## Logic of Ternary Contact

#### Ivan Nikolov Tinko Tinchev<sup>1</sup>

#### Department of Mathematical Logic and Its Applications Sofia University

<sup>1</sup>With the support of the contract KP-06-RILA/4 from 2021 with the Bulgarian National Science Fund

#### Strelcha, 18th–21st September 2023

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶





- Objective
- Formal System
- Completeness of the Formal System
- 2 Logics of Ternary Contact
  - Formal System
  - Modal Definability
  - Unification

・ 同 ト ・ ヨ ト ・ ヨ ト

æ

Objective Formal System Completeness

#### Outline



#### Logics of *n*-ary Contact

- Objective
- Formal System
- Completeness of the Formal System
- 2 Logics of Ternary Contact
  - Formal System
  - Modal Definability
  - Unification

・ロト ・四ト ・ヨト ・ヨト

æ

Objective Formal System Completeness

## The Logic of *n*-ary Contact

- In general, Region-based Theory of Space studies "part\_of" and "contact" relations between regions. Usually regions are regular closed sets, RC(T), in given topological space T.
- If X and Y are regular closed sets, then "*part\_of*" and "*contact*" are interpreted as  $X \subset Y$  and  $X \cap Y \neq 0$ .
- Recall that regular closed sets with the set-theoretical inclusion "⊂" form a *complete Boolean algebra* and the *meet* and *complement* are *not* the set-theoretical intersection and complement.

ヘロト ヘワト ヘビト ヘビト

Objective Formal System Completeness

## The Logic of *n*-ary Contact

- In general, Region-based Theory of Space studies "part\_of" and "contact" relations between regions. Usually regions are regular closed sets, RC(T), in given topological space T.
- If X and Y are regular closed sets, then "*part\_of*" and "*contact*" are interpreted as  $X \subset Y$  and  $X \cap Y \neq 0$ .
- Recall that regular closed sets with the set-theoretical inclusion "⊂" form a *complete Boolean algebra* and the *meet* and *complement* are *not* the set-theoretical intersection and complement.

ヘロト ヘワト ヘビト ヘビト

Objective Formal System Completeness

## The Logic of *n*-ary Contact

- In general, Region-based Theory of Space studies "part\_of" and "contact" relations between regions. Usually regions are regular closed sets, RC(T), in given topological space T.
- If X and Y are regular closed sets, then "*part\_of*" and "*contact*" are interpreted as  $X \subset Y$  and  $X \cap Y \neq 0$ .
- Recall that regular closed sets with the set-theoretical inclusion "⊂" form a *complete Boolean algebra* and the *meet* and *complement* are *not* the set-theoretical intersection and complement.

・ロト ・回ト ・ヨト ・ヨト

Objective Formal System Completeness

## The Logic of *n*-ary Contact

- In general, Region-based Theory of Space studies "part\_of" and "contact" relations between regions. Usually regions are regular closed sets, RC(T), in given topological space T.
- If X and Y are regular closed sets, then "*part\_of*" and "*contact*" are interpreted as  $X \subset Y$  and  $X \cap Y \neq 0$ .
- Recall that regular closed sets with the set-theoretical inclusion "⊂" form a *complete Boolean algebra* and the *meet* and *complement* are *not* the set-theoretical intersection and complement.

・ロト ・回ト ・ヨト ・ヨト

Objective Formal System Completeness

## The Logic of *n*-ary Contact

• We extend the language by adding (the notion of) *n*-ary contact for any *n* > 2, interpreted as:

#### $C_n(X_1,\ldots,X_n)$ iff $X_1\cap\ldots\cap X_n\neq 0.$

• For uniformity, we call the standard contact a 2-contact.

ヘロト 人間 とくほとくほとう

Objective Formal System Completeness

## The Logic of *n*-ary Contact

• We extend the language by adding (the notion of) *n*-ary contact for any *n* > 2, interpreted as:

$$C_n(X_1,\ldots,X_n)$$
 iff  $X_1\cap\ldots\cap X_n\neq 0.$ 

• For uniformity, we call the standard contact a 2-contact.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Objective Formal System Completeness



 The *polytopes* are the generated by the finite intersections of half-spaces Boolean subalgebra of the Boolean algebra of the regular closed sets of ℝ<sup>m</sup>.



ヘロト 人間 ト ヘヨト ヘヨト

Objective Formal System Completeness

#### Outline



- Objective
- Formal System
- Completeness of the Formal System
- 2 Logics of Ternary Contact
  - Formal System
  - Modal Definability
  - Unification

・ロト ・四ト ・ヨト ・ヨト

æ

Objective Formal System Completeness

## Language of *n*-ary Contact

#### • A quantifier free fragment of a first-order language.

- Nonlogical symbols: the Boolean constants and operations (0, −, ∪).
- **Predicate symbols**: one *n*-ary symbol per every positive integer *n* > 1 (*R*<sub>2</sub>, *R*<sub>3</sub>, ..., *R*<sub>n</sub>, ...).

ヘロト 人間 とくほとくほとう

Objective Formal System Completeness

## Language of *n*-ary Contact

- A quantifier free fragment of a first-order language.
- Nonlogical symbols: the Boolean constants and operations (0, −, ∪).
- Predicate symbols: one *n*-ary symbol per every positive integer n > 1 (R<sub>2</sub>, R<sub>3</sub>, ..., R<sub>n</sub>, ...).

<ロ> <四> <四> <四> <三</td>

Objective Formal System Completeness

## Language of *n*-ary Contact

- A quantifier free fragment of a first-order language.
- Nonlogical symbols: the Boolean constants and operations (0, −, ∪).
- Predicate symbols: one *n*-ary symbol per every positive integer n > 1 (R<sub>2</sub>, R<sub>3</sub>, ..., R<sub>n</sub>, ...).

ヘロト 人間 とくほとくほとう

Objective Formal System Completeness

#### **Algebraic Semantics**

- Boolean algebra *B* with *n*-ary relations *R<sub>n</sub>*, *n* > 1, called Boolean frame, satisfying the following conditions:
- If  $R_n(a_1, \ldots, a_n)$ , then for every mapping  $\sigma : \{1, \ldots, n\} \longrightarrow \{1, \ldots, n\}$  we have  $R_n(a_{\sigma(1)}, \ldots, a_{\sigma(n)})$ .
- $R_n(a'_1 \cup a''_1, a_2, ..., a_n)$  iff  $R_n(a'_1, a_2, ..., a_n)$  or  $R_n(a''_1, a_2, ..., a_n)$ .

• If  $R_n(a_1,\ldots,a_n)$ , then  $a_1 \neq 0$ .

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Objective Formal System Completeness

#### Algebraic Semantics

- Boolean algebra *B* with *n*-ary relations *R<sub>n</sub>*, *n* > 1, called Boolean frame, satisfying the following conditions:
- If  $R_n(a_1, \ldots, a_n)$ , then for every mapping  $\sigma : \{1, \ldots, n\} \longrightarrow \{1, \ldots, n\}$  we have  $R_n(a_{\sigma(1)}, \ldots, a_{\sigma(n)})$ .
- $\circ \ R_n(a_1' \cup a_1', a_2, \dots, a_n) \quad iff \\ R_n(a_1', a_2, \dots, a_n) \text{ or } R_n(a_1', a_2, \dots, a_n).$

• If  $R_n(a_1,\ldots,a_n)$ , then  $a_1 \neq 0$ .

・ロト ・回 ト ・ヨト ・ヨト

Objective Formal System Completeness

#### Algebraic Semantics

- Boolean algebra *B* with *n*-ary relations *R<sub>n</sub>*, *n* > 1, called Boolean frame, satisfying the following conditions:
- If  $R_n(a_1, \ldots, a_n)$ , then for every mapping  $\sigma : \{1, \ldots, n\} \longrightarrow \{1, \ldots, n\}$  we have  $R_n(a_{\sigma(1)}, \ldots, a_{\sigma(n)})$ .

• 
$$R_n(a'_1 \cup a''_1, a_2, ..., a_n)$$
 iff  
 $R_n(a'_1, a_2, ..., a_n)$  or  $R_n(a''_1, a_2, ..., a_n)$ .

• If  $R_n(a_1,\ldots,a_n)$ , then  $a_1 \neq 0$ .

ヘロト 人間 とくほとくほとう

Objective Formal System Completeness

#### Algebraic Semantics

- Boolean algebra *B* with *n*-ary relations *R<sub>n</sub>*, *n* > 1, called Boolean frame, satisfying the following conditions:
- If  $R_n(a_1, \ldots, a_n)$ , then for every mapping  $\sigma : \{1, \ldots, n\} \longrightarrow \{1, \ldots, n\}$  we have  $R_n(a_{\sigma(1)}, \ldots, a_{\sigma(n)})$ .

• 
$$R_n(a'_1 \cup a''_1, a_2, ..., a_n)$$
 iff  
 $R_n(a'_1, a_2, ..., a_n)$  or  $R_n(a''_1, a_2, ..., a_n)$ .

• If  $R_n(a_1,\ldots,a_n)$ , then  $a_1 \neq 0$ .

・ロン ・聞 と ・ ヨン ・ ヨン・

Objective Formal System Completeness

## **Algebraic Semantics**

- Boolean algebra B with n-ary relations R<sub>n</sub>, n > 1, called Boolean frame, satisfying the following conditions:
- If  $a \neq 0$ , then  $R_n(a, \ldots, a)$ .
- $R_{n+1}(a_1, a_1, a_2, \dots, a_n)$  iff  $R_n(a_1, a_2, \dots, a_n)$ , where all *a*'s are from *B*.

ヘロト 人間 とくほとくほとう

Objective Formal System Completeness

## **Algebraic Semantics**

- Boolean algebra *B* with *n*-ary relations *R<sub>n</sub>*, *n* > 1, called Boolean frame, satisfying the following conditions:
- If  $a \neq 0$ , then  $R_n(a, \ldots, a)$ .
- $R_{n+1}(a_1, a_1, a_2, ..., a_n)$  iff  $R_n(a_1, a_2, ..., a_n)$ , where all *a*'s are from *B*.

ヘロト 人間 とくほとくほとう

Objective Formal System Completeness

## **Algebraic Semantics**

- A Boolean frame satisfying R<sub>2</sub>(a, −a) for all a ≠ 0, 1 is called *connected*.
- The intended models
  - Boolean subalgebras of  $\mathcal{RC}(\mathbb{R}^m)$  or the polytopes of  $\mathbb{R}^m$ .
- A Boolean frame is *connected iff* the topological space is *connected*.

くロト (過) (目) (日)

Objective Formal System Completeness

## **Algebraic Semantics**

- A Boolean frame satisfying R<sub>2</sub>(a, −a) for all a ≠ 0, 1 is called *connected*.
- The intended models
  - Boolean subalgebras of  $\mathcal{RC}(\mathbb{R}^m)$  or the polytopes of  $\mathbb{R}^m$ .
- A Boolean frame is *connected iff* the topological space is *connected*.

<ロト <回 > < 注 > < 注 > 、

Objective Formal System Completeness

#### **Algebraic Semantics**

- A Boolean frame satisfying R<sub>2</sub>(a, −a) for all a ≠ 0, 1 is called *connected*.
- The intended models
  - Boolean subalgebras of  $\mathcal{RC}(\mathbb{R}^m)$  or the polytopes of  $\mathbb{R}^m$ .
- A Boolean frame is *connected iff* the topological space is *connected*.

ヘロト 人間 とくほとくほとう

Objective Formal System Completeness

## **Algebraic Semantics**

- A Boolean frame satisfying R<sub>2</sub>(a, −a) for all a ≠ 0, 1 is called *connected*.
- The intended models
  - Boolean subalgebras of  $\mathcal{RC}(\mathbb{R}^m)$  or the polytopes of  $\mathbb{R}^m$ .
- A Boolean frame is *connected iff* the topological space is *connected*.

・ 同 ト ・ ヨ ト ・ ヨ ト

Objective Formal System Completeness

#### **Relational Semantics**

- (Kripke) frames with a carrier (or set of worlds) W and n-ary relation for every n > 1.
- The semantics in such a structure is given in the set-theoretical Boolean algebra  $B = \mathcal{P}(W)$ .
- Such a semantic structure in essence contains sufficient information to generate the whole corresponding Boolean frame for the set-theoretical Boolean algebra  $\mathcal{P}(W)$ .

★週 ▶ ★ 理 ▶ ★ 理 ▶

Objective Formal System Completeness

#### **Relational Semantics**

- (Kripke) frames with a carrier (or set of worlds) W and n-ary relation for every n > 1.
- The semantics in such a structure is given in the set-theoretical Boolean algebra B = P(W).
- Such a semantic structure in essence contains sufficient information to generate the whole corresponding Boolean frame for the set-theoretical Boolean algebra  $\mathcal{P}(W)$ .

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Objective Formal System Completeness

#### **Relational Semantics**

- (Kripke) frames with a carrier (or set of worlds) W and n-ary relation for every n > 1.
- The semantics in such a structure is given in the set-theoretical Boolean algebra B = P(W).
- Such a semantic structure in essence contains sufficient information to generate the whole corresponding Boolean frame for the set-theoretical Boolean algebra  $\mathcal{P}(W)$ .

▲ (□) ▶ (▲ 三) ▶ (

Objective Formal System Completeness

## Axiomatization

**Base Axioms** 

- Logical axioms: sentential, identity and equivalence, congruence.
- **Boolean algebra axioms**: stipulating a non-degenerate Boolean algebra.
- Proximity axioms:
  - $R_n(x_1,...,x_n) \Rightarrow x_1 \neq 0$
  - $R_n(x'_1 \cup x''_1, x_2, ..., x_n) \Leftrightarrow R_n(x'_1, x_2, ..., x_n) \lor R_n(x''_1, x_2, ..., x_n)$

<ロト <回 > < 注 > < 注 > 、

Objective Formal System Completeness

# Axiomatization

**Base Axioms** 

- Logical axioms: sentential, identity and equivalence, congruence.
- Boolean algebra axioms: stipulating a non-degenerate Boolean algebra.
- Proximity axioms:
  - $R_n(x_1,...,x_n) \Rightarrow x_1 \neq 0$
  - $R_n(x'_1 \cup x''_1, x_2, ..., x_n) \Leftrightarrow R_n(x'_1, x_2, ..., x_n) \lor R_n(x''_1, x_2, ..., x_n)$

ヘロト 人間 とくほとくほとう

Objective Formal System Completeness

# Axiomatization

**Base Axioms** 

- Logical axioms: sentential, identity and equivalence, congruence.
- **Boolean algebra axioms**: stipulating a non-degenerate Boolean algebra.
- Proximity axioms:
  - $R_n(x_1,...,x_n) \Rightarrow x_1 \neq 0$
  - $R_n(x'_1 \cup x''_1, x_2, ..., x_n) \Leftrightarrow R_n(x'_1, x_2, ..., x_n) \lor R_n(x''_1, x_2, ..., x_n)$

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Objective Formal System Completeness

# Axiomatization

Base Axioms

- Logical axioms: sentential, identity and equivalence, congruence.
- **Boolean algebra axioms**: stipulating a non-degenerate Boolean algebra.
- Proximity axioms:
  - $R_n(x_1,...,x_n) \Rightarrow x_1 \neq 0$
  - $R_n(x'_1 \cup x''_1, x_2, ..., x_n) \Leftrightarrow R_n(x'_1, x_2, ..., x_n) \lor R_n(x''_1, x_2, ..., x_n)$

ヘロア 人間 アメヨア 人口 ア

Objective Formal System Completeness

#### Axiomatization *n*-ary Contact Axioms

# *n*-ary Contact Axioms ヘロア 人間 アメヨア 人口 ア

Ivan Nikolov, Tinko Tinchev Logic of Ternary Contact

ъ

Objective Formal System Completeness

#### Axiomatization *n*-ary Contact Axioms

#### n-ary Contact Axioms

(c1) 
$$(\sigma: \{1, \ldots, n\} \to \{1, \ldots, n\})$$

$$R_n(x_1,\ldots,x_n) \Rightarrow R_n(x_{\sigma(1)},\ldots,x_{\sigma(n)})$$

(c2)

$$R_{n+1}(x_1, x_1, x_2, \ldots, x_n) \Leftrightarrow R_n(x_1, x_2, \ldots, x_n)$$

(c3)

$$\neg(x=0) \Rightarrow R_2(x,x)$$

(c4)

$$\neg(x=0) \land \neg(-x=0) \Rightarrow R_2(x,-x)$$



æ

ヘロト 人間 とくほとくほとう

Objective Formal System Completeness

#### Axiomatization *n*-ary Contact Axioms

#### n-ary Contact Axioms

(c1) 
$$(\sigma: \{1, \ldots, n\} \to \{1, \ldots, n\})$$

$$R_n(x_1,\ldots,x_n) \Rightarrow R_n(x_{\sigma(1)},\ldots,x_{\sigma(n)})$$

(c2)

$$R_{n+1}(x_1, x_1, x_2, \ldots, x_n) \Leftrightarrow R_n(x_1, x_2, \ldots, x_n)$$

(c3)

$$\neg(x=0) \Rightarrow R_2(x,x)$$

(c4)

$$eg(x=0) \land \neg(-x=0) \Rightarrow R_2(x,-x)$$



æ

ヘロト 人間 とくほとくほとう

Objective Formal System Completeness

#### Axiomatization *n*-ary Contact Axioms

#### *n*-ary Contact Axioms

**PRC1**  $R_3(x_1, x_2, x_3) \Rightarrow \neg(x_1 \cap x_2 = 0) \lor \neg(x_2 \cap x_3 = 0) \lor \neg(x_1 \cap x_3 = 0)$ 

・ロト ・ 理 ト ・ ヨ ト ・

æ

Objective Formal System Completeness

#### Outline



- Objective
- Formal System
- Completeness of the Formal System
- 2 Logics of Ternary Contact
  - Formal System
  - Modal Definability
  - Unification

・ロト ・四ト ・ヨト ・ヨト

æ
Objective Formal System Completeness

### Characterisation of the *n*-ary Contact

In the regular closed sets of the connected topological spaces

#### The following sets (logics) are equal:

- The theorems of the formal system of *n-ary (connected)* Contact with inference rules uniform substitution and modus ponens and axioms the base axioms and (c1) to (c4).
- The formulas valid in the *Boolean frames* of the *polytopes* of  $\mathbb{R}^m$  for  $m \ge 2$ .
- ... in the Boolean frames of the regular closed sets of  $\mathbb{R}^m$  for  $m \ge 1$ .
- ... in the *Boolean frame* of (an arbitrary) *connected* topological space or any class of such Boolean frames.



ヘロン ヘアン ヘビン ヘビン

Objective Formal System Completeness

Characterisation of the *n*-ary Contact

In the regular closed sets of the connected topological spaces

The following sets (logics) are equal:

- The theorems of the formal system of *n-ary (connected)* Contact with inference rules uniform substitution and modus ponens and axioms the base axioms and (c1) to (c4).
- The formulas valid in the *Boolean frames* of the *polytopes* of ℝ<sup>m</sup> for m ≥ 2.
- ... in the Boolean frames of the regular closed sets of  $\mathbb{R}^m$  for  $m \ge 1$ .
- ... in the *Boolean frame* of (an arbitrary) *connected* topological space or any class of such Boolean frames.



ヘロン ヘアン ヘビン ヘビン

Objective Formal System Completeness

Characterisation of the *n*-ary Contact

In the regular closed sets of the connected topological spaces

The following sets (logics) are equal:

- The theorems of the formal system of *n-ary (connected)* Contact with inference rules uniform substitution and modus ponens and axioms the base axioms and (c1) to (c4).
- The formulas valid in the *Boolean frames* of the *polytopes* of ℝ<sup>m</sup> for m ≥ 2.
- ... in the Boolean frames of the regular closed sets of  $\mathbb{R}^m$  for  $m \ge 1$ .
- ... in the *Boolean frame* of (an arbitrary) *connected* topological space or any class of such Boolean frames.

ヘロン ヘアン ヘビン ヘビン

Objective Formal System Completeness

Characterisation of the *n*-ary Contact

In the regular closed sets of the connected topological spaces

The following sets (logics) are equal:

- The theorems of the formal system of *n-ary (connected)* Contact with inference rules uniform substitution and modus ponens and axioms the base axioms and (c1) to (c4).
- The formulas valid in the Boolean frames of the polytopes of ℝ<sup>m</sup> for m ≥ 2.
- ... in the Boolean frames of the regular closed sets of  $\mathbb{R}^m$  for  $m \ge 1$ .
- ... in the *Boolean frame* of (an arbitrary) *connected* topological space or any class of such Boolean frames.

ヘロア 人間 アメヨア 人口 ア

Objective Formal System Completeness

Characterisation of the *n*-ary Contact

In the regular closed sets of the connected topological spaces

The following sets (logics) are equal:

- The theorems of the formal system of *n-ary (connected)* Contact with inference rules uniform substitution and modus ponens and axioms the base axioms and (c1) to (c4).
- The formulas valid in the Boolean frames of the polytopes of ℝ<sup>m</sup> for m ≥ 2.
- ... in the Boolean frames of the regular closed sets of  $\mathbb{R}^m$  for  $m \ge 1$ .
- ... in the *Boolean frame* of (an arbitrary) *connected* topological space or any class of such Boolean frames.



ヘロト ヘ戸ト ヘヨト ヘヨト

Objective Formal System Completeness

### Characterisation of the *n*-ary Contact In the *polytopes* of $\mathbb{R}^1$

#### The following sets (logics) are equal:

- The theorems of the formal system of *n-ary (connected) Contact* with inference rules *uniform substitution* and *modus ponens* and axioms the base axioms, **(c1)** to **(c4)** and **PRC1**.
- The formulas valid in the *Boolean frame* of the *polytopes* of  $\mathbb{R}^1$ .

< 回 > < 三 > <

Objective Formal System Completeness

### Characterisation of the *n*-ary Contact In the *polytopes* of $\mathbb{R}^1$

The following sets (logics) are equal:

- The theorems of the formal system of *n-ary (connected) Contact* with inference rules *uniform substitution* and *modus ponens* and axioms the base axioms, **(c1)** to **(c4)** and **PRC1**.
- The formulas valid in the *Boolean frame* of the *polytopes* of  $\mathbb{R}^1$ .

Objective Formal System Completeness

## Characterisation of the *n*-ary Contact In the *polytopes* of $\mathbb{R}^1$

The following sets (logics) are equal:

- The theorems of the formal system of *n-ary (connected) Contact* with inference rules *uniform substitution* and *modus ponens* and axioms the base axioms, **(c1)** to **(c4)** and **PRC1**.
- The formulas valid in the *Boolean frame* of the *polytopes* of <sup>ℝ</sup><sup>1</sup>.

Objective Formal System Completeness

### Characterisation of the *n*-ary Contact

In the *polytopes* of  $\mathbb{R}^1$ 

As a consequence:

• The *n*-ary contact for *n* > 2 is not definable by 2-contact.

Objective Formal System Completeness

#### Characterisation of the *n*-ary Contact In the *polytopes* of $\mathbb{R}^1$

As a consequence:

• The *n*-ary contact for *n* > 2 is not definable by 2-contact.

・ 回 ト ・ ヨ ト ・ ヨ ト

Formal System Modal Definability Unification

### Outline

#### Logics of *n*-ary Contact

- Objective
- Formal System
- Completeness of the Formal System

#### 2 Logics of Ternary Contact

- Formal System
- Modal Definability
- Unification

くロト (過) (目) (日)

æ

Formal System Modal Definability Unification

# Formal System

- *L<sub>R<sub>3</sub></sub>*: The language of the *n*-ary contact restricted to ternary predicate symbols. Recall:
  - A quantifier free fragment of a first-order language.
  - Function symbols
     The Boolean constants and operations: 0, −, ∪.
  - Predicate symbols
     One binary and one ternary symbols

ヘロト ヘワト ヘビト ヘビト

Formal System Modal Definability Unification

# Formal System

- *L<sub>R<sub>3</sub></sub>*: The language of the *n*-ary contact restricted to ternary predicate symbols. Recall:
  - A quantifier free fragment of a first-order language.
  - Function symbols
     The Boolean constants and operations: 0, −, ∪.
  - Predicate symbols

One binary and one ternary symbols:  $R_2$ ,  $R_3$ .

イロン イロン イヨン イヨン

Formal System Modal Definability Unification

# Formal System

- *L<sub>R<sub>3</sub></sub>*: The language of the *n*-ary contact restricted to ternary predicate symbols. Recall:
  - A quantifier free fragment of a first-order language.
  - Function symbols
     The Boolean constants and operations: 0, −, ∪.
  - **Predicate symbols** One binary and one ternary symbols: *R*<sub>2</sub>, *R*<sub>3</sub>

イロン イロン イヨン イヨン

Formal System Modal Definability Unification

# Formal System

- *L<sub>R<sub>3</sub></sub>*: The language of the *n*-ary contact restricted to ternary predicate symbols. Recall:
  - A quantifier free fragment of a first-order language.
  - Function symbols

The Boolean constants and operations: 0, -,  $\cup$ .

• **Predicate symbols** One binary and one ternary symbols: *R*<sub>2</sub>, *R*<sub>3</sub>.

ヘロト ヘワト ヘビト ヘビト

Formal System Modal Definability Unification

# Formal System

- *L<sub>R<sub>3</sub></sub>*: The language of the *n*-ary contact restricted to ternary predicate symbols. Recall:
  - A quantifier free fragment of a first-order language.
  - Function symbols

The Boolean constants and operations: 0, -,  $\cup$ .

Predicate symbols

One binary and one ternary symbols:  $R_2$ ,  $R_3$ .

・ 同 ト ・ ヨ ト ・ ヨ ト

Formal System Modal Definability Unification

#### Formal System Semantic Structures

#### Definition

#### Contact frame $\mathfrak{F} = \langle W, R_2, R_3 \rangle$

#### • W: nonempty

•  $R_2$ ,  $R_3$ : binary and ternary relations on W such that

(a) If 
$$R_n(w_1, \ldots, w_n)$$
, then for every mapping  
 $\sigma : \{1, \ldots, n\} \longrightarrow \{1, \ldots, n\}$  we have  $R_n(w_{\sigma(1)}, \ldots, w_{\sigma(n)})$   
(b)  $R_3(w_1, w_1, w_2) \leftrightarrow R_2(w_1, w_2)$   
(c)  $R_2(w, w)$ 

イロト イポト イヨト イヨト

Formal System Modal Definability Unification

### Formal System

#### Definition

#### Contact frame $\mathfrak{F} = \langle W, R_2, R_3 \rangle$

- W: nonempty
- $R_2$ ,  $R_3$ : binary and ternary relations on W such that

(a) If  $R_n(w_1, \ldots, w_n)$ , then for every mapping  $\sigma : \{1, \ldots, n\} \longrightarrow \{1, \ldots, n\}$  we have  $R_n(w_{\sigma(1)}, \ldots, w_{\sigma(n)})$ (b)  $R_3(w_1, w_1, w_2) \leftrightarrow R_2(w_1, w_2)$ 

(c)  $R_2(w, w)$ 

イロン イロン イヨン イヨン

Formal System Modal Definability Unification

### Formal System

#### Definition

#### Contact frame $\mathfrak{F} = \langle W, R_2, R_3 \rangle$

- W: nonempty
- R<sub>2</sub>, R<sub>3</sub>: binary and ternary relations on W such that

(a) If 
$$R_n(w_1, \ldots, w_n)$$
, then for every mapping  
 $\sigma : \{1, \ldots, n\} \longrightarrow \{1, \ldots, n\}$  we have  $R_n(w_{\sigma(1)}, \ldots, w_{\sigma(n)})$   
(b)  $R_3(w_1, w_1, w_2) \leftrightarrow R_2(w_1, w_2)$   
(c)  $R_2(w, w)$ 

ヘロト ヘアト ヘヨト ヘ

프 🕨 🗉 프

Formal System Modal Definability Unification

### Formal System

#### Definition

Contact frame 
$$\mathfrak{F} = \langle W, R_2, R_3 \rangle$$

- W: nonempty
- R<sub>2</sub>, R<sub>3</sub>: binary and ternary relations on W such that

(a) If *R<sub>n</sub>*(*w*<sub>1</sub>,...,*w<sub>n</sub>*), then for every mapping σ : {1,..., *n*} → {1,..., *n*} we have *R<sub>n</sub>*(*w<sub>σ(1)</sub>,...,<i>w<sub>σ(n)</sub>*)
(b) *R*<sub>3</sub>(*w*<sub>1</sub>, *w*<sub>1</sub>, *w*<sub>2</sub>) ↔ *R*<sub>2</sub>(*w*<sub>1</sub>, *w*<sub>2</sub>)
(c) *R*<sub>2</sub>(*w*, *w*)

イロト イポト イヨト イヨト

Formal System Modal Definability Unification

### Formal System

#### Definition

Contact frame  $\mathfrak{F} = \langle W, R_2, R_3 \rangle$ 

- W: nonempty
- R<sub>2</sub>, R<sub>3</sub>: binary and ternary relations on W such that

(a) If R<sub>n</sub>(w<sub>1</sub>,..., w<sub>n</sub>), then for every mapping σ : {1,..., n} → {1,..., n} we have R<sub>n</sub>(w<sub>σ(1)</sub>,..., w<sub>σ(n)</sub>)
(b) R<sub>3</sub>(w<sub>1</sub>, w<sub>1</sub>, w<sub>2</sub>) ↔ R<sub>2</sub>(w<sub>1</sub>, w<sub>2</sub>)
(c) R<sub>2</sub>(w, w)

ヘロト ヘワト ヘビト ヘビト

Formal System Modal Definability Unification

### Formal System

#### Definition

Contact frame  $\mathfrak{F} = \langle W, R_2, R_3 \rangle$ 

- W: nonempty
- R<sub>2</sub>, R<sub>3</sub>: binary and ternary relations on W such that
  - (a) If  $R_n(w_1, \ldots, w_n)$ , then for every mapping  $\sigma : \{1, \ldots, n\} \longrightarrow \{1, \ldots, n\}$  we have  $R_n(w_{\sigma(1)}, \ldots, w_{\sigma(n)})$ (b)  $R_3(w_1, w_1, w_2) \leftrightarrow R_2(w_1, w_2)$ (c)  $R_2(w, w)$

ヘロト ヘワト ヘビト ヘビト

Formal System Modal Definability Unification

### Formal System Valuation

#### Definition

#### A valuation on a contact frame ${\mathfrak F}$

- A mapping  $\mathcal{V}$  from the set of terms of  $L_{R_3}$  in  $\mathcal{P}(W)$  such that:
  - For a variable x of  $L_{R_3}\mathcal{V}(x)$  is a subset of W.
  - The values for terms of  $L_{R_3}$  are defined inductively with respect to the (standard) set-theoretical interpretation of the Boolean connectives.

Formal System Modal Definability Unification

## Formal System

#### Definition

A valuation on a contact frame  $\vartheta$ 

• A mapping  $\mathcal{V}$  from the set of terms of  $L_{R_3}$  in  $\mathcal{P}(W)$  such that:

• For a variable x of  $L_{R_3}\mathcal{V}(x)$  is a subset of W.

• The values for terms of *L*<sub>*R*<sub>3</sub></sub> are defined inductively with respect to the (standard) set-theoretical interpretation of the Boolean connectives.

Formal System Modal Definability Unification

# Formal System

#### Definition

A valuation on a contact frame  $\vartheta$ 

- A mapping V from the set of terms of L<sub>R3</sub> in P(W) such that:
  - For a variable x of  $L_{R_3}\mathcal{V}(x)$  is a subset of W.
  - The values for terms of  $L_{R_3}$  are defined inductively with respect to the (standard) set-theoretical interpretation of the Boolean connectives.

Formal System Modal Definability Unification

# Formal System

#### Definition

A valuation on a contact frame  $\vartheta$ 

- A mapping V from the set of terms of L<sub>R3</sub> in P(W) such that:
  - For a variable x of  $L_{R_3}\mathcal{V}(x)$  is a subset of W.
  - The values for terms of *L*<sub>*R*<sub>3</sub></sub> are defined inductively with respect to the (standard) set-theoretical interpretation of the Boolean connectives.

Formal System Modal Definability Unification

# Formal System

#### Definition

*Model* on a contact frame: a pair  $\langle \mathfrak{F}, \mathcal{V} \rangle$  of a contact frame  $\mathfrak{F}$  and a valuation  $\mathcal{V}$  on  $\mathfrak{F}$ .

> ୍ ୨୦୧୯ ଲି ଏହି ଏହି ଏସ

Formal System Modal Definability Unification

# Formal System

#### Definition

 $\langle \mathfrak{F}, \mathcal{V} \rangle \vDash \varphi$  :  $\varphi$  is *true* in  $\langle \mathfrak{F}, \mathcal{V} \rangle$ 

•  $\langle \mathfrak{F}, \mathcal{V} \rangle \vDash \tau_1 = \tau_2$  iff  $\mathcal{V}(\tau_1) = \mathcal{V}(\tau_2)$ 

•  $\langle \mathfrak{F}, \mathcal{V} \rangle \vDash R_n(\tau_1, \ldots, \tau_n)$  iff they exist  $w_1, \ldots, w_n$ , such that  $w_1 \in \mathcal{V}(\tau_1), \ldots, w_n \in \mathcal{V}(\tau_n)$  and  $R_n(w_1, \ldots, w_n)$ .

•  $\langle \mathfrak{F}, \mathcal{V} \rangle \vDash \neg \varphi$  iff  $\langle \mathfrak{F}, \mathcal{V} \rangle \nvDash \varphi$ .

•  $\langle \mathfrak{F}, \mathcal{V} \rangle \vDash \varphi_1 \lor \varphi_2$  iff  $\langle \mathfrak{F}, \mathcal{V} \rangle \vDash \varphi_1$  or  $\langle \mathfrak{F}, \mathcal{V} \rangle \vDash \varphi_2$ .

ヘロト 人間 とくほとくほとう

Formal System Modal Definability Unification

## Formal System

#### Definition

 $\langle \mathfrak{F}, \mathcal{V} \rangle \vDash \varphi$  :  $\varphi$  is *true* in  $\langle \mathfrak{F}, \mathcal{V} \rangle$ 

•  $\langle \mathfrak{F}, \mathcal{V} \rangle \vDash \tau_1 = \tau_2$  iff  $\mathcal{V}(\tau_1) = \mathcal{V}(\tau_2)$ 

•  $\langle \mathfrak{F}, \mathcal{V} \rangle \vDash R_n(\tau_1, \ldots, \tau_n)$  iff they exist  $w_1, \ldots, w_n$ , such that  $w_1 \in \mathcal{V}(\tau_1), \ldots, w_n \in \mathcal{V}(\tau_n)$  and  $R_n(w_1, \ldots, w_n)$ .

•  $\langle \mathfrak{F}, \mathcal{V} \rangle \vDash \neg \varphi$  iff  $\langle \mathfrak{F}, \mathcal{V} \rangle \nvDash \varphi$ .

•  $\langle \mathfrak{F}, \mathcal{V} \rangle \vDash \varphi_1 \lor \varphi_2$  iff  $\langle \mathfrak{F}, \mathcal{V} \rangle \vDash \varphi_1$  or  $\langle \mathfrak{F}, \mathcal{V} \rangle \vDash \varphi_2$ .

ヘロト 人間 とくほとく ほとう

3

Formal System Modal Definability Unification

## Formal System

#### Definition

 $\langle \mathfrak{F}, \mathcal{V} \rangle \vDash \varphi$  :  $\varphi$  is *true* in  $\langle \mathfrak{F}, \mathcal{V} \rangle$ 

• 
$$\langle \mathfrak{F}, \mathcal{V} \rangle \vDash \tau_1 = \tau_2$$
 iff  $\mathcal{V}(\tau_1) = \mathcal{V}(\tau_2)$ 

•  $\langle \mathfrak{F}, \mathcal{V} \rangle \vDash R_n(\tau_1, \ldots, \tau_n)$  iff they exist  $w_1, \ldots, w_n$ , such that  $w_1 \in \mathcal{V}(\tau_1), \ldots, w_n \in \mathcal{V}(\tau_n)$  and  $R_n(w_1, \ldots, w_n)$ .

•  $\langle \mathfrak{F}, \mathcal{V} \rangle \vDash \neg \varphi$  iff  $\langle \mathfrak{F}, \mathcal{V} \rangle \nvDash \varphi$ .

•  $\langle \mathfrak{F}, \mathcal{V} \rangle \vDash \varphi_1 \lor \varphi_2$  iff  $\langle \mathfrak{F}, \mathcal{V} \rangle \vDash \varphi_1$  or  $\langle \mathfrak{F}, \mathcal{V} \rangle \vDash \varphi_2$ .

イロト 不得 とくほ とくほ とう

Э

Formal System Modal Definability Unification

# Formal System

#### Definition

 $\langle \mathfrak{F}, \mathcal{V} \rangle \vDash \varphi$  :  $\varphi$  is *true* in  $\langle \mathfrak{F}, \mathcal{V} \rangle$ 

• 
$$\langle \mathfrak{F}, \mathcal{V} \rangle \vDash \tau_1 = \tau_2$$
 iff  $\mathcal{V}(\tau_1) = \mathcal{V}(\tau_2)$ 

•  $\langle \mathfrak{F}, \mathcal{V} \rangle \vDash R_n(\tau_1, \ldots, \tau_n)$  iff they exist  $w_1, \ldots, w_n$ , such that  $w_1 \in \mathcal{V}(\tau_1), \ldots, w_n \in \mathcal{V}(\tau_n)$  and  $R_n(w_1, \ldots, w_n)$ .

• 
$$\langle \mathfrak{F}, \mathcal{V} \rangle \vDash \neg \varphi$$
 iff  $\langle \mathfrak{F}, \mathcal{V} \rangle \nvDash \varphi$ .

•  $\langle \mathfrak{F}, \mathcal{V} \rangle \vDash \varphi_1 \lor \varphi_2$  iff  $\langle \mathfrak{F}, \mathcal{V} \rangle \vDash \varphi_1$  or  $\langle \mathfrak{F}, \mathcal{V} \rangle \vDash \varphi_2$ .

イロト 不得 とくほ とくほ とう

Formal System Modal Definability Unification

### Formal System Validity

#### Definition

- $\mathfrak{F} \vDash \varphi$  :  $\varphi$  is *valid* in  $\mathfrak{F}$  if for every valuation  $\mathcal{V}$  we have  $\langle \mathfrak{F}, \mathcal{V} \rangle \vDash \varphi$
- $\mathcal{R} \vDash \varphi$  :  $\varphi$  is *valid* in  $\mathcal{R}$  if for every frame  $\mathfrak{F}$  in  $\mathcal{R}$  we have  $\mathfrak{F} \vDash \varphi$ , where  $\mathcal{R}$  is a class of (contact) frames.

・ロト ・ ア・ ・ ヨト ・ ヨト

Formal System Modal Definability Unification

### Formal System Validity

#### Definition

- $\mathfrak{F} \vDash \varphi$  :  $\varphi$  is *valid* in  $\mathfrak{F}$  if for every valuation  $\mathcal{V}$  we have  $\langle \mathfrak{F}, \mathcal{V} \rangle \vDash \varphi$
- $\mathcal{R} \vDash \varphi$  :  $\varphi$  is *valid* in  $\mathcal{R}$  if for every frame  $\mathfrak{F}$  in  $\mathcal{R}$  we have  $\mathfrak{F} \vDash \varphi$ , where  $\mathcal{R}$  is a class of (contact) frames.

・ロト ・ ア・ ・ ヨト ・ ヨト

Formal System Modal Definability Unification

### Formal System Validity

#### Definition

- $\mathfrak{F} \vDash \varphi$  :  $\varphi$  is *valid* in  $\mathfrak{F}$  if for every valuation  $\mathcal{V}$  we have  $\langle \mathfrak{F}, \mathcal{V} \rangle \vDash \varphi$
- *K* ⊨ φ : φ is *valid* in *K* if for every frame ℜ in *K* we have ℜ ⊨ φ,
   where *K* is a class of (contact) frames.

イロン イボン イヨン イヨン

Formal System Modal Definability Unification

#### Formal System Logic of the Ternary Contact Relational Structures

#### Definition

•  $C\mathcal{F}^3$ : the class of all contact frames.

*L*(CF<sup>3</sup>) = {φ | CF<sup>3</sup> ⊨ φ}: the logic of the relational (ternary) contact structures.

Formal System Modal Definability Unification

#### Formal System Logic of the Ternary Contact Relational Structures

#### Definition

- $C\mathcal{F}^3$ : the class of all contact frames.
- *L*(CF<sup>3</sup>) = {φ | CF<sup>3</sup> ⊨ φ}: the logic of the relational (ternary) contact structures.

・ロト ・ 理 ト ・ ヨ ト ・
Formal System Modal Definability Unification

### Outline

### Logics of *n*-ary Contact

- Objective
- Formal System
- Completeness of the Formal System

### 2 Logics of Ternary Contact

- Formal System
- Modal Definability
- Unification

・ロト ・四ト ・ヨト ・ヨト

æ

Formal System Modal Definability Unification

## Definability problems

### Let $L(R_2, R_3)$ be the restriction of $L_{R_3}$ by excluding all nonlogical functional symbols.

A contact frame  $\Im$  can be considered as a structure for the first-order language  $L(R_2, R_3)$ .

The class  $C\mathcal{F}^3$  can be considered as a class of structures of the first-order language  $L(R_2, R_3)$ .

<ロト <回 > < 注 > < 注 > 、

Formal System Modal Definability Unification

# Definability problems

Let  $L(R_2, R_3)$  be the restriction of  $L_{R_3}$  by excluding all nonlogical functional symbols.

A contact frame  $\mathfrak{F}$  can be considered as a structure for the first-order language  $L(R_2, R_3)$ .

The class  $C\mathcal{F}^3$  can be considered as a class of structures of the first-order language  $L(R_2, R_3)$ .

ヘロン ヘアン ヘビン ヘビン

Formal System Modal Definability Unification

# Definability problems

Let  $L(R_2, R_3)$  be the restriction of  $L_{R_3}$  by excluding all nonlogical functional symbols.

A contact frame  $\mathfrak{F}$  can be considered as a structure for the first-order language  $L(R_2, R_3)$ .

The class  $C\mathcal{F}^3$  can be considered as a class of structures of the first-order language  $L(R_2, R_3)$ .

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ...

Formal System Modal Definability Unification

# Definability problems

- ⊨<sub>m</sub> (or simply ⊨) : the *truth relation* defined above (from contact language perspective).
- ⊨<sub>FO</sub>: the truth relation from *first-order language* perspective.

Formal System Modal Definability Unification

# Definability problems

- ⊨<sub>m</sub> (or simply ⊨) : the *truth relation* defined above (from contact language perspective).
- ⊨<sub>FO</sub>: the truth relation from *first-order language* perspective.

イロト イポト イヨト イヨト

Formal System Modal Definability Unification

### Definability problems

#### Modal definability

Let *A* be a closed formula from the first-order language  $L(R_2, R_3)$ .

Let  $\varphi$  be a formula from the ternary contact language  $L_{R_3}$ .

•  $\varphi$  is a modal definition of A in  $C\mathcal{F}^3$ 

or (equivalently)

• A is modally definable by  $\varphi$  in  $C\mathcal{F}^3$ 

 $\mathfrak{F}\vDash_{m}\varphi\quad\leftrightarrow\quad\mathfrak{F}\vDash_{\mathit{FO}}\mathsf{A}$ 

イロト イロト イヨト イヨト

Formal System Modal Definability Unification

### Definability problems

#### Modal definability

Let *A* be a closed formula from the first-order language  $L(R_2, R_3)$ . Let  $\varphi$  be a formula from the ternary contact language  $L_{R_3}$ .

•  $\varphi$  is a modal definition of A in  $C\mathcal{F}^3$ 

or (equivalently)

• A is modally definable by  $\varphi$  in  $\mathcal{CF}^3$ 

if for every  ${
m F}$  in  ${\cal CF}^3$  we have

 $\mathfrak{F}\vDash_{m}\varphi\quad\leftrightarrow\quad\mathfrak{F}\vDash_{\mathit{FO}}\mathsf{A}$ 

ヘロト ヘワト ヘビト ヘビト

Formal System Modal Definability Unification

### Definability problems

#### Modal definability

Let *A* be a closed formula from the first-order language  $L(R_2, R_3)$ . Let  $\varphi$  be a formula from the ternary contact language  $L_{R_3}$ .

•  $\varphi$  is a modal definition of A in  $C\mathcal{F}^3$ 

or (equivalently)

• A is modally definable by  $\varphi$  in  $C\mathcal{F}^3$ 

if for every  ${
m F}$  in  ${\cal CF}^3$  we have

 $\mathfrak{F}\vDash_{m}\varphi\quad\leftrightarrow\quad\mathfrak{F}\vDash_{\mathit{FO}}\mathsf{A}$ 

ヘロト ヘワト ヘビト ヘビト

Formal System Modal Definability Unification

### Definability problems

#### Modal definability

Let *A* be a closed formula from the first-order language  $L(R_2, R_3)$ .

Let  $\varphi$  be a formula from the ternary contact language  $L_{R_3}$ .

•  $\varphi$  is a modal definition of A in  $C\mathcal{F}^3$ 

or (equivalently)

• A is modally definable by  $\varphi$  in  $C\mathcal{F}^3$ 

if for every  $\mathfrak{F}$  in  $\mathcal{CF}^3$  we have

 $\mathfrak{F}\vDash_{m}\varphi\quad\leftrightarrow\quad\mathfrak{F}\vDash_{\mathit{FO}}\mathsf{A}$ 

イロン イロン イヨン イヨン

Formal System Modal Definability Unification

### Definability problems

#### Modal definability

Let *A* be a closed formula from the first-order language  $L(R_2, R_3)$ .

Let  $\varphi$  be a formula from the ternary contact language  $L_{R_3}$ .

•  $\varphi$  is a modal definition of A in  $C\mathcal{F}^3$ 

or (equivalently)

A is modally definable by φ in CF<sup>3</sup>
 if for every § in CF<sup>3</sup> we have

$$\mathfrak{F}\vDash_{m}\varphi\quad\leftrightarrow\quad\mathfrak{F}\vDash_{\mathit{FO}}\mathsf{A}$$

・ 同 ト ・ 三 ト ・

Formal System Modal Definability Unification

## Definability problems

#### Modal definability

Let *A* be a closed formula from the first-order language  $L(R_2, R_3)$ .

• A is modally definable in  $C\mathcal{F}^3$ 

if A is modally definable in  $\mathcal{CF}^3$  by some formula arphi of the ternary contact language  $\mathcal{L}_{\mathcal{R}_3}.$ 

ヘロト ヘワト ヘビト ヘビト

Formal System Modal Definability Unification

## Definability problems

#### Modal definability

Let *A* be a closed formula from the first-order language  $L(R_2, R_3)$ .

### • A is modally definable in CF<sup>3</sup>

if A is modally definable in  $C\mathcal{F}^3$  by some formula  $\varphi$  of the ternary contact language  $L_{R_3}$ .

ヘロト ヘワト ヘビト ヘビト

Formal System Modal Definability Unification

# Definability problems

#### Modal definability

Let *A* be a closed formula from the first-order language  $L(R_2, R_3)$ .

• A is modally definable in CF<sup>3</sup>

if *A* is modally definable in  $C\mathcal{F}^3$  by some formula  $\varphi$  of the ternary contact language  $L_{R_3}$ .

イロト イポト イヨト イヨト

Formal System Modal Definability Unification

### Definability problems Modal definability problem

Definition

Modal definability problem:

Input: Closed formula A of the first-order language  $L(R_2, R_3)$ . Output: "A is modally definable in  $C\mathcal{F}^3$ " or "A is not modally definable in  $C\mathcal{F}^3$ "

イロト イポト イヨト イヨト

Formal System Modal Definability Unification

### Definability problems Modal definability problem

#### Definition

Modal definability problem:

### *Input*: Closed formula *A* of the first-order language $L(R_2, R_3)$ .

*Output*: "A is modally definable in  $C\mathcal{F}^3$ " or "A is not modally definable in  $C\mathcal{F}^3$ 

ヘロト ヘワト ヘビト ヘビト

Formal System Modal Definability Unification

### Definability problems Modal definability problem

#### Definition

Modal definability problem:

Input: Closed formula A of the first-order language  $L(R_2, R_3)$ . Output: "A is modally definable in  $C\mathcal{F}^3$ " or "A is not modally definable in  $C\mathcal{F}^3$ "

ヘロト ヘワト ヘビト ヘビト

Formal System Modal Definability Unification

### Modal Definability Problem Result

#### Modal Definability Problem Outcome

The modal definability problem for the class of contact frames  $\mathcal{CF}^3$  is undecidable.

イロト 不得 とくほ とくほとう

Formal System Modal Definability Unification

## Modal Definability Problem

### By "Balbiani, P., Tinchev, T.: *Undecidable problems for modal definability*", 2014, Theorem 1:

 If CF<sup>3</sup> is stable, then the problem of the decidability of *Th*(CF<sup>3</sup>) is reducible to the modal definability problem for CF<sup>3</sup>.

ヘロン ヘアン ヘビン ヘビン

Formal System Modal Definability Unification

# Modal Definability Problem

By "Balbiani, P., Tinchev, T.: *Undecidable problems for modal definability*", 2014, Theorem 1:

• If  $C\mathcal{F}^3$  is *stable*, then the problem of the decidability of  $\mathcal{Th}(C\mathcal{F}^3)$  is reducible to the *modal definability problem* for  $C\mathcal{F}^3$ .

・ 同 ト ・ ヨ ト ・ ヨ ト

Formal System Modal Definability Unification

## Modal Definability Problem

### So it is sufficient to show the following:

- CF<sup>3</sup> is stable.
- $\mathcal{Th}(\mathcal{CF}^3)$  is undecidable.



Formal System Modal Definability Unification

# Modal Definability Problem

#### So it is sufficient to show the following:

- CF<sup>3</sup> is stable.
- $\mathcal{Th}(\mathcal{CF}^3)$  is undecidable.

Formal System Modal Definability Unification

# Modal Definability Problem

So it is sufficient to show the following:

- CF<sup>3</sup> is stable.
- $\mathcal{T}h(\mathcal{CF}^3)$  is undecidable.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Formal System Modal Definability Unification

## Modal Definability Problem $\mathcal{T}h(\mathcal{C}\mathcal{F}^3)$ is undecidable

### Let $L(R_2)$ be the restriction of $L(R_2, R_3)$ by excluding $R_3$ .

Let  $C_{ref,sym}$  be the class of binary reflexive and symmetric structures (in the language of  $L(R_2)$ ).



Formal System Modal Definability Unification

# Modal Definability Problem $\mathcal{T}h(C\mathcal{F}^3)$ is undecidable

Let  $L(R_2)$  be the restriction of  $L(R_2, R_3)$  by excluding  $R_3$ .

Let  $C_{ref,sym}$  be the class of binary reflexive and symmetric structures (in the language of  $L(R_2)$ ).

・ロト ・四ト ・ヨト ・ヨト

Formal System Modal Definability Unification

### Modal Definability Problem $\mathcal{T}h(\mathcal{C}\mathcal{F}^3)$ is undecidable

- For any ⟨W, R<sub>2</sub>, R<sub>3</sub>⟩ in CF<sup>3</sup> the structure ⟨W, R<sub>2</sub>⟩ is its restriction to L(R<sub>2</sub>).
- For any  $\langle W, R_2, R_3 \rangle$  in  $CF^3$  its restriction  $\langle W, R_2 \rangle$  is reflexive and symmetric.
  - Hence, in the class *C*<sub>ref,sym</sub>.
- Clearly, for every formula A of  $L(R_2)$ :

 $\langle W, R_2 \rangle \vDash_{FO} A \quad \leftrightarrow \quad \langle W, R_2, R_3 \rangle \vDash_{FO} A$ 

ヘロト 人間 とくほとくほとう

Formal System Modal Definability Unification

### Modal Definability Problem $\mathcal{T}h(\mathcal{C}\mathcal{F}^3)$ is undecidable

- For any ⟨W, R<sub>2</sub>, R<sub>3</sub>⟩ in CF<sup>3</sup> the structure ⟨W, R<sub>2</sub>⟩ is its restriction to L(R<sub>2</sub>).
- For any  $\langle W, R_2, R_3 \rangle$  in  $C\mathcal{F}^3$  its restriction  $\langle W, R_2 \rangle$  is reflexive and symmetric.

• Hence, in the class *C*<sub>ref,sym</sub>.

• Clearly, for every formula A of  $L(R_2)$ :

 $\langle W, R_2 \rangle \vDash_{FO} A \quad \leftrightarrow \quad \langle W, R_2, R_3 \rangle \vDash_{FO} A$ 

ヘロト 人間 とくほとくほとう

Formal System Modal Definability Unification

### Modal Definability Problem $\mathcal{T}h(\mathcal{C}\mathcal{F}^3)$ is undecidable

- For any ⟨W, R<sub>2</sub>, R<sub>3</sub>⟩ in CF<sup>3</sup> the structure ⟨W, R<sub>2</sub>⟩ is its restriction to L(R<sub>2</sub>).
- For any  $\langle W, R_2, R_3 \rangle$  in  $C\mathcal{F}^3$  its restriction  $\langle W, R_2 \rangle$  is reflexive and symmetric.
  - Hence, in the class C<sub>ref,sym</sub>.
- Clearly, for every formula A of  $L(R_2)$ :

 $\langle W, R_2 \rangle \vDash_{FO} A \quad \leftrightarrow \quad \langle W, R_2, R_3 \rangle \vDash_{FO} A$ 

ヘロト 人間 とくほとくほとう

Formal System Modal Definability Unification

### Modal Definability Problem $\mathcal{T}h(\mathcal{C}\mathcal{F}^3)$ is undecidable

- For any ⟨W, R<sub>2</sub>, R<sub>3</sub>⟩ in CF<sup>3</sup> the structure ⟨W, R<sub>2</sub>⟩ is its restriction to L(R<sub>2</sub>).
- For any ⟨W, R<sub>2</sub>, R<sub>3</sub>⟩ in CF<sup>3</sup> its restriction ⟨W, R<sub>2</sub>⟩ is reflexive and symmetric.
  - Hence, in the class C<sub>ref,sym</sub>.
- Clearly, for every formula A of  $L(R_2)$ :

 $\langle W, R_2 
angle \models_{FO} A \quad \leftrightarrow \quad \langle W, R_2, R_3 
angle \models_{FO} A$ 

ヘロア 人間 アメヨア 人口 ア

Formal System Modal Definability Unification

### Modal Definability Problem *Th*(*CF*<sup>3</sup>) is undecidable

 Every ⟨W, R<sub>2</sub>⟩ in C<sub>ref,sym</sub> is a restriction of some ⟨W, R<sub>2</sub>, R<sub>3</sub>⟩ in CF<sup>3</sup>. Such one is with R<sub>3</sub> defined as:

Therefore, the decidability of \$\mathcal{T}h(C\_{ref,sym})\$ is reducible to that of \$\mathcal{T}h(CF^3)\$.

ヘロト 人間 とくほとくほとう

Formal System Modal Definability Unification

## Modal Definability Problem $\mathcal{T}h(\mathcal{C}\mathcal{F}^3)$ is undecidable

 Every ⟨W, R<sub>2</sub>⟩ in C<sub>ref,sym</sub> is a restriction of some ⟨W, R<sub>2</sub>, R<sub>3</sub>⟩ in CF<sup>3</sup>. Such one is with R<sub>3</sub> defined as:

Therefore, the decidability of *Th*(*C*<sub>ref,sym</sub>) is reducible to that of *Th*(*CF*<sup>3</sup>).

ヘロト 人間 とくほとくほとう

Formal System Modal Definability Unification

### Modal Definability Problem $\mathcal{T}h(\mathcal{C}\mathcal{F}^3)$ is undecidable

• Every  $\langle W, R_2 \rangle$  in  $C_{ref,sym}$  is a restriction of some  $\langle W, R_2, R_3 \rangle$  in  $C\mathcal{F}^3$ . Such one is with  $R_3$  defined as:

$$egin{aligned} & x_1 = x_2 \wedge R_2(x_2, x_3) \lor \ & x_2 = x_3 \wedge R_2(x_3, x_1) \lor \ & x_3 = x_1 \wedge R_2(x_1, x_2). \end{aligned}$$

Therefore, the decidability of \$\mathcal{Th}(C\_{ref,sym})\$ is reducible to that of \$\mathcal{Th}(C\mathcal{F}^3)\$.

◆□ > ◆□ > ◆豆 > ◆豆 > -

Formal System Modal Definability Unification

### Modal Definability Problem $\mathcal{T}h(\mathcal{CF}^3)$ is undecidable

Every ⟨W, R<sub>2</sub>⟩ in C<sub>ref,sym</sub> is a restriction of some ⟨W, R<sub>2</sub>, R<sub>3</sub>⟩ in CF<sup>3</sup>. Such one is with R<sub>3</sub> defined as:

$$egin{array}{lll} R_3(x_1,x_2,x_3) & \leftrightarrow & x_1 = x_2 \wedge R_2(x_2,x_3) \lor \ x_2 = x_3 \wedge R_2(x_3,x_1) \lor \ x_3 = x_1 \wedge R_2(x_1,x_2). \end{array}$$

Therefore, the decidability of *Th*(C<sub>ref,sym</sub>) is reducible to that of *Th*(C*F*<sup>3</sup>).

◆□ > ◆□ > ◆豆 > ◆豆 > →

Formal System Modal Definability Unification

### Modal Definability Problem $\mathcal{T}h(\mathcal{C}\mathcal{F}^3)$ is undecidable

### By "H. Rogers. *Certain logical reduction and decision problems.* Annals of Mathematics", 64, 264-284, 1956:

•  $\mathcal{Th}(C_{\mathfrak{ref},sym})$  is undecidable.

・ロト ・四ト ・ヨト ・ヨト

Formal System Modal Definability Unification

### Modal Definability Problem *Th*(*CF*<sup>3</sup>) is undecidable

By "H. Rogers. *Certain logical reduction and decision problems.* Annals of Mathematics", 64, 264-284, 1956:

•  $\mathcal{Th}(C_{ref,sym})$  is undecidable.

・ 同 ト ・ ヨ ト ・ ヨ ト

Formal System Modal Definability Unification

### Modal Definability Problem

As per "Balbiani, P., Tinchev, T.: *Undecidable problems for modal definability*", 2014:

Definition

 $\mathfrak{F} \preccurlyeq \mathfrak{F} : \mathfrak{F}$  is *weaker* than  $\mathfrak{F}'$  if for every formula  $\varphi$ 

 $\mathfrak{F}\vDash_m\varphi\quad\to\quad\mathfrak{F}'\vDash_m\varphi$ 

Ivan Nikolov, Tinko Tinchev Logic of Ternary Contact

ヘロト 人間 とくほとくほとう
Formal System Modal Definability Unification

## Modal Definability Problem

As per "Balbiani, P., Tinchev, T.: *Undecidable problems for modal definability*", 2014:

Definition

 $\mathfrak{F} \preccurlyeq \mathfrak{F} : \mathfrak{F}$  is *weaker* than  $\mathfrak{F}'$  if for every formula  $\varphi$ 

$$\mathfrak{F}\vDash_m \varphi \quad \to \quad \mathfrak{F}'\vDash_m \varphi$$

イロト イポト イヨト イヨト

Formal System Modal Definability Unification

## Modal Definability Problem

As per "Balbiani, P., Tinchev, T.: *Undecidable problems for modal definability*", 2014:

#### Definition

 $\mathfrak{F}'$  is the *relativized reduct* of  $\mathfrak{F}$  with respect to the first-order formula  $A(x_1, \ldots, x_n, y)$  and the list of individuals  $a_1, \ldots, a_n$  of  $\mathfrak{F}$  if:

ℜ' is the restriction of ℜ to the set of all individuals b such that ℜ ⊨<sub>FO</sub> A[a<sub>1</sub>,..., a<sub>n</sub>, b].

ヘロト ヘワト ヘビト ヘビト

Formal System Modal Definability Unification

## Modal Definability Problem

As per "Balbiani, P., Tinchev, T.: *Undecidable problems for modal definability*", 2014:

#### Definition

 $\mathfrak{F}'$  is the *relativized reduct* of  $\mathfrak{F}$  with respect to the first-order formula  $A(x_1, \ldots, x_n, y)$  and the list of individuals  $a_1, \ldots, a_n$  of  $\mathfrak{F}$  if:

•  $\mathfrak{F}'$  is the restriction of  $\mathfrak{F}$  to the set of all individuals *b* such that  $\mathfrak{F} \models_{FO} A[a_1, \ldots, a_n, b]$ .

イロト イ理ト イヨト イヨト

Formal System Modal Definability Unification

## Modal Definability Problem

As per "Balbiani, P., Tinchev, T.: *Undecidable problems for modal definability*", 2014:

#### Definition

The class of frames *C* is *stable* if they exist first-order formula  $A(x_1, ..., x_n, y)$  and sentence *B* such that:

(a) *C* is closed with respect to the relativized reducts of its elements with respect to *A* (and an arbitrary list of their individuals  $a_1, \ldots, a_n$ ).

ヘロト ヘワト ヘビト ヘビト

Formal System Modal Definability Unification

## Modal Definability Problem

As per "Balbiani, P., Tinchev, T.: *Undecidable problems for modal definability*", 2014:

#### Definition

The class of frames *C* is *stable* if they exist first-order formula  $A(x_1, ..., x_n, y)$  and sentence *B* such that:

(a) *C* is closed with respect to the relativized reducts of its elements with respect to *A* (and an arbitrary list of their individuals  $a_1, \ldots, a_n$ ).

ヘロト ヘワト ヘビト ヘビト

Formal System Modal Definability Unification

## Modal Definability Problem

As per "Balbiani, P., Tinchev, T.: *Undecidable problems for modal definability*", 2014:

#### Definition

The class of frames *C* is *stable* if they exist first-order formula  $A(x_1, ..., x_n, y)$  and sentence *B* such that:

(a) *C* is closed with respect to the relativized reducts of its elements with respect to *A* (and an arbitrary list of their individuals  $a_1, \ldots, a_n$ ).

イロト イポト イヨト イヨト

Formal System Modal Definability Unification

## Modal Definability Problem

 $C\mathcal{F}^3$  is stable

As per "Balbiani, P., Tinchev, T.: *Undecidable problems for modal definability*", 2014:

#### Definition

The class of frames *C* is *stable* if they exist first-order formula  $A(x_1, ..., x_n, y)$  and sentence *B* such that:

(b) For all  $\mathfrak{F}_0$  in  $\mathcal{C}$ , there exist  $\mathfrak{F}$  and  $\mathfrak{F}'$  in  $\mathcal{C}$  such that:

- *δ*<sub>0</sub> is a relativized reduct of *δ* with respect to *A* and some
   list *a*<sub>1</sub>,..., *a<sub>n</sub>* of individuals of *δ*.
- $\mathfrak{F} \vDash_{FO} B$  and  $\mathfrak{F}' \nvDash_{FO} B$
- $\mathfrak{F} \preccurlyeq \mathfrak{F}'$



э

イロト イポト イヨト イヨト

Formal System Modal Definability Unification

## Modal Definability Problem

 $\mathcal{CF}^3$  is stable

As per "Balbiani, P., Tinchev, T.: *Undecidable problems for modal definability*", 2014:

#### Definition

The class of frames *C* is *stable* if they exist first-order formula  $A(x_1, ..., x_n, y)$  and sentence *B* such that:

(b) For all  $\mathfrak{F}_0$  in  $\mathcal{C}$ , there exist  $\mathfrak{F}$  and  $\mathfrak{F}'$  in  $\mathcal{C}$  such that:

- *δ*<sub>0</sub> is a relativized reduct of *δ* with respect to *A* and some
   list *a*<sub>1</sub>,..., *a<sub>n</sub>* of individuals of *δ*.
- $\mathfrak{F} \vDash_{FO} B$  and  $\mathfrak{F}' \nvDash_{FO} B$
- $\mathfrak{F} \preccurlyeq \mathfrak{F}'$

イロン イロン イヨン イヨン

Formal System Modal Definability Unification

## Modal Definability Problem

As per "Balbiani, P., Tinchev, T.: *Undecidable problems for modal definability*", 2014:

#### Definition

The class of frames *C* is *stable* if they exist first-order formula  $A(x_1, ..., x_n, y)$  and sentence *B* such that:

(b) For all  $\mathfrak{F}_0$  in  $\mathcal{C}$ , there exist  $\mathfrak{F}$  and  $\mathfrak{F}'$  in  $\mathcal{C}$  such that:

- ℜ<sub>0</sub> is a relativized reduct of ℜ with respect to A and some list a<sub>1</sub>,..., a<sub>n</sub> of individuals of ℜ.
- $\mathfrak{F} \vDash_{FO} B$  and  $\mathfrak{F}' \nvDash_{FO} B$
- $\mathfrak{F} \preccurlyeq \mathfrak{F}'$

◆□ > ◆□ > ◆豆 > ◆豆 > -

Formal System Modal Definability Unification

## Modal Definability Problem

As per "Balbiani, P., Tinchev, T.: *Undecidable problems for modal definability*", 2014:

#### Definition

The class of frames *C* is *stable* if they exist first-order formula  $A(x_1, ..., x_n, y)$  and sentence *B* such that:

(b) For all  $\mathfrak{F}_0$  in  $\mathcal{C}$ , there exist  $\mathfrak{F}$  and  $\mathfrak{F}'$  in  $\mathcal{C}$  such that:

- ℜ<sub>0</sub> is a relativized reduct of ℜ with respect to A and some list a<sub>1</sub>,..., a<sub>n</sub> of individuals of ℜ.
- $\mathfrak{F} \vDash_{FO} B$  and  $\mathfrak{F}' \nvDash_{FO} B$
- $\mathfrak{F} \preccurlyeq \mathfrak{F}'$

イロン イロン イヨン イヨン

Formal System Modal Definability Unification

## Modal Definability Problem

As per "Balbiani, P., Tinchev, T.: *Undecidable problems for modal definability*", 2014:

#### Definition

The class of frames *C* is *stable* if they exist first-order formula  $A(x_1, ..., x_n, y)$  and sentence *B* such that:

(b) For all  $\mathfrak{F}_0$  in  $\mathcal{C}$ , there exist  $\mathfrak{F}$  and  $\mathfrak{F}'$  in  $\mathcal{C}$  such that:

- ℜ<sub>0</sub> is a relativized reduct of ℜ with respect to A and some list a<sub>1</sub>,..., a<sub>n</sub> of individuals of ℜ.
- $\mathfrak{F} \vDash_{FO} B$  and  $\mathfrak{F}' \nvDash_{FO} B$
- $\mathfrak{F} \preccurlyeq \mathfrak{F}'$

イロン イロン イヨン イヨン

Formal System Modal Definability Unification

## Modal Definability Problem

Observation:

Every relativized reduct of a contact frame is a contact frame.

Directly by definition of a contact frame.

イロト イポト イヨト イヨト

Formal System Modal Definability Unification

## Modal Definability Problem

Observation:

Every relativized reduct of a contact frame is a contact frame.

▷ Directly by definition of a *contact frame*.

< 🗇 🕨 🔸

.⊒...>

Formal System Modal Definability Unification

### **Modal Definability Problem** *CF*<sup>3</sup> is *stable* (b)

• 
$$A(x,y) := R_2(x,y) \land x \neq y$$

•  $B := \exists x \exists y (x \neq y)$ 

Let 
$$\mathfrak{F}_0 = \langle W_0, R_2^0, R_3^0 \rangle$$
 be in  $\mathcal{CF}^3$ .

Let *a* be an element not in  $W_0$ .

ヘロア 人間 アメヨア 人口 ア

Formal System Modal Definability Unification

### **Modal Definability Problem** *CF*<sup>3</sup> is *stable* (b)

• 
$$A(x,y) := R_2(x,y) \land x \neq y$$

•  $B := \exists x \exists y (x \neq y)$ 

Let  $\mathfrak{F}_0 = \langle W_0, R_2^0, R_3^0 \rangle$  be in  $\mathcal{CF}^3$ .

Let *a* be an element not in  $W_0$ .

ヘロン ヘアン ヘビン ヘビン

Formal System Modal Definability Unification

### **Modal Definability Problem** *CF*<sup>3</sup> is *stable* (b)

• 
$$A(x,y) := R_2(x,y) \land x \neq y$$

• 
$$B := \exists x \exists y (x \neq y)$$

Let 
$$\mathfrak{F}_0 = \langle W_0, R_2^0, R_3^0 \rangle$$
 be in  $\mathcal{CF}^3$ .

Let *a* be an element not in  $W_0$ .

イロト イポト イヨト イヨト

Formal System Modal Definability Unification

### Modal Definability Problem

 $C\mathcal{F}^3$  is *stable* (b)

Let  $\mathfrak{F} = \langle W, R_2, R_3 \rangle$  be defined as follows:

•  $W = W_0 \cup \{a\}$ 

•  $R_2 = R_2^0 \cup (\{a\} \times W_0) \cup (W_0 \times \{a\}) \cup \{\langle a, a \rangle\}$ •  $R_3 =$ 

$$\begin{array}{l} R_3^0 \cup \\ \{a\} \times \{a\} \times W_0 \cup \\ \{a\} \times W_0 \times \{a\} \cup \\ W_0 \times \{a\} \times \{a\} \cup \\ \{\langle w, w, a \rangle \mid w \in W_0\} \cup \\ \{\langle w, a, w \rangle \mid w \in W_0\} \cup \\ \{\langle a, w, w \rangle \mid w \in W_0\} \cup \\ \{\langle a, a, a \rangle\} \end{array}$$

<ロ> (四) (四) (三) (三) (三)

Formal System Modal Definability Unification

### Modal Definability Problem

 $C\mathcal{F}^3$  is *stable* (b)

Let  $\mathfrak{F}=\langle \textit{W},\textit{R}_2,\textit{R}_3\rangle$  be defined as follows:

• 
$$W = W_0 \cup \{a\}$$

•  $R_2 = R_2^0 \cup (\{a\} \times W_0) \cup (W_0 \times \{a\}) \cup \{\langle a, a \rangle\}$ •  $R_3 =$ 

$$\begin{array}{l} R_3^0 \cup \\ \{a\} \times \{a\} \times W_0 \cup \\ \{a\} \times W_0 \times \{a\} \cup \\ W_0 \times \{a\} \times \{a\} \cup \\ \{\langle w, w, a \rangle \mid w \in W_0\} \cup \\ \{\langle w, a, w \rangle \mid w \in W_0\} \cup \\ \{\langle a, w, w \rangle \mid w \in W_0\} \cup \\ \{\langle a, a, a \rangle\} \end{array}$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Formal System Modal Definability Unification

### Modal Definability Problem

 $C\mathcal{F}^3$  is *stable* (b)

Let  $\mathfrak{F} = \langle W, R_2, R_3 \rangle$  be defined as follows:

• 
$$W = W_0 \cup \{a\}$$

• 
$$R_2 = R_2^0 \cup (\{a\} \times W_0) \cup (W_0 \times \{a\}) \cup \{\langle a, a \rangle\}$$
  
•  $R_3 =$ 

$$\begin{array}{l} R_3^0 \cup \\ \{a\} \times \{a\} \times W_0 \cup \\ \{a\} \times W_0 \times \{a\} \cup \\ W_0 \times \{a\} \times \{a\} \cup \\ \{\langle w, w, a \rangle \mid w \in W_0\} \cup \\ \{\langle w, a, w \rangle \mid w \in W_0\} \cup \\ \{\langle a, w, w \rangle \mid w \in W_0\} \cup \\ \{\langle a, a, a \rangle\} \end{array}$$

ヘロト 人間 ト ヘヨト ヘヨト

Formal System Modal Definability Unification

### **Modal Definability Problem** *CF*<sup>3</sup> is *stable* (b)

### Let $\mathfrak{F}' = \langle W', R'_2, R'_3 \rangle$ be the single element frame with • $W' = \{a\}.$

ヘロト 人間 とくほとくほとう

ъ

Formal System Modal Definability Unification

### **Modal Definability Problem** *CF*<sup>3</sup> is *stable* (b)

#### We have:

- $\mathfrak{F}$  and  $\mathfrak{F}'$  are *contact frames*.
- ℜ<sub>0</sub> is a relativized reduct of ℜ with respect to A(x, y) and the individual a of ℜ.
- $\mathfrak{F} \vDash_{FO} B$  and  $\mathfrak{F}' \nvDash_{FO} B$

ヘロト ヘアト ヘビト ヘビト

Formal System Modal Definability Unification

### **Modal Definability Problem** *CF*<sup>3</sup> is *stable* (b)

#### We have:

- $\mathfrak{F}$  and  $\mathfrak{F}'$  are contact frames.
- ℜ<sub>0</sub> is a relativized reduct of ℜ with respect to A(x, y) and the individual a of ℜ.
- $\mathfrak{F} \vDash_{FO} B$  and  $\mathfrak{F}' \nvDash_{FO} B$

Formal System Modal Definability Unification

### **Modal Definability Problem** *CF*<sup>3</sup> is *stable* (b)

We have:

- $\mathfrak{F}$  and  $\mathfrak{F}'$  are *contact frames*.
- ℜ<sub>0</sub> is a relativized reduct of ℜ with respect to A(x, y) and the individual a of ℜ.

•  $\mathfrak{F} \vDash_{FO} B$  and  $\mathfrak{F}' \nvDash_{FO} B$ 

・ロン・西方・ ・ ヨン・ ヨン・

Formal System Modal Definability Unification

### **Modal Definability Problem** *CF*<sup>3</sup> is *stable* (b)

We have:

- $\mathfrak{F}$  and  $\mathfrak{F}'$  are *contact frames*.
- ℜ<sub>0</sub> is a relativized reduct of ℜ with respect to A(x, y) and the individual a of ℜ.
- $\mathfrak{F} \vDash_{FO} B$  and  $\mathfrak{F}' \nvDash_{FO} B$

・ 同 ト ・ ヨ ト ・ ヨ ト

Formal System Modal Definability Unification

### **Modal Definability Problem** *CF*<sup>3</sup> is *stable* (b)

Let us consider the mapping  $f : \{0, \{a\}\} \longrightarrow \{0, W\}$  such that:

• 
$$f(0) = 0$$
  
 $f(\{a\}) = W$ 

For an arbitrary 𝒱' for 𝔅' define a valuation 𝒱 for 𝔅:
 𝒱(𝑥) = 𝑘(𝒱'(𝑥))

ヘロト 人間 とくほとくほとう

Formal System Modal Definability Unification

## Modal Definability Problem

Let us consider the mapping  $f : \{0, \{a\}\} \longrightarrow \{0, W\}$  such that:

• 
$$f(0) = 0$$
  
 $f(\{a\}) = W$ 

For an arbitrary 𝒱' for 𝔅' define a valuation 𝒱 for 𝔅:
 𝒱(𝑥) = 𝑘(𝒱'(𝑥))

ヘロト 人間 とくほとくほとう

Formal System Modal Definability Unification

## Modal Definability Problem

Let us consider the mapping  $f : \{0, \{a\}\} \longrightarrow \{0, W\}$  such that:

• 
$$f(0) = 0$$
  
 $f(\{a\}) = W$ 

For an arbitrary 𝒱' for 𝔅' define a valuation 𝒱 for 𝔅:
 𝒱(𝑥) = 𝑘(𝒱'(𝑥))

・ 同 ト ・ ヨ ト ・ ヨ ト

Formal System Modal Definability Unification

## Modal Definability Problem *CF*<sup>3</sup> is *stable* (b)

#### Then:

•  $\mathcal{V}(\tau) = f(\mathcal{V}'(\tau))$ , for any term  $\tau$  of  $L_{R_3}$ .

• For an arbitrary formula  $\varphi$  of  $L_{R_3}$ :

 $\langle \mathfrak{F}, \mathcal{V} \rangle \vDash_{m} \varphi \quad \leftrightarrow \quad \langle \mathfrak{F}', \mathcal{V}' \rangle \vDash_{m} \varphi$ 

Therefore:

•  $\mathfrak{F}\vDash_m \varphi \to \mathfrak{F}'\vDash_m \varphi$  i.e.  $\mathfrak{F}\preccurlyeq \mathfrak{F}'$ 

ヘロト 人間 とくほとくほとう

Formal System Modal Definability Unification

## Modal Definability Problem

Then:

•  $\mathcal{V}(\tau) = f(\mathcal{V}'(\tau))$ , for any term  $\tau$  of  $L_{R_3}$ .

• For an arbitrary formula  $\varphi$  of  $L_{R_3}$ :

 $\langle \mathfrak{F}, \mathcal{V} \rangle \vDash_{m} \varphi \quad \leftrightarrow \quad \langle \mathfrak{F}', \mathcal{V}' \rangle \vDash_{m} \varphi$ 

Therefore:

•  $\mathfrak{F}\vDash_m \varphi \to \mathfrak{F}'\vDash_m \varphi$  i.e.  $\mathfrak{F}\preccurlyeq \mathfrak{F}'$ 

ヘロト 人間 とくほとくほとう

ъ

Formal System Modal Definability Unification

# Modal Definability Problem

Then:

- $\mathcal{V}(\tau) = f(\mathcal{V}'(\tau))$ , for any term  $\tau$  of  $L_{R_3}$ .
- For an arbitrary formula  $\varphi$  of  $L_{R_3}$ :

 $\langle \mathfrak{F}, \mathcal{V} \rangle \vDash_{m} \varphi \quad \leftrightarrow \quad \langle \mathfrak{F}', \mathcal{V}' \rangle \vDash_{m} \varphi$ 

Therefore:

•  $\mathfrak{F} \vDash m \varphi \to \mathfrak{F}' \vDash m \varphi$  i.e.  $\mathfrak{F} \preccurlyeq \mathfrak{F}'$ 

・ロン ・四 と ・ ヨ と ・ ヨ

Formal System Modal Definability Unification

# Modal Definability Problem

Then:

•  $\mathcal{V}(\tau) = f(\mathcal{V}'(\tau))$ , for any term  $\tau$  of  $L_{R_3}$ .

• For an arbitrary formula  $\varphi$  of  $L_{R_3}$ :

 $\langle \mathfrak{F}, \mathcal{V} \rangle \vDash_{m} \varphi \quad \leftrightarrow \quad \langle \mathfrak{F}', \mathcal{V}' \rangle \vDash_{m} \varphi$ 

Therefore:

•  $\mathfrak{F} \vDash_m \varphi \to \mathfrak{F}' \vDash_m \varphi$  i.e.  $\mathfrak{F} \preccurlyeq \mathfrak{F}'$ 

<ロ> (四) (四) (三) (三) (三)

Formal System Modal Definability Unification

## Outline

### Logics of *n*-ary Contact

- Objective
- Formal System
- Completeness of the Formal System

### 2 Logics of Ternary Contact

- Formal System
- Modal Definability
- Unification

・ロト ・四ト ・ヨト ・ヨト

æ

Formal System Modal Definability Unification

## **Unification Problems**

**Elementary Unification** 

#### Definition

#### Elementary unification problem:

Input:  $\varphi[x_1, ..., x_n]$ Output: "There are terms (of  $L_{R_3}$ )  $\tau_1, ..., \tau_n$  such that  $C\mathcal{F}^3 \vDash \varphi[x_1/\tau_1, ..., x_n/\tau_n]$ " or "There are not terms (of  $L_{R_3}$ )  $\tau_1, ..., \tau_n$  such that  $C\mathcal{F}^3 \vDash \varphi[x_1/\tau_1, ..., x_n/\tau_n]$ "

イロト イポト イヨト イヨト

Formal System Modal Definability Unification

## **Unification Problems**

**Elementary Unification** 

#### Definition

#### Elementary unification problem:

Input:  $\varphi[x_1,\ldots,x_n]$ 

*Output:* "*There are* terms (of  $L_{R_3}$ )  $\tau_1, \ldots, \tau_n$  such that  $C\mathcal{F}^3 \models \varphi[x_1/\tau_1, \ldots, x_n/\tau_n]$ "

#### or

"*There are not* terms (of  $L_{R_3}$ )  $\tau_1, \ldots, \tau_n$  such that  $\mathcal{CF}^3 \models \varphi[x_1/\tau_1, \ldots, x_n/\tau_n]$ "

イロト イポト イヨト イヨト

Formal System Modal Definability Unification

## Unification Problems

**Elementary Unification** 

#### Definition

Elementary unification problem:

Input: 
$$\varphi[x_1, ..., x_n]$$
  
Output: "There are terms (of  $L_{R_3}$ )  $\tau_1, ..., \tau_n$  such that  
 $C\mathcal{F}^3 \models \varphi[x_1/\tau_1, ..., x_n/\tau_n]$ "  
or  
"There are not terms (of  $L_{R_3}$ )  $\tau_1, ..., \tau_n$  such that  
 $C\mathcal{F}^3 \models \varphi[x_1/\tau_1, ..., x_n/\tau_n]$ "

э

Formal System Modal Definability Unification

## **Unification Problems**

**Parametric Unification** 

#### Definition

#### Parametric unification problem:

Input:  $\varphi[p_1, \dots, p_k, x_1, \dots, x_n]$ Output: "There are terms (of  $L_{R_3}$ )  $\tau_1, \dots, \tau_n$  such that  $C\mathcal{F}^3 \models \varphi[p_1, \dots, p_k, x_1/\tau_1, \dots, x_n/\tau_n]$ " or "There are not terms (of  $L_{R_3}$ )  $\tau_1, \dots, \tau_n$  such tha  $C\mathcal{F}^3 \models \varphi[p_1, \dots, p_k, x_1/\tau_1, \dots, x_n/\tau_n]$ "

イロン 不同 とくほ とくほ とう
Formal System Modal Definability Unification

#### **Unification Problems**

**Parametric Unification** 

#### Definition

#### Parametric unification problem:

Input:  $\varphi[p_1, \dots, p_k, x_1, \dots, x_n]$ Output: "There are terms (of  $L_{R_3}$ )  $\tau_1, \dots, \tau_n$  such that  $C\mathcal{F}^3 \models \varphi[p_1, \dots, p_k, x_1/\tau_1, \dots, x_n/\tau_n]$ " or "There are not terms (of  $L_{R_3}$ )  $\tau_1, \dots, \tau_n$  such t

 $\mathcal{CF}^3 \vDash \varphi[p_1, \ldots, p_k, x_1/\tau_1, \ldots, x_n/\tau_n]"$ 

イロン 不同 とくほう イヨン

Formal System Modal Definability Unification

### **Unification Problems**

Parametric Unification

#### Definition

Parametric unification problem:

Input: 
$$\varphi[p_1, \dots, p_k, x_1, \dots, x_n]$$
  
Output: "There are terms (of  $L_{R_3}$ )  $\tau_1, \dots, \tau_n$  such that  
 $C\mathcal{F}^3 \models \varphi[p_1, \dots, p_k, x_1/\tau_1, \dots, x_n/\tau_n]$ "  
or  
"There are not terms (of  $L_{R_3}$ )  $\tau_1, \dots, \tau_n$  such that  
 $C\mathcal{F}^3 \models \varphi[p_1, \dots, p_k, x_1/\tau_1, \dots, x_n/\tau_n]$ "

イロト イポト イヨト イヨト

Formal System Modal Definability Unification

### Parametric Unification Problem

#### Parametric Unification Problem Outcome

The *parametric unification problem* for the class of contact frames  $C\mathcal{F}^3$  is *decidable*.

・ 同 ト ・ ヨ ト ・ ヨ ト

Formal System Modal Definability Unification

## Parametric Unification Problem

#### Assume that they exist $\tau_1, \ldots, \tau_n$ (of $L_{R_3}$ ) such that $C\mathcal{F}^3 \models \varphi[p_1, \ldots, p_k, x_1/\tau_1, \ldots, x_n/\tau_n]$

Let  $\varphi'$  be  $\varphi[p_1, \ldots, p_k, x_1/\tau_1, \ldots, x_n/\tau_n]$  and  $\varphi''$  be  $\varphi'$  with substituted all variables but the parameters  $p_1, \ldots, p_k$  with 1.

Let  $\mathfrak{F}$  be arbitrary from  $\mathcal{CF}^3$  and  $\mathcal{V}$  an arbitrary valuation on  $\mathfrak{F}$ .

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Formal System Modal Definability Unification

## Parametric Unification Problem

Assume that they exist  $\tau_1, \ldots, \tau_n$  (of  $L_{R_3}$ ) such that  $\mathcal{CF}^3 \vDash \varphi[p_1, \ldots, p_k, x_1/\tau_1, \ldots, x_n/\tau_n]$ 

Let  $\varphi'$  be  $\varphi[p_1, \ldots, p_k, x_1/\tau_1, \ldots, x_n/\tau_n]$  and  $\varphi''$  be  $\varphi'$  with substituted all variables but the parameters  $p_1, \ldots, p_k$  with 1.

Let  $\mathfrak{F}$  be arbitrary from  $\mathcal{CF}^3$  and  $\mathcal{V}$  an arbitrary valuation on  $\mathfrak{F}$ .

・ロト ・厚ト ・ヨト ・ヨト

Formal System Modal Definability Unification

## Parametric Unification Problem

Assume that they exist  $\tau_1, \ldots, \tau_n$  (of  $L_{R_3}$ ) such that  $\mathcal{CF}^3 \vDash \varphi[p_1, \ldots, p_k, x_1/\tau_1, \ldots, x_n/\tau_n]$ 

Let  $\varphi'$  be  $\varphi[p_1, \ldots, p_k, x_1/\tau_1, \ldots, x_n/\tau_n]$  and  $\varphi''$  be  $\varphi'$  with substituted all variables but the parameters  $p_1, \ldots, p_k$  with 1.

Let  $\mathfrak{F}$  be arbitrary from  $\mathcal{CF}^3$  and  $\mathcal{V}$  an arbitrary valuation on  $\mathfrak{F}$ .

・ロト ・厚ト ・ヨト ・ヨト

Formal System Modal Definability Unification

# Parametric Unification Problem

Let  $\mathcal{V}'$ :

 $\mathcal{V}'(x) = \mathcal{V}(1)$  for all x in  $\varphi'$  other than the parameters  $p_1, \ldots, p_k$ .

 $\mathcal{V}'(y) = \mathcal{V}(y)$  otherwise.

Then, for any  $\mathfrak{F}$  in  $C\mathcal{F}^3$ :

$$\langle \mathfrak{F}, \mathcal{V}' \rangle \vDash \varphi' \quad \leftrightarrow \quad \langle \mathfrak{F}, \mathcal{V} \rangle \vDash \varphi''$$

ヘロン ヘアン ヘビン ヘビン

Formal System Modal Definability Unification

### Parametric Unification Problem

Let  $\mathcal{V}'$ :

 $\mathcal{V}'(x) = \mathcal{V}(1)$  for all x in  $\varphi'$  other than the parameters  $p_1, \ldots, p_k$ .

 $\mathcal{V}'(y) = \mathcal{V}(y)$  otherwise.

Then, for any  $\mathfrak{F}$  in  $\mathcal{CF}^3$ :

$$\langle \mathfrak{F}, \mathcal{V}' \rangle \vDash \varphi' \quad \leftrightarrow \quad \langle \mathfrak{F}, \mathcal{V} \rangle \vDash \varphi''$$

ヘロト 人間 とくほとくほとう

ъ

Formal System Modal Definability Unification

## Parametric Unification Problem

Let  $\mathcal{V}'$ :

 $\mathcal{V}'(x) = \mathcal{V}(1)$  for all x in  $\varphi'$  other than the parameters  $p_1, \dots, p_k$ .  $\mathcal{V}'(y) = \mathcal{V}(y)$  otherwise.

Then, for any  $\mathfrak{F}$  in  $\mathcal{CF}^3$ :

$$\langle \mathfrak{F}, \mathcal{V}' \rangle \vDash \varphi' \quad \leftrightarrow \quad \langle \mathfrak{F}, \mathcal{V} \rangle \vDash \varphi''$$

ヘロト ヘアト ヘビト ヘビト

ъ

Formal System Modal Definability Unification

# Parametric Unification Problem

Therefore, if there are  $\tau_1, \ldots, \tau_n$  such that

$$\mathcal{CF}^{3} \vDash \varphi[p_{1}, \ldots, p_{k}, x_{1}/\tau_{1}, \ldots, x_{n}/\tau_{n}],$$

then there are terms  $\kappa_1, \ldots, \kappa_n$  with variables only among  $p_1, \ldots, p_k$  such that:

$$\mathcal{CF}^{3} \vDash \varphi[p_{1}, \ldots, p_{k}, x_{1}/\kappa_{1}, \ldots, x_{n}/\kappa_{n}]$$

ヘロト 人間 ト ヘヨト ヘヨト

Formal System Modal Definability Unification

# Parametric Unification Problem

The problem of parametric unification is reduced to checking if some of (2<sup>2<sup>k</sup></sup>)<sup>n</sup> (the number of distinct vectors of terms κ<sub>1</sub>,..., κ<sub>n</sub>) formulas is in *L*(C*F*<sup>3</sup>).

It is the sufficient to show:

•  $\mathcal{L}(\mathcal{CF}^3)$  is decidable.

・ 同 ト ・ ヨ ト ・ ヨ ト

Formal System Modal Definability Unification

# Parametric Unification Problem

The problem of parametric unification is reduced to checking if some of (2<sup>2<sup>k</sup></sup>)<sup>n</sup> (the number of distinct vectors of terms κ<sub>1</sub>,..., κ<sub>n</sub>) formulas is in *L*(C*F*<sup>3</sup>).

It is the sufficient to show:

•  $\mathcal{L}(\mathcal{CF}^3)$  is decidable.

Ivan Nikolov, Tinko Tinchev Logic of Ternary Contact

Formal System Modal Definability Unification

### $\mathcal{L}(\mathcal{CF}^3)$ is decidable Formal System $\mathcal{L}_{Cont3}$ : Nonlogical Axioms

- Logical axioms: sentential, identity and equivalence, congruence.
- **Boolean algebra axioms**: stipulating a non-degenerate Boolean algebra.
- Proximity axioms:
  - $R_n(x_1,...,x_n) \Rightarrow x_1 \neq 0$
  - $R_n(x'_1 \cup x''_1, x_2, ..., x_n) \Leftrightarrow R_n(x'_1, x_2, ..., x_n) \lor R_n(x''_1, x_2, ..., x_n)$

<ロト <回 > < 注 > < 注 > 、

Formal System Modal Definability Unification

### $\mathcal{L}(\mathcal{CF}^3)$ is decidable Formal System $\mathcal{L}_{Cont3}$ : Nonlogical Axioms

- Logical axioms: sentential, identity and equivalence, congruence.
- Boolean algebra axioms: stipulating a non-degenerate Boolean algebra.
- Proximity axioms:
  - $R_n(x_1,...,x_n) \Rightarrow x_1 \neq 0$
  - $R_n(x'_1 \cup x''_1, x_2, ..., x_n) \Leftrightarrow R_n(x'_1, x_2, ..., x_n) \lor R_n(x''_1, x_2, ..., x_n)$

◆□ > ◆□ > ◆豆 > ◆豆 > ●

Formal System Modal Definability Unification

### $\mathcal{L}(\mathcal{CF}^3)$ is decidable Formal System $\mathcal{L}_{Cont3}$ : Nonlogical Axioms

- Logical axioms: sentential, identity and equivalence, congruence.
- **Boolean algebra axioms**: stipulating a non-degenerate Boolean algebra.
- Proximity axioms:
  - $R_n(x_1,...,x_n) \Rightarrow x_1 \neq 0$
  - $R_n(x'_1 \cup x''_1, x_2, ..., x_n) \Leftrightarrow R_n(x'_1, x_2, ..., x_n) \lor R_n(x''_1, x_2, ..., x_n)$

ヘロン ヘロン ヘビン ヘビン

Э

Formal System Modal Definability Unification

### $\mathcal{L}(\mathcal{CF}^3)$ is decidable Formal System $\mathcal{L}_{Cont3}$ : Nonlogical Axioms

- Logical axioms: sentential, identity and equivalence, congruence.
- **Boolean algebra axioms**: stipulating a non-degenerate Boolean algebra.
- Proximity axioms:
  - $R_n(x_1,...,x_n) \Rightarrow x_1 \neq 0$
  - $R_n(x'_1 \cup x''_1, x_2, ..., x_n) \Leftrightarrow R_n(x'_1, x_2, ..., x_n) \lor R_n(x''_1, x_2, ..., x_n)$

ヘロン ヘロン ヘヨン ヘヨン

Formal System Modal Definability Unification

 $\mathcal{L}(\mathcal{CF}^3)$  is decidable Formal System  $\mathcal{L}_{Cont3}$ : Nonlogical Axioms

(c1) 
$$(\sigma : \{1, \ldots, n\} \rightarrow \{1, \ldots, n\})$$
  
 $R_n(x_1, \ldots, x_n) \Rightarrow R_n(x_{\sigma(1)}, \ldots, x_{\sigma(n)})$ 

(c2)

$$R_{n+1}(x_1, x_1, x_2, \ldots, x_n) \Leftrightarrow R_n(x_1, x_2, \ldots, x_n)$$

(c3)

$$\neg(x=0) \Rightarrow R_2(x,x)$$

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

æ

<del>(c4)</del>

$$\neg (x=0) \land \neg (-x=0) \Rightarrow R_2(x,-x)$$

Formal System Modal Definability Unification

 $\mathcal{L}(\mathcal{CF}^3)$  is decidable Formal System  $\mathcal{L}_{Cont3}$ : Nonlogical Axioms

(c1) 
$$(\sigma : \{1, \ldots, n\} \rightarrow \{1, \ldots, n\})$$
  
 $R_n(x_1, \ldots, x_n) \Rightarrow R_n(x_{\sigma(1)}, \ldots, x_{\sigma(n)})$ 

(c2)

$$R_{n+1}(x_1, x_1, x_2, \ldots, x_n) \Leftrightarrow R_n(x_1, x_2, \ldots, x_n)$$

(c3)

$$\neg(x=0) \Rightarrow R_2(x,x)$$

ヘロア 人間 アメヨア 人口 ア

æ

<del>(c4)</del>

$$\neg (x=0) \land \neg (-x=0) \Rightarrow R_2(x,-x)$$

Formal System Modal Definability Unification

 $\mathcal{L}(\mathcal{CF}^3)$  is decidable Formal System  $\mathcal{L}_{Cont3}$ : Nonlogical Axioms

(c1) 
$$(\sigma : \{1, \ldots, n\} \rightarrow \{1, \ldots, n\})$$
  
 $R_n(x_1, \ldots, x_n) \Rightarrow R_n(x_{\sigma(1)}, \ldots, x_{\sigma(n)})$ 

(c2)

$$R_{n+1}(x_1, x_1, x_2, \ldots, x_n) \Leftrightarrow R_n(x_1, x_2, \ldots, x_n)$$

(c3)

$$\neg(x=0) \Rightarrow R_2(x,x)$$

ヘロア 人間 アメヨア 人口 ア

æ

<del>(c4)</del>

$$\neg (x=0) \land \neg (-x=0) \Rightarrow R_2(x,-x)$$

Formal System Modal Definability Unification

### $\mathcal{L}(\mathcal{CF}^3)$ is decidable Formal System $\mathcal{L}_{Cont3}$ : Inference Rules

#### • Inference rules: uniform substitution, modus ponens.

Ivan Nikolov, Tinko Tinchev Logic of Ternary Contact

イロト イポト イヨト イヨト

Formal System Modal Definability Unification

#### $\mathcal{L}(\mathcal{CF}^3)$ is decidable Formal System $\mathcal{L}_{Cont3}$ Completeness

#### Completeness

 $\mathcal{L}_{Cont3}$  is complete with respect to  $\mathcal{CF}^3$ .

ヘロア 人間 アメヨア 人口 ア

Formal System Modal Definability Unification

 $\mathcal{L}(\mathcal{CF}^3)$  is decidable Formal System  $\mathcal{L}_{Cont3}$  Completeness

Correctness: Trivial verification.

Completeness:

Let us assume that  $\nvdash_{\mathcal{L}_{Cont3}} \varphi$ .

イロト イポト イヨト イヨト

Formal System Modal Definability Unification

### $\mathcal{L}(\mathcal{CF}^3)$ is decidable Formal System $\mathcal{L}_{Cont3}$ Completeness

- Let us consider  $L_{R_3}$  as a first-order language.
- Let *T* be the first-order theory in  $L_{R_3}$  with no nonlogical axioms. Let  $\Gamma$  be the set of all nonlogical axioms of the formal system  $\mathcal{L}_{Cont3}$ .
- Let  $\varphi'$  be the *closure* of  $\varphi(x_1, \ldots, x_n)$ .
- Let  $T_c$  be obtained from T by adding to the language  $L_{R_3}$  new constants  $c_1, \ldots, c_n$ .

ヘロア 人間 アメヨア 人口 ア

Formal System Modal Definability Unification

 $\mathcal{L}(\mathcal{CF}^3)$  is decidable Formal System  $\mathcal{L}_{Cont3}$  Completeness

- Let us consider  $L_{R_3}$  as a first-order language.
- Let *T* be the first-order theory in  $L_{B_3}$  with no nonlogical axioms. Let  $\Gamma$  be the set of all nonlogical axioms of the formal system  $\mathcal{L}_{Cont3}$ .
- Let  $\varphi'$  be the *closure* of  $\varphi(x_1, \ldots, x_n)$ .
- Let T<sub>c</sub> be obtained from T by adding to the language L<sub>R<sub>3</sub></sub>new constants c<sub>1</sub>,..., c<sub>n</sub>.

ヘロン ヘアン ヘビン ヘビン

Formal System Modal Definability Unification

### $\mathcal{L}(\mathcal{CF}^3)$ is decidable Formal System $\mathcal{L}_{Cont3}$ Completeness

- Let us consider  $L_{R_3}$  as a first-order language.
- Let *T* be the first-order theory in  $L_{B_3}$  with no nonlogical axioms. Let  $\Gamma$  be the set of all nonlogical axioms of the formal system  $\mathcal{L}_{Cont3}$ .
- Let  $\varphi'$  be the *closure* of  $\varphi(x_1, \ldots, x_n)$ .
- Let *T<sub>c</sub>* be obtained from *T* by adding to the language *L<sub>R<sub>3</sub></sub>* new constants *c*<sub>1</sub>,..., *c<sub>n</sub>*.

ヘロン ヘアン ヘビン ヘビン

Formal System Modal Definability Unification

### $\mathcal{L}(\mathcal{CF}^3)$ is decidable Formal System $\mathcal{L}_{Cont3}$ Completeness

- Let us consider  $L_{R_3}$  as a first-order language.
- Let *T* be the first-order theory in  $L_{B_3}$  with no nonlogical axioms. Let  $\Gamma$  be the set of all nonlogical axioms of the formal system  $\mathcal{L}_{Cont3}$ .
- Let  $\varphi'$  be the *closure* of  $\varphi(x_1, \ldots, x_n)$ .
- Let T<sub>c</sub> be obtained from T by adding to the language L<sub>R<sub>3</sub></sub> new constants c<sub>1</sub>,..., c<sub>n</sub>.

◆□ > ◆□ > ◆豆 > ◆豆 > -

Formal System Modal Definability Unification

#### $\mathcal{L}(\mathcal{CF}^3)$ is decidable Formal System $\mathcal{L}_{Cont3}$ Completeness

- *T<sub>c</sub>*[Γ; ¬φ[*c*<sub>1</sub>,..., *c<sub>n</sub>*]] is an extension of *T<sub>c</sub>*[Γ; ¬φ']. *T<sub>c</sub>*[Γ; ¬φ'] is an extension of *T*[Γ; ¬φ'].
- If *T*[Γ; ¬φ'] is inconsistent, then such is *T<sub>c</sub>*[Γ; ¬φ[*c*<sub>1</sub>,..., *c<sub>n</sub>*]].
   By the *Hilbert-Ackermann* theorem there is a *quasi-tautology* ¬ψ'<sub>1</sub> ∨ ... ∨ ¬ψ'<sub>n</sub> ∨ ¬¬φ[*c*<sub>1</sub>,..., *c<sub>n</sub>*], where ψ'<sub>i</sub> are instances of formulas from Γ.
- Hence, there is a quasi-tautology ¬ψ<sub>1</sub> ∨ ... ∨ ¬ψ<sub>n</sub> ∨ φ, where ψ<sub>i</sub> are formulas from Γ and thus ⊢<sub>⊥Cont3</sub> φ.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Formal System Modal Definability Unification

#### $\mathcal{L}(\mathcal{CF}^3)$ is decidable Formal System $\mathcal{L}_{Cont3}$ Completeness

- *T<sub>c</sub>*[Γ; ¬φ[*c*<sub>1</sub>,..., *c<sub>n</sub>*]] is an extension of *T<sub>c</sub>*[Γ; ¬φ']. *T<sub>c</sub>*[Γ; ¬φ'] is an extension of *T*[Γ; ¬φ'].
- If *T*[Γ; ¬φ'] is inconsistent, then such is *T<sub>c</sub>*[Γ; ¬φ[*c*<sub>1</sub>,..., *c<sub>n</sub>*]].
   By the *Hilbert-Ackermann* theorem there is a *quasi-tautology* ¬ψ'<sub>1</sub> ∨ ... ∨ ¬ψ'<sub>n</sub> ∨ ¬¬φ[*c*<sub>1</sub>,..., *c<sub>n</sub>*], where ψ'<sub>i</sub> are instances of formulas from Γ.
- Hence, there is a quasi-tautology ¬ψ<sub>1</sub> ∨ ... ∨ ¬ψ<sub>n</sub> ∨ φ, where ψ<sub>i</sub> are formulas from Γ and thus ⊢<sub>⊥Cont3</sub> φ.

イロン 不良 とくほう 不良 とうほ

Formal System Modal Definability Unification

#### $\mathcal{L}(\mathcal{CF}^3)$ is decidable Formal System $\mathcal{L}_{Cont3}$ Completeness

- *T<sub>c</sub>*[Γ; ¬φ[*c*<sub>1</sub>,..., *c<sub>n</sub>*]] is an extension of *T<sub>c</sub>*[Γ; ¬φ']. *T<sub>c</sub>*[Γ; ¬φ'] is an extension of *T*[Γ; ¬φ'].
- If *T*[Γ; ¬φ'] is inconsistent, then such is *T<sub>c</sub>*[Γ; ¬φ[*c*<sub>1</sub>,..., *c<sub>n</sub>*]].
   By the *Hilbert-Ackermann* theorem there is a *quasi-tautology* ¬ψ'<sub>1</sub> ∨ ... ∨ ¬ψ'<sub>n</sub> ∨ ¬¬φ[*c*<sub>1</sub>,..., *c<sub>n</sub>*], where ψ'<sub>i</sub> are instances of formulas from Γ.
- Hence, there is a quasi-tautology ¬ψ<sub>1</sub> ∨ ... ∨ ¬ψ<sub>n</sub> ∨ φ, where ψ<sub>i</sub> are formulas from Γ and thus ⊢<sub>ℒ<sub>cont3</sub> φ.
  </sub>

・ロト ・回ト ・ヨト ・ヨト ・ヨ

Formal System Modal Definability Unification

 $\mathcal{L}(\mathcal{CF}^3)$  is decidable Formal System  $\mathcal{L}_{Cont3}$  Completeness

- A first-order model 𝔅 of *T*[Γ; ¬φ'] is a Boolean frame in which there is a valuation 𝒱 such that ⟨𝔅, 𝒱⟩ ⊨ ¬φ.
- The set of values of V applied on the variables of φ generates a finite Boolean subalgebra of the universe of B, hence, a finite subframe B<sub>0</sub> of B a model of L<sub>Cont3</sub>.
- Morevoer, there is a valuation  $\mathcal{V}_0$  such that  $\langle \mathfrak{B}_0, \mathcal{V}_0 \rangle \vDash \neg \varphi$ .

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Formal System Modal Definability Unification

 $\mathcal{L}(\mathcal{CF}^3)$  is decidable Formal System  $\mathcal{L}_{Cont3}$  Completeness

- A first-order model 𝔅 of *T*[Γ; ¬φ'] is a Boolean frame in which there is a valuation 𝒱 such that ⟨𝔅, 𝒱⟩ ⊨ ¬φ.
- The set of values of V applied on the variables of φ generates a finite Boolean subalgebra of the universe of 𝔅, hence, a finite subframe 𝔅<sub>0</sub> of 𝔅 a model of *L<sub>Cont3</sub>*.
- Morevoer, there is a valuation  $\mathcal{V}_0$  such that  $\langle \mathfrak{B}_0, \mathcal{V}_0 \rangle \vDash \neg \varphi$ .

ヘロト ヘワト ヘビト ヘビト

Formal System Modal Definability Unification

 $\mathcal{L}(\mathcal{CF}^3)$  is decidable Formal System  $\mathcal{L}_{Cont3}$  Completeness

- A first-order model 𝔅 of *T*[Γ; ¬φ'] is a Boolean frame in which there is a valuation 𝒱 such that ⟨𝔅, 𝒱⟩ ⊨ ¬φ.
- The set of values of V applied on the variables of φ generates a finite Boolean subalgebra of the universe of 𝔅, hence, a finite subframe 𝔅<sub>0</sub> of 𝔅 a model of *L<sub>Cont3</sub>*.
- Morevoer, there is a valuation  $\mathcal{V}_0$  such that  $\langle \mathfrak{B}_0, \mathcal{V}_0 \rangle \vDash \neg \varphi$ .

・ロト ・回ト ・ヨト ・ヨト

Formal System Modal Definability Unification

 $\mathcal{L}(\mathcal{CF}^3)$  is decidable Formal System  $\mathcal{L}_{Cont3}$  Completeness

#### • There is a finite frame $\Im$ such that:

 $\mathfrak{B}_0\simeq \mathscr{B}(\mathfrak{F})$ 

Moreover, in 𝔅 are valid the formulas valid in 𝔅<sub>0</sub> and there is a valuation 𝒱' such that ⟨𝔅, 𝒱'⟩ ⊨ ¬φ.

• That means  $\mathfrak{F}$  is a *finite* contact frame which refutes  $\varphi$ .

・ロン ・雪 と ・ ヨ と

Formal System Modal Definability Unification

 $\mathcal{L}(\mathcal{CF}^3)$  is decidable Formal System  $\mathcal{L}_{Cont3}$  Completeness

• There is a finite frame  $\Re$  such that:

 $\mathfrak{B}_0 \simeq \mathscr{B}(\mathfrak{F})$ 

- Moreover, in 𝔅 are valid the formulas valid in 𝔅<sub>0</sub> and there is a valuation 𝒱' such that ⟨𝔅, 𝒱'⟩ ⊨ ¬φ.
- That means  $\mathfrak{F}$  is a *finite* contact frame which refutes  $\varphi$ .

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Formal System Modal Definability Unification

 $\mathcal{L}(\mathcal{CF}^3)$  is decidable Formal System  $\mathcal{L}_{Cont3}$  Completeness

• There is a finite frame  $\Re$  such that:

 $\mathfrak{B}_0 \simeq \mathscr{B}(\mathfrak{F})$ 

- Moreover, in 𝔅 are valid the formulas valid in 𝔅<sub>0</sub> and there is a valuation 𝒱' such that ⟨𝔅, 𝒱'⟩ ⊨ ¬φ.
- That means  $\mathfrak{F}$  is a *finite* contact frame which refutes  $\varphi$ .

・ロト ・同ト ・ヨト ・ヨト

Formal System Modal Definability Unification



- Remark that, since ℜ was finite we have also demonstrated the *finite frame property* of L<sub>Cont3</sub>, respectively of L(CF<sup>3</sup>).
- Since  $\mathcal{L}_{Cont3}$  is with decidable axiomatization  $\mathcal{L}(C\mathcal{F}^3)$  is recursively enumerable.
- By the *finite frame property* of *L*(*CF*<sup>3</sup>) it follows the set of formulas refutable in the class *CF*<sup>3</sup> is also *recursively enumerable*.

・ロト ・回ト ・ヨト ・ヨト
Formal System Modal Definability Unification



- Remark that, since ℜ was finite we have also demonstrated the *finite frame property* of L<sub>Cont3</sub>, respectively of L(CF<sup>3</sup>).
- Since  $\mathcal{L}_{Cont3}$  is with decidable axiomatization  $\mathcal{L}(C\mathcal{F}^3)$  is recursively enumerable.
- By the *finite frame property* of *L*(*CF*<sup>3</sup>) it follows the set of formulas refutable in the class *CF*<sup>3</sup> is also *recursively enumerable*.

・ロト ・ 同ト ・ ヨト ・ ヨト

Formal System Modal Definability Unification



- Remark that, since ℜ was finite we have also demonstrated the *finite frame property* of L<sub>Cont3</sub>, respectively of L(CF<sup>3</sup>).
- Since  $\mathcal{L}_{Cont3}$  is with decidable axiomatization  $\mathcal{L}(C\mathcal{F}^3)$  is recursively enumerable.
- By the *finite frame property* of *L*(*CF*<sup>3</sup>) it follows the set of formulas refutable in the class *CF*<sup>3</sup> is also *recursively enumerable*.

Formal System Modal Definability Unification

## Further problems

#### Definability problems

- First-order definability problem.
- Correspondence problem.
- Unification problems
  - Type of unification.

イロト イポト イヨト イヨト

э

Formal System Modal Definability Unification

### Further problems

#### Definability problems

- First-order definability problem.
- Correspondence problem.
- Unification problems
  - Type of unification.

イロト イポト イヨト イヨト

э

Formal System Modal Definability Unification

### Further problems

#### Definability problems

- First-order definability problem.
- Correspondence problem.
- Unification problems
  - Type of unification.

(日) (四) (日) (日) (日)

э

Formal System Modal Definability Unification

## Further problems

- Definability problems
  - First-order definability problem.
  - Correspondence problem.
- Unification problems
  - Type of unification.

프 🕨 🗉 프

・ 同 ト ・ 王

Formal System Modal Definability Unification

### Discussion

# **Questions?**



<ロト <回 > < 注 > < 注 > 、

æ

Formal System Modal Definability Unification

### Thank you for your attention!