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Point-free theory of space, I
The point-free theories to space aim to replace the abstract
primitive notions and relations ‘point’, ‘line’r, ‘between’ etc. by
more realistic ones. In other words, the aim is to reverse the
atomistic idea about the space taking as primitive some sets of
points, regions, and to define points as some sets of regions.

The Whiteheadean approach is based on the primitive notion
‘region’ (intuitively, physical body) and the mereotopological binary
relations‘part-of’ and ‘contact’

Standard model. Let T be a topological space with interior
operator Int and closure operator Cl . A set A is called regular
closed if Cl(Int(A)) = A. The regular closed sets in T with the
constants ∅ and T and ⊆ part-of form a complete Boolean
algebra, RC (T ). The binary relation contact, CT , is defined by
CT (A,B) ⇐⇒ A ∩ B ̸= ∅.

The models of the universal fragment of the Th(⟨RC (T ),CT ⟩) are
natural algebraic structures called contact algebras.
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Point-free theory of space, I

Remarks. 1. In RC (T ) the Boolean meet and complement are not
the corresponding set theoretic operations:
A1 ⊓ A2 = Cl(Int(A1 ∩ A2)) and A∗ = Cl(T \ A).

2. An isomorphic variant is to take the algebra of regular open sets
RO(T ) with the following contact relation:
CT (A,B) ⇐⇒ Cl(A) ∩ Cl(B) ̸= ∅.
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Point-free theory of space, II

Arntzenius’ approach to point-free space is to take as regions the
Borel sets modulo null sets with respect to some σ-additive
measure. So, the most standard model of the regions will be
Bor(Rm)/Null where Null is the set of all sets in Rm with
Lebesgue measure 0. This Boolean algebra has nice representation
theory, but the Lebesgue measure is not finitely additive over
RC (Rm), see Arntzenius’08, Lando’18, Lando and Scott’19.

In this talk we bring together both approches in the structures
called contact algebras with qualitative measure.
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Measure on Boolean algebra

Let B = ⟨B, 0B , 1B ,⊔,⊓, ∗⟩ be a Boolean algebra. A measure on B
is a function µ : B → R ∪ {+∞} such that

µ(0B) = 0, µ(1B) > 0
a ⊓ b = 0B ⇒ µ(a ⊔ b) = µ(a) + µ(b),

A measure µ on B is positive if for all a ∈ B ,
a > 0B implies µ(a) > 0.

A measure µ on B is probability measure if µ(1B) = 1.
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Contact algebras with qualitative measure —
CAQM-structures

CAQM-structure is a tuple F of the kind ⟨⟨B,C ⟩, µ⟩, where
— B = ⟨B, 0B , 1B ,⊔,⊓, ∗⟩ is a Boolean algebra
— ⟨B,C ⟩ is a contact algebra, i.e. for all a, a1, a2, b ∈ B

C (a, b) ⇒ a ̸= 0B and b ̸= 0B
a ̸= 0B ⇒ C (a, a)
C (a, b) ⇒ C (b, a)
C (a1 ⊔ a2, b) ⇔ C (a1, b) or C (a2, b)

— µ is a positive measure on B

F is called contact algebras with qualitative probability measure
(CAQPM) if µ is probability measure.

F is called connected if for all a ∈ B \ {0B , 1B} it holds C (a, a∗).
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Examples for connected CAQM-structures, I

One might expect that our favorit example will be
⟨RC (Rm), µ⟩, where µ is the Lebesgue measure on Rm.

But it is not CAQM-structure, since µ is not finitely additive on
this Boolean algebra.

1. ⟨POL(Rm), µ⟩ is a connected CAQM-structure, where POL(Rm)
is the generated subalgebra of RC (Rm) from the set of all basic
polytops in Rm and µ is the Lebesgue measure.
(A basic polytop in Rm is a finite intersection with non empty
interior of closed halfspaces (hyperplanes) or the empty set.)

2. ⟨POL([0, 1]m), µ⟩ is a connected CAQPM-structure, where
POL([0, 1]m) is the generated subalgebra of RC ([0, 1]m) from the
set of all basic polytops in [0, 1]m and µ is the Lebesgue measure.
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Examples for connected CAQM-structures, II

3. Let R be a reflexive and symmetric binary relation on a
nonempty set W . Define the binary relation CR on W as follows:

⟨A,B⟩ ∈ CR ⇐⇒ (∃x ∈ A)(∃y ∈ B)(⟨x , y⟩ ∈ R)

The Boolean algebra of all subsets of W with CR is a contact
algebra. If µ is a positive measure on P(W ) then we will call this
CAQM-structure relational or Kripke structure F = ⟨W ,R, µ⟩.
The CAQM-structure F is connected iff the graph ⟨W ,R⟩ is
connected.

Remark. If W is finite then probability measures on P(W ) are
determined by the functions f : W → (0, 1):
µ(X ) :=

∑
x∈X f (x)/

∑
x∈W f (x).
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The language CLQM

1. Boolean terms for representing the regions:
— Boolean constants: 0, 1
— countable set of Boolean variables, Var , p, q, . . . etc.
— if a and b are Boolean terms, then a∗, (a ⊓ b), (a ⊔ b) are

Boolean terms.

2. Atomic formulas:
— all expressions of the kind: (a ≤ b), C (a, b) and (a ≤m b) for

any Boolean terms a, b

3. The set of formulas φ,ψ, . . . is the closure of the set atomic
formulas with respect to propositional connectives.

4. The abbreviations a < b, a ̸= b, a <µ b, a ̸=µ b are standard,
for example a <µ b is ¬(b ≤µ a).
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Semantics of CLQM

Let F = ⟨⟨B,C ⟩, µ⟩ be a CAQM-structure. An assignment in F , as
usual, is a function v : Var → B . It can be extended to all Boolean
terms in a standard way. The pair M = ⟨F , v⟩ is called model
over F .
Evaluation of the atomic formulas in a model M:
M |= (a ≤ b) iff v(a) ≤ v(b)
M |= C (a, b) iff ⟨v(a), v(b)⟩ ∈ CB

M |= (a ≤m b) iff µ(v(a)) ≤ µ(v(b))

For arbitrary formulas φ, M |= φ is defined in a standard way.
Satisfiability, validity in a CAQM-structure (denoted F |= φ), and
validity in a class of structures (denoted C |= φ) have the usual
meaning.
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Some valid formulas
1. Call |= a ̸= 0 ↔ 0 <µ a
2. Call |= a < 1 ↔ a <µ 1
3. Call |= a ≤µ b ∨ b ≤µ a
4. Call |= a ≤µ b ∧ b ≤m d → a ≤µ d
5. Call |= a⊓d = 0∧b⊓d = 0∧d <µ 1 → (a ≤µ b ↔ a⊔d ≤µ b⊔d)
5′. Call |= a⊓d = 0∧b⊓d = 0∧d <µ 1 → (a <µ b ↔ a⊔d <µ b⊔d)
5′′. Call |= a⊓d = 0∧b⊓d = 0∧d <µ 1 → (a =µ b ↔ a⊔d =µ b⊔d)

6. Let Call ,prob be the class of all CAQPM-structures. Then in
Call ,prob formulas 5, 5′ and 5′′ without the conjunctive term d <µ 1
are valid.

7. Let C∞ be the class of all CAQM-structures such that +∞
belongs to the range of µ and for any positive r there exists a ∈ B
such that µ(a) > r . Then

C∞ |= (a =µ 1) ∨ (a∗ =µ 1)

Our purpose is to present a formal system Lpol ,[0,1] which is
complete with respect to ⟨POL([0, 1]m), µ⟩. What about Call?
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The formal system Lpol ,[0,1]

Axioms:
1. The axioms for the connected contact algebras;

2.1. 0 <µ 1
(p ≤µ q) ∨ (q ≤µ p)
(p ≤µ q) ∧ (q ≤µ r) → (p ≤µ r)
(p⊓q = 0)∧(p⊓r = 0)∧(q⊓r = 0) → ((p ≤µ q) ↔ (p⊔r ≤µ q⊔r))

2.2. For any integer n > 2 finitely many formulas of the following
kind part(p1, p2, . . . , pn) → ¬φσ described on a next slide.

Rules: modus ponens and uniform substitution



Some systems of simple linear inequalities, I

Let x1, x2, . . . , xn be real variables. We consider finite systems (σ)
of linear inequalities of the following kind:∑

i∈Il

xi <
∑
i∈Ir

xi or
∑
i∈Il

xi ≤
∑
i∈Ir

xi ,

where Il ∪ Ir ⊆ {1, 2, . . . , n} and Ir ̸= ∅, providing
∑

i∈∅ xi = 0.
For any n there is finetely many such systems (σ) and it is
decidable whether given system has a positive rational solution (all
components to be positive).
With any inequality e of the above mentioned type we associate the
following formula ϕe :

(⊔i∈Ilpi ) <µ (⊔i∈Irpi ) or (⊔i∈Ilpi ) ≤µ (⊔i∈Irpi ),

where p1, p2, . . . , pn are different Boolean variables.
Let φσ be the conjunction of all ϕe for all inequalities e from σ.



Some systems of simple linear inequalities, II

Let part(p1, p2, . . . , pn) be the formula saying that
v(p1), . . . , v(pn) is a partition of the Boolean 1, i.e.
part(p1, p2, . . . , pn) :=

∧
1≤i<j≤n(pi ⊓ pj = 0) ∧ (

⊔
1≤i≤n pi = 1)

Proposition. The following are equivalent
(i) part(p1, p2, . . . , pn) → ¬φσ is unsatisfiable;
(ii) the system (σ) has no solution in Q>0.



Axioms 2.2.

For n > 2 let Φn :=
∧

(σ)∈Ξn
(part(p1, p2, . . . , pn) → ¬φσ), where

Ξn is the set of all systems of inequalities over x1, x2, . . . , xn which
have no positive solution.

The axioms of this set are all Φn for n > 2.

Remark. The set of axioms from Lpol ,[0,1] is infinite and
recognizible (recursive).



The main result
The logic Lpol ,[0,1] is correct and complete with respect the class of
all connected CAQPM-structures. All of the structures
⟨POL([0, 1]m), µ⟩ validate the same formulas, i.e. it holds the
following

Theorem. Let φ be a formula. The following are equivalent:
(i) φ is a theorem of Lpol ,[0,1];
(ii) Cprob

all ,conn |= φ;
(iii) for a given m ≥ 1, ⟨POL([0, 1]m), µ⟩ |= φ;
(iv) ⟨POL([0, 1]), µ⟩ |= φ;
(v) For every finite relational connected CAQPM-structure (Kripke
frame) F it holds F |= φ.

For (v)⇒(iv) the main idea is step by step to untie the given finite
connected graph, to modify the measure function in an evident way,
to change the assignment in an appropriated way and at the end to
realize the obtained CAQPM-structure by 1-dimensional polytops.
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realize the obtained CAQPM-structure by 1-dimensional polytops.



The idea of the proof, cont. 1

The implication (v)⇒(i) follows from the following

Proposition. There is an algoritm which for every formula φ gives
either a finite relational connected CAQPM-structure (Kripke
frame) F such that F |= φ or a proof of ¬φ in Lpol ,[0,1].

Sketch of the proof. Let p1, . . . , pn be different Boolean variables.
Let us call, as usually, a monom over p1, . . . , pn Boolean term from
the following kind ⊓1≤i≤nλipi , where λi is either the empty word
or ¬.
Let us call good conjunction a formula of the following kind∧

1≤i≤2n

λi (mi > 0) ∧
∧

1≤i<j≤2n

δijC (mi ,mj) ∧ χ,

where m1, . . . ,m2n are all monoms over p1, . . . , pn, in χ occurs only
µ-atomic formulas and all λi , δij are either the empty word or ¬.
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The idea of the proof, cont. 2

It should be clear that there exists an algorithm which for any φ
gives a finite disjunction Ψ from good conjunctions such that
φ↔ Φ is provable in Lpol ,[0,1].

Now the proof relies on analizing at two levels the contact part of
every good conjunction containing at least one positive monom. As
result we choose some of these good conjunctions. With any
choosen conjunction we associate a finite connected graph and a
proof of the negation of any non-choosen is presented.

At the end, the χ-part of any choosen good conjunction is analized.
As result we have either probability measure over the associated
graph or a proof of the negation of this conjunction.
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Close results

1. If the connectedness axiom is removed the obtained formal
system is correct and complete with respect to the class Cprob

all .

Similar results are obtained for several other important contact
algebras with arbitrary positive measure.

2. The logic of the polytops in [0,+∞) is found in the master
thesis of Stoyan Gradev.

3. The logic of the polytops in R is found in the master thesis of
Angel Nikolov (not yet presented for defense).

4. The logic of the polytops in R2 is also known.
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Complexity

In 2019 Balbiani and T. proved that:

1. Satisfiability in Cprob
all is NP-complete problem.

2. Satisfiability in Cprob
all ,conn is PSPACE-complete problem.



Finite axiomatizability

The presented here axiomatization of Cprob
all contains infinitely many

axioms, Φn for n > 2. I strongly believe that this logic is not finitely
axiomatizable: for any system (σn) of inequalities over x1, . . . , xn
which has a positive solution I can effectively show a system (σn+1)
over x1, . . . , xn, xn+1 without positive solution. If we suppose that
some formula θ with n Boolean variables axiomatizes Cprob

all then
(???) Φn+1 is not derivable from θ.



Thank you for your attention!


