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Computability on R

What is a computable real number?

To answer this question we need to choose:

1. a representation of real numbers;

2. a framework for computation.

Definition
A function C : N → Q will be called a Cauchy name for the real
number α, if |C (n)− α| < 1

n+1 for all n.

A real number α is computable, if there exists a recursive Cauchy
name C for α.
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Intersection of intervals

Theorem (Skordev, Mostowski)

A real number α is computable if and only if there exist primitive
recursive functions A,B : N → Q, such that A(n) < α < B(n) for
all n and limn→∞ B(n)− A(n) = 0.

(⇐=) Wait for n, such that B(n)− A(n) ≤ 2
n+1 .

(=⇒) Idea: . . . , C (k)︸ ︷︷ ︸
n

, C (k)︸ ︷︷ ︸
n+1

, . . . , C (k)︸ ︷︷ ︸
n+x

, C (k + 1)︸ ︷︷ ︸
n+x+1

, . . .,

where C (k + 1) is computable in n + x + 1 steps.
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Relative computability of real numbers

Let F be a class of total functions in N.

The real number α will be called F-computable, if there exists a
Cauchy name C ∈ F for α.

Theorem (Skordev)

The F-computable real numbers form a field, whenever F contains
the initial functions, multiplication, modified subtraction and is
closed under substitution.

Theorem (Skordev)

The F-computable real numbers form a real-closed field, whenever
F satisfies the premises above and is also closed under bounded
minimisation.

In particular, F can be any of the classes Em for m ≥ 2 or M2, L2.
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Uniformity of root-finding

Can we obtain a representation of a root efficiently from
representations of the coefficients of the polynomial?

A Cauchy name for ξ = α+ βi is a pair of Cauchy names for α, β.

Theorem (Peshev, Skordev)

For any fixed N there exists an E2-computable operator Γ of N + 1
arguments, such that whenever C0,C1, . . . ,CN are Cauchy names
for the coefficients of the polynomial

P(z) = α0z
N + α1z

N−1 + . . .+ αN−1z + αN ,

Γ(C0,C1, . . . ,CN) is a Cauchy name for some root of P.
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On subrecursive computability of famous constants

Theorem (Skordev)

The numbers e, π, Liouville’s L and Euler-Mascheroni γ are
E2-computable.

Theorem (Skordev, Weiermann, Georgiev)

The numbers e, L and π are M2-computable and γ is
L2-computable.

Theorem (Georgiev)

γ is M2-computable.
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Representations of irrational numbers

Besides Cauchy sequences, there are many other ways to represent
irrational numbers:

▶ base-b expansions

▶ Dedekind cuts

▶ Hurwitz characteristics

▶ continued fractions

▶ . . .

All of these representation are uniformly equivalent with respect to
full Turing computability.
Our main question: is it possible to transform one representation
into another without using unbounded search?
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Subrecursive reducibility

Let R1 and R2 be representations of irrational numbers.

We will denote R1 ≤S R2 (R1 is subrecursive in R2) if there exists
an algorithm, which:

▶ given an oracle, which is an R2-representation of an irrational
α, it produces an R1-representation of α;

▶ uses no unbounded search.

We will also denote

R1 ≡S R2 if R1 ≤S R2 & R2 ≤S R1

R1 <S R2 if R1 ≤S R2 & R2 ≰S R1.

Note that R2 ≰S R1 means that there exists α, for which the
transformation is not possible.
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Examples for Representations

For an irrational number α ∈ (0, 1):

▶ the Dedekind cut of α is the function D : Q → {0, 1}, such
that

D(q) =

{
0, if q < α,

1, if q > α.

▶ for b ≥ 2, the base-b expansion of α is the function
Eb : N → {0, 1, . . . , b − 1}, such that

α =
∞∑
n=0

Eb(n) · b−n.
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Eb ≤S D

Assume we have computed Eb(1),Eb(2), . . . ,Eb(n) and let

qn = Eb(1) · b−1 + Eb(2) · b−2 + . . .+ Eb(n) · b−n.

To compute Eb(n + 1): we search for the unique
D ∈ {0, 1, . . . , b − 1}, such that

D(qn + D · b−n−1) = 0 & D(qn + (D+ 1) · b−n−1) = 1

and then Eb(n + 1) = D.

No unbounded search is used in this algorithm!
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D ≰S Eb

Given q ∈ Q, we want to decide whether q < α by using access to
the base-b expansion Eb of α.

If q has a finite base-b expansion of length n, then

q < α ⇐⇒ q ≤ Eb(1) · b−1 + Eb(2) · b−2 + . . .+ Eb(n) · b−n.

But what if q has an infinite base-b expansion? For example, let
b = 10 and q = 1/3 = 0.3333333 . . .. To decide whether q < α
we must search for a position n, such that E10(n) ̸= 3.

This algorithm requires unbounded search!

Therefore, we have Eb <S D.
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C <S Eb

C ≤S Eb is obvious:
C (n) = Eb(1) · b−1 + Eb(2) · b−2 + . . .+ Eb(n) · b−n.

Eb ≰S C : assume the Cauchy sequence C for α starts with
b−1 = C (0) = C (1) = . . .. Then we cannot decide if the first
base-b digit of α is 0 or 1. Unbounded search is needed here!

Theorem (Skordev)

Suppose b ≥ 3 and the base-b expansion of α does not contain the
digit b − 1. Then Eb ≤S C for any Cauchy sequence C for α.
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Hurwitz characteristic

Let us form the Farey pair tree of intervals:

▶ the root is (01 ,
1
1);

▶ the left descendant of ( ab ,
c
d ) is (

a
b ,

a+c
b+d );

▶ the right descendant of ( ab ,
c
d ) is (

a+c
b+d ,

c
d ).
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The Hurwitz characteristic H of α is the unique infinite path in the
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H ≡S D

H ≤S D: we compute H(n) and the corresponding intervals
recursively. We can decide whether we should go left or right by
asking for the value D(m), where m is the current mediant.

D ≤S H: given a rational q, we compute the level s of its first
occurrence in the tree. Let (as , bs) be the interval on level s, which
contains α. Then D(q) = 0 if q ≤ as and D(q) = 1 if bs ≤ q.

Both algorithms do not use unbounded search!
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Continued fraction

The continued fraction of α is the unique sequence
c : N → N \ {0}, such that

α = 0 +
1

c(0) + 1
c(1)+ 1

...

We will also denote c = [ ].

The following equality relates the continued fraction to the
Hurwitz characteristic:

H = LL . . . L︸ ︷︷ ︸
c(0)−1

RR . . .R︸ ︷︷ ︸
c(1)

LL . . . L︸ ︷︷ ︸
c(2)

RR . . .R︸ ︷︷ ︸
c(3)

. . .
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H ≤S [ ]

Therefore, we can compute H from the continued fraction c = [ ]:
given n, compute the unique x ≤ n + 1, such that

c(0)+c(1)+ . . .+c(x−1) < n+2 ≤ c(0)+c(1)+ . . .+c(x).

Then H(n) =

{
L, if x is even,

R, if x is odd.

The two inequalities may be checked using the graph of the
bounded sum of the continued fraction!
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Graph of a representation

This leads us to the following definition.

For any representation R (considered as a function) we define a
new representation G(R) by:

G(R)(x , y) =

{
0, if R(x) = y ,

1, if R(x) ̸= y .

Main question: Is G(R) subrecursively equivalent to a known
representation, or it gives rise to a new subrecursive degree?
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Two technical tools

(Tool 1) : There exists a function t : N → N \ {0}, such that
G(t) <S t.

Informally, t is a complex function, but its graph is simple.

For a function s, let sΣ be the bounded sum of s,
sΣ(x) =

∑x
y=0 s(y).

(Tool 2) : There exists a function s : N → N \ {0}, such that
G(sΣ) <S G(s).

Informally, the graph of s is complex, but the graph of its bounded
sum is simple.
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Applications

Let us take α to be the irrational number with continued fraction
t, where t is the function given by Tool 1. We obtain

G([ ]) <S [ ].

Let us take β to be the irrational number with continued fraction
s, where s is the function given by Tool 2. Then

G([ ]Σ) <S G([ ]).

We also have shown: H ≤S G([ ]Σ) (in fact, H ≡S G([ ]Σ)).
Combining these results we obtain:

Theorem

D ≡S H <S G([ ]) <S [ ].
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Best approximations and Baire sequences

Let α ∈ (0, 1) be irrational with Hurwitz characteristic H and
(l1, r1), (l2, r2), . . . , (ln, rn), . . . be the corresponding sequence of
intervals in the Farey pair tree.

The unique strictly increasing function L : N → Q, such that
Ran(L) = {li | i ∈ N}, will be called the complete left best
approximation of α.
Write H = LA(0)RLA(1)R . . . LA(n)R . . .. The function A is called
the dual Baire sequence of α.

The unique strictly decreasing function R : N → Q, such that
Ran(R) = {ri | i ∈ N}, will be called the complete right best
approximation of α.
Write H = RB(0)LRB(1)L . . .RB(n)L . . .. The function B is called
the standard Baire sequence of α.
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Graphs of L and R

It is known that

D <S L ≡S A <S [ ], D <S R ≡S B <S [ ], {L,R} ≡S [ ],

in particular, L and R are subrecursively incomparable.

Theorem

G(L) ≡S D ≡S G(R).
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G([ ]), L,R

Theorem

G([ ]) ≰S L, G([ ]) ≰S R.

Proof: take α with standard (dual) Baire sequence s, where s is
the function from Tool 2.

Theorem

L ≰S {R, G([ ])}, R ≰S {L, G([ ])}.

Proof: take α with dual (standard) Baire sequence t, where t is
the function from Tool 1.
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Graphs of Baire sequences

By using Tool 1 and Tool 2 in the same way, as for continued
fractions, we obtain:

G(AΣ) <S G(A) <S A, G(BΣ) <S G(B) <S B.

Theorem
G(AΣ) ≡S D ≡S G(BΣ).

Theorem
G(A) <S G([ ]), G(B) <S G([ ]), G(A) ≰S B, G(B) ≰S A.

Therefore, G(A) and G(B) are subrecursively incomparable.
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General results on representations

Definition (informal)

A representation R of an irrational number α is a set of functions,
which is computably equivalent to the Dedekind cut of α.

Definition
R1 ≤S R2 iff for any time-bound t, there exists a time-bound s,
such that for all irrational α ∈ (0, 1):
α has an R2-representation computable in time O(t)
=⇒ α has an R1-representation computable in time O(s).

The structure of degrees, induced by ≤S is a lattice with zero and
one elements.
The zero degree is the degree of the representation by intersection
of intervals.
The one degree is the degree of the representation by continued
fractions.



General results on representations

Definition (informal)

A representation R of an irrational number α is a set of functions,
which is computably equivalent to the Dedekind cut of α.

Definition
R1 ≤S R2 iff for any time-bound t, there exists a time-bound s,
such that for all irrational α ∈ (0, 1):
α has an R2-representation computable in time O(t)
=⇒ α has an R1-representation computable in time O(s).

The structure of degrees, induced by ≤S is a lattice with zero and
one elements.
The zero degree is the degree of the representation by intersection
of intervals.
The one degree is the degree of the representation by continued
fractions.



General results on representations

Definition (informal)

A representation R of an irrational number α is a set of functions,
which is computably equivalent to the Dedekind cut of α.

Definition
R1 ≤S R2 iff for any time-bound t, there exists a time-bound s,
such that for all irrational α ∈ (0, 1):
α has an R2-representation computable in time O(t)
=⇒ α has an R1-representation computable in time O(s).

The structure of degrees, induced by ≤S is a lattice with zero and
one elements.

The zero degree is the degree of the representation by intersection
of intervals.
The one degree is the degree of the representation by continued
fractions.



General results on representations

Definition (informal)

A representation R of an irrational number α is a set of functions,
which is computably equivalent to the Dedekind cut of α.

Definition
R1 ≤S R2 iff for any time-bound t, there exists a time-bound s,
such that for all irrational α ∈ (0, 1):
α has an R2-representation computable in time O(t)
=⇒ α has an R1-representation computable in time O(s).

The structure of degrees, induced by ≤S is a lattice with zero and
one elements.
The zero degree is the degree of the representation by intersection
of intervals.

The one degree is the degree of the representation by continued
fractions.



General results on representations

Definition (informal)

A representation R of an irrational number α is a set of functions,
which is computably equivalent to the Dedekind cut of α.

Definition
R1 ≤S R2 iff for any time-bound t, there exists a time-bound s,
such that for all irrational α ∈ (0, 1):
α has an R2-representation computable in time O(t)
=⇒ α has an R1-representation computable in time O(s).

The structure of degrees, induced by ≤S is a lattice with zero and
one elements.
The zero degree is the degree of the representation by intersection
of intervals.
The one degree is the degree of the representation by continued
fractions.



Bibliography I

Ivan Georgiev.
Subrecursive Graphs of Representations of Irrational Numbers.
CiE2023 Proceedings, LNCS, vol. 13967, 154–165, Springer, 2023.

Ivan Georgiev.
Dedekind Cuts and Long Strings of Zeros in Base Expansions.
CiE2021 Proceedings, LNCS, vol. 12813, 248–259, Springer, 2021.

Ivan Georgiev, Lars Kristiansen, Frank Stephan.
Computable Irrational Numbers with Representations of Surprising
Complexity.
Annals of Pure and Applied Logic, vol. 172 (2021), 102893.

Lars Kristiansen.
On subrecursive representability of irrational numbers.
Computability, vol. 6(3) (2017), 249–276.

Lars Kristiansen.
On subrecursive representability of irrational numbers, part II.
Computability, vol. 8(1) (2019), 43–65.



Bibliography II

Lars Kristiansen.
On Subrecursive Representation of Irrational Numbers: Contractors and
Baire Sequences.
CiE2021 Proceedings, LNCS, vol. 12813, 308–317, Springer, 2021.

Lars Kristiansen, Jakob Grue Simonsen.
On the Complexity of Conversion Between Classic Real Number
Representations.
CiE2020 Proceedings, LNCS, vol. 12098, 75–86, Springer, 2020.

Dimiter Skordev.
Characterization of the Computable Real Numbers by Means of Primitive
Recursive Functions.
CCA2000 Proceedings, LNCS, vol. 2064, 296–309, Springer, 2001.

Dimiter Skordev.
Computability of Real Numbers by Using a Given Class of Functions in the
Set of the Natural Numbers.
Mathematical Logic Quarterly, vol. 48 (suppl. 1), 91–106, 2002.



Bibliography III

Peter Peshev, Dimiter Skordev.
A Subrecursive Refinement of the Fundamental Theorem of Algebra.
CiE2006 Proceedings, LNCS, vol. 3988, 435–444, Springer, 2006.

Dimiter Skordev.
On the subrecursive computability of several famous constants.
Journal of Universal Computer Science, vol. 14, 861–875, 2008.

Dimiter Skordev, Andreas Weiermann, Ivan Georgiev.

M2-Computable Real Numbers.
Journal of Logic and Computation, vol. 22(4), 899–925, 2012.



Thanks for your attention!


