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Introduction

A common theme in the study of countable mathematical structures is
that isomorphism invariant properties have syntactic characterizations.
Examples:

® the existence of Scott sentences for countable structures [Scott 63,

® the Lopez-Escobar theorem, which says that every invariant Borel
subset in the space of countable structures is definable in the
infinitary logic Ly, [Lopez-Escobar 65; Vaught 74|,

® 3 relation on a structure that is Zg in every copy is definable by a
computable ¥, Ly, -formula [Ash, Knight, Manasse, Sleman 89;
Chisholm 90].
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The Borel hierarchy for non-metrizable spaces

Definition (Selivanov 2006)
Let (X, 7) be a topological space. For each countable ordinal o > 1 we
define ¥9 (X, 7) inductively as follows.
® X{(X,7) = 7 - the open sets.
® For a > 1, ¥0(X, 7) is the set of all subsets A of X which can be
expressed in the form

A=|JBi\B
i€w
where B; and B! are in Zgi(X, 7) for some f; < a, for each i.

Let NO(X,7) = {X\A|AeZ%(X,7)}.
Define B(X,7) =UJ ¥9(X, 7) to be the Borel subsets of (X, 7).

a<wi
v

For metrizable spaces this is equivalent to the standard Borel hierarchy.
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Scott topology

Let (P, <) be a partial order.

e Aset D C P is directed if D # () and for all a,b € D, there is d € D
with a < d and b <d.

® A partial order P is a directed complete partial order (dcpo) if
every directed D C P has a supremum supD in P.

e A set U is Scott open if U is an upper set, i.e., x € U and
x <y = y € U, and for every directed set D with supD € U we
have that D N'U # ). The Scott open sets of P form a topology on
P, the Scott topology.

Example
Consider the Scott topology on 2“ equipped with the dcpo given by
f Cgiff(i) =1 = g(i) = 1. It has a natural countable basis given by
the basic open sets
2.0, and O, = {f € 2 | f(n) = 1} for all n € w.
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Cantor topology and Scott topology on Mod(7)

Fix a countable relational signature 7. Here we consider only
T-structures A with domain w.

We fix an encoding of (atomic diagrams of) 7-structures. This allows us
to identify 7-structures with elements of the Cantor space 2*. More
formally, we talk about the space of 7-models Mod(7) which is
homeomorphic to 2¢.

Consider a new topological space Mod,(7). Let 7 contains = and #.
The elements of Mod,(7) are still 7-structures with domain w, but the
space is equipped with the Scott topology.

Let F be a non-empty finite set of atomic formulas (no negation). Then
the basic open set Up contains all structures A satisfying AF.

There is a natural decpo on Mod(7) given by

A=< B < VRer(R*CRP).
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Ly, formulas

Let I be a countable set.

® The ¥ formulas (M formulas) are quantifier free T-formulas.

For a > 1:
® (1) is X, formula if it has the form

i) = \/ 3i(ei(T, %) A (T, %)),
iel
where ¢i(1,%;) is a X5 and 9;(1,%;) is Mg, for some F; < a.
® (1) is My formula if it has the form

/\VXI ¢1 \/1/}1( 1))

i€l

where ¢;(T,%;) is a Xg, and (T, %;) is a Mg, for some f; < a.
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The Lopez-Escobar theorem

In the classical setting the Lopez-Escobar theorem establishes a
correspondence between subsets of Mod(7) defined by sentences in the
infinitary logic L, and the Borel sets.

Theorem (Lopez-Escobar 65, Vaught 74)

Let K be a subclass of Mod(7) which is closed under isomorphisms. Let
a > 0 be a countable ordinal. Then K is £ (in the Borel hierarchy) if
and only if IC is axiomatizable by a ¥ ,-sentence.

Theorem (Bazhenov, Fokina, Rossegger, S., and Vatev, 2023)

Let K be a subclass of Mod(7) which is closed under isomorphisms.
Let @ > 0 be a countable ordinal. Then K is X2 in the space Mod,(7)
if and only if K is axiomatizable by a ¥h-sentence.

We use a forcing relation used by Soskov in 2004 in order to
characterize the relatively intrinsic relations for the enumeration
reducibility, but our presentation is closer to Montalban 2021.
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A hierarchy of positive infinitary formulas
Let I be a countable set.
® et « = 0. Then:

® the ¥ formulas are the finite conjunctions of atomic 7-formulas.

e the M formulas are the finite disjunctions of negations of atomic
7-formulas.

® Let a=1. Then:
® (1) is a X} formula if it has the form
p(a) = \/ i (T, %),
iel

where for each i € I, ¢;(1,%;) is a £} formula.
® (1) is a MY formula if it has the form

p(@) = /\ V=i (%),
iel
where for each i € I, ¢;(1,%;) is a M} formula.

Alexandr

Lopez-Escobar theorem for continuou:

9/27



A hierarchy of positive infinitary formulas

® [et o« > 2. Then:
® (1) is XP formula if it has the form

\/Exl ¢1 MMH Xl))

i€l
where ¢;(T,X;) is a Zgi and (T, X;) is ﬂgi, for some 3; < a.

® (d) is MNP formula if it has the form

i) = /\ Vxi(i(T %) V (1L, %)),

iel

where ¢;(Ti, X;) is a X} and (1, ;) is a M}, for some §; < a.

Effective version: computable 5 (M%) formulas.
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Computable embeddings
Knight, S. Miller, and Vander Boom, 2007:
Let Ko be a class of mg-structures, and Xy be a class of m-structures.

Definition

A Turing operator ® = ¢, is a Turing computable embedding of Ky
into IC1, denoted by ®: Ky <i. K1, if ® satisfies the following:

D(A) .

@ For any A € Ky, the function e is the characteristic function

of the atomic diagram of a structure from ;. This structure is
denoted by ®(A).

® For any A, B € Ky we have: A= B if and only if ®(A) = (B).

Definition
An enumeration operator ' is a computable embedding of g into K1,
denoted by I': Iy <. Ky, if I satisfies the following:
® For A € Ky, I'(A) is the (positive) atomic diagram of a structure
from /Cy.

® For any A, B € Ky we have: A= B if and only if ['(A) = [(B).
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A pullback theorem for computable embeddings

Computable embeddings have the useful property of monotonicity: If
I Ko <. K1 and A C B are structures from Ky, then we have

r(A) C I(B).

Turing computable embeddings do in general not have the
monotonicity properties of computable embeddings.

Proposition (Greenberg; Kalimullin)
If Ky <¢ K1, then Ky <tc k1. The converse is not true.

Theorem (Pullback Theorem)

[Bazhenov, Fokina, Rossegger, S., and Vatev, 2023] Let K C Modp(7)
and K’ C Mod,(7") be closed under isomorphism. Let I : £ <. K,

then for any computable 5 (or M%) 7/-sentence ¢ we can effectively
find a computable ¥5 (or I'IE) T-sentence ¢* such that for all 4 € K,

A o it Te(A) = .
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Relativizing

A function W : 2% — 2“ is continuous in the Cantor topology iff there
exists a Turing operator ®, and a set A € 2% such that
V(X) = Pe(A & X) for all X € 2¢. Thus, for any two classes Ky and Ky:

Ko <cantor L1 <= Ko Sé KC1for some set X.

Definition (Case, 71)

A set A C w defines a generalized enumeration operator [ : 2 — 2% iff
for each set B C w,

rB)={x|({x,v) € A &D, C B}

Proposition (Folklore)

. A function I': 2% — 2 is continuous in the Scott topology iff I' is a
generalized enumeration operator.
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A pullback theorem for Scott continuous embeddings

Definition
A continuous function I in the Scott topology is a continuous
embedding of Ky into K1, denoted by Ko <scort K1 if [ satisfies the
following:
@ For A € Ky, I'(A) is the (positive) atomic diagram of a structure
from /C;.

® For any A, B € Ky, we have A = B if and only if ['(A) = I'(B).

Theorem (Pullback Theorem)

[Bazhenov, Fokina, Rossegger, S., and Vatev, 2023| Let K C Modp(7)
and K’ C Mod,,(7') be closed under isomorphism and a > 0 be a
countable ordinal. Let I' be a Scott-continuous embedding from K into
K’ (K <scott £'). Then for any ¥5 (or M) 7’-sentence ¢ we can find a
Y5 (or M) 7-sentence ¢* such that for all A € K,

A= ¢t it T(A) = .
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Learning for families of algebraic structures

® Fix a computable signature 7. Let K be a countable family of
countable T-structures.

® Step-by-step, we obtain larger and larger finite pieces of a

T-structure A. In addition, we assume that this A is isomorphic to
some structure from the class .

Problem: Is it possible to identify (in the limit) the isomorphism type J
of A.

The problem combines the approaches of algorithmic learning theory
and computable structure theory:
We want to learn the family /C up to isomorphism.
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Learning structures from informant

Consider a family of 7-structures K = {A; }icw. We assume that the
structures A; are pairwise not isomorphic.

® The learning domain:
LD(K) ={B | B = A; for some i € w; and dom(B) = w}

The learning domain can be treated as a set of reals (i.e.,
LD(K) C 2¢).

e A learner M sees (stage by stage) finite pieces of data about a given
structure from LD(K), and M outputs conjectures. More formally,

M is a function from 2<% to w.

If M(¢) =1, then this means: “the finite string o looks like an
isomorphic copy of A;”.
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Learning structures from informant

® The learning is successful if: for every B € LD(K), if B is an
isomorphic copy of A;, then

lim M(B | k) = i.

k—o00

Definition

The family K is Inf-learnable (up to isomorphism) if there exists a
learner M that successfully learns the family K.

Remark. More formally, the family IC is InfEx~-learnable:

® [nf means learning from informant;

® Ex means “explanatory”.
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A syntactic characterization of Inf-learnability

Theorem (Bazhenov, Fokina, and San Mauro, 2020)
The following conditions are equivalent:
® The family K is Inf-learnable.

® There are ¥ o-sentences 1, i € w such that

A; = v if and only if i =j.

If w denotes the standard ordering of natural numbers, and w* denotes
the standard ordering of negative integers then:

Example

The pair of linear orders {w,w*} is learnable from informant.

Key observation:

These orders are “separated” by Ya-sentences: (w has a least element)
vs. (w* has a greatest element).
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A descriptive set-theoretic characterization of
Inf-learning

One of the benchmark Borel equivalence relations on the Cantor space
2¢ is the relation Eq (almost equality).

aEof <= (3n)(Vm > n)(a(m) = G(m)).

Theorem (Bazhenov, Cipriani, and San Mauro, 2023)
The following conditions are equivalent:
® The family K is Inf-learnable.

® There is a continuous function I : 2% — 2% such that for all
A, B € LD(K) we have:

A= B« T(A)E(B).
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Learning structures from text
We assume that the relational signature 7 contains both = (equality)
and # (inequality).

[Notice that then the empty set is definable in A by an atomic formula J

(x # )]

We want to learn a countable family K = {A;}ic.,. Now we learn from
text, i.e., from the positive information about an input structure A.

Definition
Let A be a 7-structure with domain w. A text t for the structure A is
an arbitrary sequence {t(i)}ic, such that:
e for each i € w, t(i) is an atomic formula, i.e., a formula of the form
R(a1,...,a,), where R € 7 and a4,...,a, € w;
® the set {t(i) | i € w} contains precisely all atomic formulas which
are true in the structure A.

Using an encoding, texts are elements of the Baire space w”.
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Learning structures from text

A learner M is a function from w<% to w.

Definition

Txt-learning is successful if every A with dom(.A) = w satisfies the
following: if A is an isomorphic copy of Aj;, then for any text t for the
structure A, we have

lim M(t | k) = i.

k—o0

Definition

The family K is Txt-learnable (up to isomorphism) if there exists a
Txt-learner M that successfully learns the family K.
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Simple observations

Proposition
If IC is Txt-learnable, then K is Inf-learnable.

Example
Consider the following pair of equivalence structures:

® The structure A has one infinite class and nothing else.

® The structure B has two infinite classes and nothing else.
Then the family I = {A; B} is Inf-learnable, but not Txt-learnable.
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A syntactic characterization of Txt-learnability

Theorem (Bazhenov, Fokina, Rossegger, S., and Vatev, 2023)
The following conditions are equivalent:

® The family K is Txt-learnable.

® K <Scott Kuniv-

® There are Y5-sentences v, i € w such that

A; |= 4 if and only if i = j.
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Idea of the proof of the theorem

Given a learner M, one can build a Scott-continuous embedding from
our class K into some “universal learnable” class Kyniv = {B; | i € w},
where B; = (w; E) is an equivalence structure which has infinitely many
infinite classes, infinitely many classes of size i + 1, and nothing else.
Note that each B; has its own distinguishing ¥5-sentence:

¥ = Ixg ... Ix[ /\ (x5 # xk & x;Exk)
j#k j.k<i

& Vy(=(yExo) v \/ =(y # x)]-

1<i

SO; K <Scott ]Cuniv-
Applying the Pullback theorem, we get the desired sequence of
distinguishing ¥5-sentences for our family K.
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Descriptive set-theoretic characterization for

Txt-learnability
Consider the space P(w) of all subsets of w, with the Scott topology.
For X € P(w) and m € w, denote the m-th column of X by:

X = {y | (m,y) € X}.
The equivalence relation Eget is defined as follows:

X EeetY <= {XM | mew}={Y™|mew}.

Theorem (Bazhenov, Fokina, Rossegger, S., and Vatev, 2023)
Let K = {A;i | i€ w} be a family of countable 7-structures. Equivalent:

® The family K is Txt-learnable.
® There is a continuous function ' : Mod,(7) — P(w) such that for
all A,B € LD(K):
* A= B — [(A)Estl(B);
e for each i € w we have {T'(A))™ | m € w} = {w, {i}}.
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