Learning Finite-State Assemblies for Efficient Language Modelling

Georgi Shopov Stoyan Mihov

Institute of Information and Communication Technologies Bulgarian Academy of Sciences

International Conference on Mathematical Logic September 2023

Section 1

Language Modelling Foundations

Language Models

Definition

A **language model** over Σ is a discrete probability distribution over Σ^* ; that is, a function $\mathbb{P} \colon \Sigma^* \to [0, 1]$ such that $\sum_{\alpha \in \Sigma^*} \mathbb{P}(\alpha) = 1$.

Automatic Speech Recognition

Given acoustic features $A \in \mathbb{R}^n$, $\mathbb{P}_A \colon \Sigma^* \to [0, 1]$ is a probability distribution over the transcriptions Σ^* .

Machine Translation

Given a sentence $S \in \Gamma^*$ in the source language, $\mathbb{P}_S \colon \Sigma^* \to [0, 1]$ is a probability distribution over the translations Σ^* in the target language.

Large Language Models

Given a prompt $P \in \Gamma^*$, $\mathbb{P}_P \colon \Sigma^* \to [0, 1]$ is a probability distribution over the responses Σ^* .

Sequential Factorisations

Definition

A sequential factorisation over Σ is a family $(\phi_{\alpha})_{\alpha \in \Sigma^*}$ of discrete probability distributions over $\Sigma_{\$} := \Sigma \sqcup \$$, where $\phi_{\alpha}(a)$ models the probability of the next letter being $a \in \Sigma_{\$}$ given the context $\alpha \in \Sigma^*$.

Sequential Models

Definition

The *sequential model* generated by a sequential factorisation $(\phi_{\alpha})_{\alpha \in \Sigma^*}$ is the total function $S \colon \Sigma^* \to [0, 1]$ defined as

$$S(\alpha) := \phi_{\epsilon}^*(\alpha \$) := \left(\prod_{i=1}^{|\alpha|} \phi_{\alpha_{$$

A sequential model is called

- 1. *tight* if $\sum_{\alpha \in \Sigma^*} S(\alpha) = 1$ (i.e., it is a language model);
- 2. *unambiguous* if it is generated by a unique sequential factorisation.

Questions

- 1. Do sequential models coincide with language models?
- 2. Are all sequential models unambiguous?

Question 1: $SM(\Sigma) \supseteq LM(\Sigma)$

Proposition

Every language model $\mathbb{P}\colon \Sigma^* \to [0,1]$ is a sequential model.

Proof.

For $\alpha \in \Sigma^*$ such that $\mathbb{P}(\alpha \Sigma^*) > 0$, define

$$\phi_{lpha}(\mathsf{a}) \coloneqq egin{cases} \mathbb{P}(lpha \mathsf{a} \Sigma^* \mid lpha \Sigma^*) & \textit{if } \mathsf{a} \in \Sigma \ \mathbb{P}(lpha \mid lpha \Sigma^*) & \textit{if } \mathsf{a} = \$ \end{cases}.$$

Consequently,

$$\mathbb{P}(\alpha) = \mathbb{P}(\alpha_{\leq 1}\Sigma^*)\mathbb{P}(\alpha_{\leq 2}\Sigma^* \mid \alpha_{<2}\Sigma^*) \cdots \mathbb{P}(\alpha\Sigma^* \mid \alpha_{<|\alpha|}\Sigma^*)\mathbb{P}(\alpha \mid \alpha\Sigma^*)$$
$$= \phi_{\epsilon}(\alpha_1)\phi_{\alpha_{<2}}(\alpha_2) \cdots \phi_{\alpha_{<|\alpha|}}(\alpha_{|\alpha|})\phi_{\alpha}(\$)$$
$$= \phi_{\epsilon}^*(\alpha\$).$$

Question 1: $SM(\Sigma) \not\subseteq LM(\Sigma)$

$$egin{aligned} &\phi^*_lpha(\{{m{a}},{m{b}}\}^*\$)=0, \ &\phi^*_\epsilon(\{{m{a}},{m{b}}\}^*\$)\leq 1-\phi^*_\epsilon(lpha)<1 \end{aligned}$$

a\$ $\phi_{\epsilon}^*(a^*\$) = \sum^{\infty} \phi_{\epsilon}^*(a^n) \phi_{a^n}(\$)$ n=0 $<\sum_{i=1}^{\infty}\frac{1}{2^{n+1}}=1$

 ϵ

\$

Question 2: $SM(\Sigma) \neq USM(\Sigma)$

For $|\Sigma| \geq 1$, every $(\psi_{lpha})_{lpha \in \Sigma^*}$ s.t.

 $\alpha \not\leq \beta \implies \phi_\beta = \psi_\beta$

generates the same sequential model.

Tightness and Ambiguity of Sequential Models

Proposition

A sequential model generated by a sequential factorisation Φ is unambiguous if and only if

- 1. ($|\Sigma| = 1$) Φ is accessible;
- 2. ($|\Sigma| > 1$) Φ is tight and accessible.

Section 2

Finite-State Language Modelling

Finite-State Language Models

Definition

 $(\phi_{\alpha})_{\alpha \in \Sigma^*}$ is **finite-state** if it is **compatible** with a right invariant equivalence relation $\equiv \subseteq \Sigma^* \times \Sigma^*$ with a finite index; that is,

$$\alpha\equiv\beta\implies\phi_\alpha=\phi_\beta.$$

Then $(\phi_{\alpha})_{\alpha \in \Sigma^*}$ is determined by the finite family $(\phi_{\alpha})_{[\alpha]_{\equiv} \in \Sigma^*/\equiv}$. Proposition

A sequential factorisation $(\phi_{\alpha})_{\alpha \in \Sigma^*}$ is finite-state if and only if it can be represented by a stochastic sequential finite-state transducer.

Proof.

$$(\Longrightarrow)$$
 Consider $(\Sigma^* \times [0,1], \Sigma^* / \equiv, ([\epsilon]_{\pm}, 1), \mathbb{F}, \delta, \lambda)$, where

$$\begin{split} \mathbb{F} &:= \{ ([\alpha]_{\pm}, \phi_{\alpha}(\$)) \quad | \; \alpha \in \Sigma^* \}, \\ \delta &:= \{ (([\alpha]_{\pm}, a), [\alpha a]_{\pm}) \; | \; \alpha \in \Sigma^* \land a \in \Sigma \}, \\ \lambda &:= \{ (([\alpha]_{\pm}, a), \phi_{\alpha}(a)) \; | \; \alpha \in \Sigma^* \land a \in \Sigma \}. \end{split}$$

N-gram Language Models

Definition

 $(\phi_{\alpha})_{\alpha\in\Sigma^*}$ is *n*-*gram* if it is compatible with $\equiv_n \subseteq \Sigma^* \times \Sigma^*$, where

$$\alpha \equiv_{\mathbf{n}} \beta \iff \alpha_{>|\alpha|-\mathbf{n}+1} = \beta_{>|\beta|-\mathbf{n}+1}.$$

Proposition

 \equiv_n is a right invariant equivalence relation with a finite index. Thus, every n-gram sequential factorisation is finite-state.

Smoothed *n*-gram Language Models

Definition (Simplified)

 $(\psi_{\alpha}^{(n)})_{\alpha\in\Sigma^*}$ is a *smoothing* of the *n*-gram $(\phi_{\alpha}^{(n)})_{\alpha\in\Sigma^*}$ if

$$\psi_{\alpha}^{(n)}(a) \coloneqq \begin{cases} \lambda_{\alpha a} \phi_{\alpha}^{(n)}(a) & \text{if } \phi_{\alpha}^{(n)}(a) > 0\\ \mu_{\alpha} \psi_{\alpha > 1}^{(n-1)}(a) & \text{otherwise} \end{cases}$$

Proposition

Every smoothed n-gram sequential factorisation is trim.

Tightness and Ambiguity of Finite-State Sequential Models

Proposition

A sequential model generated by a finite-state sequential factorisation Φ is tight if and only if every accessible factor of Φ is co-accessible.

Section 3

Neural Language Modelling

Recurrent Neural Networks (RNNs)

Definition (Automata-based view)

An **RNN** is a letter-to-letter pure sequential transducer

$$\mathcal{R} \coloneqq ((\mathbb{R}^{d_i})^* \times (\mathbb{R}^{d_o})^*, H \subseteq \mathbb{R}^{d_h}, (h_0, x_0), \delta, \lambda).$$

The **behaviour** of \mathcal{R} is the function $[\![\mathcal{R}]\!]: (\mathbb{R}^{d_i})^* \to (\mathbb{R}^{d_o})^*$, where $[\![\mathcal{R}]\!](\alpha) := x_0 \odot \lambda^*(h_0, \alpha)$. \mathcal{R} is **bounded** if $\{||x||_p \mid x \in \text{Im}(\lambda)\}$ is bounded.

Example

An Elman RNN is a bounded RNN such that

$$\delta(h, x) \coloneqq f(Uh + Vx + b_{\delta}),$$

$$\lambda(h, x) \coloneqq g(W\delta(h, x) + b_{\lambda}),$$

where f and g are sigmoid functions, $U \in \mathbb{R}^{d_h \times d_h}$, $V \in \mathbb{R}^{d_h \times d_h}$, $b_{\delta} \in \mathbb{R}^{d_h}$, $W \in \mathbb{R}^{d_o \times d_h}$ and $b_{\lambda} \in \mathbb{R}^{d_o}$.

Sequential Neural Networks (SNNs)

Definition

An **SNN** is a tuple $(\Sigma, e, \mathcal{R}, f, g)$, where

- $e: \Sigma \to \mathbb{R}^{d_i}$ (embedding);
- \mathcal{R} is an RNN (*encoder*);
- $f: \mathbb{R}^{d_o} \to \mathbb{R}^{\Sigma_{\$}}$ (decoder);
- $g \colon \mathbb{R}^{\Sigma_{\$}} \to \Delta^{\Sigma_{\$}}$ (projection).

Definition

The sequential factorisation associated with $\mathcal{N} := (\Sigma, e, \mathcal{R}, f, g)$ is $\Phi := (\phi_{\alpha})_{\alpha \in \Sigma^*}$ such that for $a_1 a_2 \dots a_n \in \Sigma^*$,

$$(\phi_{\epsilon},\phi_{a_1},\phi_{a_1a_2}\ldots,\phi_{a_1a_2\ldots a_n}) \coloneqq (e^* \circ \llbracket \mathcal{R} \rrbracket \circ f^* \circ g^*)(a_1a_2\ldots a_n),$$

where $e^* \colon \Sigma^* \to (\mathbb{R}^{d_i})^*$, $f^* \colon (\mathbb{R}^{d_o})^* \to (\mathbb{R}^{\Sigma_{\$}})^*$, $g^* \colon (\mathbb{R}^{\Sigma_{\$}})^* \to (\Delta^{\Sigma_{\$}})^*$ are the homomorphic extensions of e, f and g. The **behaviour** of \mathcal{N} , denoted $[\![\mathcal{N}]\!]$, is the sequential model generated by Φ .

Behaviour of an SNN

 $\llbracket \mathcal{N} \rrbracket$ can be represented by a stochastic sequential transducer.

Common Decoders and Projections

- Typically, $f(x) \coloneqq Wx + b$, where $W \in \mathbb{R}^{\Sigma_{\$} \times d_o}$ and $b \in \mathbb{R}^{\Sigma_{\$}}$.
 - W_a is the *encoding of a* $\in \Sigma_{\$}$.
 - $\circ \ x := (e^* \circ \llbracket \mathcal{R} \rrbracket)(\alpha)_{|\alpha|+1} \text{ is the } encoding of \alpha \in \mathbf{\Sigma}^*.$
 - $f(x) \in \mathbb{R}^{\Sigma_{\$}}$ represents the *similarities* between α and $\Sigma_{\$}$.
- The role of g is to project the similarity scores onto the probability simplex such that φ_α(a) is proportional to the similarity between α and a.

Definition

softmax: $\mathbb{R}^n o \mathbf{\Delta}^n$ is defined for $x \in \mathbb{R}^n$ and $1 \le i \le n$ as

$$\mathsf{softmax}(x)_i \coloneqq rac{\mathsf{exp}(x_i)}{\sum_{j=1}^{|x|}\mathsf{exp}(x_j)}.$$

Tightness and Ambiguity of Neural Sequential Models

Proposition

Every softmax-based neural sequential factorisation is trim.

Proposition

Every bounded softmax-based neural sequential model is tight.

Section 4

Learning Finite-State Assemblies

Comparison of Finite-State and Neural Language Models

Finite-state language models

- + computationally optimal (all computations are stored in the transition table);
- + easier to interpret (using efficient constructions and closure properties);
- discrete nature, which significantly hinders learning;
- less performant in practice.

Neural language models

- computationally expensive (the transition table is computed on demand);
- opaque and hard to interpret (consist of millions of floating point parameters);
- + continuous nature, which facilitates learning;
- + very performant in practice.

Quantised SNNs

Definition

A *quantisation function* on X is any $q: X \rightarrow Q$, where Q is finite.

Definition

The **q**-quantisation of an RNN $((\mathbb{R}^{d_i})^* \times (\mathbb{R}^{d_o})^*, H, (h_0, x_0), \delta, \lambda)$ is $((\mathbb{R}^{d_i})^* \times (\mathbb{R}^{d_o})^*, \widehat{H}, (\widehat{h}_0, x_0), \widehat{\delta}, \lambda)$, where

• $q \colon H \to \widehat{H}$ is a quantisation function;

•
$$\widehat{h}_0 \coloneqq q(h_0);$$

• $\widehat{\delta} := \delta \circ q.$

Proposition

Quantised SNNs are stochastic sequential finite-state transducers and vice versa.

Proof. (⇒) Straightforward. (⇐) Minsky's construction.

Minsky's Construction

Product Quantisation

Quantisation in high dimensional vector spaces such as \mathbb{R}^n is difficult.

Definition

A **product quantisation function** on \mathbb{R}^n is a quantisation function $\overline{q} \colon \mathbb{R}^n \to Q_1 \times Q_2 \times \cdots \times Q_m$ defined as

$$\overline{q}(x) \coloneqq (q_1(x^{(1)}), q_2(x^{(2)}), \dots, q_m(x^{(m)})),$$

where $x = x^{(1)} \odot x^{(2)} \odot \cdots \odot x^{(m)}$ and $q_i \colon \mathbb{R}^{n_i} \to Q_i$ is a quantisation function for $1 \leq i \leq m$.

Remark

If $|Q_1| = |Q_2| = \cdots = |Q_m| = k$, then \overline{q} produces k^m states. In practice $n \sim 1024$; thus, if m = n, a \overline{q} -quantisation of an RNN would have in the order of k^{1024} states.

Monolithic QSNNs

Cartesian Decomposition of RNNs

Consider, for $1 \le j \le m$, the RNNs

$$\mathcal{R}^{(j)} := ((\mathbb{R}^{d_i})^* \times (\mathbb{R}^{d_o^{(j)}})^*, H^{(j)} \subseteq \mathbb{R}^{d_h^{(j)}}, (h_0^{(j)}, x_0^{(j)}), \delta^{(j)}, \lambda^{(j)}).$$

If $\mathcal{R} := ((\mathbb{R}^{d_i})^* \times (\mathbb{R}^{d_o})^*, H \subseteq \mathbb{R}^{d_h}, (h_0, x_0), \delta, \lambda)$ is an RNN such that • $d_h = \sum_{j=1}^m d_h^{(j)}, d_o = \sum_{j=1}^m d_o^{(j)},$

•
$$h_0 = \bigoplus_{j=1}^m h_0^{(j)}, x_0 = \bigoplus_{j=1}^m x_0^{(j)},$$

• $\delta(h, x) = \bigoplus_{j=1}^{m} \delta^{(j)}(h^{(j)}, x), \ \lambda(h, x) = \bigoplus_{j=1}^{m} \lambda^{(j)}(h^{(j)}, x), \ \text{where}$ $h = \bigoplus_{j=1}^{m} h^{(j)},$

then \mathcal{R} is the Cartesian product $\mathcal{R}^{(1)} \times \mathcal{R}^{(2)} \times \ldots \times \mathcal{R}^{(m)}$.

	Transitions		
Monolithic ${\cal R}$	$k^m \Sigma $		
Decomposed ${\mathcal R}$	$mk \Sigma $		

Table: Each $\mathcal{R}^{(j)}$ is quantised into k values.

Decomposed QSNNs

Sparse Multilayer RNNs

Consider the composition $\mathcal{R}\coloneqq \mathcal{R}_1\circ \mathcal{R}_2\circ \cdots \circ \mathcal{R}_\ell$, where

$$\mathcal{R}_i \coloneqq \sum_{j=1}^m \mathcal{R}_i^{(j)}, \quad \text{for } 1 \le i \le \ell,$$

and let $s \in [0, m]$ be such that for $1 < i \leq \ell$ and $h = igodot_{j=1}^m h^{(j)}$,

$$\delta_i(h,x) = \bigoplus_{j=1}^m \delta_i^{(j)}(h^{(j)}, M_i^{(j)}x),$$

where $M_i^{(j)} \in \mathbb{R}^m$ and $\|M_i^{(j)}\|_0 = s$.

	Transitions			
Monolithic ${\cal R}$	$k^{m\ell} \Sigma $			
Sparse Multilayer ${\cal R}$	$mk \Sigma + (\ell - 1)mk^{1+s}$			

Table: Every $\mathcal{R}_i^{(j)}$ is quantised into k values.

30 / 35

Finite-State Assemblies

Definition

A *finite-state assembly* over Σ is a tuple $\mathcal{A} \coloneqq (\mathcal{T}, \mathcal{I}, \mathcal{F}, \mathcal{E})$, where

- *T* is a finite set of sequential finite-state transducers over Σ;
- $I \subseteq T$ is a set of *initial transducers*;
- $F \subseteq T$ is an ordered set of *final transducers*;
- (T, E) is an ordered DAG of *compositional interdependencies*.

The behaviour of $\mathcal A$ is $[\![\mathcal A]\!]\colon \Sigma^*\to \Sigma^*$ defined as

$$\llbracket \mathcal{A} \rrbracket(\alpha) := \bigodot_{\mathcal{F} \in \mathcal{F}} (\! \! \{ \mathcal{F} \! \} \! \!)(\alpha),$$

where ((\mathcal{T})) is defined for $\mathcal{T} \in \mathcal{T}$ inductively

- $(\mathcal{T})(\alpha) := [\mathcal{T}](\alpha)$ if $\mathcal{T} \in I$;
- $(\mathcal{T})(\alpha) := [\mathcal{T}] \left(\bigcirc_{\mathcal{T}' \in \mathcal{P}(\mathcal{T})} (\mathcal{T}')(\alpha) \right)$ if $\mathcal{T} \in \mathcal{T} \setminus I$.

Quantised sparse multilayer RNNs are a type of finite-state assemblies.

Differentiable Quantisation

• Uniform quantisation of [a, b]

$$q(x) \coloneqq \left\lfloor x \frac{2^b}{b-a} \right\rfloor \frac{b-a}{2^b}, \quad \frac{\partial q}{\partial x} \coloneqq 1.$$

• Non-uniform learnable quantisation

$$q(x,\mathcal{C})\coloneqq \operatorname*{arg\,min}_{c\in\mathcal{C}} \|x-c\|_2, \quad rac{\partial q}{\partial x}\coloneqq rac{\partial q}{\partial c}\coloneqq 1.$$

• Mixed-precision quantisation of [-a, a]

$$q(x) \coloneqq x + \delta \epsilon, \quad \epsilon \sim U\left[-\frac{a}{2}, \frac{a}{2}\right], \delta \in [0, 1].$$

A precision term is added to the loss function

$$L(w + \delta \epsilon) + \lambda \log \frac{1}{\delta}.$$

Differentiable Sparsification

Projected gradient descent: After each gradient descent step we project M_i^(j) to the closest vector in the subspace P_s ⊆ ℝ^m of vectors with s non-zero coordinates

$$\begin{split} \widehat{M}_i^{(j)} &:= \operatorname*{arg\,min}_{x \in P_s} \big\| M_i^{(j)} - x \big\|_2, \\ P_s &:= \{ x \in \mathbb{R}^m \mid \|x\|_0 = s \} \end{split}$$

• **L**₀ regularisation: The masks are probabilistic $M_i^{(j)} \sim Bern(p_i^{(j)})$. To make sampling differentiable $Bern(p_i^{(j)})$ is approximated with $Concrete(p_i^{(j)}, \lambda)$. The expected sparsity is optimised via

$$\sum_{i=1}^{\ell} \sum_{j=1}^{m} \mathbb{E}\left[\|M_i^{(j)}\|_0 \right] = \sum_{i=1}^{\ell} \sum_{j=1}^{m} p_i^{(j)}$$

Experimental Results

- The hidden dimension is 1024.
- Each machine uses a separate non-uniform quantisation function with 16 learnable codes.
- The sparsification method is projected gradient descent.

Architecture	Layers	Machines per Layer	Density	Perplexity		Complexity
Gated Recurrent Unit	1	1	100%	124.6	7.08	MFLOPS
Finite-State Assembly	4	1024	5%	123.8	4096	lookups
Finite-State Assembly	10	1024	2.5%	122.9	10240	lookups

Conclusion

- Finite-state language models can be learned with gradient-based methods by relaxing the discreteness of the optimisation constraints.
- Assemblies of finite-state sequential transducers demonstrate promising results for language modelling by combining
 - the computational efficiency and interpretability of sequential finite-state transducers,
 - $\circ\;$ the performance and learnability of neural networks.
- Further work is required to
 - $\circ\;$ reduce the size of the transitions tables,
 - $\circ\;$ develop more effective quantisation and sparsification methods,
 - make learning of more general assembly architectures feasible.