Lopez-Escobar theorem for continuous domains and Learning theory

Alexandra Soskova $^{\rm 1}$

Conference on Mathematical Logic Strelcha, 2023

Joint work with: N. Bazhenov, E. Fokina, D. Rosseger and S. Vatev

 $^{1}\mathrm{Partially}$ supported by FNI-SU 80-10-180/17.05.2023 and FNI-SU 80-10-210/22.5.2023

Alexandra Soskova

Lopez-Escobar theorem for continuous

Dedicated to the memory of my teacher Prof. Skordev

Alexandra Soskova

Lopez-Escobar theorem for continuou

Introduction

A common theme in the study of countable mathematical structures is that isomorphism invariant properties have syntactic characterizations. Examples:

- the existence of Scott sentences for countable structures [Scott 63],
- the Lopez-Escobar theorem, which says that every invariant Borel subset in the space of countable structures is definable in the infinitary logic $L_{\omega_1\omega}$ [Lopez-Escobar 65; Vaught 74],
- a relation on a structure that is Σ⁰_α in every copy is definable by a computable Σ_α L_{ω1ω}-formula [Ash, Knight, Manasse, Sleman 89; Chisholm 90].

The Borel hierarchy for non-metrizable spaces

Definition (Selivanov 2006)

Let (X, τ) be a topological space. For each countable ordinal $\alpha \geq 1$ we define $\Sigma^0_{\alpha}(X, \tau)$ inductively as follows.

- **1** $\Sigma_1^0(\mathbf{X}, \tau) = \tau$ the open sets.
- 2 For α > 1, Σ⁰_α(X, τ) is the set of all subsets A of X which can be expressed in the form

$$\mathbf{A} = \bigcup_{\mathbf{i} \in \omega} \mathbf{B}_{\mathbf{i}} \setminus \mathbf{B}_{\mathbf{i}}',$$

where B_i and B'_i are in $\Sigma^0_{\beta_i}(X, \tau)$ for some $\beta_i < \alpha$, for each i. Let $\Pi^0_{\alpha}(X, \tau) = \{X \setminus A \mid A \in \Sigma^0_{\alpha}(X, \tau)\}.$ Define $B(X, \tau) = \bigcup_{\alpha < \omega_1} \Sigma^0_{\alpha}(X, \tau)$ to be the Borel subsets of (X, τ) .

For metrizable spaces this is equivalent to the standard Borel hierarchy.

Alexandra Soskova

Scott topology

Let (P, \leq) be a partial order.

- A set $D \subseteq P$ is directed if $D \neq \emptyset$ and for all $a, b \in D$, there is $d \in D$ with $a \leq d$ and $b \leq d$.
- A partial order P is a directed complete partial order (dcpo) if every directed $D \subseteq P$ has a supremum sup D in P.
- A set U is Scott open if U is an upper set, i.e., $x \in U$ and $x \leq y \implies y \in U$, and for every directed set D with $\sup D \in U$ we have that $D \cap U \neq \emptyset$. The Scott open sets of P form a topology on P, the Scott topology.

Example

Consider the Scott topology on 2^{ω} equipped with the dcpo given by $f \subseteq g$ if $f(i) = 1 \implies g(i) = 1$. It has a natural countable basis given by the basic open sets

$$2^{\omega}, \emptyset$$
, and $O_n = \{f \in 2^{\omega} \mid f(n) = 1\}$ for all $n \in \omega$.

Cantor topology and Scott topology on $Mod(\tau)$

Fix a countable relational signature τ . Here we consider only τ -structures \mathcal{A} with domain ω .

We fix an encoding of (atomic diagrams of) τ -structures. This allows us to identify τ -structures with elements of the Cantor space 2^{ω} . More formally, we talk about the space of τ -models $Mod(\tau)$ which is homeomorphic to 2^{ω} .

Consider a new topological space $\operatorname{Mod}_p(\tau)$. Let τ contains = and \neq . The elements of $\operatorname{Mod}_p(\tau)$ are still τ -structures with domain ω , but the space is equipped with the Scott topology. Let F be a non-empty finite set of atomic formulas (no negation). Then

the basic open set U_F contains all structures \mathcal{A} satisfying $\wedge F$.

There is a natural dcpo on $\operatorname{Mod}_p(\tau)$ given by

$$\mathcal{A} \preceq \mathcal{B} \iff \forall \mathbf{R} \in \tau(\mathbf{R}^{\mathcal{A}} \subseteq \mathbf{R}^{\mathcal{B}}).$$

$L_{\omega_1\omega}$ formulas

Let I be a countable set.

- The Σ_0 formulas (Π_0 formulas) are quantifier free τ -formulas. For $\alpha \ge 1$:
- $\varphi(\bar{u})$ is Σ_{α} formula if it has the form

$$arphi(ar{\mathrm{u}}) = igvee_{\mathrm{i}\in\mathrm{I}} \exists ar{\mathrm{x}}_\mathrm{i}(\phi_\mathrm{i}(ar{\mathrm{u}},ar{\mathrm{x}}_\mathrm{i}) \wedge \psi_\mathrm{i}(ar{\mathrm{u}},ar{\mathrm{x}}_\mathrm{i})),$$

where φ_i(ū, x̄_i) is a Σ_{β_i} and ψ_i(ū, x̄_i) is Π_{β_i}, for some β_i < α.
φ(ū) is Π_α formula if it has the form

$$arphi(ar{\mathrm{u}}) = igwedge_{\mathrm{i}\in\mathrm{I}} orall ar{\mathrm{x}}_{\mathrm{i}}(\phi_{\mathrm{i}}(ar{\mathrm{u}},ar{\mathrm{x}}_{\mathrm{i}}) \lor \psi_{\mathrm{i}}(ar{\mathrm{u}},ar{\mathrm{x}}_{\mathrm{i}})),$$

where $\phi_i(\bar{u}, \bar{x}_i)$ is a Σ_{β_i} and $\psi_i(\bar{u}, \bar{x}_i)$ is a Π_{β_i} , for some $\beta_i < \alpha$.

The Lopez-Escobar theorem

In the classical setting the Lopez-Escobar theorem establishes a correspondence between subsets of $Mod(\tau)$ defined by sentences in the infinitary logic $L_{\omega_1\omega}$ and the Borel sets.

Theorem (Lopez-Escobar 65, Vaught 74)

Let \mathcal{K} be a subclass of $\operatorname{Mod}(\tau)$ which is closed under isomorphisms. Let $\alpha > 0$ be a countable ordinal. Then \mathcal{K} is Σ^0_{α} (in the Borel hierarchy) if and only if \mathcal{K} is axiomatizable by a Σ_{α} -sentence.

Theorem (Bazhenov, Fokina, Rossegger, S., and Vatev, 2023)

Let \mathcal{K} be a subclass of $\operatorname{Mod}_p(\tau)$ which is closed under isomorphisms. Let $\alpha > 0$ be a countable ordinal. Then \mathcal{K} is Σ^0_{α} in the space $\operatorname{Mod}_p(\tau)$ if and only if \mathcal{K} is axiomatizable by a Σ^p_{α} -sentence.

We use a forcing relation used by Soskov in 2004 in order to characterize the relatively intrinsic relations for the enumeration reducibility, but our presentation is closer to Montalbán 2021.

Alexandra Soskova

A hierarchy of positive infinitary formulas

Let I be a countable set.

- Let $\alpha = 0$. Then:
 - the $\Sigma_0^{\rm p}$ formulas are the finite conjunctions of atomic τ -formulas.
 - the $\Pi_0^{\dot{p}}$ formulas are the finite disjunctions of negations of atomic τ -formulas.
- Let $\alpha = 1$. Then:
 - $\varphi(\bar{u})$ is a Σ_1^p formula if it has the form

$$\varphi(\bar{\mathrm{u}}) = \bigvee_{\mathrm{i} \in \mathrm{I}} \exists \bar{\mathrm{x}}_{\mathrm{i}} \psi_{\mathrm{i}}(\bar{\mathrm{u}}, \bar{\mathrm{x}}_{\mathrm{i}}),$$

where for each $i \in I$, $\psi_i(\bar{u}, \bar{x}_i)$ is a Σ_0^p formula.

• $\varphi(\bar{u})$ is a Π_1^p formula if it has the form

$$\varphi(\bar{\mathrm{u}}) = \bigwedge_{\mathrm{i} \in \mathrm{I}} \forall \overline{\mathrm{x}}_{\mathrm{i}} \psi_{\mathrm{i}}(\bar{\mathrm{u}}, \bar{\mathrm{x}}_{\mathrm{i}}),$$

where for each $i \in I$, $\psi_i(\bar{u}, \bar{x}_i)$ is a Π_0^p formula.

Alexandra Soskova

A hierarchy of positive infinitary formulas

• Let $\alpha \geq 2$. Then:

• $\varphi(\bar{u})$ is Σ^{p}_{α} formula if it has the form

$$\varphi(\mathbf{\bar{u}}) = \bigvee_{i \in I} \exists \mathbf{\bar{x}}_i (\phi_i(\mathbf{\bar{u}}, \mathbf{\bar{x}}_i) \land \psi_i(\mathbf{\bar{u}}, \mathbf{\bar{x}}_i)),$$

where φ_i(ū, x̄_i) is a Σ^p_{βi} and ψ_i(ū, x̄_i) is Π^p_{βi}, for some β_i < α.
φ(ū) is Π^p_α formula if it has the form

$$arphi(ar{\mathrm{u}}) = igwedge_{\mathrm{i}\in\mathrm{I}} orall ar{\mathrm{x}}_{\mathrm{i}}(\phi_{\mathrm{i}}(ar{\mathrm{u}},ar{\mathrm{x}}_{\mathrm{i}}) ee \psi_{\mathrm{i}}(ar{\mathrm{u}},ar{\mathrm{x}}_{\mathrm{i}})),$$

where $\phi_i(\bar{u}, \bar{x}_i)$ is a $\Sigma_{\beta_i}^p$ and $\psi_i(\bar{u}, \bar{x}_i)$ is a $\Pi_{\beta_i}^p$, for some $\beta_i < \alpha$. Effective version: computable Σ_{α}^p (Π_{α}^p) formulas.

Computable embeddings

Knight, S. Miller, and Vander Boom, 2007:

Let \mathcal{K}_0 be a class of τ_0 -structures, and \mathcal{K}_1 be a class of τ_1 -structures.

Definition

A Turing operator $\Phi = \varphi_e$ is a Turing computable embedding of \mathcal{K}_0 into \mathcal{K}_1 , denoted by $\Phi \colon \mathcal{K}_0 \leq_{tc} \mathcal{K}_1$, if Φ satisfies the following:

- For any $\mathcal{A} \in \mathcal{K}_0$, the function $\varphi_e^{D(\mathcal{A})}$ is the characteristic function of the atomic diagram of a structure from \mathcal{K}_1 . This structure is denoted by $\Phi(\mathcal{A})$.
- **2** For any $\mathcal{A}, \mathcal{B} \in \mathcal{K}_0$ we have: $\mathcal{A} \cong \mathcal{B}$ if and only if $\Phi(\mathcal{A}) \cong \Phi(\mathcal{B})$.

Definition

An enumeration operator Γ is a computable embedding of \mathcal{K}_0 into \mathcal{K}_1 , denoted by $\Gamma : \mathcal{K}_0 \leq_c \mathcal{K}_1$, if Γ satisfies the following:

• For $\mathcal{A} \in \mathcal{K}_0$, $\Gamma(\mathcal{A})$ is the (positive) atomic diagram of a structure from \mathcal{K}_1 .

2 For any $\mathcal{A}, \mathcal{B} \in \mathcal{K}_0$ we have: $\mathcal{A} \cong \mathcal{B}$ if and only if $\Gamma(\mathcal{A}) \cong \Gamma(\mathcal{B})$.

A pullback theorem for computable embeddings

Computable embeddings have the useful property of monotonicity: If $\Gamma : \mathcal{K}_0 \leq_c \mathcal{K}_1$ and $\mathcal{A} \subseteq \mathcal{B}$ are structures from \mathcal{K}_0 , then we have $\Gamma(\mathcal{A}) \subseteq \Gamma(\mathcal{B})$.

Turing computable embeddings do in general not have the monotonicity properties of computable embeddings.

Proposition (Greenberg; Kalimullin)

If $\mathcal{K}_0 \leq_c \mathcal{K}_1$, then $\mathcal{K}_0 \leq_{tc} \mathcal{K}_1$. The converse is not true.

Theorem (Pullback Theorem)

[Bazhenov, Fokina, Rossegger, S., and Vatev, 2023] Let $\mathcal{K} \subseteq \operatorname{Mod}_{p}(\tau)$ and $\mathcal{K}' \subseteq \operatorname{Mod}_{p}(\tau')$ be closed under isomorphism. Let $\Gamma_{e} : \mathcal{K} \leq_{c} \mathcal{K}'$, then for any computable Σ_{α}^{p} (or Π_{α}^{p}) τ' -sentence φ we can effectively find a computable Σ_{α}^{p} (or Π_{α}^{p}) τ -sentence φ^{*} such that for all $\mathcal{A} \in \mathcal{K}$,

 $\mathcal{A} \models \varphi^* \text{ iff } \Gamma_{\mathrm{e}}(\mathcal{A}) \models \varphi.$

Relativizing

A function $\Psi : 2^{\omega} \to 2^{\omega}$ is continuous in the Cantor topology iff there exists a Turing operator Φ_e and a set $A \in 2^{\omega}$ such that $\Psi(X) = \Phi_e(A \oplus X)$ for all $X \in 2^{\omega}$. Thus, for any two classes \mathcal{K}_0 and \mathcal{K}_1 :

$$\mathcal{K}_0 \leq_{\mathrm{Cantor}} \mathcal{K}_1 \iff \mathcal{K}_0 \leq_{\mathrm{tc}}^{\mathrm{X}} \mathcal{K}_1 \text{for some set X}.$$

Definition (Case, 71)

A set $A \subseteq \omega$ defines a generalized enumeration operator $\Gamma : 2^{\omega} \to 2^{\omega}$ iff for each set $B \subseteq \omega$,

$$\mathsf{\Gamma}(\mathrm{B}) = \{ \mathrm{x} \mid \langle \mathrm{x}, \mathrm{v} \rangle \in \mathrm{A} \And \mathrm{D}_{\mathrm{v}} \subseteq \mathrm{B} \}.$$

Proposition (Folklore)

. A function $\Gamma: 2^{\omega} \to 2^{\omega}$ is continuous in the Scott topology iff Γ is a generalized enumeration operator.

A pullback theorem for Scott continuous embeddings

Definition

A continuous function Γ in the Scott topology is a continuous embedding of \mathcal{K}_0 into \mathcal{K}_1 , denoted by $\mathcal{K}_0 \leq_{\text{Scott}} \mathcal{K}_1$ if Γ satisfies the following:

- For $\mathcal{A} \in \mathcal{K}_0$, $\Gamma(\mathcal{A})$ is the (positive) atomic diagram of a structure from \mathcal{K}_1 .
- **2** For any $\mathcal{A}, \mathcal{B} \in \mathcal{K}_0$, we have $\mathcal{A} \cong \mathcal{B}$ if and only if $\Gamma(\mathcal{A}) \cong \Gamma(\mathcal{B})$.

Theorem (Pullback Theorem)

[Bazhenov, Fokina, Rossegger, S., and Vatev, 2023] Let $\mathcal{K} \subseteq \operatorname{Mod}_{p}(\tau)$ and $\mathcal{K}' \subseteq \operatorname{Mod}_{p}(\tau')$ be closed under isomorphism and $\alpha > 0$ be a countable ordinal. Let Γ be a Scott-continuous embedding from \mathcal{K} into \mathcal{K}' ($\mathcal{K} \leq_{\operatorname{Scott}} \mathcal{K}'$). Then for any Σ^{p}_{α} (or Π^{p}_{α}) τ' -sentence φ we can find a Σ^{p}_{α} (or Π^{p}_{α}) τ -sentence φ^{*} such that for all $\mathcal{A} \in \mathcal{K}$,

$$\mathcal{A} \models \varphi^* \text{ iff } \Gamma(\mathcal{A}) \models \varphi.$$

Learning for families of algebraic structures

- Fix a computable signature τ . Let \mathcal{K} be a countable family of countable τ -structures.
- Step-by-step, we obtain larger and larger finite pieces of a τ -structure \mathcal{A} . In addition, we assume that this \mathcal{A} is isomorphic to some structure from the class \mathcal{K} .

Problem: Is it possible to identify (in the limit) the isomorphism type of \mathcal{A} .

The problem combines the approaches of algorithmic learning theory and computable structure theory:

We want to learn the family \mathcal{K} up to isomorphism.

Learning structures from informant

Consider a family of τ -structures $\mathcal{K} = {\mathcal{A}_i}_{i \in \omega}$. We assume that the structures \mathcal{A}_i are pairwise not isomorphic.

• The learning domain:

 $LD(\mathcal{K}) = \{ \mathcal{B} \mid \mathcal{B} \cong \mathcal{A}_i \text{ for some } i \in \omega; \text{ and } dom(\mathcal{B}) = \omega \}$

The learning domain can be treated as a set of reals (i.e., $LD(\mathcal{K}) \subseteq 2^{\omega}$).

• A learner M sees (stage by stage) finite pieces of data about a given structure from $LD(\mathcal{K})$, and M outputs conjectures. More formally,

M is a function from $2^{<\omega}$ to ω .

If $M(\sigma) = i$, then this means: "the finite string σ looks like an isomorphic copy of \mathcal{A}_i ".

Learning structures from informant

• The learning is successful if: for every $\mathcal{B} \in LD(\mathcal{K})$, if \mathcal{B} is an isomorphic copy of \mathcal{A}_i , then

$$\lim_{k\to\infty} M(\mathcal{B} \upharpoonright k) = i.$$

Definition

The family \mathcal{K} is Inf-learnable (up to isomorphism) if there exists a learner M that successfully learns the family \mathcal{K} .

Remark. More formally, the family ${\mathcal K}$ is InfEx_{\cong}-learnable:

- Inf means learning from informant;
- Ex means "explanatory".

A syntactic characterization of Inf-learnability

Theorem (Bazhenov, Fokina, and San Mauro, 2020)

The following conditions are equivalent:

- The family \mathcal{K} is Inf-learnable.
- There are Σ_2 -sentences ψ_i , $i \in \omega$ such that

 $\mathcal{A}_i \models \psi_j$ if and only if i = j.

If ω denotes the standard ordering of natural numbers, and ω^* denotes the standard ordering of negative integers then:

Example

The pair of linear orders $\{\omega, \omega^*\}$ is learnable from informant. Key observation: These orders are "separated" by Σ_2 -sentences: (ω has a least element) vs. (ω^* has a greatest element).

A descriptive set-theoretic characterization of Inf-learning

One of the benchmark Borel equivalence relations on the Cantor space 2^{ω} is the relation E_0 (almost equality).

$$lpha ext{E}_0 eta \iff (\exists ext{n})(\forall ext{m} \geq ext{n})(lpha(ext{m}) = eta(ext{m})).$$

Theorem (Bazhenov, Cipriani, and San Mauro, 2023)

The following conditions are equivalent:

- The family \mathcal{K} is Inf-learnable.
- There is a continuous function Γ : 2^ω → 2^ω such that for all *A*, *B* ∈ LD(*K*) we have:

$$\mathcal{A} \cong \mathcal{B} \iff \Gamma(\mathcal{A}) \mathcal{E}_0 \Gamma(\mathcal{B}).$$

Learning structures from text

We assume that the relational signature τ contains both = (equality) and \neq (inequality).

[Notice that then the empty set is definable in \mathcal{A} by an atomic formula $(x \neq x)$.]

We want to learn a countable family $\mathcal{K} = \{\mathcal{A}_i\}_{i \in \omega}$. Now we learn from text, i.e., from the positive information about an input structure \mathcal{A} .

Definition

Let \mathcal{A} be a τ -structure with domain ω . A text t for the structure \mathcal{A} is an arbitrary sequence $\{t(i)\}_{i \in \omega}$ such that:

- for each $i \in \omega$, t(i) is an atomic formula, i.e., a formula of the form $R(a_1, \ldots, a_n)$, where $R \in \tau$ and $a_1, \ldots, a_n \in \omega$;
- the set $\{t(i) \mid i \in \omega\}$ contains precisely all atomic formulas which are true in the structure \mathcal{A} .

Using an encoding, texts are elements of the Baire space ω^{ω} .

Learning structures from text

A learner M is a function from $\omega^{<\omega}$ to ω .

Definition

Txt-learning is successful if every \mathcal{A} with dom $(\mathcal{A}) = \omega$ satisfies the following: if \mathcal{A} is an isomorphic copy of \mathcal{A}_i , then for any text t for the structure \mathcal{A} , we have

$$\lim_{t\to\infty} M(t \upharpoonright k) = i.$$

Definition

The family \mathcal{K} is Txt-learnable (up to isomorphism) if there exists a Txt-learner M that successfully learns the family \mathcal{K} .

Simple observations

Proposition

If \mathcal{K} is Txt-learnable, then \mathcal{K} is Inf-learnable.

Example

Consider the following pair of equivalence structures:

- The structure \mathcal{A} has one infinite class and nothing else.
- The structure \mathcal{B} has two infinite classes and nothing else.

Then the family $\mathcal{K} = \{\mathcal{A}; \mathcal{B}\}$ is Inf-learnable, but not Txt-learnable.

A syntactic characterization of Txt-learnability

Theorem (Bazhenov, Fokina, Rossegger, S., and Vatev, 2023) The following conditions are equivalent:

- The family \mathcal{K} is Txt-learnable.
- $\mathcal{K} \leq_{\text{Scott}} \mathcal{K}_{\text{univ}}$.
- There are Σ_2^{p} -sentences ψ_i , $i \in \omega$ such that

 $\mathcal{A}_i \models \psi_j$ if and only if i = j.

Idea of the proof of the theorem

Given a learner M, one can build a Scott-continuous embedding from our class \mathcal{K} into some "universal learnable" class $\mathcal{K}_{univ} = \{\mathcal{B}_i \mid i \in \omega\}$, where $\mathcal{B}_i = (\omega; E)$ is an equivalence structure which has infinitely many infinite classes, infinitely many classes of size i + 1, and nothing else. Note that each \mathcal{B}_i has its own distinguishing Σ_2^p -sentence:

$$\begin{split} \psi_{i} &= \exists x_{0} \dots \exists x_{i} [\bigwedge_{j \neq k \ j, k \leq i} (x_{j} \neq x_{k} \ \& \ x_{j} E x_{k}) \\ \& \ \forall y (\neg (y E x_{0}) \lor \bigvee_{l \leq i} \neg (y \neq x_{l})] \end{split}$$

So, $\mathcal{K} \leq_{\text{Scott}} \mathcal{K}_{\text{univ}}$. Applying the Pullback theorem, we get the desired sequence of distinguishing Σ_2^{p} -sentences for our family \mathcal{K} .

Descriptive set-theoretic characterization for Txt-learnability

Consider the space $P(\omega)$ of all subsets of ω , with the Scott topology. For $X \in P(\omega)$ and $m \in \omega$, denote the m-th column of X by:

$$X^{[m]} = \{ y \mid \langle m, y \rangle \in X \}.$$

The equivalence relation E_{set} is defined as follows:

$$X E_{set} Y \iff \{ X^{[m]} \mid m \in \omega \} = \{ Y^{[m]} \mid m \in \omega \}.$$

Theorem (Bazhenov, Fokina, Rossegger, S., and Vatev, 2023)

Let $\mathcal{K} = {\mathcal{A}_i \mid i \in \omega}$ be a family of countable τ -structures. Equivalent:

- The family \mathcal{K} is Txt-learnable.
- There is a continuous function $\Gamma : \operatorname{Mod}_{p}(\tau) \to P(\omega)$ such that for all $\mathcal{A}, \mathcal{B} \in \operatorname{LD}(\mathcal{K})$:
 - $\mathcal{A} \cong \mathcal{B} \iff \Gamma(\mathcal{A}) \mathbb{E}_{set} \Gamma(\mathcal{B});$
 - for each $i \in \omega$ we have $\{\Gamma(A_i)^{[m]} \mid m \in \omega\} = \{\omega, \{i\}\}.$

References

- N. Bazhenov, E. Fokina, and L. San Mauro, Learning families of algebraic structures from informant, Information and Computation, 275 (2020), article 104590.
- N. Bazhenov, V. Cipriani, and L. San Mauro, Learning algebraic structures with the help of Borel equivalence relations, Theoretical Computer Science, 951 (2023), article 113762.
- N. Bazhenov, E. Fokina, D. Rossegger, A. Soskova, and S. Vatev, A Lopez-Escobar theorem for continuous domains, arXiv:2301.09940.
- N. Bazhenov, E. Fokina, D. Rossegger, A. Soskova, S. Vatev, On TxtEx-learning. (in preparation)

HAPPY ANIVERSARY PROF. VAKARELOV!