ;
a d d _ t e rm_ e v a l u a t i o n s (t e rm_ e v a l u a t i o n s , c on t a c t s _T ,

v a r i a b l e _ e v a l u a t i o n s _ o v e r _ a l l _ v a l i d _ p o i n t s) ;
a d d _ t e rm_ e v a l u a t i o n s (t e rm_ e v a l u a t i o n s , measu red_ l e s s_eq_F ,

v a r i a b l e _ e v a l u a t i o n s _ o v e r _ a l l _ v a l i d _ p o i n t s) ;
a d d _ t e rm_ e v a l u a t i o n s (t e rm_ e v a l u a t i o n s , measu red_ les s_eq_T ,

v a r i a b l e _ e v a l u a t i o n s _ o v e r _ a l l _ v a l i d _ p o i n t s) ;

sys tem_ = s y s t em _ o f _ i n e q u a l i t i e s (a l l _ v a l i d _ p o i n t s . s i z e ()) ;

cons t auto t o t a l _ c omb i n a t i o n s = s i z e _ t (
s t d : : pow (2 , a l l _ v a l i d _ p o i n t s . s i z e ())) ;

auto a l l _ p o i n t s = ∼mod e l _ p o i n t s _ s e t _ t (a l l _ v a l i d _ p o i n t s . s i z e ()) ;
re turn gene r a t e _mode l (a l l _ p o i n t s , c on t a c t s _T , c on t a c t s _F ,

ze ro_ te rms_F , a l l _ v a l i d _ p o i n t s , a l l _ v a l i d _ c o n t a c t _ r e l a t i o n s ,
t e rm_ e v a l u a t i o n s) ;

}

The recursive function generate_model is defined as:

measured_model.h
auto measured_model : : g ene r a t e_mode l (cons t mod e l _ p o i n t s _ s e t _ t& po i n t s ,

cons t f o rmu l a s _ t& con t a c t s _T ,
cons t f o rmu l a s _ t& con t a c t s _F ,
cons t t e rm s _ t& ze ro_ te rms_F ,
cons t p o i n t s _ t& a l l _ v a l i d _ p o i n t s ,
cons t c o n t a c t s _ t& a l l _ v a l i d _ c o n t a c t _ r e l a t i o n s ,
cons t t e rm_ t o _moda l _ p o i n t s _ t& t e rm_ e v a l u a t i o n s) −> bool

{
TERMINATE_IF_NEEDED () ;

/ / A l r eady p ro c e s s e d .
i f (p r o c e s s e d _ c omb i n a t i o n s _ . f i n d (p o i n t s) !=

p r o c e s s e d _ c omb i n a t i o n s _ . end ())
{

re turn f a l s e ;
}

p r o c e s s e d_ c omb i n a t i o n s _ . i n s e r t (p o i n t s) ;

/ / I f non−z e r o t e rms or c o n t a c t s are no t s a t i s f i e d t h en
/ / t h i s p o i n t s does no t produce a v a l i d model .
/ / The r e f o r e , t h e y cou ld no t produce a measured model n e i g h t e r .
/ / No s u b s e t o f them cou ld s a t i s f y t h e c o n t a c t s / z e r o t e rms
/ / because t h e y r e q u i r e e x i s t n e c e o f more p o i n t s / r e l a t i o n s bu t
/ / t h e s e t o f p o i n t s / r e l a t i o n s i s even reduced .
auto s a t i s f i e d _ z e r o _ t e rm s _ F = ! a r e _ z e r o _ t e rm s _ F _ s a t i s f i e d (

ze ro_ te rms_F , p o i n t s , t e rm_ e v a l u a t i o n s) ;
auto s a t i s f i e d _ c o n t a c t s _ T = a r e _ c o n t a c t s _ T _ s a t i s f i e d (

con t a c t s _T , p o i n t s , t e rm_ e v a l u a t i o n s ,
a l l _ v a l i d _ c o n t a c t _ r e l a t i o n s)

i f (! s a t i s f i e d _ z e r o _ t e rm s _ F | | ! s a t i s f i e d _ c o n t a c t s _ T)
{

69

re turn f a l s e ;
}

/ / So f a r t h e s u b s e t @points o f v a l i d model p o i n t s p roduces
/ / a v a l i d model . Check i f s a t i s f i e s t h e s y s t em .
i f (c r e a t e _ s y s t em _ o f _ i n e q u a l i t i e s (p o i n t s , t e rm_ e v a l u a t i o n s , sys tem_))
{

/ / Good . Found a measured model .
save_as_mode l (p o i n t s , c on t a c t s _F , a l l _ v a l i d _ p o i n t s) ;
re turn true ;

}

i f (p o i n t s . coun t () <= 1)
{

re turn f a l s e ;
}

/ / Go th rough e v e r y s u b s e t w i t h p o i n t s _ c o u n t − 1 e l e m e n t s
/ / and r e c u r s i v e l y check them .

auto po i n t _ p o s = p o i n t s . f i n d _ f i r s t () ;
whi le (p o i n t _ p o s != mod e l _ p o i n t s _ s e t _ t : : npos)
{

auto s u b s e t _ p o i n t s = p o i n t s ;
s u b s e t _ p o i n t s . s e t (po i n t _po s , f a l s e) ;

i f (g ene r a t e_mode l (s u b s e t _ p o i n t s , c on t a c t s _T , c on t a c t s _F ,
ze ro_ te rms_F , a l l _ v a l i d _ p o i n t s ,
a l l _ v a l i d _ c o n t a c t _ r e l a t i o n s , t e rm _ e v a l u a t i o n s))

{
re turn true ;

}

p o i n t _ p o s = p o i n t s . f i n d _ n e x t (p o i n t _ p o s) ;
}

re turn f a l s e ;
}

70

9 Rest Server
The Web Server is used to serve:

• Rest APIs

• Resources

The Rest APIs are used to chek for satisfiability, to find connected models or meassured
models.
The resources are:

• Html pages

• Images

• Javascript code

• Styles

The Web Interface is easy to use, contains only the needed information and from there
can be executed all of the described satisfiability algorithms.

One client can execute only one algorithmic program at a time. This way it is
ensured that there are not a lot of simultaneous executing programs by the server.

If the program execution time gets too long the client has the possibility to terminate
the execution of the current program by server. This will re-enable the client to execute
another program and will remove the execution load from the server.

If the client posts a couple formula for calculation and terminetes the session (for
example closes the browser), then the task in the backend will be terminated as well.

Output
The output of the program is separated in three modules:

• Resulting output - indicates what was the final result of the execution.
For example: The formula is satisfiable.

• Verbose output - This is the output which contains the full proof of the formula
execution.
This output is printed though the whole execution.

• Visualized graph - This is the end result of the model, if such model exists
The visualization is done with a JavaScript third party library for drawing graphs.

The web-system is hosted on:

http://logic.fmi.uni-sofia.bg/theses/Dudov_Stoev

71

http://logic.fmi.uni-sofia.bg/theses/Dudov_Stoev

References
[1] Boolean satisfiability problem

https://en.wikipedia.org/wiki/Boolean_satisfiability_problem

[2] Melvin Fitting
Handbook of Tableau Methods

[3] Philippe Balbiani, Tinko Tinchev, Dimiter Vakarelov
Modal Logics for Region-based Theories of Space

[4] Flex Tokenizer,
https://en.wikipedia.org/wiki/Flex_(lexical_analyser_generator)

[5] Bison Parser,
https://www.gnu.org/software/bison/

[6] Visitor Pattern,
https://en.wikipedia.org/wiki/Visitor_pattern

[7] C++ Rest SDK by Microsoft,
https://github.com/microsoft/cpprestsdk

72

	Introduction
	Tableaux Method
	Propositional logic tableau
	Rules

	Region-based Contact Logics
	Syntax
	Semantics
	Formula Properties
	Formula Satisfiability

	Quantitative Contact Logics
	System of Inequalities
	System Construction
	Measure formula satisfiability
	Formal System

	Implementation Introduction
	Syntax
	Formula parsing
	Abstract Syntax Tree
	Tokenizer
	Parser

	Formula refinement
	Visitor Pattern
	Visitors Overview

	Formula building
	Optimizations
	Layout
	Hashing
	Conversion from AST

	Tableaux Implementation
	Tableaux Step
	Rules
	Implementation
	Handy methods
	Tableaux Satisfiable Step Implementation

	Model Implementation
	Modal point representation
	Contacts representation
	Valuation representation
	Handy methods
	Modal points constructors
	Building algorithm

	Quantitative Contact Logics Implementation
	System of Inequalities Implementation
	Measured Less Operator Representation
	Building Algorithm

	Rest Server

