Learning Finite-State Assemblies for Efficient
Language Modelling

Georgi Shopov Stoyan Mihov

Institute of Information and Communication Technologies
Bulgarian Academy of Sciences

International Conference on Mathematical Logic
September 2023

1/35

Section 1

Language Modelling Foundations

2/35

Language Models

Definition
A language model over ¥ is a discrete probability distribution over
Y*; that is, a function P: ¥* — [0, 1] such that) 5. P(a) = 1.

Automatic Speech Recognition

Given acoustic features A € R", P4: X* — [0, 1] is a probability
distribution over the transcriptions ¥*.

Machine Translation
Given a sentence S € I'* in the source language, Ps: ¥* — [0,1] is a
probability distribution over the translations Z* in the target language.

Large Language Models

Given a prompt P € I'*, Pp: ¥* — [0, 1] is a probability distribution
over the responses 2 *.

3/35

Sequential Factorisations

Definition

A sequential factorisation over ¥ is a family (¢)qcy+ of discrete
probability distributions over Xg := ¥ LI'$, where ¢,(a) models the
probability of the next letter being a € L¢ given the context a € X*.

Qﬂ 6@9
%(s)
89 & SO %’@
%2 B

ab a$ bb

Ay A% Ay A%

aa$ aba abb ab$ baa bab ba$ bl?a bbb bb$

9(6)
96/

9

4/35

Sequential Models

Definition

The sequential model generated by a sequential factorisation

(¢a)acx~ is the total function S: X* — [0, 1] defined as

|al

S(a) = ¢7(a$) : H¢a<,(a, ba(9).

A sequential model is called

1. tight if }° 5. S(a) =1 (i.e,, it is a language model);

2. unambiguous if it is generated by a unique sequential
factorisation.

Questions
1. Do sequential models coincide with language models?

2. Are all sequential models unambiguous?

5/35

Question 1: SM(X) O LM(X)

Proposition
Every language model P: ¥* — [0,1] is a sequential model.

Proof.
For o € ¥* such that P(aX*) > 0, define

bu(3) = P(aaX* |*aZ*) /:fa ex '
P | oX¥) ifa=1%

Consequently,

P(a) = Pla<iZ¥)P(a<oX” [axX®) - P(aX" | acq X)P(a [aX")
= ¢E(a1)¢a<2(a2) T ¢a<‘a|(a\a|)¢a($)
= ¢c(ad). O

6/35

Question 1: SM(X) Z LM(X)

Example 1

N y@\w*w
f\\ f\\

ab aa$ ab abb ab$

¢a({a b}7$) =0,
¢c({a,b}78) <1—¢¢(a) <1

Example 2

VN
/\
/\

= ¢r(a")par(9)
n=0
<1

< ZO o1 = 1

7/35

Question 2: SM(X) # USM(X)

Example 1

For |[X| > 1, every (¢q)acx~ S.t.

af B = ¢g=1g

generates the same sequential
model.

Example 2

a S aap

For |X| > 2, weights can be
redistributed

Qanpy2

Pal@nt2) — 04, ,(279),
Gra (X78) — dula)).

\w

8/35

Tightness and Ambiguity of Sequential Models

Proposition
A sequential model generated by a sequential factorisation ® is
unambiguous if and only if

1. (I£] =1) & is accessible;
2. (|£] > 1) & is tight and accessible.

(a) 7] =1

9/35

Section 2

Finite-State Language Modelling

10/35

Finite-State Language Models
Definition
(¢a)acs~ is finite-state if it is compatible with a right invariant
equivalence relation = C ¥* x ¥* with a finite index; that is,

a=p3 = ¢a:¢ﬂ'

Then (¢a)acs+ is determined by the finite family (¢a)[a]262*/5-
Proposition

A sequential factorisation (¢q)acy+ Is finite-state if and only if it can
be represented by a stochastic sequential finite-state transducer.

Proof.
(=) Consider (X* x [0,1],x*/=, ([¢e]=,1),F,d,\), where

F={(ll=,¢a(8)) [aeX},
0 ={(([el=)), [ad]l2) e e T Nae L),
A={(([e)=,a),Pa(a)) |a e X" Na e X} O

11/35

N-gram Language Models

Definition

(a)acx~ is n-gram if it is compatible with =, C ¥* x ¥*, where
a=, [Q>la|—n+1 = B>\B|—n+1'

Proposition

=, is a right invariant equivalence relation with a finite index. Thus,
every n-gram sequential factorisation is finite-state.

Stochastic sequential
finite-state transducer

(1e)

12/35

Smoothed n-gram Language Models
Definition (Simplified)
(@b&n))aez* is a smoothing of the n-gram (gb&"))aez* if
(n) e ()
$0(a) — {Aaa% () ifgt"(a) >0

Hal '((\n.l % (3) otherwise

Proposition

Every smoothed n-gram sequential factorisation is trim.

(3,0.6)

Stochastic sequential
finite-state f-transducer ‘4

(670 ‘€)

13/35

Tightness and Ambiguity of Finite-State Sequential Models

Proposition
A sequential model generated by a finite-state sequential factorisation
® js tight if and only if every accessible factor of ® is co-accessible.

SM 75 (E) = USM 5 (E) = LM g5 (5) SM 5 () = USM 5 (E) = LM g5 ()

(a) 1=l =1 (b) 2] >1

14/35

Section 3

Neural Language Modelling

15/35

Recurrent Neural Networks (RNNs)

Definition (Automata-based view)

An RNN is a letter-to-letter pure sequential transducer
R = (R¥)* x (R%)* H C R% (ho,x0),0,\).

The behaviour of R is the function [R]: (R%)* — (R%)*, where
[R](e) = xo ® A*(ho,). R is bounded if {||x||, | x € Im(\)} is
bounded.

Example

An Elman RNN is a bounded RNN such that

d(h,x) = f(Uh+ Vx + bs),
A(h, x) = g(Wé(h, x) + by),

where f and g are sigmoid functions, U € Rxdn \/ ¢ RInxdi
bs € R% W € R%*d and by € R%.

16/35

Sequential Neural Networks (SNNs)
Definition
An SNN is a tuple (X,e,R,f,g), where
* e: ¥ — RY (embedding);
e R is an RNN (encoder);
e f: R% — R*s (decoder);
e g:R* — A%s (projection).

Definition
The sequential factorisation associated with N' = (¥,e,R,f,g)
is ® := (¢a)acx+ such that for ajap...a, € £¥,

(¢e: ¢al7 ¢3132 ceey ¢8132...an) = (e* o [[R]] of*o g*)(alaz . a,,),

where e*: ¥ — (RY)*, £*: (R%)* — (R¥s)*, g*: (R¥s)* — (A¥s)*
are the homomorphic extensions of e, f and g. The behaviour of N,
denoted [N], is the sequential model generated by ®.

17/35

Behaviour of an SNN

[N(a122. ..

)
" ara...an
A .)
! f(xo) 1| f(M(ho, e(ar1))) f(A(h1, e(a2))) ‘v’ f(A(hp—1,e(an)))
A ' ;)
'\) ‘\‘ A(ho, e(a1)) A(h1,e(a2)) '\ A(hp—1, e(an))
\ ea.)\l;,ea), A(h1, e(a n,A)v,,,, n
R(\TH@((IHQ\(I @) Alh: <2))>m<e<a) (\\1e<a>>)
e(ar) e(a2) (o)
e)
E a; - ap an T $

[N can be represented by a stochastic sequential transducer.

18/35

Common Decoders and Projections

e Typically, f(x) := Wx + b, where W € R**% and b € R>s.

o W, is the encoding of a € X.
o x = (e" o [R])()|a|+1 is the encoding of a € X*.
o f(x) € R®s represents the similarities between o and .
® The role of g is to project the similarity scores onto the
probability simplex such that ¢,(a) is proportional to the
similarity between « and a.

Definition
softmax: R” — A" is defined for x e R" and 1 < i <n as
softmax(x); == ‘;Xp&.
>_j=1 &xp(x))

19/35

Tightness and Ambiguity of Neural Sequential Models
Proposition
Every softmax-based neural sequential factorisation is trim.

Proposition
Every bounded softmax-based neural sequential model is tight.

SMap () = USMn)(X) = LM (X)

(@) |Z|=1 (b) |Z] > 1

20/35

Section 4

Learning Finite-State Assemblies

21/35

Comparison of Finite-State and Neural Language Models

Finite-state language models Neural language models
computationally optimal (all — computationally expensive
computations are stored in (the transition table is
the transition table); computed on demand);
easier to interpret (using — opaque and hard to interpret
efficient constructions and (consist of millions of floating
closure properties); point parameters);

— discrete nature, which continuous nature, which
significantly hinders learning; facilitates learning;
— less performant in practice. very performant in practice.

22/35

Quantised SNNs

Definition
A quantisation function on X is any q: X — Q, where Q is finite.

Definition
The g-quantisation of an RNN ((RF)* x (R%)* H, (ho,xq),d,\) is
((RF)* x (R%)* H , (ho,x0),0,)), where

~

® g: H— H is a quantisation function;

~

® hy = q(ho);
® j:=4dogq.
Proposition

Quantised SNNs are stochastic sequential finite-state transducers and
vice versa.

Proof.
(=) Straightforward.
(<=) Minsky's construction. O

23/35

Minsky's Construction
0

BX>e(a)=|1] +a BT 5 Ve(a) ==

«(H,a)

24/35

Product Quantisation

Quantisation in high dimensional vector spaces such as R” is difficult.

Definition
A product quantisation function on R" is a quantisation function
g:R" — Q1 X @ X -+ X Qp defined as

9(x) = (W), 2(x?), ..., gn(x"™)),

where x = x(1) © x@) @ ... © x(M and gi: R" — @Q; is a quantisation
function for 1 < j < m.

Remark

If |Q1] = |@2| =--- = |Qm| = k, then q produces k™ states. In
practice n ~ 1024; thus, if m = n, a g-quantisation of an RNN would
have in the order of k10?4 states.

25/35

Monolithic QSNNs

1
1
1
1

! (e(a1),x) (e(a2),x2)
R X0 — - t
1
\\ . \ . . 1
\ : 0 . . \
\ \
. \
\\ \\ ‘\
\) \
\\ A \
_— _ —— \
N A N
N e(a1) R e(ap) e(an)
e(N So 20 S
~C N <
S N ~ N
ar a an $

26/35

Cartesian Decomposition of RNNs
Consider, for 1 < j < m, the RNNs
RU) = (RY)” x (R)", HO C R (h), D), 60, 00)),
If R == ((R%)* x (R%)* H C R% (hg,xp),6,A) is an RNN such that
° dy=>", d,(f), do =>4),
o h():@ h(J),X():@J-n;lXéJ),
e §(h,x)= @szl O (hY), x), A(h,x) = O} A (R0, x), where
h= ©j=1 KU,
then R is the Cartesian product R(1) x R() x ... x R(M.

Transitions

Monolithic R k™| x|
Decomposed R mk|X|

Table: Each RY) is quantised into k values.

27/35

Decomposed QSNNs

Wl(a1az. .. an)

—- -
X
2
=
=
)
N
=

,' N EEIED) N @) AN D) o
Xél) h(()l) i @ 2 h,(ql_)l ,,/1 hf,l)

el a: el a: X(2) (X(z)
o @ (e(a1 PO i U AN G0 N

R \Xo w n—1
- iy~ *] i : |
o) (G EEHATD) EERET) L A ECHETD
:(0_) 0 A w o\ n—1 VU hn
e(ar) . e(a) e(an)
e)
o a N an s : an : $

28/35

Sparse Multilayer RNNs

Consider the composition R ;== R10Rp 0 ---0 Ry, where

Ri=XRY, for1<i<y,

j=1
and let s € [0, m] be such that for 1 <i</¢and h=C0, ho),
5i(h,x) = () 6P (hD, MYx),
j=1

where M,-(j) € R™ and HM,-U)HO =s.

Transitions

Monolithic R kMt x|
Sparse Multilayer R~ mk|Z| + (£ — 1)mk***

Table: Every jo) is quantised into k values.

29/35

Sparse Multilayer QSNNs

[NV](araz - .. an)

)
o
ap)
2 k) M EA lz' z S|z
)) [0
=) 2(2,1)) " b H21)
n n+1
=) (2/) v 4(22)
n, n+1
(m N Lo L
2 2 (o} izn A2
SR Ty =
R
47 N EdeP) 2
: hf,l_’?l) I h,,l’l)
2 £ e(anlx@)
:) i
2 \(.m) . 2 im A N ‘f fm N
e N L I N 0) £(1,m)
- b) ARy nesian
e(a) v e(a2) . e(an)
e(S = N)

30/35

Finite-State Assemblies
Definition
A finite-state assembly over ¥ is a tuple A := (T, I, F,E), where
® T is a finite set of sequential finite-state transducers over ¥;
e | C T is a set of initial transducers;
e [C T is an ordered set of final transducers;
® (T,E) is an ordered DAG of compositional interdependencies.
The behaviour of Ais [A]: ©* — L* defined as

[Al(2) = (D F)(w),

FeF

where (7 is defined for 7 € T inductively
(T)e) =[T() if T €1,
(T)@) = [TT (Orrepry(TNe)) T T\

Quantised sparse multilayer RNNs are a type of finite-state assemblies.
31/35

Differentiable Quantisation

e Uniform quantisation of [a, b]

2b Ib—a 0gq
= | x— | —=——, — =1
9(x) {Xb — a—‘ 2b 7 9x
® Non-uniform learnable quantisation
. dqg Oq
C) = — , — =— =1
q(x,C) ar§errc1|n|]x cll2 I = Be

¢ Mixed-precision quantisation of [—a, a]

a a

—5,5} ,0 €[0,1].

q(x) = x+de, e~ U {

A precision term is added to the loss
function

1
L(w + d€) + Alog 5

32/35

Differentiable Sparsification

® Projected gradient descent: After each gradient
descent step we project M,-(J) to the closest vector
in the subspace Ps C R™ of vectors with s

non-zero coordinates
I\Aﬂi(j) = arg minHM,.U) — XHZ,
x€ Ps
Ps = {x € R" | ||x|lo = s}

® |y regularisation: The masks are probabilistic
I\/I,Q) ~ Bern(p (J)). To make sampling differentiable

Bern(,(J)) is approximated with Concrete(p; 0 JA).
The expected sparsity is optimised via

>-$e] - 3

i=1 j=1 i=1 j=1

33/35

Experimental Results

® The hidden dimension is 1024.

® Each machine uses a separate non-uniform quantisation function
with 16 learnable codes.

® The sparsification method is projected gradient descent.

. Machines . . .
Architecture Layers per Layer Density Perplexity Complexity
Gated Recurrent Unit 1 1 100% 1246 7.08 MFLOPS
Finite-State Assembly 4 1024 5% 123.8 4096 lookups
Finite-State Assembly 10 1024 2.5% 122.9 10240 lookups

34/35

Conclusion

® Finite-state language models can be learned with gradient-based
methods by relaxing the discreteness of the optimisation
constraints.

® Assemblies of finite-state sequential transducers demonstrate
promising results for language modelling by combining
o the computational efficiency and interpretability of sequential
finite-state transducers,
o the performance and learnability of neural networks.

® Further work is required to

o reduce the size of the transitions tables,
o develop more effective quantisation and sparsification methods,
o make learning of more general assembly architectures feasible.

35/35

	Language Modelling Foundations
	Finite-State Language Modelling
	Neural Language Modelling
	Learning Finite-State Assemblies

