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1 Introduction

The theory of the Euclidean plane has long been a topic of interest. A well-known result
states that the Euclidean plane cannot be fully axiomatized in a first-order language using only
binary predicates. Consequently, any forthcoming theories will necessarily be weaker than the
full theory of the Euclidean plane. To avoid relying on complex theorems, we demonstrate
instead that the primary object, the "point", cannot be explicitly defined. If it could, we would
also be able to define the predicate of co-punctuality, which is not possible.

By incorporating a binary relation to define the angle between two lines, the line-based
fragment of the Euclidean plane naturally extends the frameworks established in [1] and [2].

Throughout the different chapters, we explore the expressive power of various formal lan-
guages:

• Chapter 2 introduces preliminary knowledge and establishes fundamental notations that
will be used throughout this work.

• Chapter 3 establishes that formal equality is essential.

• Chapter 4 focuses on axiomatizing the plane when angles are directed and may or may
not be co-measurable with π.

• Chapter 5 examines the case where angles are undirected and co-measurable with π.

Additionally, some propositions are proved multiple times using different techniques. This
approach not only showcases various problem-solving strategies but also, in some cases, leads to
stronger corollaries.

2 Preliminaries and notations

2.1 The main structure

The main object of investigation in this work will be the Euclidean plane, consisting of all
lines with the binary property "the angle between two lines equals ϕ", where ϕ is a given angle
in (0, π). We will use F2

R(ϕ) to denote this structure in case the angle is directed (that is in the
plane is fixed one orientation). Otherwise, the notation will be F2

R(ϕ).

To start with, let us define all relations included in the following sections:
1) We say that two lines a and b are parallel, and we write a ∥ b, whenever they do not

intersect each other at only one point. We will associate a binary predicate P to denote it as
follows:

F2
R(ϕ) |= P (a, b) ⇐⇒ a ∥ b

2) When we want to say that two lines are parallel but different, we will use the letter P ′, so
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F2
R(ϕ) |= P ′(a, b) ⇐⇒ F2

R(ϕ) |= P (a, b) ∧ a ̸= b

3) We fix the direction for measuring angles to be anti-clockwise. When we want to say that
the angle between two lines a and b has measure θ, we will write: ∡(a, b) = θ. Keep in mind,
that fixing a direction means that ∡(b, a) = −θ. The relation "the angle between two lines has
measure ϕ" will be denoted by the letter Rϕ and:

F2
R(ϕ) |= Rϕ(a, b) ⇐⇒ ∡(a, b) = ϕ

4) At some point we include the relation Rϕ, which is very similar to Rϕ, but here the angle
between two lines is not directed.

F2
R(ϕ) |= Rϕ(a, b) ⇐⇒ ∡(a, b) = ϕ or ∡(b, a) = ϕ

5) With Co we will denote the 3-ary predicate for co-punctuality of three lines, namely:

F2
R(ϕ) |= Co(a, b, c) ⇐⇒ a, b, c are different and have a common point.

2.2 Languages and formulas

It is now time to meet the first-order languages we will be working with. We will investigate
the expressivity of different languages, but we will stick to the following notations:
1) With x, y, z, . . . x1, x2, . . . we will denote variables.
2) With M,N ,F , . . . we will denote models.
3) With M,N,F, . . . we will denote the universes of the models.
4) With a, b, c . . . , a1, a2 . . . we will denote the elements of the universes of the models.
5) When some object is called a line, then it is element of F2

R(ϕ).

Our line-based first-order theory is based on the idea of associating with parallelism and
rotation the binary predicates P and Rϕ, with the formulas P (x, y) and Rϕ(x, y) being read “x
is parallel to y” and “the angle between x and y is ϕ". The formulas are given by the rule:

φ ::= (x = y) |Rϕ(x, y) |P (x, y) | ¬φ | (φ ∨ ψ) | ∀xφ

Whenever it is clear that the angle ϕ is fixed, then for the sake of brevity we use the letter R.

2.3 Games:

Let L be a language without function symbols and with finite number of relation symbols
and individual constants. Let A and B be two L-structures and let k be a natural number. The
Ehrenfeucht-Fraïssé game with length k on the structures A and B is played by two players,
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who will be called Abelard (duplicator) and Eloise (spoiler) and who know everything about
the game. On each round Eloise chooses a structure and then an element from this structure.
Abelard, then, picks an element from the structure that has not been chosen by Eloise. Let
a1, a2, . . . , ak and b1, b2, . . . , bk be the elements until the end of the game which are chosen from
A and from B respectively. Abelard wins the game if for every 1 ≤ i ≤ k the substructure of A
generated by a1, . . . , ai is isomorphic to the substructure of B generated by b1, b2, . . . , bk.

Let us remind that:

Definition 2.1. Let A and B be two models. We say that A ≡k B if and only if for each
sentence φ with rk(φ) ≤ k it holds that A |= φ ⇐⇒ B |= φ.

Theorem 2.2. (Ehrenfeucht-Fraïssé:) Let L be a language without function symbols and
with finite number of relation symbols and constants. Let A and B be two L-structures and let
k be a natural number. The following are equivalent:

1. A ≡k B

2. Abelard has a winning strategy for the game with length k played on A and B.

The last theorem is Th 3.9 in [3].

2.4 Model theory

Let us remind the popular criteria for completeness:
Vaugth’s test: Let L be at most countable language. If a L-theory has only infinite models

and is α-categorical for some infinite cardinal α, then it is complete.

3 Expressivity of L(Rϕ)

In this chapter our main aim is to show that the inclusion of a predicate for equality is a
necessity.

Let ϕ be an angle in (0;π). Let us consider the language L = {Rϕ}, where Rϕ is a binary
predicate, interpreted in the Euclidean plane F2

R(ϕ) with the binary relation Rϕ, defined in 2.1.

Proposition 3.1. The two predicates Rϕ1 and Rϕ2, where ϕ1 = k
mπ and ϕ2 = 1

mπ are equally
expressive, where k and m are co-prime integers.

Proof. Let L be any language. Denote L1 = L∪{Rϕ1} and L2 = L∪{Rϕ2}. Then the predicate
Rϕ2 is definable in L1:

Rϕ2(x, y) ⇐⇒ ∃z1∃z2 . . . ∃zk0−1

(
Rϕ1(x, z1) ∧Rϕ1(z1, z2) ∧ · · · ∧Rϕ1(zk0−1, y)

)
,

where k0 is the unique solution of kx ≡ 1 (modm) in {1, 2 . . . ,m}.
Similarly, Rϕ1 is definable in L2 as follows:

Rϕ1(x, y) ⇐⇒ ∃z1∃z2 . . . ∃zk−1

(
Rϕ2(x, z1) ∧Rϕ2(z1, z2) ∧ · · · ∧Rϕ2(zk−1, y)

)
.
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Remark 3.2. We need to keep in mind that ϕ is not necessarily a rational multiple of π, or also
co-measurable with π. This will significantly influence the nature of the theories.

Remark 3.3. From now on, whenever we work with a co-measurable with π angle, we can assume
that ϕ = 1

mπ for some m ≥ 2.

Before we continue, we remind the following definitions:

Definition 3.4. Let L be a language and F be a structure. We say that a n-ary predicate S ⊆
Fn is definable in F if there is a L-formula θ[x1, x2, . . . , xn] such that for any a1, a2, . . . , an ∈ F :

(a1, a2, . . . , an) ∈ S if and only if F |= θJa1, a2, . . . , anK

Definition 3.5. Let L be a language and F be a structure. We say that a n-ary predicate S is
parametrically definable in F if there are a L-formula θ[x1, x2, . . . , xn, y1, y2, . . . ys] and elements
b1, b2, . . . , bs ∈ F , such that for any a1, a2, . . . , an ∈ F :

(a1, a2, . . . , an) ∈ S if and only if F |= θJa1, a2, . . . , an, b1, . . . , bsK

Proposition 3.6. The following hold:
(i) The binary predicate = is not parametrically definable in F2

R(ϕ).
(ii) For any angle ϕ the predicate P (a, b) is definable in F2

R(ϕ) by the formula ∀z(R(z, x) ⇐⇒
R(z, y)), i.e

P (a, b) if and only if F2
R(ϕ) |= ∀z(R(z, x) ⇐⇒ R(z, y))Ja, bK

Proof. (i) Let a ̸= b be two parallel lines. For the sake of contradiction suppose that there is a
formula θ[x1, . . . , xn, x, y] and lines a1, a2, . . . , an, such that for any a, b:

a = b if and only if F2
R(ϕ) |= θJa1, a2 . . . , an, a, bK

We shall prove the following claim:
For any L-formula φ[x1, x2, . . . , xn, y], any n ∈ N and any lines c1, c2 . . . , cn one can verify

that:
F2
R(ϕ) |= φJc1, . . . , cn, aK ⇐⇒ F2

R(ϕ) |= φJc1, . . . , cn, bK,

whenever a and b are parallel. In words, every two parallel lines have the same type.

To prove this statement we will use induction on the complexity of the formula φ.

• If φ ◦
= R(x, y), then we would like to prove the following equivalence: F2

R(ϕ) |= R(c1, a) ⇐⇒
F2
R(ϕ) |= R(c1, b). However, this is a direct application of the axiom for corresponding
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angles and holds for the Euclidean plane. Furthermore, since F2
R(ϕ) |= R(a, c1) ⇐⇒

F2
R(ϕ) |= R(b, c1), the position of the parameter c1 does not matter.

• If φ ◦
= ¬ψ, then:

F2
R(ϕ) |= (¬ψ)Jc1, . . . , cn, aK ⇐⇒ F2

R(ϕ) ̸|= ψJc1, . . . , cn, aK

⇐⇒ F2
R(ϕ) ̸|= ψJc1, . . . , cn, bK

⇐⇒ F2
R(ϕ) |= (¬ψ)Jc1, . . . , cn, bK

• If φ ◦
= (φ1 ∧ φ2) or φ ◦

= (φ1 ∨ φ2), the steps are similar.

• If φ ◦
= ∃xψ, where the induction hypothesis holds for ψ[x, x1, . . . , xn, y] and n ≥ 1, then:

F2
R(ϕ) |= (∃xψ)Jb1, b2, . . . , bn−1, aK ⇐⇒ F2

R(ϕ) |= ψJb0, b1, b2, . . . , bn−1, aK for some line b0

⇐⇒ F2
R(ϕ) |= ψJb0, b1, b2, . . . , bn−1, bK for some line b0

⇐⇒ F2
R(ϕ) |= (∃xψ)Jb1, b2, . . . , bn−1, bK

As a consequence of the claim, we get that:

a = a ⇐⇒ θJa1, a2, . . . , an, a, aK

⇐⇒ θJa1, a2, . . . , an, a, bK

⇐⇒ a = b

Clearly, this is a contradiction with our assumption and the binary predicate = is not para-
metrically definable.

(ii) The direction from left to right follows directly from the axiom for corresponding angles.
Now, assume a and b are lines such that ∀z(Rϕ(z, a) ⇐⇒ Rϕ(z, b)) and ¬P (a, b). If Rϕ(a, b),
then take z to be the line a. Then, from Rϕ(a, b) it must follow that Rϕ(a, a) which contradicts
with the irreflexivity of Rϕ. Similarly, when Rϕ(b, a), take z to be b. Now, if ∡(a, b) = ψ ̸= ϕ,
take z be the line c for which Rϕ(c, a). Then ∡(c, b) = ϕ+ ψ ∈ (ϕ, ϕ+ π). Thus, ¬Rϕ(c, b) - a
contradiction. Thus, the predicate P is always definable.

Remark 3.7. From now on in section 4 we shall consider the language L(P,R,=) as the extension
of L(R,=) by definitions, namely the binary predicate symbol P is associated with the axiom:

∀x∀y(P (x, y) ⇐⇒ ∀z(R(z, x) ⇐⇒ R(z, y)))
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4 Expressivity of L(=, R)

4.1 Definable predicates in the language in F2
R(ϕ):

1. When ϕ is co-measurable with π, then

F2
R(ϕ) |= ∀x∀y(P (x, y) ⇐⇒ ∃x1∃x2 . . . ∃xm−1(R(x, x1) ∧R(x1, x2) ∧ · · · ∧R(xm−1, y)))

2. If k ∈ N \ {0}, then:

F2
R(ϕ) |= ∀x∀y(Rkϕ(x, y) ⇐⇒ ∃x1∃x2 . . . ∃xk−1(R(x, x1) ∧R(x1, x2) ∧ · · · ∧R(xk−1, y)))

3. If k ∈ N \ {0}, then: F2
R(ϕ) |= ∀x∀y(R−kϕ(x, y) ⇐⇒ Rkϕ(y, x))

In order to see the expressive power of this language, one should verify whether one can define
points. However, if that was possible, then the following predicate would have been definable in
F2
R(ϕ). On the contrary, we get that:

4.2 Non-definable predicates in the language in F2
R(ϕ):

Proposition 4.1. The predicate Co is not definable in F2
R(ϕ).

Proof. Suppose that there exists a formula φ such that:

Co(a, b, c) if and only if F2
R(ϕ) |= φ(x, y, z)Ja, b, cK

Fix two different parallel lines - a0 and a1. Define the map h : F2
R(ϕ) −→ F2

R(ϕ), as follows:

h(a) =


a0, if a = a1

a1, if a = a0

a, otherwise

In order to prove that h is an automorphism, we need to check whether it preserves the validity
of R, namely:

F2
R(ϕ) |= R(b, c) ⇐⇒ F2

R(ϕ) |= R(h(b), h(c))

Let Rϕ(b, c). If b and c are different from a0 and a1, then it holds that Rϕ(h(b), h(c)). Obviously,
it is impossible for both b and c to be in {a0, a1}, so assume that b = a1. By construction h(b) =
h(a1) = a0 and by the axiom for the corresponding angles we know Rϕ(a1, c) ⇐⇒ Rϕ(a0, c),
so Rϕ(h(b), h(c)) holds. Any symmetrical situation can the tackled similarly.
Now, let Rϕ(h(b), h(c)). As before, if both b and c are not in {a0, a1}, then Rϕ(b, c) holds. The
other case is the same as before.
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Figure 1

Let a, b be lines such that Rϕ(a, a0), Rϕ(a0, b) and Co(a0, a, b) hold as shown in the picture:
On the other hand:

Co(a0, a, b) ⇐⇒ F2
R(ϕ) |= ϕJa0, a, bK

⇐⇒ F2
R(ϕ) |= ϕJh(a0), h(a), h(b)K

⇐⇒ Co(a1, a, b)

However, this is a clear contradiction, thereby we get that Co is not expressible.

We could have also used the statement from Prop. 3.6, namely that any two parallel lines
have the same type. However, if a and b are parallel, it does not hold that a and b have the
same type in the language with the predicate Co.
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4.3 Axiomatization:

Our next goal is to axiomatize the theory of the Euclidean plane in this language. In order to
do this, we denote by Σ the following set of axioms . Note that P is used as definable predicate
symbol as λ7 shows:
λ1,n : ∀x1∀x2 . . . ∀xn∃y(¬P (x1, y) ∧ ¬P (x2, y) · · · ∧ ¬P (xn, y))
λ2,n : ∀x1 . . . ∀xn∃y(P (x1, x2) ∧ · · · ∧ P (xn−1, xn) =⇒ P ′(x1, y) ∧ · · · ∧ P ′(xn, y))

λ3 : ∀x∀y(P (x, y) =⇒ ¬R(x, y))
λ4 : ∀x∀y(R(x, y) =⇒ ¬R(y, x))
λ5 : ∀x∃yR(x, y)
λ6 : ∀x∃yR(y, x)
λ7 : ∀x∀y(P (x, y) ⇐⇒ ∀z(R(z, x) =⇒ R(z, y)))

λ8 : ∀x∀y(P (x, y) =⇒ ∀z(R(x, z) =⇒ R(y, z)))

λ9 : ∀x∀y∀z(R(x, y) ∧R(x, z) =⇒ P (y, z))

λ10 : ∀x∀y∀z(R(y, x) ∧R(z, x) =⇒ P (y, z))

Remark 4.2. It should be clear that the following three sentences are derivable:

λ11 : ∀x(P (x, x))
λ12 : ∀x∀y(P (x, y) =⇒ P (y, x))

λ13 : ∀x∀y∀z(P (x, y) ∧ P (y, z) =⇒ P (x, z))

The theory containing Σ and the m axioms λrat,1, . . . , λrat,m will be called LRotm, where:

λrat,k : ∀x∀x1∀x2 . . . ∀xk(R(x, x1)∧R(x1, x2) · · ·∧R(xk−1, xk) =⇒ ¬P (x, xk)) 1 ≤ k ≤ m−1

λrat,m : ∀x∀x1∀x2 . . . ∀xm(R(x, x1) ∧R(x1, x2) · · · ∧R(xm−1, xm) =⇒ P (x, xm))

The theory containing Σ and the axiom scheme λirrat,k will be called LRot∞, where:

λirrat,k : ∀x∀x1∀x2 . . . ∀xk(R(x, x1) ∧R(x1, x2) · · · ∧R(xk−1, xk) =⇒ ¬P (x, xk)) , k ≥ 1

Remark 4.3. For every model M of Σ the last three axioms λ11, λ12, λ13 imply that PM is an
equivalence relation on M . Moreover, PM is a congruence as follows from λ7 and λ8.

Definition 4.4. Let M be a model of Σ. For every a ∈M we will use the following notation:

[a]P = {b ∈M | PM(a, b)}

Proposition 4.5. Every structure M such that M |= Σ is divided by the relation PM into an
infinite number of equivalence classes. Furthermore, each P -equivalence class is infinite.
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Proof. Assume that there is a finite number of P -equivalence classes, namely [a1]P , [a2]P , . . . [an]P .
Then since M |= λ1,n, there is an element b such that b /∈ [ai]P for any i ∈ {1, . . . , n}. Thus,
[b]P ̸= [ai]P , which is a contradiction.
For the second claim assume that there is a class [a1]P with finite number of elements a1, a2, . . . , ak.
Since M |= λ2,k, and a1, a2, . . . ak are mutually parallel, then there is an element b such that
P ′(ai, b) for all i ∈ {1, . . . , k}. This implies that b ̸= ai for any i ∈ {1, . . . , k}, which is a
contradiction.

In order to prove that this is a proper candidate for an axiomatization, we start with the
following claim:

Proposition 4.6. The following are true:
(i) If ϕ is co-measurable with π, then F2

R(ϕ) |= LRotm

(ii) If ϕ is not co-measurable with π, then F2
R(ϕ) |= LRot∞

Proof. We will briefly comment on the axioms, since anyone familiar with the Euclidean plane
can verify them quite easily. It is clear that one can find an infinite set with lines non-parallel
to each other. In the same way one can construct infinitely many parallel lines. In the case
with rational angle after rotating a line m times one will get a parallel line, and in the case
of irrational angle one will never obtain a parallel line no matter the number of rotations. λ3
eliminates lines that are both P and R related. λ4 guarantees that R is asymmetric. λ5 and λ6
provide seriality. From λ7 to λ10 are the well-known axioms for corresponding angles and the
last three state that P is an equivalence relation.

Definition 4.7. Let M be a model for Σ and a ∈M . For any i ∈ Z denote:
1) [a]0M := [a]P

2) [a]iM := [b]P , where Riϕ(a, b) and i ̸= 0;

Remark 4.8. Definition 4.7 is correct.

Proof. We need to verify that [a1]P = [a2]P for any two elements a1, a2 ∈M , such that Riϕ(a, a1)

and Riϕ(a, a2). Clearly [a]0M is correctly defined. First, let i > 0. Assume, that [a]i−1
⇕ =

[c]P , where R(i−1)ϕ(a, c). By the properties of Riϕ there are elements c1 and c2, such that
R(i−1)ϕ(a, c1) ∧ Rϕ(c1, a1) and R(i−1)ϕ(a, c2) ∧ Rϕ(c2, a2). From the assumption we know that
P (c1, c2). Applying axiom λ8 we get Rϕ(c2, a1). Then, applying axiom λ9 we get that P (a1, a2).
Thus, by induction on i, we prove that [a1]P = [a2]P . For i < 0 we follow the same idea but we
use axioms λ7 and λ10.

Definition 4.9. Let M be a model of Σ. For any element a ∈M the set OM(a) = {[a]iM | i ∈
Z} will be called the orbit of a.
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Definition 4.10. Let M be a model of Σ. Define the binary relation ∼M as follows:

a ∼M b ⇐⇒ OM(a) = OM(b)

Remark 4.11. For the sake of brevity when the model is unique we will omit the index M in
[a]iM, OM(a) and ∼M.

4.4 Completeness of LRotm

Let us investigate some basic properties of the orbits necessary for the proving the complete-
ness of LRotm.

Proposition 4.12. Let M be a model for LRotm and let a ∈M . Then:

1. for every integer i the set [a]i is infinite.

2. for all integers i and j, such that 0 ≤ i < j ≤ m it holds that [a]i ∩ [a]j = ∅.

3. [a]0 = [a]m

4. for any b ∈M it holds that:
b ̸∈

⋃
O(a)

⇐⇒

M |= ¬P (x, y) ∧ ¬R(x, y) ∧
m−1∧
k=2

(¬(∃x1 . . . ∃xk−1(R(x, x1) ∧R(x1, x2) ∧R(xk−1, y)))Ja, bK

5. for all b ∈M it holds that:

O(a) = O(b) ⇐⇒ O(a) ∩O(b) ̸= ∅ ⇐⇒
⋃
O(a) ∩

⋃
O(b) ̸= ∅

Remark 4.13. For any model M and any a ∈ M the set O(a) with operation [a]i 7→ [a]i+1 can
be considered as a cyclic group of order m.

Lemma 4.14. Let M be a countable model of LRotm. Then for any i:

1. [a]i is countable;

2. M/ ∼ is countable;

Proof. Both follow from Prop. 4.5, i.e from axioms λ1,n and λ2,n.

Theorem 4.15. The theory LRotm is ω-categorical.

Proof. Let M and N be two countable models of LRotm. Let OM(a0), OM(a1), . . . , OM(an), . . .

and ON (b0), ON (b1), . . . , ON (bn), . . . be enumerations respectively of M/ ∼M and N/ ∼N .
Let n < ω. Then:

O(an) = {[an]i | 0 ≤ i < m}

11



O(bn) = {[bn]i | 0 ≤ i < m}

Let 0 ≤ i < m and let hn,i be a bijection between [an]
i and [bn]

i. Define

h :=
⋃
n<ω

⋃
0≤i<m

hn,i

Clearly, h is a bijective map. We need to verify that this is indeed isomorphism, or that:

⟨s, t⟩ ∈ RM ⇐⇒ ⟨h(s), h(t)⟩ ∈ RN

” =⇒ ” Let s ∈
⋃
OM(ai). Clearly, s ∈

⋃
OM(s), so

⋃
OM(s) ∪

⋃
OM(ai) ̸= ∅, so by

4.11.5: OM(s) = OM(ai).
Since M |= Rϕ(s, t), then 4.11.4 implies that t ∈

⋃
OM(s), so t ∈

⋃
OM(ai). Furthermore, if

s ∈ [ai]
j
M, then t ∈ [ai]

j+1
M . Thus, h(s) ∈ [bi]

j
N and h(t) ∈ [bi]

j+1
N . Therefore, ⟨h(s), h(t)⟩ ∈ RN .

The reverse direction is analogous.

As a consequence of the Vaught test and Prop. 4.6 , we get:

Theorem 4.16. The theory LRotm is complete. Moreover, LRotm = Th(F2
R(ϕ)) where ϕ = 1

mπ.

Now, it is time to inspect the other theory.
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4.5 Completeness of LRot∞

We denote by S the following structure for L(=, R):

• the universe is Z× Z

• for all ⟨s1, t1⟩, ⟨s2, t2⟩ ∈ Z× Z it holds that:

⟨s1, t1⟩, ⟨s2, t2⟩ ∈ RS ⇐⇒ s2 = s1 + 1

Proposition 4.17. S has the following properties:

1. S |= ∀z(R(x, z) ⇐⇒ R(y, z))J⟨s1, t1⟩, ⟨s2, t2⟩K if and only if s1 = s2

2. S |= LRot∞

3. [⟨0, 0⟩]0S = {⟨0, t⟩ | t ∈ Z} and [⟨0, 0⟩]iS = {⟨i, t⟩ | t ∈ Z} for i ̸= 0.

4. OS(⟨0, 0⟩) = Z× Z.

Proof. By straightforward verification.

Definition 4.18. A countable model of LRot∞ that consists of the orbit of only one line will
be called star model.

It should be clear that the star model is unique up to isomorphism.

We will now prove that for each model M of LRotirrat it holds that S ≡n M for each n,
and thus it would follow, that S ≡ M.

Proposition 4.19. Let M be a model for LRot∞. For all integers n Abelard has a winning
strategy for the Ehrenfeucht-Fraïssé game with length n played on S and M .

Proof. Consider a Ehrenfeucht-Fraïssé game with length n played on S and M . Dangerous zone
for an element x when k rounds are remaining to the end of the game will be called the set of
elements [x]i, where −2k−1 ≤ i ≤ 2k−1. Vicinity of a line x will be called the set of elements
[x]i, where −2k ≤ i ≤ 2k.

A move will be called dangerous if the newly chosen element is in the dangerous zone of a
previously picked element. A sequence of moves will be called dangerous if each element has
been picked from the dangerous zone of a previous one. Take into account, that the vicinity
of a element contains all the possible dangerous sequences starting with this element, since∑k−1

i=0 2i < 2k.
Consider the i-th round of the game. Let s1, s2, . . . , si−1 be the elements that have been cho-

sen from the star model up to this moment of the game and m1,m2, . . . ,mi−1- the corresponding
elements from M. Let Eloise choose an element x on the i-th round.

The strategy for Abelard should be executed consecutively. In other words, each step is
applied only when the conditions for the previous one do not hold.

If x is from the star model, consider the following strategy for Abelard:
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• If x = sj for some 1 ≤ j ≤ i− 1, then Abelard chooses the element mj .

• If P ′(x, sj) for some j, 1 ≤ j ≤ i − 1 , and x ̸∈ {s1, s2, . . . , si−1}, then Abelard chooses a
element y such that P ′(y,mj) and y ̸∈ {m1,m2, . . . ,mi−1}.

• If x is in the dangerous zone of the element sj , then Abelard must find the orbit O(mj)

and find the element that relates to mj the same way as x to sj , i.e since there is a unique
t such that Rtϕ(sj , x), then Abelard chooses y so that Rtϕ(mj , y).

• If x is not in the dangerous zone of any element sj , 1 ≤ j ≤ i−1, then Abelard can choose
one arbitrary orbit, say O(m1) and take the first element that is not in the vicinity of any
previously chosen line from

⋃
O(m1). Such element exists since the union of vicinities of

finite number of elements is finite set.

If x is from M, consider the following strategy for Abelard:

• If x = mj for some j, such that 1 ≤ j ≤ i− 1, then Abelard chooses the element sj .

• If P ′(x,mj) for some j, such that 1 ≤ j ≤ i−1 and x ̸∈ {m1,m2, . . . ,mi−1}, then Abelard
chooses a element y such that P ′(y, sj) and y ̸∈ {s1, s2, . . . , si−1}.

• If x is in the dangerous zone of the element mj , then Abelard must find the element from
S that relates to sj the same way as x to mj , since there is a unique t such that Rtϕ(mj , x),
then Abelard chooses y so that Rtϕ(sj , y)

• If x is not in the dangerous zone of any element mj , 1 ≤ j ≤ i − 1, then Abelard should
do the following: since sj ∈

⋃
O(s1) for each j, then sj ∈ [s1]

t for some t. Abelard finds
the maximum t, say it belongs to sj0 , and takes the first element that is out the vicinity
of sj0 .

Now, we will prove simultaneously that:
(i) Abelard could always execute his strategy;
(ii) The two generated models at any round of game are isomorphic, which indicates that his
strategy is a winning strategy.

We will prove (i) and (ii) by induction. Assume i rounds of the game are remaining:

Proof of (i): Assume that Eloise picks an element x and Abelard cannot follow his strategy.
Then it is clear that x is a new element that is not parallel to the previous ones and it must be
in the dangerous zone of some element. However, if mi and mj are from different orbits, then
the dangerous zones of their corresponding si and sj do not overlap. Thus, if Eloise chooses
a element from the dangerous zone of l elements, then they all must be from one orbit and
Abelard knows that there is only one orbit to choose from. Furthermore, that element cannot
have already been chosen, since the dangerous zones of every moves grow smaller.

14



Proof of (ii): Let S′ and M ′ be the substructures of S and M respectively chosen after all
k rounds of the game. Then the isomorphism between them is the correspondence between the
chosen elements on each move.

• It is clear that si = sj ⇐⇒ mi = mj .

• If R(si, sj) or R(sj , si) is true in S for some j less than i, then on the j-th move, sj has
been in the dangerous zone of si, therefore due to the strategy of Abelard mi and mj

would be in the same orbit and R(mi,mj). The reverse holds as well.

This theorem implies that any two models of LRot∞ are elementary equivalent, so we can
conclude the following:

Theorem 4.20. The theory LRot∞ is complete. Moreover, LRot∞ = Th(F2
R(ϕ)) when ϕ is not

co-measurable with π.

4.6 Categoricity

Proposition 4.21. Let α, β be infinite cardinals such that α > ω and β ≥ ω. Then:
(i) LRotm is not α-categorical.
(ii) LRot∞ is not β-categorical.

Proof. (i) Consider two models of LRotm M and N , both with universe α × Z × Zm and the
following interpretations of the predicate R:

((a1, b1, c1), (a2, b2, c2)) ∈ RM ⇐⇒ a1 = a2 and c1 + 1 = c2

((a1, b1, c1), (a2, b2, c2)) ∈ RN ⇐⇒ b1 = b2 and c1 + 1 = c2

Both models have cardinality α. Consider the equivalence relation PM and PN . In M there are
α equivalence classes, each with cardinality ω, and in N there are ω equivalence classes, each
with cardinality α. Thus, M ≁= N .

(ii) Similarly, for LRot∞ consider M and N with universes respectively β × Z × Z and
{1} × β × Z.

((a1, b1, c1), (a2, b2, c2)) ∈ RM ⇐⇒ a1 = a2 and c1 + 1 = c2

((1, b1, c1), (1, b2, c2)) ∈ RN ⇐⇒ c1 + 1 = c2

The first coordinate shows the number of different orbits, the second the cardinality of each
P - equivalence class and the third one- the cardinality of the orbit. Thus, we can conclude that
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M consists of β orbits each with cardinality ω and N consists of one orbit with cardinality
β.

4.7 Finite axiomatization

We shall present two proofs that the theories are not finitely axiomatizable. The first one is
an application of a classic technique relying on the compactness theorem, while the second one
has more interesting corollaries.

Proposition 4.22. Let Γ be an infinite set of sentences with the following property: For each
finite subset Γ0 there is a structure A such that A |= Γ0 but A ̸|= Γ. Then, Γ is not finitely
axiomatizable.

Proof. Assume that ψ is a sentence axiomatizing Γ. Then :

∀M(M |= ψ ⇐⇒ M |= Γ)

Therefore, Γ |= ψ and from the compactness theorem there is a finite Γ0 ⊂ Γ such that Γ0 |= ψ.
However, there is a model M0 such that M0 |= Γ0 and M0 ̸|= Γ. The first one implies that
M0 |= ψ and the second - M0 ̸|= ψ. Contradiction.

We can apply the previous proposition for the set Σ. For each finite subset of Σ we need to
construct a model M such that M |= Σ0 but M ̸|= Σ.

Proposition 4.23. The set of axioms Σ has the property that for each finite subset of Σ we
need to construct a model M such that M |= Σ0 but M ̸|= Σ.

Proof. Let Σ0 be a finite subset of Σ. Then, there is a n ∈ N such that for each number m > n:
λ2,m ̸∈ Σ0. In other words, we can construct a model M such that each line has exactly n

parallel lines. We preserve all other properties of F2
R(ϕ). Clearly, M ̸|= Σ.

Theorem 4.24. Both LRotm and LRot∞ are not finitely axiomatizable.

Now, we restate the previous theorem and present a second proof:

Theorem 4.25. LRotm is not finitely axiomatizable.

Proof. For the sake of contradiction assume that there is finite set of axioms Λ such that for
every model M:

M |= Λ ⇐⇒ M |= LRotm

Let n be the maximal rank of a formula in Λ and let k = n + 1. We are going to construct a
finite model M, such that M ≡k F2

R(ϕ). Then it would follow that M |= Λ, which from the
assumption would imply that M |= LRotm. However, no finite structure could model LRotm.
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Let I = {1, . . . k − 1, k} and A = {0, 1, . . . ,m − 1}. Define the structure M with universe
M := I ×A× I, with the following interpretation of R and P :

M |= (a1, a2, a3) = (b1, b2, b3) ⇐⇒ a1 = b1 ∧ a2 = b2 ∧ a3 = b3

M |= Rlϕ((a1, a2, a3), (b1, b2, b3)) ⇐⇒ b2 = a2 + l , 1 ≤ l ≤ m

M |= P ((a1, a2, a3), (b1, b2, b3)) ⇐⇒ a1 = b1 ∧ b2 = a2

Let us consider the i-th move in the Ehrenfeucht-Fraïssé game with length k, played by
Eloise and Abelard on M and F2

R(ϕ). Let s1, s2, . . . , si−1 be the lines that have been chosen
from F2

R(ϕ) up to this moment of the game and m1,m2, . . . ,mi−1- the tuples from M. Let
Eloise choose a element x on the i-th move.

If x is from M, consider the following strategy for Abelard:

• If x = mi, then Abelard chooses si.

• If x is parallel to mi, then Abelard chooses a parallel line to si.

• If x is in the same orbit as mi and it holds Rlϕ(mi, x), then Abelard chooses one line y,
such that ∠(si, y) = lϕ

• In all other cases, Abelard chooses a random line different from the orbits of the already
chosen ones.

If x is from F2
Q, consider the following strategy for Abelard:

• If x = si, then Abelard chooses mi.

• If x is parallel to si, then Abelard chooses a parallel to mi line.

• If x is in the same orbit as si and it holds Rlϕ(si, x), then Abelard chooses one line y, such
that Rlϕ(mi, y).

• In all other cases, Abelard chooses a tuple with different first coordinate from these of the
already chosen tuples.

Now, we must prove that:
(i) Abelard could always execute his strategy;
(ii) The two generated models at the end of the game are isomorphic;

Remark 4.26. In (*) all coefficients are reduced modulo m.

Proof of (i): The only case when Abelard would not be able to make a move would be if
there are not enough lines in M. However, the length of the game is k and |M | = k.m.k.

Proof of (ii): Let F be the generated submodel of F2
R(ϕ) by s1, . . . , sk. Now, if R(mi,mj),

where i < j, then sj must have been from the same orbit as si and R(si, sj).
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4.8 Complexity of the membership problem for LRotm

From the proof of the previous theorem we can infer that the problem "does a sentence φ
belong to LRotm" is in PSPACE. This is true because for each sentence φ with rank k one
can find a finite model with size which is O(k2).

However, we present a second proof that makes a correspondence between the formulas in
L(=, R) and the formulas in L(=)

Let us denote by F the set of lines from F2
R(ϕ) that are not in the orbits in the two axis

lines and do not pass through the center of the plane. Denote R0 := R \ {0}

Proposition 4.27. F |= LRotm.

Proof. F |= λ1,n ∧ λ2,n since we have removed only two whole orbits and from all the other
orbits we have removed finite number of lines.

Since F is a subset of F2
R(ϕ), it models all ∀-axioms.

Lastly, F |= λ5 ∧ λ6 because we have removed either whole orbits or finitely many lines.

For every L(=, R)-formula φ our goal to find a formula φ̂ from L(=) such that:

F |= φ ⇐⇒ R0 |= φ̂

In F every line g has equation of the form y = ax + c with a, c ∈ R0 and we can match it
with a sequence (a, a′, . . . , a(m−1), c) with length m + 1, where a(i) is the coefficient in front of
x of the line obtained by rotating i times the line g.

In order to construct φ̂, we need to define the following predicates in L(=):

1. line(a1, a2, . . . , am, c) ⇐⇒ ¬
∨

1≤i<j≤m(ai = aj)

In order for one (m+ 1)-tuple to be a line, the first m coefficients must be different.

2. commoni,j(a1, a2, . . . , am, c, b1, b2 . . . , bm, d) ⇐⇒ ai = bj

Here we define m2 predicates of this type, 1 ≤ i, j ≤ m.

3. R̂(a1, a2, . . . , am, c, b1, b2 . . . , bm, d) ⇐⇒ a2 = b1 ∧ a3 = b2 ∧ · · · ∧ a1 = bm

We shift the firstm coefficients one to the left in order to preserve the structure of the orbit.

4. R̂kϕ(a1, a2, . . . , am, c, b1, b2 . . . , bm, d) ⇐⇒ a1+k = b1 ∧ a2+k = b2 ∧ · · · ∧ ak = bm,

Here all indices here are reduced modulo m and −m ≤ k ≤ m ;

5. (a1 . . . , am, c) = (b1, . . . , bm, d) ⇐⇒
∧

1≤i≤m ai = bi ∧ c = d

6. P (a1 . . . , am, c, b1, . . . , bm, d) ⇐⇒
∧

1≤i≤m ai = bi

Let x1, x2, . . . be an enumeration of the variables. For better visibility with xi we will ab-
breviate the sequence xm.i, xm.i+1 . . . , xm.i+i−1. The construction of the formula φ̂ is given below:
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If φ ◦
= (xi = xj), then φ̂ ◦

= xi = xj ∧ line(xi).

If φ ◦
= R(xi, xj), then φ̂ ◦

= R̂(xi, xj) ∧ line(xi) ∧ line(xj).

If φ ◦
= φ1 ∧ (∨)φ2, then φ̂ ◦

= φ̂1 ∧ (∨)φ̂2.

If φ ◦
= ¬ψ[x1, . . . , xn], then

φ̂
◦
= ¬ψ̂ ∧ line(x1) ∧ · · · ∧ line(xn) ∧

n∧
1≤s,t

m∧
1≤i,j

(commoni,j(xt, xs) =⇒ R̂j−i(xt, xs))

If φ ◦
= ∃xlψ, where ψ[xl, x1, . . . , xn] and l > n, then

φ̂
◦
= ∃xml∃xml+1 . . . ∃xml+m−1

(
line(xl) ∧

n∧
s=1

m∧
1≤i,j

(commoni,j(xl, xs) =⇒ R̂j−i(xl, xs)) ∧ ψ̂
)

Remark 4.28. The conjunction
∧n

s=1

∧m
1≤i,j(commoni,j(xl, xs) =⇒ R̂j−i(xl, xs)) is necessary in

order to preserve the equivalence classes of the relation O.

Proposition 4.29. Any set of lines g1, g2, . . . , gn satisfy the formula:

n∧
1≤s,t

m∧
1≤i,j

(commoni,j(gt, gs) =⇒ R̂j−i(gt, gs))

Proposition 4.30. For any L(=, R)-formula φ[x1, . . . , xn] it holds that:

F |= φ ⇐⇒ R0 |= φ̂

Proof. ” =⇒ ” We are going to use induction on the formula φ proving a stronger claim,
namely that if F |= φJg1, g2 . . . , gnK for some lines g1, g2, . . . , gn, then R0 |= φ̂Jg1, . . . , gnK, where
gi is the corresponding sequence of gi.

• Let φ ◦
= R(xi, xj) and assume that F |= R(xi, xj)Jg, hK for some lines g and h with

equations: y = g1x + c1 and y = h1x + c2 . Then, if the corresponding sequence to
g is (g1, g2, . . . , gm, c1), the corresponding sequence to h will be (g2, g3 . . . , g1, c2), where
g1, g2, . . . , gm are different non-zero real numbers. Thus, R0 |= R̂(g1, . . . , gm, c1, g2, . . . , g1, c2)

and R0 |= line(g1, g2, . . . , c1).

• Let φ ◦
= φ1 ∧ φ2 and assume that F |= φJg1, g2, . . . , gnK. Then, F |= φ1Jg1, g2, . . . , gnK

and F |= φ1Jg1, g2, . . . , gnK. By the induction hypotheses, R0 |= φ1Jg1, g2, . . . , gnK and
R0 |= φ2Jg1, g2, . . . , gnK, so R0 |= φJg1, g2, . . . , gnK. Similar proof can be executed for
φ

◦
= φ1 ∧ φ2.
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• Let φ ◦
= ¬ψ and assume F |= ¬ψJg1, g2, . . . , gnK for some lines g1, g2, . . . , gn. Clearly, all

their corresponding sequences are lines and the formula

n∧
1≤s,t

m∧
1≤i,j

(commoni,j(gt, gs) =⇒ R̂j−i(gt, gs))

holds as well. By the induction hypotheses R0 |= ¬ψJg1, g2, . . . , gnK. Thus, R0 |=
φJg1, g2, . . . , gnK

• Let φ ◦
= ∃xψJx, x1, x2, . . . , xmK. Assume that F |= ψJg0, g1, g2, . . . , gnK for some lines

g0, g1, g2, . . . , gn and we can take their corresponding sequences. Then the predicate line(gi)
would be true for all i ∈ {0, 1, . . . , n}.

Since those are real lines R0 |=
∧n

s=1

∧m
1≤i,j(commoni,j(g0, gs) =⇒ R̂j−i(g0, gs)) and by

IH R0 |= ψ̂Jg0, g1, . . . , gnK, so R0 |= φ̂Jg1, g2, . . . , gnK

” ⇐= ” Now, let R0 |= φ̂Jg11, g12, . . . , c1, . . . , gn1, gn2, . . . , cnK.
For all (gi1, . . . , gim) and (gj1, . . . , gjm) holds exactly one of the following:
1) (gi1, . . . , gim) is a cyclic permutation of (gj1, . . . , gjm)

2) (gi1, . . . , gim) and (gj1, . . . , gjm) have no common elements.

Thus, we can construct a set C with corresponding m− tuples of gradients such that:
1) If (gi1, . . . , gim) is a cyclic permutation of (gj1, . . . , gjm), then (ai1, . . . , aim) is the same cyclic
permutation of (aj1, . . . , ajm).
2) If (gi1, . . . , gim) and (gi1, . . . , gim) have no common elements, then (ai1, . . . , aim) and (aj1, . . . , ajm)

have no common elements.
3) a11, a12, . . . , anm are all completely new and different from g11, g12, . . . , gnm.

An m−tuple of gradients will be an m−tuple containing all gradients of the lines obtained
by consecutive rotation by angle ϕ.

Our claim is that F |= φJh1, h2, . . . , hnK, where hi : y = ai1x+ ci.

• Let φ ◦
= R(x, y) and R0 |= φ̂Jg11, g12, . . . , g1m, c1, g21, . . . , g2m, c2K. Then, by (g11, g12, . . . , g1m)

is a shifted one to to left permutation of (g21, . . . , g2m), and so is (a11, a12, . . . , a1m) of
(a11, a12, . . . , a1m). Thus, clearly F |= R(h1, h2).

• For φ ◦
= φ1 ∧ (∨)φ2 or φ ◦

= ¬ψ the proof is straightforward.

• Let φ ◦
= ∃xψ and ψ[x, x1, x2, . . . , xn].

Assume R0 |= ψJt1, t2, . . . , tm, c0, g11, g12, . . . , g1m, c1, gn1, . . . , gnm, c2K. Then we know the
corresponding tuples a1, . . . , an from C and need to show that we can construct a new one
for t.
If (t1, t2, . . . , tn) has something in common with gi, then it is a cyclic permutation of it

20



(this is what the long formula with the predicate common forces). Then we build the same
permutation of ai and put it in C as the corresponding tuple of (t1, . . . , tm). Otherwise, if
(t1, . . . , tn) has nothing in common with the other g−tuples, we choose one rondom line
h0 : y = a0x+ c0 and put (a0, a

′
0, . . . , a

(m−1)
0 in C. A quick comment why there cannot b

a collision. If t has something in common with two lines, say g1 and g2, then again by the
long formula t is R̂−connected with both of them, so they it turns out that g1 is a cyclic
permutation of g2. In both cases F |= φJh1, h2, . . . , hnK.

Definition 4.31. EQ∞ := {φ | φ is a L(=) sentence true in all infinite structures} .

Theorem 4.32. The membership problem φ ∈ EQ∞ is PSPACE-complete [2]

Proposition 4.33. For any sentence φ in L(=) it holds that:

R0 |= φ ⇐⇒ φ ∈ EQ∞

Proof. Detailed proof can be found in [1].

Theorem 4.34. The theory LRotm is PSPACE-complete.

Proof. The problem φ ∈ LRotm is in PSPACE:
Let φ be a L(=, R)- sentence. Since LRotm is complete, then φ ∈ LRotm ⇐⇒ F |= ϕ. By 4.30
the last one is equivalent to R0 |= φ̂, which by 4.33 happens if and only if φ̂ ∈ EQ∞. Remark
that φ̂ is obtained algorithmically for polynomial space from φ, and the problem φ̂ ∈ EQ∞ is
in PSPACE [2].

The problem φ ∈ LRotm is PSPACE-hard:
Let φ be a L(=)-sentence. Then φ ∈ EQ∞ ⇐⇒ F2

R(ϕ) |= φ ⇐⇒ φ ∈ LRotm.
To verify the the first equivalence, assume that φ ∈ EQ∞, so φ is true in all infinite models
including F2

R(ϕ). Now, let F2
R(ϕ) |= φ and A be an infinite model. Since LRotm is ω-categorical,

then A |= φ.
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4.9 Complexity of the membership problem for LRot∞

Let S be the star model and let us fix an element a ∈ S. Then, as mentioned in remark
4.17, each element can be represented by a pair ⟨s, t⟩ ∈ Z× Z. Our goal is for every formula φ
to construct a formula φ̂ such that:

φ ∈ LRot∞ ⇐⇒ φ̂ ∈ Th((Z,≤)),

where (Z,≤) is the structure with universe containing the integers and binary predicate ≤, de-
fined as usual. It will be denoted by Z.

In Z we can define the binary predicate s in the following way:

s(x, y) ⇐⇒ x ≤ y ∧ x ̸= y ∧ ∀z(x ≤ z ∧ z ≤ y =⇒ y = z ∨ x = z)

So, s(x, y) says that y is the immediate successor of x.
Let x1, x2, . . . is an enumeration of all variables. Now, we can translate the formulas in

L(R,=) in the language L(≤, s) in in the following way:

• If φ[xi, xj ]
◦
= (xi = xj), then φ̂[x2i, x2i+1, x2j , x2j+1]

◦
= x2i = x2j ∧ x2i+1 = x2j+1 ;

• If φ[xi, xj ]
◦
= R(xi, xj), then φ̂[x2i, x2i+1, x2j , x2j+1]

◦
= s(x2i, x2j) ;

• If φ ◦
= φ1 ∧ (∨)φ2, then φ̂ ◦

= φ̂1 ∧ (∨)φ̂2;

• If φ ◦
= ¬ψ, then φ̂ ◦

= ¬ψ̂;

• If φ ◦
= ∃xiψ, then φ̂ ◦

= ∃x2i∃x2i+1ψ̂

Proposition 4.35. For each formula φ[x1, x2, . . . , xn] it holds that:

S |= φJ⟨s1, t1⟩, . . . , ⟨sn, tn⟩K ⇐⇒ Z |= φ̂Js1, t1, . . . , sn, tnK

Proof. We are going to prove the claim by induction on the complexity of φ. If:

• φ[xi, xj ]
◦
= (xi = xj) , 1 ≤ i, j ≤ n ;

S |= φJ⟨s1, t1⟩, . . . , ⟨sn, tn⟩K ⇐⇒ ⟨ti, si⟩ = ⟨tj , sj⟩

⇐⇒ ti = tj and si = sj ⇐⇒ Z |= φ̂Js1, t1, . . . , sn, tnK

• φ[xi, xj ]
◦
= R(xi, xj) , 1 ≤ i, j ≤ n;

S |= φJ⟨s1, t1⟩, . . . , ⟨sn, tn⟩K ⇐⇒ Rϕ(⟨si, ti⟩, ⟨sj , tj⟩)

⇐⇒ s(s2i, s2j) ⇐⇒ Z |= φ̂Js1, t1, . . . , sn, tnK
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• The binary cases are clear;

• φ
◦
= ∃xiφ, φ[x1, . . . , xn] and i > n. Then ψ[xi, x1, . . . , xn];

S |= φJ⟨s1, t1⟩, . . . , ⟨sn, tn⟩K ⇐⇒ for some ⟨s, t⟩ ∈ Z× Z : S |= ψJ⟨s, t⟩, ⟨s1, t1⟩, . . . , ⟨sn, tn⟩K

⇐⇒ for some s and some t : Z |= ψ̂Js, t, s1, t1, . . . sn, tnK

⇐⇒ Z |= ∃x2i∃x2i+1ψ̂Js1, t1, . . . sn, tnK

⇐⇒ Z |= ψ̂Js1, t1, . . . sn, tnK

4.10 Complexity of (Z,≤)

Let N be a structure with universe N and binary relation ≤. Then clearly, the elements 0
and 1 are definable. We define the binary predicate Int the following way:

Int(x, y) ⇐⇒ y = 0 ∨ y = 1

Now, to each integer number i we correlate a pair of its natural part (|i| and its sign written as
0 or 1. For example: 4 −→ (4, 1), 0 −→ (0, 1) and −5 −→ (5, 0). We translate as following:

If φ[xi, xj ]
◦
= xi ≤ xj , then:

φ̂
◦
= Int(x2i, x2i+1) ∧ Int(x2j , x2j+1) ∧

(
(x2i ≤ x2j ∧ x2i+1 = 1 ∧ x2j+1 = 1)

∨ (x2i ≥ x2j ∧ x2i+1 = 0 ∧ x2j+1 = 0)

∨ (x2i+1 = 0 ∧ x2j+1 = 1)
)

If φ ◦
= ψ1 ∨ (∧)ψ2, then: φ̂ ◦

= ψ̂1 ∨ (∧)ψ̂2.

If φ ◦
= ¬ψ and φ[x1, x2, . . . , xn], then φ̂ ◦

= ¬ψ̂ ∧ Int(x2, x3) ∧ · · · ∧ Int(x2n, x2n+1).

If φ ◦
= ∃xiψ, then:

φ̂
◦
= ∃x2i∃x2i+1(Int(x2i, x2i+1) ∧ ψ̂)

We will prove the following claim: Let a1, a2, . . . , an be some integers and let i1, s1, i2, . . . , in, sn
be their natural parts and 0-1 signs. Then for any formula φ:

Z |= φJa1, a2, . . . , anK ⇐⇒ N |= φ̂Ji1, s1, i2 . . . , in, snK
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Proof: For the first case, when φ ◦
= xi ≤ xj :

Z |= (xi ≤ xj)Ja1, a2K ⇐⇒ a1 ≤ a2

⇐⇒ either a2 is non-negative and a1 is negative

or both a1, a2 are non-negative and a1 ≤ a2

or both a1, a2 are negative and a1 ≥ a2

⇐⇒ N |= φ̂Ji1, s1, i2, s2K

The other binary cases are clear. Let us prove φ ◦
= ∃xtψ, where ψ[xt, x1, x2, . . . , xn] and t > n.

Then:

Z |= ∃xtψJa1, a2, . . . , anK ⇐⇒ Z |= ψJat, a1, a2, . . . , anK for some integer at

⇐⇒ N |= ψ̂Jit, st, i1, s1, . . . , in, snK for the nat. part and the 0-1 sign of some at

⇐⇒ N |= ∃x2t∃x2t+1(ψ̂ ∧ Int(x2t, x2t+1))Ji1, s1, . . . , in, snK

Thus, we get that for any sentence φ: Z |= φ ⇐⇒ N |= φ̂. However φ̂ is obtained
by polynomial "expansion" from φ and the question "Is a sentence in Th(N,≤)" is PSPACE-
complete (Theorem 5.32 Fer), then the question "Is a sentence in Th(Z,≤)" is in PSPACE as
well. The problem is PSPACE hard because the predicate = is definable.

Corollary 4.35.1. Let φ be L(R,=)-sentence. Then:

S |= φ ⇐⇒ Z |= φ̂

Theorem 4.36. The theory LRot∞ is PSPACE-complete.

Proof. The problem "is a sentence φ ∈ LRot∞" is in PSPACE:
We have the following equivalences:

φ ∈ LRot∞ ⇐⇒ S |= φ ⇐⇒ Z |= φ̂ ⇐⇒ φ̂ ∈ Th((Z,≤)),

where the last problem is PSPACE-complete [? ], Theorem 1.7.
The problem is PSPACE-hard: Let φ be a sentence in L(=). Then φ is also in L(R,=),

so:
φ ∈ EQ∞ ⇐⇒ F2

Q |= φ ⇐⇒ S |= φ ⇐⇒ φ ∈ LRot∞

In the next section we explore another language, which at first hand is quite similar to the
previous one. However, it turns out that there are some minor differences and interesting cases.
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5 Expressivity of L(Rϕ,=)

In this section we will investigate the line-based Euclidean plane without fixed orientation.
We will denote it with F2

R(ϕ). Let ϕ be an angle between 0 and π
2 . We define the binary relation

Rϕ as follows:

F2
R(ϕ) |= Rϕ(x, y) if and only if the angle between x and y is ϕ

Note that it holds that:

F2
R(ϕ) |= Rϕ(x, y)Ja, bK if and only if F2

R(ϕ) |= Rϕ(x, y) ∨Rϕ(y, x)Ja, bK

Again, we associate the binary predicate P with parallelism. It turns out that depending on the
angle ϕ it is now always the case that P is definable in F2

R(ϕ):

Proposition 5.1. It holds that:
(i) If ϕ = 1

4π, then P is not definable in F2
R(ϕ);

(ii) In all other cases:

F2
R(ϕ) |= P (a, b) ⇐⇒ F2

R(ϕ) |= ∀c (R(a, c) =⇒ R(b, c))

Proof. For the sake of contradiction assume that P is definable via ψ ∈ L. Then Rπ
2

is definable
since:

Rπ
2
(a, b) ⇐⇒ ∃c

(
Rπ

4
(a, c) ∧ Rπ

4
(c, b) ∧ ¬P (a, b)

)
Consider the lines a and b as in the graphic.

Figure 2
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Then the following map is an automorphism:

h(x) =


a, if x = b

b, if x = a

x, otherwise

Let us first check if the validity of the predicate R is preserved. Let R(x, y) for some lines x
and y.

• if x ̸∈ {a, b} and y ̸∈ {a, b}, then R(h(x), h(y)) ⇐⇒ R(x, y)

• If x = a and R(x, y), then it holds that P (y, a′) ∨ P (y, a′). Then R(h(a), h(y)) ⇐⇒
R(b, y) which is visible by 2

• If x = b the situation is similar.

However, we know that Rπ
2
(a, a′′), but ¬Rπ

2
(h(a), h(a′′)). We obtain the contradiction.

5.1 Theory for Rπ
4

or L4Rot

Consider the following set of axioms:
µ1,n : ∀x1 . . . ∀xn∃y(

∧
1≤i<j≤n(¬R(xi, xj) ∧ (xj ̸= xj)) =⇒

∧
1≤i≤n(¬R(xi, y)) ∧ (xi ̸= y))

µ2,n : ∀x∃y1∃y2 . . . ∃yn(R(x, y1) ∧ R(x, y2) ∧ · · · ∧ R(x, yk) ∧
∧

1≤i<j≤n yi ̸= yj)

µ3 : ∀x∀y(R(x, y) =⇒ R(y, x))

µ4 : ∀x(¬R(x, x))

µ5 : ∀x∃yR(x, y)

µ6 : ∀x∀y∀z(R(x, y) ∧ R(x, z) =⇒ ¬R(y, z))

µ7 : ∀x∀y∀z∀u(R(x, y) ∧ R(y, z) ∧ R(z, u) =⇒ R(x, u))

µ8,n : ∀x1 . . . ∀xn∃y(
∧

1≤i<j≤n ¬(R(xi, y) ∨ ∃z(R(xi, z) ∧ R(z, y)))

Let L4Rot be the theory containing those axioms.
We begin with a proposition that shows that L4Rot is a proper candidate for an axiomati-

zation.

Proposition 5.2. F2
R(

π
4 ) |= L4Rot

Proof. Let us briefly comment on the axioms: The three schemes µ1,n, µ2,n and µ8,n follow from
the following two facts: first, there is an infinite set of lines, such that no two lines in it are
R-related and second, for each line a there is an infinite set of lines, each of which is R- related
with a. The relation Rϕ is anti-reflexive, symmetric and serial. The most interesting axiom to
check is µ7.

Let a, b, c, d be four lines such that Rϕ(a, b),Rϕ(b, c),Rϕ(c, d). We need to check the whether
Rϕ(a, d) is true. We have two cases: a and c are parallel or perpendicular. In the first case, it is
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clear that Rϕ(a, d). In the second the line d must be the angle bisector of one of the 90-degree
angles formed by a and c. However, again Rϕ(a, d) follows.

Definition 5.3. Let M be a model of L4Rot and a ∈M . Then:

[a]R = {b ∈M |R(a, b) or there is an element c : R(a, c) and R(c, b)}

Proposition 5.4. Let M |= L4Rot and a ∈M . The following hold:

1. [a]R is non-empty;

2. a ∈ [a]R;

3. if b ∈ [a]R, then a ∈ [b]R;

4. for any b ∈ [a]R we have that [b]R = [a]R;

5. for any two elements a and b we have that either [a]R = [b]R or [a]R ∩ [b]R = ∅

Proof. 1) From µ5 there is an element b such that R(a, b), so b ∈ [a]R.
2) By µ5 there is an element b there is an element b, such that R(a, b). Using µ3 we have

that R(b, a) as well. Now, R(a, b) and R(b, a), so a ∈ [a]R.
3) It follows directly from the symmetricity of R.
4) Assume that b ∈ [a]R. Let c ∈ [b]R.
4.1) R(b, a) and R(c, b) hold. Then, c ∈ [a]R.
4.2) R(b, d), R(d, a) hold for some d and R(c, b). Then, by µ7 R(c, a) holds as well and

c ∈ [a]R.
4.3) R(b, d), R(d, a) hold for some d and R(c, e), R(e, b) hold for some e. Then, combining

R(e, b), R(b, d), R(d, a), by µ7 we get that R(e, a). Thus, R(c, e) and R(e, a) imply that
c ∈ [a]R.

4.4) R(b, a) and R(c, e), R(e, b) hold for some e. Then, R(c, a) and c ∈ [a]R.
All these cases prove that [b]R ⊆ [a]R.
By 3) we have that a ∈ [b]R, so similarly, we prove that [a]R ⊆ [b]R.
5) If [a]R ∩ [b]R = c, then by 4) [a]R = [c]R = [b]R.

In other words, this proposition says that for each element a ∈M , the set [a]R is exactly the
equivalence class of a when the following equivalence relation is defined:

a ∼R b ⇐⇒ R(a, b) or there is an element c ∈M : R(a, c) and R(c, b)

Lemma 5.5. Let M |= L4Rot. Then M/ ∼R is infinite.

Proof. Assume the contrary and let [a1]R, . . . , [an]R be all the equivalence classes in M/ ∼R .
Then, by axiom µ8,n applied for elements a1, a2, . . . , an, there is an element b such that ¬R(ai, b)

and there is no element c such that R(ai, c) and R(c, b). Then, ai ̸∼R b for any 1 ≤ i ≤ n, so
b ̸∈ [ai]R for any 1 ≤ i ≤ n. Clearly, we get a contradiction.
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Definition 5.6. Let M be a model of L4Rot and a ∈ M . In [a]R we fix a red-blue colouring
as follows:

• the colour of a is blue.

• if R(a, b), then the colour of b is red, otherwise the colour of b is blue.

Lemma 5.7. 1. The colouring in is correct.

2. When coloured, each ∼R- equivalence class contains infinite number of blue lines and infi-
nite number of red lines.

Proof. 1. Assume that there is an element b that can be colored both in red and blue. Then,
R(b, a), R(b, c) and R(c, a). By µ7 we get R(a, a) - contradicition.

2. Take one equivalence class. Since it is non-empty we can find one element b, which by
the colouring is blue. By axiom µ5 there is also one element r, whose colour should be
red since R(b, r). Applying the scheme µ2,n for the blue element b we generate an infinite
number of red elements. Vice versa, appling it for the red element r we generate an infinite
number of blue elements.

Corollary 5.7.1. Let M be a countable model of L4Rot. Then:
1) the number of different classes in M/ ∼R is countable;
2) in each class there are countable number of blue and countable number of red elements.

Theorem 5.8. The following claims hold:
(i) L4Rot is ω-categorical.
(ii) For all any infinite cardinal number α > ω L4Rot is not α-categorical.

Proof. (i) Let M and N be two countable models of L4Rot. Then, by the previous corollary
we know that M/ ∼R and N/ ∼R are countable. Let [m1]

M
R , [m2]

M
R , . . . , and [n1]

N
R , [n2]

N
R , . . . ,

be the different equivalence classes in M and N respectively. Furthermore, we know that the red
and blue elements in [mi]

M
R and [ni]

N
R are countable and can be enumerated: say a1i . . . , a

n
i , . . . ,

are the red elements and b1i . . . , b
n
i , . . . , are the blue ones in [mi]

M
R , while c1i . . . , c

n
i , . . . , are the

red elements and d1i . . . , d
n
i , . . . , are the blue ones in [ni]

N
R .

For each integer i define hi : [mi]
M
R → [ni]

N
R as follows : hi(ani ) = cni and hi(b

n
i ) = dni for

each 1 ≤ n < ω.
Now, h =

⋃
i≥1 h(i). Clearly, h is bijection between M and N . It is left to prove that for

any two elements a and b from M : R(a, b) ⇐⇒ R(h(a), h(b)).
Let R(a, b) for some elements a and b from M . Then b ∈ [a]MR and moreover their colours

are different. Since h preserves the colouring, h(a) and h(b) will also have different colours,
implying R(h(a), h(b)). The reverse direction is the same.

(ii) We can construct a model with α R- classes each with cardinality ω and another with
ω R− classes each with cardinality α.
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As a corollary we obtain the following theorem:

Theorem 5.9. L4Rot is complete. Furthermore, L4Rot = Th(F2
R(

π
4 )).

The membership problem in this section is in PSPACE, because we can use the following
equivalence:

F2
R(ϕ) |= Rϕ(x, y)Ja, bK if and only if F2

R(ϕ) |= Rϕ(x, y) ∨Rϕ(y, x)Ja, bK

and translate a formula φ ∈ L{=R} naturally in a formula φ̂ ∈ L{=,R,P}.
However, since our language contains the binary predicate =, then the membership problem

is PSPACE−hard.
So, we can formulate the following theorem:

Theorem 5.10. The problem if a sentence φ ∈ Th(L4Rot) is PSPACE- complete.

Last, but not least we present a proper axiomatization for the Th(F2
R(ϕ)) when ϕ ̸= π

2 and
ϕ ̸= π

4 .
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5.2 Theory of Rϕ

Let ϕ = 1
mπ where m ≥ 2 and m ̸= 4. Consider the following set of axioms Λ:

µ1 : ∀x∀y(P (x, y) ⇐⇒ ∀z(R(x, z) =⇒ R(y, z)))

µ2,n : ∀x1∀x2 . . . ∀xn∃y(¬P (x1, y) ∧ ¬P (x2, y) · · · ∧ ¬P (xn, y))
µ3,n : ∀x1∀x2 . . . ∀xn∃y(P (x1, x2)∧· · ·∧P (xn−1, xn) =⇒ P ′(x1, y)∧P ′(x2, y) · · ·∧P ′(xn, y))

µ4 : ∀x∃y∃z(R(x, y) ∧ R(x, z) ∧ ¬P (y, z))
µ5 : ∀x∀y(P (x, y) =⇒ ¬R(x, y))

µ6 : ∀x∀y(R(x, y) =⇒ R(y, x))

µ7 : P is an equivalence relation
µ8 : ∀y0∀y1∀y2 . . . ∀ym(R(x, y1)∧. . .R(ym−1, ym)∧¬(

∨
0≤i<j≤m−1 P (yi, yj)) =⇒ P (y0, ym))

µ9,k ∀y0∃y1 . . . ∃yk(R(x, y1) ∧ R(y1, y2) ∧ · · · ∧ R(yk−1, yk) ∧
∧

0≤i<j≤n ¬P (yi, yj)),
where 1 ≤ k ≤ m− 1

µ10 : ∀x∀y∀z(R(x, y) ∧ R(x, z) ∧ ¬P (y, z) =⇒ ∀u(R(x, u) =⇒ P (y, u) ∨ P (z, u)))

Remark 5.11. Note that the axiom µ7 follows from µ1 and µ6.

Let LRotm be the theory containing Λ. In order to present a better visualization of its
models, we will consider the following definition and some of its properties:

Definition 5.12. Let M be a model of LRotm and a ∈ M. A path with start a will be called
any sequence of elements a, a1, , . . . , am−1 fromM , such that Rϕ(a, a1), Rϕ(a, a1), Rϕ(a1, a2), . . .

and Rϕ(am−2, am−1) and no two elements are parallel.

Proposition 5.13. Let M |= LRotm. Then it holds that:

1. For each a ∈M there is an R-path with start a;

2. If (a0, a1, . . . , am−1) is an R-path, then for each 1 ≤ i ≤ m−1, (ai, ai+1, . . . , am−1, a0, a1, . . . , ai−1)

is R-path as well.

3. If (a0, a1, . . . , am−1) is an R-path and for each 0 ≤ i ≤ m − 1 holds that P (ai, bi), then
(b0, b1. . . . , bm−1) is also an R−path with start b0.

4. If (a0, a1, . . . , am−1) and (b0, b1, . . . , bm−1) are R-paths and P (a0, b0) and P (a1, b1), then
for each 2 ≤ k ≤ m− 1 it holds that P (ak, bk).

5. If (a0, a1. . . . , am−1) is an R-path, then so is (a0, am−1, . . . , a1).

6. If (a0, a1, . . . , am−1) and (b0, b1, . . . , bm−1) are R-paths and P (a0, b0), then either for all
1 ≤ k ≤ m− 1 P (ak, bk) or for all 1 ≤ k ≤ m− 1 P (ak, bm−k).

7. If (a0, a1, . . . , am−1) and (b0, b1, . . . , bm−1) are R-paths, then {[ai] | 0 ≤ i ≤ m − 1} =

{[bi] | 0 ≤ i ≤ m− 1}.

Definition 5.14. Let M be a model of LRotm and a ∈ M. Let (a, a1, a2, . . . am−2) be a R-
path with start a. Then, the set O(a) := {[a], [a1], [a2], . . . , [am−1]} will be called the orbit of a.
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Remark 5.15. The correctness of this definition follows from 5.13.

Remark 5.16. We can consider that when constructing a path there are two directions to follow.
However, since we construct the orbit as a set, then, both directions generate the same P -
equivalence classes.

Similarly to the previous theories each model of LRotm can be divided into non-intersecting
orbits.

Definition 5.17. Let M be a model of LRotm. Define the binary relation ∼M as follows:

a ∼M b ⇐⇒ OM(a) = OM(b)

Lemma 5.18. Let M be a model of LRotm. The following hold:

1. M/ ∼ is infinite.

2. Each ∼ − equivalence class is infinite.

Proposition 5.19. (i) LRotm is ω-categorical
(ii) LRotm is not α-categorical for any cardinal number alpha > ω

Proof. (i) Let M and N be two countable models of LRotm. Then, by the previous lemma
M/ ∼M andN/ ∼N are countable. Let O(a1), O(a2), . . . , and O(b1), O(b2), . . . , be enumerations
of the different ∼- equivalence classes in M and N respectively. We assume that we have fixed
the elements a1, a2, . . . , b1, b2, . . . and in each orbit we have fixed a path with start ai and a path
with start bi. Now, define a map hi : O(ai) → O(bi), as following:

1. Take the two fixed paths, one starting from ai: (ai, c1, c2, . . . cm−1), and one, starting from
bi: (bi, d1, d2, . . . dm−1).

2. Let hi,0 be a bijection between [ai] and [bi];

3. For any number 1 ≤ k ≤ m− 1 take one bijection hi,k : [ck] → [dk].

4. Let hi =
⋃

0≤k≤m−1 hi,k.

Finally, the map h :=
⋃

i≥1 hi is the desired isomorphism. Let us verify that it preserves the
validity of R.

Let c, d be two elements from M such that R(c, d). Then c and d are in the same orbit, say
O(a1). Furthermore, for any path, starting from a1, c and d are in two consecutive P -classes.
In other words, a1, . . . , c, d, . . . is one possible path. Thus, b1, . . . , h(c), h(d), . . . ,will also be a
path starting from b1, so R(h(c), h(d)) will hold. The reverse direction is the same.

(ii) Again, consider two models M and N where the first one has α orbits each countable,
and the second one consists of ω orbits, each with cardinality equal to α.

As a consequence of the Vaught test we get the following theorem:
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Corollary 5.19.1. LRotm is complete. Moreover, LRotm = F2
R(ϕ)) for ϕ = 1

mπ.

Similarly to LRotm we can prove that:

Theorem 5.20. LRotm is not finitely axiomatizable.

Theorem 5.21. The membership problem "Is a sentence φ ∈ LRotm " is PSPACE-complete.

Proof. The same argument as for L4Rot holds for the complexity of the theory LRotm.

F2
R(ϕ) |= Rϕ(x, y)Ja, bK if and only if F2

R(ϕ) |= Rϕ(x, y) ∨Rϕ(y, x)Ja, bK

and translate a formula φ ∈ L(= R) naturally in a formula φ̂ ∈ L( =, R, P ).
However, since our language contains the binary predicate =, then the membership problem

is PSPACE−hard.
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