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1 Introduction

1.1 Aim of the paper

Alfred North Whitehead (15 February 1861 − 30 December 1947) is well known as the
founder of the contemporary process philosophy. He was an English mathematician and
philosopher. The main part of his new philosophical system is related to his view on
an integrated theory of space and time which should be put on a relational base, which
means that it have to be extracted from natural spatio-temporal relations between real
things. His early view on this subject can be found in [4], page 195, where he claims
that the theory of space and time should be ”point-free” in a sense that neither space
points nor time points (instances of time, moments) have to be put on the base of the
theory, because they are abstract things with not separate existing in reality. White-
head’s approach to the theory of space is now known as a Region-Based Theory of Space
(RBTS) (see [2] for a detailed survey and references). Sometimes RBTS is called also
mereotopology, because it is can be considered also as an extension of mereology
by some topological relations like the contact relation (see [1] about mereology). It’s a
theory describing spatial relations among wholes, parts and parts of parts. Whitehead’s
theory of time, named in [5, 6] as Epochal Theory of Time (ETT), is a quite unusual
and interesting theory aiming to explain difficult and old problems concerning the nature
of time. However, while one can find in [6] a detailed program how to develop RBTS as a
mathematical theory, Whitehead did not present such a program for ETT and developed
it in an informal manner and on a quite complicated philosophical terminology. The pa-
per [3] can be considered as an attempt to present a formal explication ETT based on
a dynamic version of mereotopology called dynamic mereotopology. The temporal
component of the theory is based on the relations temporal contact, precedence and
some special individuals, called time representatives to help us define the present
time, the past and the future. The intuition for those comes the every day phrases
like ”The time of the First World War”, ”The epoch of the Renaissance”, ”During the
XXI centuary” and so on. Since ETT does not depend on the topological relations be-
tween individuals, we show in this work another formal version of ETT, called temporal
mereology, based on a simpler system, which is an extension of mereology by the above
relations plus proximity relation. The proximity property will let us state whenever
two regions exist in separate relatevely close epochs. Interesting about this theory is that
we can make conclusions about the properties of time independently from the space and
it’s topology. That is possible because in this paper we have a very simple and basic un-
derstanding for the nature of space. We have only the space mereology, i.e. we know the
space points, but we don’t have the space topology. To have a reasonable sense of what
that actualy means we can give a short intuitive example from the geometry. In geome-
try we know that a set of space points are describing a figure, but no all set of points are
describing a valid figure into space. We need to have a boundary points on the exterior
of the figure and inner points inside. So in this sense we are making deductions on the
time without depending on the space’s main feature - topology. We have a translation
mechanism to express native time properties with the language of dynamic mereological
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algebras. Examples of the possible definable notions for expressing our selfs in this model
are: There is a region existing at the moment we speak. There will be a region existing
after we stop speaking. There will be a region existing shortly after we stop speaking
and so on. We can define the notion - society of contemporaries to describe all things
existing in the same time period, the notion of near and prior contemporaries. The
main result is a construction of a special standard model of temporal mereology and an
abstract axiomatization of the model, justiffed by a corresponding representation theory.
We show how based on a given abstract dynamic mereological algebra we can extract a
canonical time structure and then define a canonical dynamic mereological algebra and
an isomorphic embedding from the initial one to the canonical.
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2 What I need to know beforehand?

In this section we will explain basic definitions and lemmas needed for further reading
this paper. This includes definitions of Boolean, precontact and contact algebras, review
of a relational example of precontact and contact algebras, discrete representation of
precontact and contact algebras as well as useful construction for factor Boolean algebras.
Attention will be paid to contact algebras satisfying the Efremovich axiom and the notion
of clusters.

2.1 Definitions of contact and precontact algebras

Definition 2.1. Partially ordered set. Partially ordered set is a set P on which is
defined a binary relation ≤ satisfying the following conditions:

(i) x ≤ x for all x ∈ P

(ii) x ≤ y, y ≤ z implies x ≤ z

(iii) x ≤ y, y ≤ x implies x = y

Definition 2.2. An element a of a partially ordered set is called largest if (∀x ∈ P )(x ≤
a). If partially ordered set has a largest element then we will always denote this element
by the symbol 1. The largest element is always unique.

Definition 2.3. An element a of a partially ordered set is called smallest if (∀x ∈
P )(x ≥ a). If partially ordered set has a smallest element then we will always denote
this element by the symbol 0. The smallest element is always unique.

Definition 2.4. Supremum. Let L be a partially ordered set. An element z is called
a least upper bound (supremum) of the elements x and y, denoted by z = x+ y if:

(i) x ≤ z, y ≤ z

(ii) x ≤ u, y ≤ u implies z ≤ u

Definition 2.5. Infimum. Let L be a partially ordered set. An element z is called a
greatest lower bound (infimum) of the elements x and y, denoted by z = x · y if:

(i) x ≥ z, y ≥ z

(ii) x ≥ u, y ≥ u implies z ≥ u

Definition 2.6. Lattice. A lattice is a partially ordered set is which every two elements
have a least upper bound and greatest lower bound.
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Definition 2.7. Distributive lattice. A lattice L is called distributive if one of the
following laws holds:

(i) x · (y + z) = x · y + x · z

(ii) x+ (y · z) = (x+ y) · (x+ z)

Definition 2.8. A lattice L with a 0 and 1 is called complemented if for every element
x ∈ L, there exists an element x∗ ∈ L such that x+ x∗ = 1 and x · x∗ = 0.
x∗ is called the complement of x.

Definition 2.9. Boolean algebra is a distributive complemented lattice with 0 and 1.

Definition 2.10. Contact algebra. Let (B, 0, 1,≤,+, ·, ∗) be a non-degenerate (0 6= 1)
Boolean algebra and C be a binary relation in B. C is called a contact relation in B if
the following axioms are satisfied:

(C1) If aCb then a 6= 0 and b 6= 0

(C2) If aCb and a ≤ a′ and b ≤ b′ then a′Cb′

(C3) If aC(b+ c) then aCb or aCc

(C4) If (a+ b)Cc then aCc or bCc

(C5) If aCb then bCa

(C6) If a · b 6= 0 then aCb

If C is a contact relation in B, then the pair (B,C) is called a contact algebra. We
write C for the complement of C.

Let us mention that on the base of (C5) only the one of the axioms (C3) and (C4) is
needed. Note that (C6) is equivalent to the following more simple axiom:

(C7) If a 6= 0 then aCa

From (C7) and (C1) it follows that a 6= 0 iff aCa

In the present context we treat the Boolean part of the contact algebra as its mere-
ological component. In our treating of mereology we consider the zero element 0 as a
non-existing region and this can be used to define the ontological predicate of existence
in the following way: a ontologically exists iff a 6= 0 . For simplicity, instead of ”ontolog-
ically exists” we will say simply ”exists” and from the context it will be clear that this
is not the existential quantifier. The predicate of existence, will be very important in
the theory of dynamic mereological algebras, to indicate the fact that a dynamic region
may have moments in his life history in which it does not exist and moments in which
it exists.

The definitions of mereological relations ”part-of” and ”overlap” are the following:
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• a is part of b iff a ≤ b, i.e. part-of is just a Boolean ordering

• a overlaps b (in symbols aOb) iff there exists a region c 6= 0 such that c ≤ a
and c ≤ b iff a · b 6= 0

Definition 2.11. Precontact algebra. Let (B, 0, 1,≤,+, ·, ∗) be a non-degenerate
Boolean algebra and C is a binary relation in B. C is called a precontact relation in
B if it satisfies the axioms (C1), (C2), (C3) and (C4). If C is a precontact relation in B
then the pair (B,C) is called a precontact algebra. Precontact relation will be used later
on in the formalization of some temporal relations between changing regions in dynamic
mereological algebras.

We will be interested later on contact and precontact algebras satisfying the following
additional axiom:
(CE) If aCb then (∃c)(aCc and c∗Cb). This axiom is called sometimes Efremovich ax-
iom, because it is used in the definition of Efremovich proximity spaces.

Definition 2.12. Filter. A subset F of a Boolean algebra B is a filter if the following
conditions hold:

(i) 1 ∈ F .

(ii) x ≤ y, x ∈ F implies that y ∈ F .

(iii) x, y ∈ F impies x · y ∈ F .

Definition 2.13. Proper filter. Proper filter is a filter satisfying the following condi-
tion:

0 /∈ F .

Definition 2.14. Ultrafilter. Ultrafilter is a proper filter satisfying the following con-
dition:

x+ y ∈ F implies that x ∈ F or y ∈ F .

Definition 2.15. Ideal. An ideal of a Boolean algebra B is a subset I ⊆ B, satisfying
the following conditions:

(i) 0 ∈ I.

(ii) x ∈ I, t ≤ x, t ∈ B implies t ∈ I.

(iii) x ∈ I, y ∈ I implies x+ y ∈ I.

Definition 2.16. I is called proper if 1 /∈ I
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Relational examples of precontact and contact algebras. LetX be a nonempty
set, whose elements are considered as points and R be a reflexive and symmetric relation
in X. Such reflexive and symmetric relations are sometimes called adjacency relations
and in such intuitive interpretation xRy means that x is adjacent to y. Pairs (X,R) with
reflexive and symmetric R are called by Galton adjacency spaces. The following is
a natural example of adjacency space: points are the squares in chess board and two
squares are adjacent if they are identical or if they touch each other. One can construct a
contact algebra from an adjacency space as follows: take a class B of subsets of X which
form a Boolean algebra under the set theoretical operations of union a ∪ b, intersection
a ∩ b and complement a = X \ a and define contact CR between two members of B
as follows: aCRb iff there exist x ∈ a and y ∈ b such that xRy. So, a and b are in a
contact if there is a point in a which is adjacent to a point in b. We use the notation CR
for the contact relation just to indicate that it depends on the adjacency relation R. It
can easily be verified that all axioms of contact are satisfied. Symmetry of R is used to
verify the axiom (C5) and reflexivity is used to verify the axiom (C6). Let us note that
there are more general adjacency spaces in which neither reflexivity nor symmetry for
the relation R are assumed. In the chessboard example such a relation is, for instance,
square b to be the left adjacent of the square a. Obviously this relation is neither reflexive
nor symmetric. We reserve the name adjacency space for such more general spaces and
for the special case where R is a reflexive and symmetric relation we will say adjacency
spaces in the sense of Galton. If we repeat the above construction then the axioms (C1),
(C2), (C3) and (C4) will be true (but in general the axioms (C5) and (C6) will not
be satisfied) and in this way we obtain examples of pre-contact algebras which are not
contact algebras. The following lemma will be of later use:

Lemma 2.17. [3] Characterization of reflexivity, symmetry and transitivity.
Let (X,R) be an adjacency space and (B(X), CR) be a precontact algebra over all subsets
of X. Then the following conditions hold:

(i) R is reflexive relation in X iff (B(X), CR) satisfies the axiom (C6) If a · b 6= 0
then aCb

(ii) R is symmetric relation in X iff (B(X), CR) satisfies the axiom (C5) If aCRb
then bCRa

(iii) R is transitive relation in X iff (B(X), CR) satisfies the axiom (CE) If aCb
then (∃c)(aCb and c∗Cb)

2.2 Discrete (relational) representation of contact and precon-
tact algebras.

Discrete representation theory. One way to obtain a representation theory of
precontact algebras with relational representation of contact is to consider as points
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of a given precontact algebra (B,C) the ultrafilters of (B,C) (as in the Stone rep-
resentation theory of Boolean algebras). It remains to show how to define a rela-
tion R in the set of ultrafilters Ult(B) of (B,C). Let U, V ∈ Ult(B) and define
URV ↔def (∀a, b)( If a ∈ U and b ∈ V then aCb). The relational system (Ult(B), R)
with just defined R is called a canonical adjacency space over (B,C) and R is called the
canonical adjacency relation in (B,C). Note that the definition of the canonical relation
R is meaningfull for arbitrary filters and the following technical lemma is useful in the
representation theory of precontact algebras.

Lemma 2.18. [10] R-extension Lemma. Let U0 and V0 be filters in a precontact
algebra (B,C) and let U0RV0. Then there exists ultrafilters U and V such that U0 ⊆ U ,
V0 ⊆ V and URV .

Then, as in the representation theorem for Boolean algebras, define the Stone embed-
ding h(a) = {U ∈ Ult(B) : a ∈ U}. From the representation theory of Boolean algebras
we have that h is an isomorphic embedding of B into the Boolean algebra of all subsets
of Ult(B). Using the theory of precontact algebras one can prove the following technical
lemmas:

Lemma 2.19.

(i) aCb iff there exists ultrafilters U, V such that URV, a ∈ U and b ∈ V

(ii) aCb iff h(a)CRh(b)

Idea for the proof.
First: Define filters generated by a and b: [a) = {c : a ≤ c} and [b) = {c : b ≤ c}.
Second: aCb implies [a)R[b) and then apply the R-extension Lemma 2.18.

Lemma 2.20. [10] Let Ult(B) be the set of ultrafilters of (B,C). Then:

(i) R is a symmetric relation in Ult(B) iff (B,C) satisfies the axiom (C4).

(ii) R is a reflexive relation in Ult(B) iff (B,C) satisfies the axiom (C5).

(iii) R is transitive relation in Ult(B) iff (B,C) satisfies the axiom (CE).

Theorem 2.21. [10] Relational representation theorem for precontact and
contact algebras Let (B,C) be a precontact algebra, (Ult(B), R) be the canonical ad-
jacency space over (B,C) and h be the stone embedding. Then:

(i) h is an embedding of (B,C) into the precontact algebra over the canonical
adjacency space (Ult(B), R).

(ii) If (B,C) is a contact algebra then the precontact algebra over the canonical
adjacency space over (B,C) is a contact algebra.

Definition 2.22. [11] Definition of clan. Let B = (B,C) be a contact algebra. A
subset Γ ⊆ B is called a clan in (B,C) if it satisfies the following conditions:
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(i) 1 ∈ Γ and 0 /∈ Γ

(ii) If a ∈ Γ and a ≤ b then b ∈ Γ

(iii) If a+ b ∈ Γ then a ∈ Γ or b ∈ Γ

(iv) If a, b ∈ Γ then aCb

Γ is a maximal clan if it is a maximal set under the set iclusion. We denote by Ult(Γ)
the set of all ultrafilters contained in Γ and Clans(B) - the set of all clans of (B,C).

The above definition is an algebraic abstraction from an analogous notion in the
proximity theory. Let us note that ultrafilters are clans, but there are other clans and
they can be obtained otherwise.

Definition 2.23. R-clique. Let
∑

be a nonempty set of ultrafilters of (B,C) such
that if U, V ∈

∑
then URV , where R is the canonical adjacency relation in the set

of ultrafilters of (B,C). Such sets of ultrafilters are called R-cliques. An R-clique is
maximal, if it is a maximal set under set-inclusion.

By the axiom of choice every R-clique is contained in a maximal R-clique. Let Γ
be the union of all ultrafilters from

∑
. Then it can be verified that Γ is a clan. More

over, every clan can be obtained by this construction from an R-clique and there is a
correspondence between maximal cliques and maximal clans. All these facts about clans
are contained in the following technical lemma:

Lemma 2.24. [11]

(i) Every clan is contained in a maximal clan (by the axiom of choice)

(ii) Let
∑

be an R-clique and Γ(
∑

) =
⋃

Γ∈
∑ Γ. Then Γ(

∑
) is a clan.

(iii) If U, V ∈ Ult(Γ) then URV , so Ult(Γ) is an R-clique.

(iv) If Γ is a clan and a ∈ Γ then there is an ultrafilter U ∈ Ult(Γ) such that a ∈ U
(by the axiom of choice).

(v) Let Γ be a clan and
∑

be the R-clique Ult(Γ). Then Γ = Γ(
∑

), so every clan
can be defined by an R-clique as in (ii).

(vi) If
∑

is a maximal R-clique the Γ(
∑

) is a maximal clan.

(vii) If Γ is a maximal clan then Ult(Γ) is a maximal R-clique.

(viii) For all ultrafilters U, V : URV if there exists a (maximal) clan Γ such that
U, V ∈ Ult(Γ).

(ix) For all a, b ∈ B : aCb iff there exists a (maximal) clan Γ such that a, b ∈ Γ.

(x) For all a, b ∈ B : a � b iff there exists an ultrafilter (clan) Γ such that a ∈
Γ and b /∈ Γ.

(xi) a 6= 0 iff there exists a clan Γ containing a.
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2.3 Factor Boolean algebras determined by a set of ultrafilters.

In the representation theory of dynamic mereological algebras we will need a construc-
tion of a mereological algebra from a given set of ultrafilters. The construction is taken
from [7].

Let ∆ be an ideal in a Boolean algebra B. It is known from the theory of Boolean
algebras that the relation a ≡∆ b iff a · b∗ + a∗ · b ∈ ∆ is a congruence relation in B
and the factor algebra B≡∆

under this congruence (called also factor algebra under ∆
and denoted by B∆) is a Boolean algebra. Denote the congruence class determined by
an element a of B by |a|∆ (or simply by |a|). Boolean operations in B∆ are defined as
follows: |a| + |b| = |a + b|, |a| · |b| = |a · b|, |a|∗ = |a∗|, 0 = |0|, 1 = |1|. Recall that
Boolean ordering in B∆ is defined by |a| ≤ |b| iff a · b∗ ∈ ∆ (see [8] for details).

Let B be a Boolean algebra and α ⊆ Ult(B), α 6= ∅. Now we will define a construction
of a Boolean algebra Bα corresponding to α. Define I(α) = {a ∈ B : α∩ g(a) = ∅}. It is
easy to see that I(α) is a proper ideal in B, i.e. 1 /∈ I(α). The congruence defined by I(α)
is denoted by≡α. So we have a ≡α b iff a∗·b+a·b∗ ∈ I(α) iff a∗·b ∈ I(α) and a·b∗ ∈ I(α).
Now define Bα = {|a|α : a ∈ B}, where g(a) = {U ∈ Ult(B) : a ∈ U}.

2.4 Contact algebras satisfying Efremovich axiom (CE). Clus-
ters.

We will show in this section that in contact algebras satisfying the Efremovich axiom
(CE) we can introduce a new kind of abstract points, called clusters. Our definition
is an algebraic abstraction of the analogous notion used in the compactification theory
of proximity spaces (see for instance [9]). Clusters will be used later on to define time
points in dynamic mereological algebras.

Definition 2.25. [11] Clusters. Let (B,C) be a contact algebra. A subset Γ ⊆ B is
called a cluster in (B,C) if it is a clan satisfying the following condition:

(Cluster) If a /∈ Γ then there exists b ∈ Γ such that aCb.

The set of clusters of (B,C) is denoted by Clusters(B).

Lemma 2.26. [3] Let (B,C) be a contact algebra satisfying the Efremovich axiom (CE).
Then Γ is a cluster in (B,C) iff Γ is a maximal clan in (B,C).

Lemma 2.27. Let (B,C) be a contact algebra satisfying the Efremovich axiom (CE).
Then for any a, b ∈ B : aCb iff there is a cluster Γ containing a and b.

Proof. aCb iff (by Lemma 2.24) there exists a maximal clan Γ containing a and b. By
Lemma 2.26 Γ is a cluster.

Lemma 2.28. Let (B,C) be a contact algebra satisfying the Efremovich axiom and let
Γ and ∆ be clusters. Then the following conditions are equivalent:
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(i) Γ 6= ∆

(ii) there exists a ∈ Γ and b ∈ ∆ such that aCb

(iii) there exists c ∈ B such that c /∈ Γ and c∗ /∈ ∆

Proof. (i) ⇒ (ii) Suppose Γ 6= ∆, then since they are maximal clans, there exists
a ∈ Γ and a /∈ ∆. Consequently, there exists b ∈ ∆ such that aCb, so (ii) is fulfilled.
(ii) ⇒ (iii) Suppose that there exist a ∈ Γ and b ∈ ∆ such that aCb. From aCb we
obtain by the Efremovich axiom that there exists c such that aCc and c∗Cb. Conditions
a ∈ Γ and aCc imply c /∈ Γ. Similarly b ∈ ∆ and c∗Cb imply c∗ /∈ ∆.
(iii) ⇒ (i) Suppose that there exists c ∈ B such that c /∈ Γ and c∗ /∈ ∆ and for the
sake of contradiction that Γ = ∆. Since c + c∗ = 1 then either c ∈ Γ or c∗ ∈ ∆ - a
contadiction.

Remark 2.29. In this paper we will consider Boolean algebras with several contact and
precontact relations with axioms relating the different relations. Such systems are the
dynamic mereological algebras to be introduced later on. The canonical structure over
ultrafilters of such algebras will have a canonical binary relation R for each precontact or
contact relation C defined as in the discrete representation theory of precontact algebras.
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3 Dynamic model of space. Point based definitions

In this section we will introduce a concrete point-based model of space modeling regions
changing in time and various temporal relations between them. Taking some true facts
from this model we will arrive at the abstract definitions of various kinds of dynamic
mereological algebras.

3.1 Time structures

Classical physics describes changing objects by presenting their main features as func-
tions of time. So it presupposes that the time is given by its sets of time points identifying
them with real or rational numbers with their specific arithmetic structure. This struc-
ture of the set of time points is not obligatory for all situations where we have to describe
change. Very often time structures have the form of an abstract relational system of the
form (T,≺), where T is a non-empty set of time points and ≺ is a binary relation on T
such that m ≺ n means that m is before n. This intuition motivates to call ≺ before
after relation or time order. Temporal structures (T,≺) of such a kind are studied in
temporal logic. For instance if T is the set of real numbers the time order coincides with
one of the standard ordering relations < or ≤ of strict or partial order of numbers. In
the general time structures the relation ≺ may satisfy various abstract properties. In the
following list we describe some of them with their specific names and notations which
will be used in this paper.

• (RS) Right seriality (∀m)(∃n)(m ≺ n)

• (LS) Left seriality (∀m)(∃n)(n ≺ m)

• (Up Dir) Updirectedness (∀i, j)(∃k)(i ≺ k and j ≺ k)

• (Down Dir) Downdirectedness (∀i, j)(∃k)(k ≺ i and k ≺ j)

• (Dens) Density i ≺ j → (∃k)(i ≺ k and k ≺ j)

• (Ref) Reflexivity (∀m)(m ≺ m)

• (Irr) Irreflexivity (∀m)(not m ≺ m)

• (Lin) Linearity (∀m,n)(m ≺ n or n ≺ m)

• (Tri) Trichotomy (∀m,n)(m = n or m ≺ n or n ≺ m)

• (Tr) Transitivity (∀i, j, k)(i ≺ j and j ≺ k → i ≺ k)

We call the set of formulas (RS), (LS), (Up Dir), (Down Dir), (Dens), (Ref), (Irr),
(Lin), (Tri), (Tr) time conditions. Before-after relation satisfying the condition (Irr)
will be called strict. If ≺ satisfies (Ref) the reading of m ≺ n should be more precise:
m is equal or before n. Note that the above listed conditions for time ordering are not
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independent. Taking some meaningful subsets of them we obtain various notions of time
order. For instance the subsets {(Ref), (Tr), (Lin)}, {(Irr), (Tr), (Tri), (Dens)}, {(Irr),
(LS), (RS), (Tr), (Tri), (Dens)} are typical for the classical time, while for instance, the
subset {(Ref), (Tr), (UpDir), (DownDir)} is used to characterize relativistic time.

Remark 3.1. We name the elements of the set T of a given time structure T with the
more neutral name time points. Sometimes we will use the name moment of time, but
it can be used also the unusual Whiteheads name epoch. In this paper we are going
to use an extended version of the time structure (T,≺,≈). The binary relation ≈ will
acknowledge that two moments of time are proximate to each other. Obviously ≈ is
both reflexive and symmetric relation.

3.2 Standard point-based dynamic model of space. Standard
dynamic mereological algebras

Now we want to present a specific dynamic model of space based on a given time structure
(T,≺,≈). The intuition based on this model is the following. Suppose that we want
to describe a dynamic environment consisting of a regions changing in time. First we
suppose that we are given a time structure T = (T,≺,≈) and want to know what is
the spatial configuration of regions at each moment of time m ∈ T . We assume that for
each m ∈ T the spatial configuration of the regions forms a mereological algebra (Bm) =
(Bm, 0m, 1m,≤m,+m, ·m, ∗m). In other words (Bm) is a ”snapshot” of this configuration.
We identify a given changing region a with the series < am >m∈T of snapshots and
call such a series a dynamic region. In a sense this series can be considered also as a
”trajectory” or ”time history” of a. We denote by B(T ) the set of all dynamic regions.
If a =< am >m∈T is a given dynamic region then am can be considered as a at the time
point m. The ”static” region am will be called also the m-th coordinate of a. For instance
the expression am 6= 0m means that a exists at the time point m. Thus (Bm) contains
all m-th coordinates of the changing regions. We assume that the set B(T ) is a Boolean
algebra, i.e. a mereology with Boolean constants and operations defined as follows:
1 =< 1m >m∈T , 0 =< 0m >m∈T , Boolean ordering a ≤ b iff (∀m ∈ T )(am ≤m bm)
and Boolean operations are defined coordinatewise: a + b =def< am(+m)bm >m∈T ,
a · b =def< am(·m)bm >m∈T , a∗ =def< a∗m >m∈T .

The above informal reasoning suggests the following formal definition.

Definition 3.2. Formal definition of a dynamic model of space with explicit
moments of time and time ordering As it is described above, we need first to
have the time structure (T,≺,≈). Then we assume that for each m ∈ T we have
a Boolean algebra (Bm), called coordinate mereological algebras. Then we take all
sequences < am >m∈T and assume that their set B(T ) forms a Boolean algebra with
the operations and relations defined coordinatewise as above. We call B(T ) a dynamic
model of space over the time structure (T,≺,≈). The elements of B(T ) are called
dynamic regions and can be considered as formal analogs of Whiteheadeans processes.
Note that the Boolean algebra B(T ) is a subalgebra of the Cartesian product

∏
m∈T Bm

13
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of the mereological algebras (Bm), m ∈ T . A model which coincides with the Cartesian
product is called a full model. B(T ) is called a rich model if it contains all dynamic
regions a such that for all m ∈ T we have am = 0m or am = 1m. Obviously full models
are rich.

Dynamic model of space is a quite rich spatio-temporal structure in which one can
give explicit definitions of various spatio-temporal relations between dynamic regions.
First we will study the following relations, the first two taken from [3]:

• Time contact aCtb iff (∃m ∈ T )(am 6= 0m and bm 6= 0m).
Intuitively time contact between a and b means that there exists a time point
in which a and b exist simultaneously. It can be considered also as a kind of
simultaneity relation or contemporaneity relation studied in Whiteheads works.
This suggests to call a and b contemporaries if aCtb. The time contact means
having a common time point when both a and b exist simultaneously.

• Precedence aBb iff (∃m,n ∈ T )(m ≺ n and am 6= 0m and bn 6= 0n).
Intuitively a is in a precedence relation with b ( in words a precedes b) means
that there is a time point in which a exists which is before a time point in
which b exists, which motivates the name of B as a precedence relation. This
relation is mentioned by Whitehead without explicit formal definition.

• Proximity aPb iff (∃m,n ∈ T )(m ≈ n and am 6= 0m and bn 6= 0n).
Intuitively a is in a proximity relation with b means that there is a time point in
which a exists which is near to a time point in which b exists, which motivates
the name of P as a proximity relation.

Definition 3.3. Dynamic model of space B(T ) supplied with the relations Ct, B and P
is called a standard dynamic mereological algebra, standard DMA for short. It is called
rich if the dynamic model of space is rich and full if the dynamic model of space is full.

Our aim in this paper is to give an abstract point-free characterization of dynamic
mereological algebras. First we will study some formal properties of the three basic
relations, which in the abstract setting will be taken as axioms.

Lemma 3.4.

(i) Ct is a contact relation.

(ii) If the algebra is rich then Ct satisfies the Efremovich axiom

(CtE) If aC
t
b, then there exists c such that aC

t
c and c∗C

t
b

(iii) B is a precontact relation.

(iv) P is a contact relation.

(v) aCtb→ aPb

14
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Proof. (i) Let us check that Ct satisfies the contact relation axioms.
By definition aCtb iff (∃m ∈ T )(am 6= 0m and bm 6= 0m) from which we have (C1) and
(C5) axioms.

Let aCtb and a ≤ a′ and b ≤ b′ then (∃m ∈ T )(am 6= 0m and bm 6= 0m).
and am ≤ a′m which means that a′m 6= 0m. Analogously we have b′m 6= 0m and so a′Ctb′

which is (C2) axiom.

Let aCt(b+ c) then (∃m ∈ T )(am 6= 0m and (b+ c)m 6= 0m).
Then we have that bm 6= 0m or cm 6= 0m, so aCtb or aCtc which is (C3) axiom.

The proof of (C4) axiom is analogous to the one of (C3).

Let a · b 6= 0 then (∃m ∈ T )(am 6= 0m and bm 6= 0m) implies aCtb which is (C6)
axiom.

(ii) We will verify the Efremovich axiom for Ct. Suppose the algebra is rich and let

aC
t
b and define c coordinatewise as follows:

ck =

{
0k, if ak 6= 0k.

1k, if ak = 0k.
(1)

Since the algebra is rich then c exists. The verification of the conclusion aC
t
c and

c∗C
t
b is straightforward, but still we are going to verify it as an exercise.

Let aC
t
b by definition this means (∀m ∈ T )(am = 0m or bm = 0m). Let am = 0 this

implies cm = 1m, i.e. aC
t
c. On the other side c∗m = 0m, i.e. bC

t
c∗. Note that the

condition of richness of the algebra for the Efremovich axiom is only sufficient.

(iii) Analogous to the proof of (i) without (C5) and (C6).

(iv) Analogous to the proof of (i).

(v) Let aCtb then (∃m ∈ T )(am 6= 0m and bm 6= 0m), but m ≈ m so we have aPb.

3.3 A correlation between abstract properties of time struc-
tures and time axioms in standard DMA

We do not presuppose in the formal definition of dynamic model of space that the time
structure (T,≺,≈) satisfies some abstract properties of the precedence relation. In this
section we shall see that all abstract properties of the time structure mentioned in Section
3.1, are in an exact correlation with some properties of time contact Ct and precedence
relation B given in the next table:

15
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(RS) Right seriality (∀m)(∃n)(m ≺ n) ⇐⇒

(rs) a 6= 0→ aB1,

(LS) Left seriality (∀m)(∃n)(n ≺ m) ⇐⇒

(ls) a 6= 0→ 1Ba,

(Up Dir) Updirectedness (∀i, j)(∃k)(i ≺ k and j ≺ k) ⇐⇒

(up dir) a 6= 0 ∧ b 6= 0→ aBp ∨ bBp∗,

(Down Dir) Downdirectedness (∀i, j)(∃k)(k ≺ i and k ≺ j) ⇐⇒

(down dir) a 6= 0 ∧ b 6= 0→ pBa ∨ p∗Bb,

(Dens) Density i ≺ j → (∃k)(i ≺ k ∧ k ≺ j) ⇐⇒

(dens) aBb→ aBp or p∗Bb,

(Ref) Reflexivity (∀m)(m ≺ m) ⇐⇒

(ref) aCtb→ aBb,

(Irr) Irreflexivity (∀m)(not m ≺ m) ⇐⇒

(irr) aBb→ (∃c, d)(cBd and aCtc and bCtd and cC
t
d),

(Lin) Linearity (∀m,n)(m ≺ n ∨ n ≺ m) ⇐⇒

(lin) a 6= 0 ∧ b 6= 0→ aBb ∨ bBa,

(Tri) Trichotomy (∀m,n)(m = n or m ≺ n or n ≺ m) ⇐⇒

(tri) (aCtc and bCtd and cC
t
d)→ (aBb or bBa),

(Tr) Transitivity i ≺ j and j ≺ k → i ≺ k ⇐⇒

(tr) aBb→ (∃c)(aBc ∧ c∗Bb).

Let B be a standard DMA. Then the correspondence in the above table ... ⇐⇒ ...
means that the condition from the left side is universally true in the time structure
(T,≺,≈) iff the condition from the right side is universally true in the algebra B.

Lemma 3.5. Correspondence Lemma. Let B be a rich standard DMA with time
structure (T,≺,≈). Then all the correspondences in the above table are true.

16
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Proof. We will demonstrate the proofs only for two examples. The other proofs can be
obtained in a similar way.

(Lin) ⇒ (lin). Let (Lin) holds and suppose a 6= 0, b 6= 0. So ∃i : ai 6= 0i and ∃j :
bj 6= 0j. If we apply (Lin) we get that either i ≺ j or j ≺ i.
Case 1: i ≺ j but we also have ai 6= 0i and bj 6= 0j which implies aBb.
Case 2: j ≺ i but we also have ai 6= 0i and bj 6= 0j which implies bBa.

(Lin)⇐ (lin). Let have rich DMA and let (lin) hold. For obtaining a contradiction
suppose that (Lin) is not true:
∃i, j : i ⊀ j and j ⊀ i.

ak =

{
1k, if k = i.

0k, if k 6= i.
(2)

bl =

{
1l, if l = j.

0l, if l 6= j.
(3)

ai = 1i 6= 0i ⇒ a 6= 0, bj = 1j 6= 0j ⇒ b 6= 0.
Suppose that aBb,∃k, l : k ≺ l : ak 6= 0k, ak = 1k ⇒ k = i, bl 6= 0l, bl = 1l ⇒ l = j.
So we have i ≺ j, which is a contradiction.
The case bBa is similar.

(Up Dir)⇒ (up dir). Let (Up Dir) holds and suppose a 6= 0, b 6= 0.
So ∃i : ai 6= 0i and ∃j : bj 6= 0j.
If we apply (Up Dir) we get that ∃k : i ≺ k and j ≺ k.
Let p be arbitrary dynamic region. There are two cases:
Case 1: pk 6= 0k we have also ai 6= 0i, i ≺ k ⇒ aBp.
Case 2: pk = 0k ⇒ p∗k = 1k 6= 0k and we have bj 6= 0j, j ≺ l⇒ bBp∗.

(Up Dir) ⇐ (up dir). Let have rich DMA and let (up dir) hold. For obtaining a
contradiction suppose that (Up Dir) is not true:
∃i, j : ∀k : i ⊀ k or j ⊀ k. We shall define a, b, p which make (up dir) not true.

ak =

{
1k, if k = i.

0k, if k 6= i.
(4)

bl =

{
1l, if l = j.

0l, if l 6= j.
(5)

ps =

{
1s, if j ≺ s.

0s, if j ⊀ s.
(6)
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k = i, ak = ai = 1i 6= 0i ⇒ a 6= 0, bj = 1j 6= 0j ⇒ b 6= 0.
Case 1: Suppose aBp.
∃k : ak 6= 0k,∃s : ps 6= 0s, ps = 1s ⇒ j ≺ s, k ≺ s⇒ ak = 1k ⇒ k = i.
k ≺ s ⇒ i ≺ s, but we have j ≺ s, k = i ⇒ ∃k : i ≺ k and j ≺ k, which is a
contradiction.
Case 2: Suppose bBp∗.
∃l, s : l ≺ s, bl 6= 0l, l = j, p∗s 6= 0s, ps 6= 0∗s = 1s ⇒ ps = 0s ⇒ j ⊀ s, j = l, but we have
that j ≺ s which is a contradiction.

The above lemma is very important because it states that the abstract properties of
the time structure of a given rich standard dynamic mereological algebra are determined
by some abstract properties of the relations Ct, B and P containing only variables for
regions. These properties are formulated in the language of DMA and they will be taken
later on as axioms in the abstract definition of DMA. That is why we call the conditions
(rs), (ls),(up dir), (down dir), (dens), (ref), (irr), (lin), (tri) and (tr) time axioms.

3.4 Time representatives

Consider the phrases: the epoch of Leonardo, the epoch of Renaissance, the geological
age of the dinosaurs, the time of the First World War. All these phrases indicate a
concrete unit of time named by something which happened or existed at that time and
not in some other time. These examples suggest to introduce in the standard dynamic
mereological algebras a special set of dynamic regions called time representatives, which
are regions existing at a unique time point. The formal definition is the following:

Definition 3.6. A region c in a standard DMA is called a time representative if there
exists a time point i ∈ T such that ci 6= 0i and for all j 6= i, cj = 0j. We say also that c
is a representative of the time point i and indicate this by writing c = c(i). In the case
when ci = 1i, c is called universal time representative. We denote by TR (UTR)
the set of (universal) time representatives in a given standard DMA.

As the next lemma states, time representatives exist.

Lemma 3.7. Let B(T ) be a rich standard DMA with time structure (T,≺,≈). Then
for each time point i ∈ T there exist an universal time representative c(i) of i. If a is
a region such that ai 6= 0i and ai 6= 1i then c(i) · a is a time representative which is not
universal.

Proof. Define c(i) coordinatewise as follows:

c(i)k =

{
1k, if k = i.

0k, if k 6= i.
(7)

Obviously c(i) is a universal time representative of the time point i and c(i) · a is a
time representative which is not universal.
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Time representatives and universal time representatives satisfy some formal proper-
ties listed in the next lemma, which in the abstract definition of DMA will be taken as
axioms.

Lemma 3.8. Properties of time representatives. Let B(T ) be a rich standard
DMA. Then the following conditions for time representatives are true:

(TR1) c ∈ TR iff c 6= 0 and (∀a, b)(aCtc and bCtc→ aCtb)

(TR2) c ∈ UTR iff c ∈ TR and cC
t
c∗

(TRCt) If aCtb, then (∃c ∈ UTR)(aCtc and bCtc)

(TRB1) If c ∈ TR, cBb and aCtc, then aBb

(TRB2) If d ∈ TR, aBd and bCtd, then aBb

(TRB3) If aBb, then ∃c ∈ UTR such that cBb and aCtc

(TRB4) If aBb, then ∃d ∈ UTR such that aBd and bCtd

(TRP1) If c ∈ TR, cPb and aCtc, then aPb

(TRP2) If d ∈ TR, aPd and bCtd, then aPb

(TRP3) If aPb, then ∃c ∈ UTR such that cPb and aCtc

(TRP4) If aPb, then ∃d ∈ UTR such that aPd and bCtd

Proof.
We will verify only (TR1) and (TRP1) conditions, all others can be proven similiarly.
(TR1) (⇒) Let c ∈ TR then there exists a time point i ∈ T such that ci 6= 0i and for
all j 6= i, cj = 0j.
If aCtc and bCtc then ai 6= 0i and bi 6= 0i thus aCtb.
(TR1) (⇐) Let c 6= 0 and (∀a, b)(aCtc and bCtc→ aCtb)(∗).
There exist a time point i in which ci 6= 0i, lets assume that there is another time point
j (j 6= i) in which cj 6= 0j. From ci 6= 0i and (∗) we have that ai 6= 0i and bi 6= 0i. From
cj 6= 0j and (∗) we have that aj 6= 0j and bj 6= 0j. By given we have that if c 6= 0, aCtc
and bCtc then aCtb. So for ci 6= 0i, cj 6= 0j, ai 6= 0i and bj 6= 0j, we have c 6= 0 and
aCtc and bCtc then aCtb, but this is a contradiction because i 6= j. The contradiction
is due to the assuming that there is a second time point in which c 6= 0. Now having
that ci 6= 0i only for unique i ∈ T and cj = 0j for all other time points j (j 6= i), we can
conclude that c ∈ TR.
(TRP1) (⇒) Let c ∈ TR, cPb and aCtc, then there exists a time point i ∈ T such that
ci 6= 0i and for all j 6= i, cj = 0j.
From the statement above and aCtc we have that ai 6= 0i and from cPb we have that
∃k ∈ T such that bk 6= 0k and i ≈ k. From ai 6= 0i and bk 6= 0k and i ≈ k we have
aPb.
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The following lemma lists some additional properties of time representatives.

Lemma 3.9. If c(k) and d(l) are universal time representatives correspondingly for k
and l then:

(i) aCtc(k) iff a · c(k) 6= 0

(ii) k = l iff c(k)Ctd(l) iff c(k) · d(l) 6= 0

(iii) k ≺ l iff c(k)Bd(l)

(iv) k ≈ l iff c(k)Pd(l)

Proof. The proof is straightforward following of the defintions, but still we are going to
verify only the first statement as an exercise.
(⇒) Let aCtc(k) then by definition there exists a time point i ∈ T such that ai 6=
0i and c(k)i 6= 0i. We know also that c(k) is a universal time representative, thus we have
that i = k and more over c(k) = 1k from which we can conclude that ak 6= 0k and ak ≤ ck
and so a · c(k) 6= 0.

(⇐) Let a · c(k) 6= 0, now applying (C6) axiom for the time contact Ct we have
aCtc(k).

The above lemma suggests the following translation τ from the first order language
of time structures into the language of DMA-s as follows. If i is a variable for a time
point let c(i) be a variable denoting universal time representative and let for different
i and j, c(i) and c(j) be also different. Then replace all atomic formulas of the form
i = j, i ≺ j and i ≈ j with the formulas c(i)Ctc(j), c(i)Bc(j) and c(i)Pc(j) respectively.
Example: A = (∀i)(∃j)(i ≺ j), τ(A) = (∀c(i))(∃c(j))(c(i)Bc(j)).

Lemma 3.10. Translation Lemma. Let B(T ) be a rich standard DMA with time
structure (T,≺,≈). Then for any first-order formula A in the language of (T,≺,≈) we
have that: A is universally true in (T,≺,≈) iff τ(A) is universally true in DMA. In
particular, for all formulas A from the set {(RS), (LS),(Up Dir), (Down Dir), (Dens),
(Ref), (Irr), (Lin), (Tri) and (Tr)} we have A is true in (T,≺,≈) iff τ(A) is true B(T ).

Proof. The proof follows by induction on the complexity of the formula A by the use of
Lemma 3.9.

Lemma 3.10 suggests to call the translations of the formulas of the list of time con-
ditions (RS), (LS),(Up Dir), (Down Dir), (Dens), (Ref), (Irr), (Lin), (Tri) and (Tr) also
time axioms. As a corollary from Lemma 3.10 we obtain:

Corollary 3.11. Let B(T ) be a rich standard DMA and let A be any formula from the
list of time conditions (RS), (LS), (Up Dir), (Down Dir), (Dens), (Ref), (Irr), (Lin),
(Tri), (Tr) and α be the corresponding formula from the list of time axioms (rs), (ls),
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(up dir), (down dir), (dens), (ref), (irr), (lin), (tri), (tr). Then τ(A) is true in B(T ) iff
α is true in B(T ). (The correspondence between the two lists is obvious by the notations,
for instance (down dir) corresponds to (Down Dir)).

The following lemma lists some additional properties of universal time representa-
tives, which will be taken as axioms in the abstract definition of DMA.

Lemma 3.12. Let B(T ) be a rich standard DMA with time structure (T,≺,≈) and let
c(i) and c(j) be the universal time representatives for the time points i and j respectively.
Then the following conditions are true:

(UTRB11) (a)(∀p ∈ B)(pBc(i) or p∗Bc(j)) iff

(b)(∃k ∈ T )(k ≺ i and k ≺ j) iff

(c)(∃c(k) ∈ UTR)(c(k)Bc(i) and c(k)Bc(j)).

(UTRB12) (a)(∀p ∈ B)(pBc(i) or c(j)Bp∗) iff

(b)(∃k ∈ T )(k ≺ i and j ≺ k) iff

(c)(∃c(k) ∈ UTR)(c(k)Bc(i) and c(j)Bc(k)).

(UTRB21) (a)(∀p ∈ B)(c(i)Bp or p∗Bc(j)) iff

(b)(∃k ∈ T )(i ≺ k and k ≺ j) iff

(c)(∃c(k) ∈ UTR)(c(i)Bc(k) and c(k)Bc(j)).

(UTRB22) (a)(∀p ∈ B)(c(i)Bp or c(j)Bp∗) iff

(b)(∃k ∈ T )(i ≺ k and j ≺ k) iff

(c)(∃c(k) ∈ UTR)(c(i)Bc(k) and c(j)Bc(k)).

Proof. Since all four cases of the lemma are similar we will prove only one case, for
instance (UTRB11). The proof of the other cases can be obtained in a similar way (note
the numbering of the statements which reflects the internal structure of the formulas
and can help how to obtain the proofs for the other cases by analogy).
(UTRB11) (a)⇐ (b) Suppose that (∃k ∈ T )(k ≺ i and k ≺ j) and let p be an arbitrary
element of B.
Case 1: pk 6= 0k, then by k ≺ i we obtain pBc(i).
Case 2: pk = 0k, then p∗k = 1k 6= 0k and k ≺ j we obtain p∗Bc(j).
(a) ⇒ (b). Suppose (a) holds and for the sake of contradiction suppose that (b) is not
true. Define p coordinatewise as follows:

pk =

{
1k, if k ≺ j.

0k, if k ⊀ j.
(8)
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It can easily be verified that this p makes the assumption (a) not true - a contradiction.

(b) ⇒ (c). Suppose (b) is fulfilled and let k0 be such that k0 ≺ i and k0 ≺ j
and let c(k0) be the universal time representative for k0. Then c(k) = c(k0) verifies
(c)(c(k)Bc(i) and c(k)Bc(j)).

(b)⇐ (c). Let the condition (c) be satisfied and take c(k) to be one element of UTR
satisfying (c). Then by Lemma 3.9 (iii) is fullfilled by k.

3.5 Definability of some notions of Whiteheadean type by means
of time representatives

In this section we will show that many new spatio-temporal relations have direct defini-
tions by the use of time representatives.

3.5.1 Society of contemporaries

Time representatives make possible to extend time contact Ct, precedence relation B
and proximity relation P for arbitrary non-empty sets of dynamic regions and to define
the notions of a society of contemporaries, also precedence and proximity between two
societies of contemporaries. Note that the notion of society is one of the important
notions of Whiteheads epochal theory of time. First we give the relevant definitions in
a given dynamic model of space B(T ):

Definition 3.13. Let A and B be nonempty sets of dynamic regions in B(T). Then we
define:

• A is a society of contemporaries, Ct(A) in symbols ⇔def there exists i ∈ T
such that for every a ∈ A : ai 6= 0i.

• A is in a precedence relation with B in symbols ABB ⇔def there exist
i, j ∈ T such that i ≺ j and for every a ∈ A and b ∈ B, ai 6= 0i and bj 6= 0j.

• A is in a proximity relation with B in symbols APB⇔def there exist i, j ∈ T
such that i ≈ j and for every a ∈ A and b ∈ B, ai 6= 0i and bj 6= 0j.

Lemma 3.14. Definability Lemma. Let B(T) be a rich standard DMA and A,B be
non-empty sets of dynamic regions. Then:

(i) Ct(A)⇔def (∃c ∈ TR)(∀a ∈ A)(aCtc)

(ii) ABB ⇔def (∃c, d ∈ TR)(cBb and (∀a ∈ A)(aCtc) and (∀b ∈ B)(bCtd))

(iii) APB ⇔def (∃c, d ∈ TR)(cPb and (∀a ∈ A)(aCtc) and (∀b ∈ B)(bCtd))
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Proof. Straightforward by the corresponding definitions, but still we are going to verify
only the first statement as an exercise.

(⇒) Let Ct(A) by definition there exists i ∈ T such that for every a ∈ A : ai 6= 0i
and we also know by Lemma 3.7 that for every time point i ∈ T there exists c(i) a time
representative. ai 6= 0i and c(i) 6= 0i so we have aCtc(i) for every a ∈ A.

(⇐) Let (∃c ∈ TR)(∀a ∈ A)(aCtc), so there is a i ∈ T such that ci 6= 0i and for all
j 6= i, cj = 0j. By the definition of Ct and aCtc we know that there (∃k ∈ T )(ak 6=
0k and ck 6= 0k). So we have that k = i which implies ai 6= 0i for all a ∈ A and Ct(A).

3.5.2 Present, Past and Future

Whitehead very often is talking in [5, 6] about Present epoch, Present cosmic epoch,
Contemporary World, Actual World considering all these phrases as synonyms. In the
common language Present epoch is just the state of all things which exist now. To
represent the present epoch we introduce a special time representative named NOW and
the point of time representing by NOW is denoted by now. Considering now requires to
extend the signature of time structure - (T,≺,≈,now) assuming now ∈ T . By means of
NOW we can define many interesting notions which in the standard DMA-s indeed have
their expected meaning. For this definitions in the abstract DMA-s we have to postulate
that NOW ∈ TR.

• a exists now ⇔def aC
tNOW

• a exists sometimes in the future ⇔def NOWBa

• a exists sometimes in the near future ⇔def NOWBa and NOWPa

• a exists sometimes in the remote future ⇔def NOWBa and NOWPa

• a exists always in the future ⇔def (∀b ∈ TR)(NOWBb→ aCtb)

• a exists always ⇔def (∀b ∈ TR)(aCtb)

• a exists sometimes in the past ⇔def aBNOW

• a exists sometimes in the near past ⇔def aBNOW and aPNOW

• a exists sometimes in the remote past ⇔def aBNOW and aPNOW

• a exists always in the past ⇔def (∀b ∈ TR)(bBNOW → aCtb)
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4 Dynamic mereological algebras

4.1 Abstract definition

Taking into account Lemma 3.4 and Lemma 3.8 we present the following abstract defi-
nition of dynamic mereological algebra:

Definition 4.1. By a dynamic mereological algebra (DMA for short) we mean any
system B = (B, 0, 1, ·,+, ∗, Ct,B,P , TR, UTR,NOW ) where (B, 0, 1, ·,+, ∗) is a non-
degenerate Boolean algebra and the following condition is satisfied:

(i) Ct is a contact relation on B, called time contact satisfying the axiom: (CtE)

If aC
t
b then (∃c)(aCt

b and c∗C
t
b)

(ii) B is a precontact relation in B called precedence relation

(iii) P is a contact relation in B called proximity relation

(iv) TR - time representatives and UTR - universal time representatives
are subsets of B satisfying the following axioms:

(TR1) c ∈ TR iff c 6= 0 and (∀a, b)(aCtc and bCtc→ aCtb).

(TR2) c ∈ UTR iff c ∈ TR and cC
t
c∗

(TRCt) If aCtb then (∃c ∈ UTR)(aCtc and bCtc)

(TRB1) If c ∈ TR, cBb and aCtc then aBb.

(TRB2) If d ∈ TR, aBd and bCtd then aBb.

(TRB3) If aBb, then ∃c ∈ UTR such that cBb and aCtc

(TRB4) If aBb, then ∃d ∈ UTR such that aBd and bCtd

(TRP1) If c ∈ TR, cPb and aCtc then aPb.

(TRP2) If d ∈ TR, aPd and bCtd then aPb.

(TRP3) If aPb, then ∃c ∈ UTR such that cPb and aCtc

(TRP4) If aPb, then ∃d ∈ UTR such that aPd and bCtd
In the next axioms c(i) and c(j) are arbitrary elements of UTR.

(UTRB11) (∀p ∈ B)(pBc(i) or p∗Bc(j)) iff

(∃c(k) ∈ UTR)(c(k)Bc(i) and c(k)Bc(j)).

(UTRB12) (∀p ∈ B)(pBc(i) or c(j)Bp∗) iff
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(∃c(k) ∈ UTR)(c(k)Bc(i) and c(j)Bc(k)).

(UTRB21) (∀p ∈ B)(c(i)Bp or p∗Bp∗) iff

(∃c(k) ∈ UTR)(c(i)Bc(k) and c(k)Bc(j)).

(UTRB22) (∀p ∈ B)(c(i)Bp or c(j)Bp∗) iff

(∃c(k) ∈ UTR)(c(i)Bc(k) and c(j)Bc(k)).

(UTRNOW ) NOW ∈ UTR.

We consider also DMA-s satisfying some of the time axioms (rs), (ls), (up dir),
(down dir), (dens), (ref), (irr), (lin), (tri) and (tr).

The elements of B are called dynamic regions and according to Whiteheads process
philosophy they can be considered as formal analogs of processes. For the intuitions
of TR, UTR and NOW see Section 3.4. All definitions by means of NOW and time
representatives from Section 3.5 can be repeated in the context of the present abstract
definition of DMA and by the representation theory of DMA-s they will obtain their
expected meaning. Since DMA-s are algebraic systems, we adopt for them the stan-
dard definitions of subalgebra, homomorphism, isomorphism, isomorphic embedding,
etc. Note that axioms (TR1) and (TR2) show that the sets TR and UTR are defin-
able with first-order formulas of the relation Ct. We however include these sets in the
signature of DMA, because we want they to be preserved by the embeddings in the
representation theory of DMA-s.

Lemma 4.2. Let B be a DMA. Then the following holds for every a, b ∈ TR and c, d ∈ B:
If aCtc, bCtd and aCtb, then cCtd.

Proof. Trivial by axiom (TR1).

The following lemma presents some important properties of universal time represen-
tatives.

Lemma 4.3. Properties of UTR. Let B be a DMA. Then:

(i) If c ∈ UTR, then for every a ∈ B : aCtc ⇐⇒ a · c 6= 0

(ii) aCtb iff (∃c ∈ UTR)((a · c)Ct(b · c))

(iii) aBb iff (∃c ∈ UTR)((a · c)Bb)

(iv) aBb iff (∃d ∈ UTR)(aB(b · d))

(v) aBb iff (∃c, d ∈ UTR)((a · c)B(b · d))

(vi) aPb iff (∃c ∈ UTR)((a · c)Pb)

(vii) aPb iff (∃d ∈ UTR)(aP(b · d))
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(viii) aPb iff (∃c, d ∈ UTR)((a · c)P(b · d))

(ix) a 6= 0 iff (∃c ∈ UTR)(a · c 6= 0)

(x) If a, b, c ∈ UTR then a · c 6= 0, b · d 6= 0 and c · b 6= 0 imply c · d 6= 0

Proof. (i) Let c ∈ UTR. Then by axiom (TR2) we have cC
t
c∗. First we will establish

the first equivalence.
(⇒) Suppose aCtc and for the sake of contradiction that a · c = 0. This implies

a ≤ c∗ and by aCtc this implies c∗Ctc, and since Ct is a contact relation we have cCtc∗

- a contradiction with cC
t
c∗.

(⇐) Suppose a · c 6= 0, since Ct is a contact relation, then aCtc.
(ii) (⇒) Suppose aCtb. By axiom (TRCt) there exists c ∈ UTR such that aCtc and bCtc.

By (i) we obtain (a · c) · c = a · c 6= 0 and (b · c) · c = b · c 6= 0. Again by (i) we obtain
(a · c)Ctc and (b · c)Ctc, which by axiom (TR1) implies (a · c)Ct(b · c).

(⇐) Obvious.
(iii) (⇒) Let aBb. Then axiom (TRB3) implies ∃c ∈ UTR such that cBb, aCtc. As

in (ii) we deduce from aCtc that (a · c)Ctc. Then cBb and (a · c)Ctc imply by axiom
(TRB1) (a · c)Bb.

(⇐) Obvious.
(iv) The proof is analogous to the proof of (iii).
(v) Follows from (iii) and (iv).
(vi) Similarly to (iii).
(vii) Similarly to (iv).
(viii) Similarly to (v).
(ix) Having in mind that a 6= 0 is equivalent to aCta, the proof of this condition

follows from (ii).
(x) Follows from Lemma 4.2 and (i).

4.2 Expressing time axioms by universal time representatives

We introduced in Section 3.4 a translation τ which translates formulas from the language
of time structures into formulas of the language of DMA containing only variables for
universal time representatives. Corollary 3.11 states that each formula α from the list of
time axioms (see Section 3.3) is equivalent in rich standard DMA-s to the formula τ(A),
where A is the corresponding formula from the list of time conditions (see Section 3.1).
We will prove in this section the same equivalence on the base of the abstract DMA
using its axioms.

Proposition 4.4. Let B(T ) be DMA and let A be any formula from the list of time
conditions (RS), (LS), (Up Dir), (Down Dir), (Dens), (Ref), (Irr), (Lin), (Tri), (Tr)
and α be the corresponding formula from the list of time axioms (rs), (ls), (up dir),
(down dir), (dens), (ref), (irr), (lin), (tri), (tr). Then τ(A) is true in B(T ) iff α is true
in B(T ).
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Proof. The proof goes by considering separate cases. We will use many times the ax-
ioms for UTR and Lemma 4.3 sometimes without a direct reference. Let us recall the
translation τ : for time variable τ(m) = c(m), where c(m) is a variable running in UTR,
τ(m = n) = c(m) · c(n) 6= 0 and τ(m ≺ n) = c(m)Bc(n). For simplicity we replace
different variables c(i) by different letters from the Latin alphabet: a, b, c etc. We shall
use in this proof many times the axioms for TR and Lemma 3.9, sometimes without
explicit reference to them.

• Proof of (rs) ⇔ τ(RS). Recall that (rs) is a 6= 0 → aB1, τ(RS) is (∀a ∈
UTR)(∃b ∈ UTR)(aBb)
(rs) ⇒ τ(RS). Suppose (rs) and let a ∈ UTR. Then by axiom (TR2) a 6= 0
and by (rs) we obtain aB1. By Lemma 4.3 there exists b ∈ UTR such that
aB(1 · b), which implies aBb, thus τ(RS) is proved.

(rs)⇐ τ(RS). Suppose τ(RS) and for the proof of (rs) suppose a 6= 0. Then
by Lemma 4.3 there exists c ∈ UTR such that a · c 6= 0, which implies aCtc.
By τ(RS) there exists b ∈ UTR such that cBb. Conditions cBb, aCtc imply by
axiom (TRB1) that aBb.

• Proof of (ls)⇔ τ(LS). Analogous to the above proof.

• Proof of (up dir) ⇔ τ(Up Dir). Recall that (up dir) is a 6= 0 ∧ b 6= 0 →
aBp ∨ bBp∗ and τ(Up Dir) = (∀a, b ∈ UTR)(∃c ∈ UTR)(aBc and bBc).
(up dir) ⇒ τ(Up Dir). Suppose (up dir) and let a, b ∈ UTR. Then a 6=
0 and b 6= 0 and by (up dir) we obtain (∀p ∈ B)(aBp or bBp∗). Applying
the axiom (UTRB22) we obtain that (∃c ∈ UTR)(aBc and bBc, which proves
τ(Up Dir).

(up dir) ⇐ τ(Up Dir). Suppose τ(Up Dir) and to prove (up dir) suppose
a 6= 0 and b 6= 0. Then there are a′, b′ ∈ UTR such that aCta′ and (bCtb′. By
τ(Up Dir) we obtain (∃c ∈ UTR)(a′Bc and b′Bc). Conditions aCta′ and a′Bc
imply aBc. Analogously (bCtb′ and b′Bc imply bBc and hence τ(Up Dir) is
proved.

• Proof of (down dir) ⇔ τ(Down Dir). Analogous to the proof of (up dir) ⇔
τ(Up Dir) by the use of axiom (UTRB11).

• Proof of (dense)⇔ τ(Dense). Analogous to the proof of (up dir)⇔ τ(Up Dir)
by the use of axiom (UTRB21).

• Proof of (ref) ⇔ τ(Ref). Recall that (ref) is aCtb → aBb and τ(Ref) is
(∀a ∈ UTR)(aBa).

(ref)⇒ τ(Ref). Suppose (ref) and let a ∈ UTR. Then a 6= 0 and by (ref) we
obtain aBa, hence τ(Ref) holds.
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(ref) ⇐ τ(Ref). Suppose τ(Ref) and let a 6= 0. Then there exists a′ ∈ UTR
such that aCta′. By τ(Ref) we have a′Ba′. This condition together with aCta′

and axioms (TRB1) and (TRB2) imply aBa, so (ref) holds.

• Proof of (irr) ⇔ τ(Irr). Recall that (irr) is aBb → (∃c, d) (cBd and aCtc

and bCtd and cC
t
d) and τ(Irr) is (∀a ∈ UTR)(aBa). Note that another equiv-

alent form of (Irr)(which we also denote by (Irr)) is: (∀i, j ∈ T )(i ≺ j → i 6=
j). This condition translated by τ is (∀a, b ∈ UTR)(aBb→ aC

t
b). We will use

below this condition.

(irr)⇒ τ(irr). Suppose (irr) and assume that aBb for some a, b ∈ UTR. Then

by (irr) we obtain (∃c, d ∈ B)(cBd and aCtc and bCtd and cC
t
d). By Lemma

4.2 conditions aCtc and bCtd and cC
t
d imply by Lemma 4.2 that aC

t
b, hence

τ(Irr) holds.

(irr) ⇐ τ(irr). Let τ(Irr) and suppose aBb. Then by Lemma 4.3 (v)
(∃c, d ∈ UTR)(a · c)B(b · d). From here we obtain: a · c 6= 0 and consequently
aCtc, b · c 6= 0 and consequently bCtd and cBd. The last condition implies by

τ(Irr) that cC
t
d. Thus we have just proved that aBb implies (∃c, d ∈ UTR)

(cBd and aCtc and bCtd and cC
t
d) - just what has to be proved.

• Proof of (lin)⇔ τ(Lin). Analogous to the proof of (ref)⇔ τ(Ref).

• Proof of (tri) ⇔ τ(Tri). Analogous to the proof of (irr) ⇔ τ(Irr), by an
application of Lemma 4.2.

• Proof of (tr) ⇔ τ(Tr). Analogous to the proof of (up dir) ⇔ τ(Up Dir), by
an application of axiom (UTRB21).

4.3 Ultrafilters and clusters in DMA

Let B = (B, 0, 1, ·,+, ∗, Ct,B,P , TR, UTR,NOW ) be a DMA. We denote by Ult(B)
the set of ultrafilters in B. We denote by Rt,≺ and ≈ the canonical relations between
ultrafilters defined as in Section 2.2, corresponding respectively to Ct,B and P . Since
Ct is a contact relation satisfying the Efremovich axiom, Rt is an equivalence relation
(Section 2.4). Clusters with respect to the contact Ct will be called t-clusters.

Remark 4.5. Let us note that ultrafilters and t-clusters will be taken as building material
in the canonical constructions in the representation theory of DMA-s: ultrafilters as time
atoms, t-clusters (build by ultrafilters) as time points.

Definition 4.6. TR- and UTR-clusters. Let B be a DMA and Γ be a t-cluster in B.
Γ is called a TR-cluster if there exists a time representative c ∈ TR such that c ∈ Γ. If
c ∈ UTR then Γ is called UTR-cluster. If Γ is a TR-cluster (UTR-cluster) and c ∈ TR
(c ∈ UTR) is one of its time representatives, we will denote this by Γ(c). We denote by
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Ult(Γ) the set of ultrafilters included in Γ. The set of all UTR-clusters (TR-clusters) in
B is denoted by UTR − clusters(B) (TR − clusters(B)). Note that Ult(Γ) is always
non-empty set.

Lemma 4.7.

(i) Every UTR-cluster is a TR-cluster

(ii) Let Γ(c) and ∆(c) be TR-clusters, then Γ(c) = ∆(c)

(iii) Let Γ(c) be a TR-cluster, then a ∈ Γ(c) iff aCtc

(iv) Let Γ(c) and ∆(d) be TR-clusters, then Γ(c) = ∆(d) iff cCtd

(v) Let Γ(c) be an UTR-cluster, then for every ultrafilter U ⊆ Γ we have c ∈ U

(vi) Let Γ(c) be an UTR-cluster, then a ∈ Γ(c) iff a · c 6= 0

Proof. (i) follows from the fact that UTR ⊆ TR
(ii) Let Γ(c) and ∆(c) be TR-clusters and proceed to show that Γ(c) ⊆ ∆(c). Sup-

pose for the sake of contradiction that Γ(c) * ∆(c). Then there exists a ∈ Γ(c) (and
consequently aCtc) and a /∈ ∆(c). By the definition of cluster there exists b ∈ ∆(c) (and
consequently bCtc) such that aCb. Conditions c ∈ TR, aCtc and bCtc imply by axioms
(TR1) that aCtb, which is a contradiction.

(iii) Let Γ(c) be a TR-cluster (this implies that c ∈ TR). Then a ∈ Γ(c) obviously
implies aCtc. Let now aCtc, then by Lemma 2.27 there exists a t-cluster ∆ containing
c and a. Since c ∈ TR, this implies that ∆ = ∆(c) is a TR-cluster. This implies by (ii)
that Γ(c) = ∆(c), hence a ∈ Γ(c).

(iv) Let Γ(c) and ∆(d) be TR-clusters. If Γ(c) = ∆(d), then obviously cCtd. For the
converse implication suppose cCtd. Then by (iii) d ∈ Γ(c), so we may write Γ(c) = Γ(d).
Then by (ii) we obtain Γ(c) = ∆(d).

(v) Let Γ(c) be an UTR-cluster and U be an ultrafilter such that U ⊆ Γ. By the
axiom (TR2)c ∈ UTR implies cCc∗. Then conditions c ∈ Γ and Cc∗ imply c∗ /∈ Γ and
since U ⊆ Γ, then c∗ /∈ U , so c ∈ U .

(vi) follows from (iii) and Lemma 4.3.

The following lemma shows further important properties of UTR-clusters.

Lemma 4.8.

(i) aCtb iff there exists an UTR-cluster Γ such that a, b ∈ Γ iff there exist an
UTR-cluster Γ and ultrafilters ∆,Θ ∈ Ult(Γ) such that a ∈ ∆ and b ∈ Θ.

(ii) a 6= 0 iff there exists an UTR-cluster Γ containing a iff there exists an UTR-
cluster Γ and an ultrafilter ∆ ∈ Ult(Γ) such that a ∈ ∆.

(iii) a ∈ TR iff there exists a unique UTR-cluster Γ containing a iff there exists
unique UTR-cluster Γ and an ultrafilter ∆ ∈ Ult(Γ) such that a ∈ ∆.
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(iv) a ∈ UTR iff there exists a unique UTR-cluster Γ such that for all ∆ ∈
Ult(Γ), a ∈ ∆.

(v) There exists a unique UTR-cluster (denoted by now) containing NOW.

Proof.

(i) Proof of the first equivalence.

(⇒) Let aCtb. By Lemma 4.3 (ii) there exists c ∈ UTR such that (a·c)Ct(b·c).
By Lemma 2.27 there is a t-cluster Γ containing a, b and c and since c ∈ UTR
then Γ = Γ(c) is an UTR-cluster.

(⇐) Obvious.

Proof of the second equivalence.

(⇒) Suppose that there exists an UTR-cluster Γ such that a, b ∈ Γ. Since Γ is
union of ultrafilters, there are ultrafilters U, V ⊆ Γ such that a ∈ U and b ∈ V .

(⇐) Obvious.

(ii) a 6= 0 is equivalent to aCta then apply (i).

(iii) Proof of the first equivalence.

(⇒) Let c ∈ TR then c 6= 0 and by (ii) there exists an UTR-cluster Γ containing
c. The uniqueness of Γ following from Lemma 4.7. (ii).

(⇐) We will reason by contraposition. Suppose c /∈ TR then by (TR1) either

c = 0 or there are a, b such that aCtc, bCtc and aC
t
b. In the case c = 0 there

are no clusters containing c. For the second case by using (i) there are UTR-

clusters Γ,∆ such that a, c ∈ Γ and b, c ∈ ∆. Then aC
t
b implies by Lemma

2.28 Γ 6= ∆.

Proof of the second equivalence is similar to the proof of (i).

(iv) Obvious.

(v) Since NOW ∈ UTR apply (iv).

Definition 4.9. Time order between t-clusters. Let Γ,∆ be t-clusters. Define
Γ ≺ ∆ iff (∀U ∈ Ult(Γ))(∀V ∈ Ult(∆))(U ≺ V )

Note that ≺ in the right part of the definition is the canonical relation between
ultrafilters corresponding to the relation B.
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Lemma 4.10. Properties of time order between t-clusters. Let Γ = Γ(c) and ∆ =
∆(d) be UTR-clusters. Then the following conditions are equivalent:

(i) Γ ≺ ∆

(ii) There exists U ∈ Ult(Γ) and V ∈ Ult(∆) such that U ≺ V

(iii) cBd

(iv) For all a ∈ Γ and b ∈ ∆ : aBb
Proof. (i) ⇒ (ii) Suppose (i) holds. Since Ult(Γ) and Ult(∆) are non-empty sets, let
U ∈ Ult(Γ) and V ∈ Ult(∆). By (i) we obtain U ≺ V .

(ii) ⇒ (iii) Suppose (ii) holds. Since Γ(c) and ∆(d) are UTR-clusters, then by
Lemma 4.7 (v) we get c ∈ U and d ∈ V . Then by (ii) and by the definition of the
canonical relation ≺ between ultrafilters we obtain cBd.

(iii)⇒ (iv) Suppose (iii) holds. a ∈ Γ and b ∈ ∆. Then aCtc, bCtd. From here and
(iii) (cBd) we obtain by axioms (TRB1) and (TRB2) that aBb.

(iv) ⇒ (i) Suppose (iv) holds. For the sake of contradiction let (i) does not hold.
Then for some U ∈ Ult(Γ) and some V ∈ Ult(∆) we have U ⊀ V . By the definition of
≺ there are a ∈ U ⊆ Γ and b ∈ V ⊆ ∆ such that aBb. But a ∈ Γ and b ∈ ∆ implies by
(iv) that aBb, which is a contradiction.

Definition 4.11. Time proximity between t-clusters. Let Γ,∆ be t-clusters. Define
Γ ≈ ∆ iff (∀U ∈ Ult(Γ))(∀V ∈ Ult(∆))(U ≈ V )

Lemma 4.12. Properties of time proximity between t-clusters. Let Γ = Γ(c) and ∆ =
∆(d) be UTR-clusters. Then the following conditions are equivalent:

(i) Γ ≈ ∆

(ii) There exists U ∈ Ult(Γ) and V ∈ Ult(∆) such that U ≈ V

(iii) cPd

(iv) For all a ∈ Γ and b ∈ ∆ : aPb
Proof. Similarly to the proof of Lemma 4.10.

Lemma 4.13. aBb iff there exists UTR-cluster Γ and ∆ such that Γ ≺ ∆, a ∈ Γ and b ∈
∆.

Proof. (⇒) Suppose aBb. Then by Lemma 4.3 (v) there are c, d ∈ UTR such that
(a · c)B(b · d). Then by Lemma 2.19 there are ultrafilters U, V such that U ≺ V, a · c ∈
U and b · d ∈ V . Since U and V are also t-clans, by Lemma 2.24 there are maximal t-
clans Γ and ∆ such that U ∈ Γ and V ∈ ∆. But by Lemma 2.26 Γ and ∆ are t-clusters.
Also we have: a, c ∈ Γ, so Γ = Γ(c) is an UTR-cluster containing a and ∆ = ∆(d) is
an UTR-cluster containing d. From (a · c)B(b · d) we obtain cBd which by Lemma 4.10
implies Γ ≺ ∆.

(⇐) Suppose that a ∈ Γ, b ∈ ∆ and Γ ≺ ∆. Then by Lemma 4.10 it follows that
aBb.
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Lemma 4.14. aPb iff there exists UTR-cluster Γ and ∆ such that Γ ≈ ∆, a ∈ Γ and b ∈
∆.

Proof. Similarly to the proof of Lemma 4.13.
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5 Representation theory for DMA’s

The aim of this section is to show that each abstract DMA is isomorphic to a certain
canonical dynamic mereological algebra. This means that if we have at hand a abstract
DMA B, we first have to extract from B a time structure (T,≺,≈, now), second for each
m ∈ T to define in some way a contact algebra Bm (coordinate Boolean algebra of the
time pointm) and third, following the method described in Section 3, to define a standard
DMA Bcan (called canonical DMA) determined by the time structure (T,≺,≈, now) and
by the set of coordinate Boolean algebras (Bt;Ct), t ∈ T . The last step is to define an
embedding h from B into the constructed canonical dynamic mereological algebra Bcan.
All these steps will be realized in the subsequent subsections.

5.1 Extracting the time structure

Definition 5.1. Formal definition of canonical time structure. Let B be a DMA.
The canonical time structure T (B)can = (T,≺,≈, now) of B is defined as follows: T =def

UTR−clusters(B), the relation≺ is the time order between UTR-clusters (see Definition
4.9), the relation ≈ is the time proximity between UTR-clusters (see Definition 4.11) and
now is the unique UTR-cluster containing NOW (Lemma 4.8).

The UTR-clusters as elements of the canonical time structure are considered as the
abstract time points of B, now as the time point of present epoch and NOW is just the
universal time representative of now. We restate in an abstract level the Lemma 3.5
formulated in Section 3.3 for standard DMA-s.

Lemma 5.2. Correspondence Lemma. Let B be a DMA and T (B)can = (T,≺,≈
, now) be the canonical time structure of B. Let A be any formula from the list of time
conditions (RS), (LS), (Up Dir), (Down Dir), (Dens), (Ref), (Irr), (Lin), (Tri), (Tr) (
Section 3.1) and α be the corresponding formula from the list of time axioms (rs), (ls),
(up dir), (down dir), (dens), (ref), (irr), (lin), (tri), (tr) (Section 3.3). Then α is true
in B iff τ(A) is true in T (B)can = (T,≺,≈, now).

Proof. By Proposition 4.4 α is true in B iff τ(A) is true in B. It is easy to see, using
Lemma 4.7 and Lemma 4.10 that τ(A) is true in B iff A is true in T (B) = (T,≺,≈, now).
Let us demonstrate this by example:
A = (Tri) = (∀Γ,∆ ∈ T )(Γ = ∆ or Γ ≺ ∆ or ∆ ≺ Γ), τ(A) = (∀a, b ∈ UTR)(aCtb or aBb or bBa).

(⇒). Suppose τ(A) is true in B and let Γ = Γ(a) and ∆ = ∆(b) be UTR-clusters.
Then by the assumption for τ(A) we have: aCtb or aBb or bBa. Then by Lemma 4.7
and Lemma 4.10 we obtain Γ = ∆ or Γ ≺ ∆ or ∆ ≺ Γ.

(⇐). Suppose A holds in T (B) = (T,≺,≈, now) and let a, b ∈ UTR. By axiom
(TR2)a 6= 0. Then there exists an ultrafilter U containing a. Since U is a t-clan it
is contained in a maximal t-clan Γ = Γ(a) which is an UTR-cluster. Analogously b is
contained in an UTR-cluster ∆ = ∆(b). By the assumption on A we have: Γ(a) =
∆(b) or Γ(a) ≺ ∆(b) or ∆(b) ≺ Γ(a). Then by Lemma 4.7 and Lemma 4.10 we get
(aCtb or aBb or bBa).
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5.2 Extracting the coordinate Boolean algebras

Definition 5.3. Coordinate Boolean algebras, canonical dynamic model of
space and the embedding. Let B be a DMA and Γ be a time point in B, i.e. Γ
is a UTR-cluster and let Ult(Γ) be the set of ultrafilters included in Γ.
First we construct the factor Boolean algebra (BUlt(Γ)) by the set Ult(Γ) following the
construction described in Section 2.3. The algebra (BUlt(Γ)) is called the canonical co-
ordinate Boolean algebra corresponding to the time point Γ. Recall that the
set Ult(Γ) determines a congruence relation in B and the elements of (BUlt(Γ)) are just
equivalence classes |a|Ult(Γ) determined by this congruence relation. For simplicity of
notation we will write BΓ instead of (BUlt(Γ)), similiarly for |a|Γ.
Next we will define the full standard DMA denoted by Bcan with Ct,B and P , TR, UTR,NOW
in it as in Section 3 by means of the canonical time structure T (B)can = (T,≺,≈, now)
and by the canonical coordinate algebras (BΓ), Γ ∈ T .
Bcan is called full canonical standard DMA corresponding to B.
The canonical embedding h is defined coordinatewise as follows for each a ∈ B and Γ ∈
T :

h(a)Γ = |a|Γ

We consider the subalgebra h(B) of Bcan, denoted by B as the canonical standard
DMA corresponding to B.

Remark 5.4. The definition of the coordinate Boolean algebra BΓ as a factor Boolean
algebra with respect to the set Ult(Γ) is based on the following intuition taken from
standard DMA-s. If we look at dynamic regions as trajectories of changing regions,
then for different a and b we may have that |a|Γ = |b|Γ, which is an equivalence relation
determined by Γ. The abstract definition of this equivalence in DMA-s is just the
congruence, which determines the coordinate Boolean algebra BΓ.

The next lemma is important because it shows that the time axioms are preserved
by the construction of the full canonical standard DMA.

Lemma 5.5. Let B be a DMA and Bcan be the full canonical standard dynamic contact
algebra associated with B. Then for each time axiom α from the list of time axioms (rs),
(ls), (up dir), (down dir), (dens), (ref), (irr), (lin), (tri), (tr) the following equivalence
is true: α holds in B iff α holds in Bcan.

Proof. By Proposition 4.4 α is true in B iff the corresponding condition A from the list
time conditions (RS), (LS), (Up Dir), (Down Dir), (Dens), (Ref), (Irr), (Lin), (Tri), (Tr)
is true in the canonical time structure T (B)can = (T,≺,≈, now) of B iff (by Lemma 3.5
A is true in the full standard DMA Bcan).

The next lemma shows that the function h is an embedding from B into Bcan.

Lemma 5.6. Embedding Lemma. Let B be a DMA and h be the mapping defined in
Definition 5.3. Then:
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(i) h preserves Boolean operations.

(ii) aCtb in B iff there exists Γ ∈ T such that |a|Γ 6= |0|Γ and |b|Γ 6= |0|Γ iff h(a)Cth(b)
in Bcan

(iii) aBb in B iff there exist Γ,∆ ∈ T such that Γ ≺ ∆ and |a|Γ 6= |0|Γ and |b|∆ 6=
|0|∆ iff h(a)Bh(b) in Bcan

(iv) aPb in B if there exist Γ,∆ ∈ T such that Γ ≈ ∆ and |a|Γ 6= |0|Γ and |b|∆ 6=
|0|∆ iff h(a)Ph(b)

(v) a ≤ b in B iff for all Γ ∈ T |a|Γ ≤Γ |b|Γ iff h(a) ≤ h(b) in Bcan

(vi) a = b iff h(a) = h(b), i.e. h is an embedding

(vii) a ∈ TR in B iff h(a) ∈ TR in Bcan

(viii) a ∈ UTR in B iff h(a) ∈ UTR in Bcan

(ix) h(NOW ) = NOW , where the second NOW = NOW (now) is just the UTR
representative of now in Bcan

Proof. (i) The statement is obvious, because the elements of the coordinate algebras
are equivalence classes determined by a congruence relations in B and that Boolean
operations in Bcan are defined coordinatewise.

(ii) aCtb in B iff (By Lemma 4.8) there exists an UTR-cluster Γ and ultrafilters
∆,Θ ∈ Ult(Γ) such that a ∈ ∆ and b ∈ Θ iff there exist Γ ∈ T such that |a|Γ 6=
|0|Γ and |b|Γ 6= |0|Γ iff h(a)Cth(b) in Bcan.

(iii) aBb in B iff there exists UTR-clusters Γ and ∆ such that Γ ≺ ∆ and there exist
ultrafilter Θ ∈ Ult(Γ) and Λ ∈ Ult(∆) such that a ∈ Θ and b ∈ Λ iff there exist Γ,∆ ∈ T
such that Γ ≺ ∆, |a|Γ 6= |0|Γ and |b|∆ 6= |0|∆ iff h(a)Bh(b) in Bcan.

(iv) The proof is similar to that of (iii).
(v) For the proof of this equivalence use the fact that a ≤ b iff a · b∗ = 0 iff (a ·

b∗)C
t
(a · b∗) (because Ct is a contact relation) and apply (ii).

(vi) Follows from (v)
(vii) a ∈ TR iff (By Lemma 4.8) there exists a unique UTR-cluster Γ and an ultrafil-

ter ∆ ⊆ Γ such that a ∈ ∆ iff there exists a unique element Γ ∈ T such that |a|Γ 6= |0|Γ
iff h(a) ∈ TR in Bcan.

(viii) The proof is similar to that of (vii) by an application of Lemma 4.8.
(ix) The proof follows from (viii) and the fact that NOW is universal time repre-

sentative of the UTR-cluster denoted by now.

5.3 The Representation Theorem

Theorem 5.7. Representation Theorem for DMA-s. Let B be a DMA. Then there
exists a full standard DMA B and an isomorphic embedding h of B into B. Moreover,
B satisfies some of the time axioms iff the same axioms are satisfied in B.
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Proof. The proof is a direct corollary of Lemma 5.5 and Lemma 5.6 by taking B =
Bcan.
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