Jump inversion of structures Computability Seminar at Notre Dame University

Stefan Vatev¹

Faculty of Mathematics and Informatics Sofia University

30 April 2018

The plan

- Review some results of Ash and Knight about how to strongly code a set by a sequence of structures.
- Show some variants of their work how to weakly code a set by a sequence of structures.
- Some applications of these ideas new proofs of old results.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Connection with Alexandra's talk.

Introduction

The idea of coding a set by a sequence of structures is an old one. It is studied thoroughly by Ash and Knight (1990). Here I will give a few applications connected by the theme of "jump inversion" of structures.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Introduction

The idea of coding a set by a sequence of structures is an old one. It is studied thoroughly by Ash and Knight (1990). Here I will give a few applications connected by the theme of "jump inversion" of structures.

Recall the following classical result - a jump inversion of Turing degrees.

Theorem (Friedberg, 1957)

For every natural number n and Turing degree **a**, there exists a Turing degree **b** such that

$$\mathbf{b}^{(n)} = \mathbf{a} \lor \mathbf{0}^{(n)}.$$

If $\mathbf{a} \geq \mathbf{0}^{(n)}$, then

$$\mathbf{b}^{(n)} = \mathbf{a}.$$

Later generalized to any computable ordinal by MacIntyre (1977).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Associate a Turing degree to a structure

- We consider countable structures whose domains are N or a computable subset of N.
- We say that \mathcal{B} is a copy of \mathcal{A} if $\mathcal{B} \cong \mathcal{A}$.
- Usually we identify the copy B by its atomic diagram, which is a set of natural numbers (under some effective coding of formulas).
- Associate the Turing degree b with the copy B of A if deg_T(D(B)) ∈ b. We say that B is a computable structure if D(B) is a computable set of natural numbers.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Spectra of structures

The Turing degree spectrum of A is the set

 $Spec(\mathcal{A}) = \{ d_T(\mathcal{D}(\mathcal{B})) \mid \mathcal{B} \text{ is a copy of } \mathcal{A} \}.$

- ▶ The *n*-th jump Turing spectrum of \mathcal{A} is the set $Spec_n(\mathcal{A}) = \{\mathbf{a}^{(n)} \mid \mathbf{a} \in Spec(\mathcal{A})\}.$
- ▶ In all non-trivial cases, Spec(A) is **closed upwards** relative to \leq_{τ} .
- One way to compare the structures A and B is by comparing their Turing degree spectra. For example, a question in the style of "jump inversion" is:

$$(\forall \alpha < \omega)(\forall \mathcal{A})(\exists \mathcal{B})[\ Spec(\mathcal{A}) = Spec_n(\mathcal{B})]?$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Computable infinitary formulas

The computable infinitary formulas are infinitary formulas, in which the conjunctions and disjunctions are over c.e. sets.

- 1) the Σ_0^c and Π_0^c formulas are the finitary quantifier-free formulas.
- 2) for every computable ordinal $\alpha > 0$,
 - a) $\varphi(\bar{x})$ is a Σ_{α}^{c} formula if $\varphi(\bar{x}) = \bigvee_{i \in W_{e}} \exists \bar{y}_{i} \psi_{i}(\bar{x}, \bar{y}_{i})$, where each $\psi_{i}(\bar{x}, \bar{y}_{i})$ is $\Pi_{\beta_{i}}^{c}$ for some $\beta_{i} < \alpha$.
 - b) $\varphi(\bar{x})$ is a \prod_{α}^{c} formula if $\varphi(\bar{x}) = \bigwedge_{i \in W_{e}} \forall \bar{y}_{i} \psi_{i}(\bar{x}, \bar{y}_{i})$, where each $\psi_{i}(\bar{x}, \bar{y}_{i})$ is $\sum_{\beta_{i}}^{c}$ for some $\beta_{i} < \alpha$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We can code the compuable infinitary formulas into the natural numbers.

Computable infinitary formulas

The computable infinitary formulas are infinitary formulas, in which the conjunctions and disjunctions are over c.e. sets.

- 1) the Σ_0^c and Π_0^c formulas are the finitary quantifier-free formulas.
- 2) for every computable ordinal $\alpha > 0$,
 - a) $\varphi(\bar{x})$ is a Σ_{α}^{c} formula if $\varphi(\bar{x}) = \bigvee_{i \in W_{e}} \exists \bar{y}_{i} \psi_{i}(\bar{x}, \bar{y}_{i})$, where each $\psi_{i}(\bar{x}, \bar{y}_{i})$ is $\Pi_{\beta_{i}}^{c}$ for some $\beta_{i} < \alpha$.
 - b) $\varphi(\bar{x})$ is a \prod_{α}^{c} formula if $\varphi(\bar{x}) = \bigwedge_{i \in W_{e}} \forall \bar{y}_{i} \psi_{i}(\bar{x}, \bar{y}_{i})$, where each $\psi_{i}(\bar{x}, \bar{y}_{i})$ is $\sum_{\beta_{i}}^{c}$ for some $\beta_{i} < \alpha$.

We can code the compuable infinitary formulas into the natural numbers.

Theorem (ĐŘsh)

If $\varphi(\bar{x})$ is a Σ_{α}^{c} or Π_{α}^{c} formula, then the relation $\varphi^{\mathcal{A}} = \{\bar{a} \in \mathcal{A}^{r} \mid \mathcal{A} \models \varphi(\bar{a})\}$ is $\Sigma_{\alpha}^{0}(\mathcal{D}(\mathcal{A}))$ or $\Pi_{\alpha}^{0}(\mathcal{D}(\mathcal{A}))$. We can do this uniformly, i.e. for a fixed notation *a* for α , by the code of $\varphi(\bar{x})$ we can effectively find the code of $\varphi^{\mathcal{A}}$.

Relatively intrinsically Σ^0_{α} relations

Definition

We say that the relation R over A is relatively intrinsically Σ_{α}^{0} in \mathcal{A} , if for every isomorphism f of \mathcal{A} , $f^{-1}(R)$ is $\Sigma_{\alpha}^{0}(f^{-1}(\mathcal{A}))$. Similarly, we can define relatively intrinsically Π_{α}^{0} relations.

Theorem (Ash-Knight-Manasse-Slaman, Chisholm)

For a given relation R over A. The following are equivalent:

- 1) R is relatively intrinsically Σ^0_{α} ;
- 2) there exists a Σ_{α}^{c} formula $\phi(\bar{x}, \bar{y})$ and parameters $\bar{b} \in A$, for which $(\forall \bar{a} \in A) [\bar{a} \in R \leftrightarrow A \models \phi(\bar{a}, \bar{b})]$, usually denoted $R \in \Sigma_{\alpha}^{c}(A)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Relatively intrinsically Σ^0_{α} relations

Definition

We say that the relation R over A is relatively intrinsically Σ_{α}^{0} in \mathcal{A} , if for every isomorphism f of \mathcal{A} , $f^{-1}(R)$ is $\Sigma_{\alpha}^{0}(f^{-1}(\mathcal{A}))$. Similarly, we can define relatively intrinsically Π_{α}^{0} relations.

Theorem (Ash-Knight-Manasse-Slaman, Chisholm)

For a given relation R over A. The following are equivalent:

- 1) R is relatively intrinsically Σ^0_{α} ;
- 2) there exists a Σ_{α}^{c} formula $\phi(\bar{x}, \bar{y})$ and parameters $\bar{b} \in A$, for which $(\forall \bar{a} \in A) [\bar{a} \in R \leftrightarrow A \models \phi(\bar{a}, \bar{b})]$, usually denoted $R \in \Sigma_{\alpha}^{c}(A)$.

For $\alpha < \omega_1^{CK}$, and any structure A, can we find a structure B with the following "jump inversion" property:

$$(\forall R \subseteq A)[R \in \Sigma_1^c(\mathcal{A}) \leftrightarrow R \in \Sigma_{\alpha}^c(\mathcal{B})]?$$

Jump structures

It is natural to ask what would be the jump \mathcal{A}' of the structure \mathcal{A} . We will define \mathcal{A}' so that we have the following property:

 $Spec_1(\mathcal{A}) = Spec(\mathcal{A}').$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Jump structures

It is natural to ask what would be the jump \mathcal{A}' of the structure \mathcal{A} . We will define \mathcal{A}' so that we have the following property:

$$Spec_1(\mathcal{A}) = Spec(\mathcal{A}').$$

Moreover, we want the following: a relation R is r.i.c.e. on \mathcal{A}' iff R is relatively intrinsically Σ_2^0 on \mathcal{A} . Probably the most straightforward definition is the one given by Antonio Montalbán:

$$\mathcal{A}' = (\mathcal{A}, \{R_i\}_{i < \omega}),$$

where R_i is an effective enumeration of all r.i.c.e. relations in A. Actually, we use the effective listing of all Σ_1^c formulas.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

It is easy to see that any copy of the structure \mathcal{A}^\prime computes the halting set.

Obviously, for any copy \mathcal{B}' of \mathcal{A}' ,

$$\mathcal{D}(\mathcal{B}') \leq_T \mathcal{D}(\mathcal{B})'.$$

Thus, $Spec(\mathcal{A}') \subseteq Spec_1(\mathcal{A})$. For any *i*, consider the Σ_1^c sentence

$$\phi_i \equiv \bigvee_{i \in W_i} \exists x (x = x).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Clearly, $i \in \emptyset'$ iff $\mathcal{A} \models \phi_i$.

• \mathcal{B} is a strong jump invert of \mathcal{A} if

$$\mathbf{a}' \in Spec(\mathcal{B}) \leftrightarrow \mathbf{a} \in Spec(\mathcal{A}).$$

B is a weak jump invert of A if

$$Spec(\mathcal{B}) = Spec_1(\mathcal{A}).$$

- Strong jump inversion implies weak jump inversion.
- Why is this weaker? If a' ∈ Spec(A'), then a' ∈ Spec₁(A), then there is b such that b' = a' and b ∈ Spec(A). a and b may be incomparable and we cannot be sure that a is in Spec(A).

Recall that for any structure \mathcal{A} , \mathcal{A}' is the weak jump invert of \mathcal{A} . This is not the case for strong jump inversion.

For any Boolean algebra \mathcal{B} , \mathcal{B}' is a strong jump invert of \mathcal{B} , i.e.

$$\mathbf{a}' \in Spec(\mathcal{B}') \leftrightarrow \mathbf{a} \in Spec(\mathcal{B}).$$

• The direction \rightarrow is obvious since $Spec(\mathcal{B}') = Spec_1(\mathcal{B})$.

• The direction \leftarrow is a Theorem by Downey-Jockusch (1994).

Recall that for any structure \mathcal{A} , \mathcal{A}' is the weak jump invert of \mathcal{A} . This is not the case for strong jump inversion.

For any Boolean algebra \mathcal{B} , \mathcal{B}' is a strong jump invert of \mathcal{B} , i.e.

$$\mathbf{a}' \in Spec(\mathcal{B}') \leftrightarrow \mathbf{a} \in Spec(\mathcal{B}).$$

• The direction \rightarrow is obvious since $Spec(\mathcal{B}') = Spec_1(\mathcal{B})$.

► The direction ← is a Theorem by Downey-Jockusch (1994).

Not every linear ordering \pounds has the strong jump inversion property. Example by Downey-Knight, There is a linear ordering \pounds such that $\mathbf{0} \notin Spec(\pounds)$, but $\mathbf{0}' \in Spec_1(\pounds)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let's look at the Boolean algebra strong jump inversion more closely. It say that if $\Delta_2^0(X)$ computes \mathcal{B}' , then there is $\mathcal{A} \cong \mathcal{B}$ such that X computes \mathcal{A} . What is the complexity of f, where $\mathcal{A} \cong_f \mathcal{B}$. By the original Downey-Jockusch theorem, f is Δ_4^0 . By an unpublished result of Frolov, this is sharp.

Let's look at the Boolean algebra strong jump inversion more closely. It say that if $\Delta_2^0(X)$ computes \mathcal{B}' , then there is $\mathcal{A} \cong \mathcal{B}$ such that X computes \mathcal{A} . What is the complexity of f, where $\mathcal{A} \cong_f \mathcal{B}$. By the original Downey-Jockusch theorem, f is Δ_4^0 . By an unpublished result of Frolov, this is sharp.

Theorem

Our theorem where f is a Δ_3^0 isomorphism.

We produce a computable Boolean algebra by a finite injury priority construction effective relative to Δ_2^0 .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Given a structure A, is there a structure B such that A is a strong jump invert of B, i.e.

$$\mathbf{a}' \in Spec(\mathcal{A}) \iff \mathbf{a} \in Spec(\mathcal{B}).$$

Given a structure A, is there a structure B such that A is a weak jump invert of B, i.e.

$$Spec(A) = Spec_1(B).$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

 $\label{eq:second} \begin{array}{l} \mbox{Marker's extensions} \\ \mbox{Soskova-Soskova, using Goncharov-Khoussainov,} \\ \mbox{the structure } \mathcal{A} \mbox{ is a strong jump inversion of } \mathcal{M}^{\exists\forall}. \end{array}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Strongly coding a set by a sequence of structures

Let S be a set of natural numbers and \mathcal{B}_0 , \mathcal{B}_1 are structures in the same language. We say that the sequence of structures $\mathscr{C} = \{\mathcal{C}_n\}_{n < \omega}$ code the set S if

$$\mathcal{C}_n \cong egin{cases} \mathcal{B}_1, & ext{if } n \in S \ \mathcal{B}_0, & ext{if } n
ot\in S. \end{cases}$$

Strongly coding a set by a sequence of structures

Let S be a set of natural numbers and \mathcal{B}_0 , \mathcal{B}_1 are structures in the same language. We say that the sequence of structures $\mathscr{C} = \{\mathcal{C}_n\}_{n < \omega}$ code the set S if

$${\mathcal C}_n\cong egin{cases} {\mathcal B}_1, \ {
m if} \ n\in S\ {\mathcal B}_0, \ {
m if} \ n
ot\in S. \end{cases}$$

The sequence $\mathscr{C} = \{\mathcal{C}_n\}_{n < \omega}$ is **uniformly computable**, if it consists of computable copies of $\mathcal{B}_0, \mathcal{B}_1$ and for each *n* we can effectively find a computable index for \mathcal{C}_n , although we do not know whether this index corresponds to \mathcal{B}_0 or \mathcal{B}_1 . If \mathscr{C} is a uniformly commputable sequence, then we say that \mathscr{C}

(日)((1))

strongly codes the set *S*.

Strongly coding a set by a sequence of structures

Example

The following are equivalent:

1) $\mathscr{C} = \{\mathcal{C}_n\}$ strongly codes the set S, where

$$\mathcal{C}_n \cong \begin{cases} \omega, & \text{if } n \in S \\ \omega^*, & \text{if } n \notin S, \end{cases}$$

2) S is a Δ_2^0 set.

The question what sets we can strongly coded by what kind of structures was studied by Ash and Knight (1990).

Pairs of Structures (Ash & Knight)

Fix two structures \mathcal{A} and \mathcal{B} and a countable ordinal $\beta \geq 1$. For all tuples $\bar{a} \in \mathcal{A}$ and $\bar{b} \in \mathcal{B}$ with the same length, define $\bar{a} \leq_{\beta} \bar{b}$ iff the infinitary Π_{β} formulas true of \bar{a} in \mathcal{A} are true of \bar{b} in \mathcal{B} . These are called the *standard back-and-forth* relations. A pair of structures $\{\mathcal{A}, \mathcal{B}\}$ is called α -**friendly** if \mathcal{A}, \mathcal{B} are computable structures and for all $\beta < \alpha$ the relations \leq_{β} are c.e. uniformly in β .

Pairs of Structures (Ash & Knight)

Fix two structures \mathcal{A} and \mathcal{B} and a countable ordinal $\beta \geq 1$. For all tuples $\bar{a} \in \mathcal{A}$ and $\bar{b} \in \mathcal{B}$ with the same length, define $\bar{a} \leq_{\beta} \bar{b}$ iff the infinitary Π_{β} formulas true of \bar{a} in \mathcal{A} are true of \bar{b} in \mathcal{B} . These are called the *standard back-and-forth* relations. A pair of structures $\{\mathcal{A}, \mathcal{B}\}$ is called α -**friendly** if \mathcal{A}, \mathcal{B} are computable structures and for all $\beta < \alpha$ the relations \leq_{β} are c.e. uniformly in β .

Theorem (Ash-Knight, 1990)

Let $\mathcal{B}_0, \mathcal{B}_1$ be structures, α be a computable successor ordinal and

- 1) \mathcal{B}_0 and \mathcal{B}_1 are computable structures in the same language \mathscr{L} ,
- 2) $\{\mathcal{B}_0, \mathcal{B}_1\}$ is α -friendly;
- 3) \mathcal{B}_0 and \mathcal{B}_1 satisfy the same Σ_{β}^{\inf} sentences for all $\beta < \alpha$.

Then for any Δ_{α}^{0} set *S* there is a sequence \mathscr{C} , consisting of copies of $\mathcal{B}_{0}, \mathcal{B}_{1}$, which strongly codes *S*.

Strong jit structure ${\cal N}$

Let $\mathcal{A} = (A; R_0, R_1, \ldots, R_{s-1})$ be a structure. Consider R_i in place of the set S above. Suppose we have the sequences \mathscr{C}_i , which code the relations R_i . Then we can build a new structure \mathcal{N} , which is, roughly speaking, the join of all the structures in \mathscr{C}_i , for i < s.

Theorem

(Goncharov-Harizanov-Knight-McCoy-Miller-Solomon)

Fix a computable succ. ordinal $\alpha \ge 2$ and a structure \mathcal{A} . Let $\mathcal{B}_0, \mathcal{B}_1$ be such that:

- 1) \mathcal{B}_0 and \mathcal{B}_1 are computable structures in the same language \mathscr{L} ,
- 2) $\{\mathcal{B}_0, \mathcal{B}_1\}$ is α -friendly,
- 3) $\mathcal{B}_0, \mathcal{B}_1$ satisfy the same Σ_{β}^{\inf} sentences for all $\beta < \alpha$,
- 4) each \mathcal{B}_i satisfies some Σ_{α}^c sentence that is not true in the other.

Let \mathcal{N} be the structure built from the sequences \mathscr{C}_i which strongly encode R_i . Then \mathcal{A} has a $\Delta^0_{\alpha}(X)$ -computable copy iff \mathcal{N} has an X-computable copy.

Coding $\{C_n\}$ into a structure

Let us consider the structure $\mathcal{A} = (A, R)$, where R is unary, and a pair of structures \mathcal{B}_0 , \mathcal{B}_1 for the same relational language, let $\mathcal{N} = (A \cup U, A, U, Q, \dots)$, where

- 1) $A \cap U = \emptyset$;
- 2) Q assigns to each element a in A an infinite set U_a , where $x \in U_a$ iff $\mathcal{N} \models Q(a, x)$;
- 3) The sets U_a form a partition of U;
- each of the other relations of N (in ...) correspond to some symbol in the language of B₀, B₁, and is the union of its restrictions to the sets A_a;
- 5) For each element a in A, if $\mathcal{U}_a = (\mathcal{U}_a, \dots)$, then

$$\mathcal{U}_{a} \cong egin{cases} \mathcal{B}_{0}, & ext{if } \mathcal{A} \models R(a) \ \mathcal{B}_{1}, & ext{if } \mathcal{A} \models \neg R(a) \end{cases}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Such pairs $\{\mathcal{B}_0, \mathcal{B}_1\}$ exist

Denote
$$\xi_{\beta} = \sum_{\gamma < \beta} \mathbb{Z}^{\gamma} \cdot \omega$$
. Then for ordinals α , where
 $\bullet \quad \alpha = 2\beta + 1$,

$$egin{aligned} \mathcal{B}_0 &\cong \xi_eta \oplus (\xi_eta + \mathbb{Z}^eta); \ \mathcal{B}_1 &\cong (\xi_eta + \mathbb{Z}^eta) \oplus \xi_eta; \end{aligned}$$

$$\triangleright \alpha = 2\beta + 2$$
,

$$\mathcal{B}_0 \cong \mathbb{Z}^{\beta} \cdot \omega;$$

 $\mathcal{B}_1 \cong \mathbb{Z}^{\beta} \cdot \omega^*;$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

This is from the GHKMMS paper.

Weakly coding of a set

Question

Let α be a computable *successor* ordinal, \mathcal{B}_0 , \mathcal{B}_1 are computable structures in the same language. Determine conditions for \mathcal{B}_0 , \mathcal{B}_1 , and a set *S*, for which there exists a (may not be computable) sequence \mathscr{C} of copies of \mathcal{B}_0 and \mathcal{B}_1 , which codes *S*, and

$$\Delta^0_{\alpha}(\bigoplus_n \mathcal{C}_n) \leq_T S.$$

In this case we say that \mathscr{C} weakly codes the set S.

Weakly coding of a set

Question

Let α be a computable *successor* ordinal, \mathcal{B}_0 , \mathcal{B}_1 are computable structures in the same language. Determine conditions for \mathcal{B}_0 , \mathcal{B}_1 , and a set *S*, for which there exists a (may not be computable) sequence \mathscr{C} of copies of \mathcal{B}_0 and \mathcal{B}_1 , which codes *S*, and

$$\Delta^0_{\alpha}(\bigoplus_n \mathcal{C}_n) \leq_T S.$$

In this case we say that \mathscr{C} weakly codes the set S.

Theorem (Vatev, 2013)

Let $\mathcal{B}_0, \mathcal{B}_1$ be computable structures, α be a computable successor ordinal and \mathcal{B}_0 and \mathcal{B}_1 satisfy the same Σ_{β}^c sentences for all $\beta < \alpha$. Then for any Δ_{α}^0 set *S* there is a sequence \mathscr{C} , consisting of copies of $\mathcal{B}_0, \mathcal{B}_1$, which weakly codes *S*.

Weak JIT structure ${\cal N}$

The requirement for α -friendliness is removed.

Theorem (Vatev 2013)

Fix a computable *successor* ordinal $\alpha \geq 2$. Let \mathcal{A} be a countable structure such that **every copy of** \mathcal{A} **is above** Δ_{α}^{0} . Let $\mathcal{B}_{0}, \mathcal{B}_{1}$, satisfy the following properties:

- a) \mathcal{B}_0 and \mathcal{B}_1 are computable structures in the same language \mathscr{L} ;
- b) $\mathcal{B}_0, \mathcal{B}_1$ satisfy the same Σ_{β}^c sentences for every $\beta < \alpha$,
- c) each \mathcal{B}_i satisfies some Σ_{α}^c sentence, which is not true in the other structure.

Let \mathcal{N} be the structure built from the sequences \mathscr{C}_i which weakly code the relations R_i in \mathcal{A} . Then:

1)
$$Spec_{\alpha^{-}}(\mathcal{N}) = Spec(\mathcal{A})$$
, and
2) $(\forall X \subseteq \mathcal{A})[X \in \Sigma_{\alpha}^{c}(\mathcal{N}) \leftrightarrow X \in \Sigma_{1}^{c}(\mathcal{A})].$

Here $\alpha^- = \alpha - 1$, if $\alpha < \omega$ and $\alpha^- = \alpha$, otherwise.

Some details

The proof is by forcing similar to [AKMS, C]. Here the forcing conditions are finite sequences of finite mappings, called *partial conditions*, and have the form $\mathscr{C} = (\tau_0, \tau_1, \ldots, \tau_{k-1})$. We define the *diagram* of \mathscr{C} with respect to $X \in 2^{\omega}$ as

$$D_X(\mathscr{C}) = \bigoplus_{j < len(\mathscr{C})} \tau_j^{-1}(\mathcal{B}_{X(j)}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Some details

The proof is by forcing similar to [AKMS, C]. Here the forcing conditions are finite sequences of finite mappings, called *partial conditions*, and have the form $\mathscr{C} = (\tau_0, \tau_1, \ldots, \tau_{k-1})$. We define the *diagram* of \mathscr{C} with respect to $X \in 2^{\omega}$ as

$$D_X(\mathscr{C}) = \bigoplus_{j < len(\mathscr{C})} \tau_j^{-1}(\mathcal{B}_{X(j)}).$$

Total conditions are infinite sequences of bijections

$$C = (f_0, f_1, f_2, \ldots, f_i, \ldots).$$

We define the *diagram* of the total condition **C** with respect to $X \in 2^{\omega}$ as

$$D_X(\mathbf{C}) = \bigoplus_{j < \omega} f_j^{-1}(\mathcal{B}_{X(j)}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The forcing relation

It models the definition of the Turing jump.

(i)
$$\mathscr{C} \Vdash_1^X F_e(x) \leftrightarrow x \in W_e^{D_X(\mathscr{C})}$$
.
(ii) Let $\alpha = \beta + 1$. Then

$$\mathscr{C} \Vdash_{eta+1}^{X} F_{e}(x) \iff (\exists \delta \in 2^{<\omega}) [x \in W_{e}^{\delta} \& (\forall z \in Dom(\delta)) [(\delta(z) = 1 \& \mathscr{C} \Vdash_{eta}^{X} F_{z}(z)) \lor (\delta(z) = 0 \& \mathscr{C} \Vdash_{eta}^{X} \neg F_{z}(z))].$$

(iii) Let $\alpha = \lim \alpha(p)$. Then

$$\mathscr{C} \Vdash^{X}_{\alpha} F_{e}(x) \iff (\exists \delta \in 2^{<\omega}) [x \in W^{\delta}_{e} \& (\forall z \in Dom(\delta)) [z = \langle x_{z}, p_{z} \rangle \\ ((\delta(z) = 1 \& \mathscr{C} \Vdash^{X}_{\alpha(p_{z})} F_{x_{z}}(x_{z})) \lor \\ (\delta(z) = 0 \& \mathscr{C} \Vdash^{X}_{\alpha(p_{z})} \neg F_{x_{z}}(x_{z})))]].$$

(iv) $\mathscr{C} \Vdash^{X}_{\alpha} \neg F_{e}(x) \leftrightarrow (\forall \mathscr{D})[\mathscr{C} \subseteq \mathscr{D} \rightarrow \mathscr{D} \not\Vdash^{X}_{\alpha} F_{e}(x)].$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Properties of the forcing relation

Let us denote

$$\mathscr{C} \approx_k \mathscr{D} \leftrightarrow \bigwedge_{i \neq k} (\tau_i^{\mathscr{C}} = \tau_i^{\mathscr{D}}),$$

i.e. the partial conditions ${\mathscr C}$ and ${\mathscr D}$ might differ only in the k-th coordinate.

Lemma

Let \mathcal{B}_0 and \mathcal{B}_1 be computable structures, $X \in 2^{\omega}$ is computable, \mathscr{C} be a partial condition. Then for all natural numbers e, z, there is a Σ^c_{α} sentence $\Phi^{\alpha}_{\mathscr{C},e,z}$ such that

$$(\exists \mathscr{D})[\mathscr{D} \approx_k \mathscr{C} \& \mathscr{D} \Vdash^X_\alpha F_e(z)] \leftrightarrow \mathcal{B}_{X(k)} \models \Phi^\alpha_{\mathscr{C},e,x}.$$

If \mathcal{B}_0 and \mathcal{B}_1 satisfy the same \sum_{α}^c sentences, then we can change the *k*-th bit in *X* and continue to force the same requirement $F_e(x)$.

Properties of the forcing relation

For a condition \mathscr{C} , we let $X_{\mathscr{C}} \in 2^{\omega}$ be such that $X_{\mathscr{C}}(i) = X(i)$ for $i < len(\mathscr{C})$ and $X_{\mathscr{C}}(i) = 0$ for $i \geq len(\mathscr{C})$.

Lemma

Let us fix a computable ordinal $\alpha \geq 1$. Let \mathcal{B}_0 and \mathcal{B}_1 be computable structures in the language \mathscr{L} with equality and **both structures satisfy the same** Σ_{α}^c **sentences in** \mathscr{L} . Then for every partial condition \mathscr{C} , $X \in 2^{\omega}$ and natural numbers e, z:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

1)
$$\mathscr{C} \Vdash^{X}_{\alpha} F_{e}(z) \leftrightarrow \mathscr{C} \Vdash^{X_{\mathscr{C}}}_{\alpha} F_{e}(z),$$

2) $\mathscr{C} \Vdash^{X}_{\alpha} \neg F_{e}(z) \leftrightarrow \mathscr{C} \Vdash^{X_{\mathscr{C}}}_{\alpha} \neg F_{e}(z).$

For finite ordinals, this can also be done by the method of Marker's extensions (Soskov and A. Soskova).

Remark

We do not need α -friendliness here and hence \mathcal{N} may **not** have a computable copy. From b) and c) we see that this construction does not work for limit ordinals. Soskov has an example of a structure without ω -jump invert for spectra.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

I will talk about the limit case later.

For finite ordinals, this can also be done by the method of Marker's extensions (Soskov and A. Soskova).

Remark

We do not need α -friendliness here and hence \mathcal{N} may **not** have a computable copy. From b) and c) we see that this construction does not work for limit ordinals. Soskov has an example of a structure without ω -jump invert for spectra.

I will talk about the limit case later.

In the GHKMMS paper, the structures \mathcal{B}_0 and \mathcal{B}_1 are also **uniformly relatively** Δ^0_{α} -categorical, i.e. given an X-computable index for $\mathcal{C} \cong \mathcal{B}_i$, we can find a $\Delta^0_{\alpha}(X)$ computable index for an isomorphism from \mathcal{B}_i onto \mathcal{C} . What is this property useful for ?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

For finite ordinals, this can also be done by the method of Marker's extensions (Soskov and A. Soskova).

Remark

We do not need α -friendliness here and hence \mathcal{N} may **not** have a computable copy. From b) and c) we see that this construction does not work for limit ordinals. Soskov has an example of a structure without ω -jump invert for spectra.

I will talk about the limit case later.

In the GHKMMS paper, the structures \mathcal{B}_0 and \mathcal{B}_1 are also **uniformly relatively** Δ^0_{α} -categorical, i.e. given an X-computable index for $\mathcal{C} \cong \mathcal{B}_i$, we can find a $\Delta^0_{\alpha}(X)$ computable index for an isomorphism from \mathcal{B}_i onto \mathcal{C} . What is this property useful for ?

- For GHKMMS, it is needed to show that there are Δ⁰_α categorical structures, which are not relatively Δ⁰_α categorical, α succ. ordinal.
- Another application in the study of categorocity spectrum of structures.

Definitions

Definition

The computable structure \mathcal{A} is **d**-categorical if for every computable copy \mathcal{B} of \mathcal{A} , there exists an isomorphism $f : \mathcal{B} \cong \mathcal{A}$ such that $f \leq_{\mathcal{T}} \mathbf{d}$.

Example

The structure $\mathcal{A} = (\mathbb{Q}, <)$ is computably categorical, whereas $\mathcal{B} = (\omega, <)$ is not computably categorical.

Definitions

Definition

The computable structure \mathcal{A} is **d**-categorical if for every computable copy \mathcal{B} of \mathcal{A} , there exists an isomorphism $f : \mathcal{B} \cong \mathcal{A}$ such that $f \leq_{\mathcal{T}} \mathbf{d}$.

Example

The structure $\mathcal{A} = (\mathbb{Q}, <)$ is computably categorical, whereas $\mathcal{B} = (\omega, <)$ is not computably categorical.

Definition (Fokina, Kalimullin, Miller)

Let \mathcal{A} be a computable structure. The categoricity spectrum of \mathcal{A} is the set $CatSpec(\mathcal{A}) = \{\mathbf{d} \mid \mathcal{A} \text{ is } \mathbf{d}\text{-categorical}\}$. We say that \mathbf{d} is the degree of categoricity of \mathcal{A} if \mathbf{d} is the least degree in $CatSpec(\mathcal{A})$.

There is also a relativised version.

Definition (F. K. M.)

Let **c** be the Turing degree of the structure \mathcal{A} . We define *the categoricity spectrum* of \mathcal{A} relative to **c** to be the set $CatSpec_{\mathbf{c}}(\mathcal{A}) =$

 $\{\mathbf{d} \mid (\forall \mathcal{B} \cong \mathcal{A})[deg(\mathcal{B}) \leq_{\mathcal{T}} \mathbf{c} \ \rightarrow \ (\exists f : \mathcal{B} \cong \mathcal{A})[f \leq_{\mathcal{T}} \mathbf{d}]\}.$

For computable \mathcal{A} , we have

 $CatSpec(\mathcal{A}) = CatSpec_0(\mathcal{A}).$

There is also a relativised version.

Definition (F. K. M.)

Let **c** be the Turing degree of the structure \mathcal{A} . We define *the categoricity spectrum* of \mathcal{A} relative to **c** to be the set $CatSpec_{\mathbf{c}}(\mathcal{A}) =$

$$\{\mathbf{d} \mid (\forall \mathcal{B} \cong \mathcal{A})[deg(\mathcal{B}) \leq_{\mathcal{T}} \mathbf{c} \ \rightarrow \ (\exists f : \mathcal{B} \cong \mathcal{A})[f \leq_{\mathcal{T}} \mathbf{d}]\}.$$

For computable \mathcal{A} , we have

$$CatSpec(\mathcal{A}) = CatSpec_{0}(\mathcal{A}).$$

A question of type "jump inversion" is the following:

Question

Under what conditions for a **d**-computable structure $\mathcal A$ can we claim the existence of a computable structure $\mathcal B$ such that

$$CatSpec(\mathcal{B}) = CatSpec_{d}(\mathcal{A})$$
?

This notion is relatively new and not well-studied. One interesting question is which degrees can be degrees of categoricity.

Theorem (Fokina, Kalimullin, Miller)

For every $\kappa \leq \omega$, $\mathbf{0}^{(\kappa)}$ is the degree of categoricity.

This notion is relatively new and not well-studied. One interesting question is which degrees can be degrees of categoricity.

Theorem (Fokina, Kalimullin, Miller)

For every $\kappa \leq \omega$, $\mathbf{0}^{(\kappa)}$ is the degree of categoricity.

In short, they build $\mathbf{0}^{(n)}$ -computable graph \mathcal{A} , for which $CatSpec_{\mathbf{0}^{(n)}}(\mathcal{A})$ is the cone above $\mathbf{0}^{(n)}$. By applying the (n + 1)-th Marker's extension of \mathcal{A} , they obtain the structure \mathcal{M} , for which

$$CatSpec_{\mathbf{0}^{(n)}}(\mathcal{A}) = CatSpec(\mathcal{M}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

This notion is relatively new and not well-studied. One interesting question is which degrees can be degrees of categoricity.

Theorem (Fokina, Kalimullin, Miller)

For every $\kappa \leq \omega$, $\mathbf{0}^{(\kappa)}$ is the degree of categoricity.

In short, they build $\mathbf{0}^{(n)}$ -computable graph \mathcal{A} , for which $CatSpec_{\mathbf{0}^{(n)}}(\mathcal{A})$ is the cone above $\mathbf{0}^{(n)}$. By applying the (n + 1)-th Marker's extension of \mathcal{A} , they obtain the structure \mathcal{M} , for which

$$CatSpec_{\mathbf{0}^{(n)}}(\mathcal{A}) = CatSpec(\mathcal{M}).$$

This is a result of the type "jump inversion". Csima, Franklin and Shore generalise this result to any computable ordinal α . They use the $\mathbf{0}^{(\alpha)}$ -computable graph \mathcal{A} of F. K. M. and then they attach to some nodes of the graph certain "back-and-forth trees" of Hirschfeldt and White to obtain a computable sturcture \mathcal{A} such that

$$CatSpec_{\mathbf{0}^{(\alpha)}}(\mathcal{A}) = CatSpec(\mathcal{M}).$$

An application of the strong coding construction

Lemma

Let α be a computable *successor* ordinal and \mathcal{A} is $\mathbf{0}^{(\alpha)}$ -computable structure, such that $CatSpec_{\mathbf{0}^{(\alpha)}}(\mathcal{A})$ is the cone above $\mathbf{0}^{(\alpha)}$. Then there exists a **computable** structure \mathcal{N} , obtained from \mathcal{A} by the **strong coding** construction, for which

$$CatSpec(\mathcal{N}_{\alpha}) = CatSpec_{\mathbf{0}^{(\alpha)}}(\mathcal{A}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

An application of the strong coding construction

Lemma

Let α be a computable *successor* ordinal and \mathcal{A} is $\mathbf{0}^{(\alpha)}$ -computable structure, such that $CatSpec_{\mathbf{0}^{(\alpha)}}(\mathcal{A})$ is the cone above $\mathbf{0}^{(\alpha)}$. Then there exists a **computable** structure \mathcal{N} , obtained from \mathcal{A} by the **strong coding** construction, for which

$$CatSpec(\mathcal{N}_{\alpha}) = CatSpec_{\mathbf{0}^{(\alpha)}}(\mathcal{A}).$$

This lemma allows us to give a new proof to the following theorem.

Theorem (F. K. M. for $\alpha \leq \omega$, C. F. S. for $\alpha < \omega_1^{CK}$)

Let α is an arbitrary computable ordinal. There exists a computable structure \mathcal{B} with degree of categoricity $\mathbf{0}^{(\alpha)}$.

About the structures $\mathcal{B}_0, \mathcal{B}_1$ in the lemma

The first four conditions are the old ones - those for building a strong jit structure.

- B₀ and B₁ are computable structures with domains in the same language L;
- ▶ $\mathcal{B}_0, \mathcal{B}_1$ satisfy the same Σ_{β}^{inf} sentences for every $\beta < \alpha$,
- each \mathcal{B}_i satisfy some Σ_{α}^c sentence, which is not true in the other structuer \mathcal{B}_{1-i} .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• the pair $\{\mathcal{B}_0, \mathcal{B}_1\}$ is α -friendly;

Moreover, we want the following:

About the structures $\mathcal{B}_0, \mathcal{B}_1$ in the lemma

The first four conditions are the old ones - those for building a strong jit structure.

- B₀ and B₁ are computable structures with domains in the same language L;
- $\mathcal{B}_0, \mathcal{B}_1$ satisfy the same Σ_{β}^{\inf} sentences for every $\beta < \alpha$,
- each \mathcal{B}_i satisfy some Σ_{α}^c sentence, which is not true in the other structuer \mathcal{B}_{1-i} .
- the pair $\{\mathcal{B}_0, \mathcal{B}_1\}$ is α -friendly;

Moreover, we want the following:

▶ \mathcal{B}_0 and \mathcal{B}_1 are **uniformly relatively** Δ_{α}^0 -categorical, i.e. Given an X-computable index for $\mathcal{C} \cong \mathcal{B}_i$, we can find a $\Delta_{\alpha}^0(X)$ computable index for an isomorphism from \mathcal{B}_i onto \mathcal{C} .

Let us have a uniformly computable sequence of pairs of structures $\{(\mathcal{B}_0^n, \mathcal{B}_1^n)\}_n$. We say that the sequence $\{\mathcal{C}_n\}_n$ codes the set S if

$$\mathcal{C}_n \cong \begin{cases} \mathcal{B}_1^n, \text{ if } n \in S \\ \mathcal{B}_0^n, \text{ if } n \notin S. \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Let us have a uniformly computable sequence of pairs of structures $\{(\mathcal{B}_0^n, \mathcal{B}_1^n)\}_n$. We say that the sequence $\{\mathcal{C}_n\}_n$ codes the set S if

$$\mathcal{C}_n \cong \begin{cases} \mathcal{B}_1^n, \text{ if } n \in S \\ \mathcal{B}_0^n, \text{ if } n \notin S. \end{cases}$$

Let $\alpha = \lim \alpha_n$ be a computable limit ordinal and α_n are succ. ordinals. If we choose \mathcal{B}_0^n and \mathcal{B}_1^n to satisfy the conditions for α_n -weak jit, then we can build a sequence $\{\mathcal{C}_n\}_n$ such that

$$\Delta^0_{\alpha}(\bigoplus_n \mathcal{C}_n) \leq_T S.$$

Let us have a uniformly computable sequence of pairs of structures $\{(\mathcal{B}_0^n, \mathcal{B}_1^n)\}_n$. We say that the sequence $\{\mathcal{C}_n\}_n$ codes the set S if

$$\mathcal{C}_n \cong \begin{cases} \mathcal{B}_1^n, \text{ if } n \in S \\ \mathcal{B}_0^n, \text{ if } n \notin S. \end{cases}$$

Let $\alpha = \lim \alpha_n$ be a computable limit ordinal and α_n are succ. ordinals. If we choose \mathcal{B}_0^n and \mathcal{B}_1^n to satisfy the conditions for α_n -weak jit, then we can build a sequence $\{\mathcal{C}_n\}_n$ such that

$$\Delta^0_{\alpha}(\bigoplus_n \mathcal{C}_n) \leq_T S.$$

When does this work for jump inversion of spectra of structures? We know that in the general case it does not for limit ordinals.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The spectrum of A has a least degree d ≥ 0^(α). Fix a copy B such that D(B) belongs to d.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▶ If \mathcal{N} is the weak jit structure built for \mathcal{B} , we obtain $Spec(\mathcal{A}) \subseteq Spec(\mathcal{N})$.

- The spectrum of A has a least degree d ≥ 0^(α). Fix a copy B such that D(B) belongs to d.
- If N is the weak jit structure built for B, we obtain Spec(A) ⊆ Spec(N).
- Let {(Φ₀ⁿ, Φ₁ⁿ)} be the Σ^c_{α_n} sentences that help us distinguish between B₀ⁿ and B₁ⁿ. Consider an element C of the sequence of structures C. We need to be able to find n and i such that C ≅ B_iⁿ, effectively relative to oracle Δ⁰_α.
- To do that we require the pairs (\$\mathcal{B}_0^n, \mathcal{B}_1^n\$) to be such that for \$i = 0, 1:

$$\mathcal{B}_i^n \models \Phi_i^n \& \bigwedge_{k \neq n} \neg \Phi_i^k \& \bigwedge_n \neg \Phi_{1-i}^n.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- The spectrum of A has a least degree d ≥ 0^(α). Fix a copy B such that D(B) belongs to d.
- If N is the weak jit structure built for B, we obtain Spec(A) ⊆ Spec(N).
- Let {(Φ₀ⁿ, Φ₁ⁿ)} be the Σ^c_{α_n} sentences that help us distinguish between B₀ⁿ and B₁ⁿ. Consider an element C of the sequence of structures C. We need to be able to find n and i such that C ≅ B_iⁿ, effectively relative to oracle Δ⁰_α.
- To do that we require the pairs (\$\mathcal{B}_0^n, \mathcal{B}_1^n\$) to be such that for \$i = 0, 1:

$$\mathcal{B}_i^n \models \Phi_i^n \& \bigwedge_{k \neq n} \neg \Phi_i^k \& \bigwedge_n \neg \Phi_{1-i}^n.$$

▶ We have this property. If $\alpha_n = 2\beta_n + 2$, \mathcal{B}_0^n can be $\mathbb{Z}^{\beta_n} \cdot \omega$ and Φ_0^n says that there is a least \mathbb{Z}^{β_n} block. Then \mathcal{B}_1^n will be $\mathbb{Z}^{\beta_n} \cdot \omega^*$ and Φ_1^n will say that there is a greatest \mathbb{Z}^{β_n} block.

In this way we obtain a new proof of an old result.

Theorem

Let α be a computable limit ordinal and let \mathcal{A} be a structure whose spectrum has a least degree $\mathbf{d} \geq \Delta_{\alpha}^{0}$. Then there exists a weak jit structure \mathcal{N} such that

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

1)
$$Spec_{\alpha}(\mathcal{N}) = Spec(\mathcal{A})$$
, and

2)
$$(\forall X \subseteq A)[X \in \Sigma^c_{\alpha}(\mathcal{N}) \leftrightarrow X \in \Sigma^c_1(\mathcal{A})].$$

Yet another application

Definition

For a countable sequence of sets $\mathscr{R} = \{R_n\}_{n \in \omega}$ and a set B, $\mathscr{R} \leq_{c.e.} B$ if $R_n \leq_{c.e.} B^{(n)}$ uniformly in n;

Definition

For two sequences of sets \mathscr{R} Đỹ \mathscr{U} , we define:

 $\mathscr{R} \leq_{\omega} \mathscr{U} \leftrightarrow (\forall X \subseteq \mathbb{N})[\mathscr{U} \leq_{c.e.} X \rightarrow \mathscr{R} \leq_{c.e.} X];$

The equivalence classes under \leq_{ω} are called ω -enumeration degrees. Introduced by Soskov and studied by him and his students in Sofia in the past decade.

Yet another application

Definition

For a countable sequence of sets $\mathscr{R} = \{R_n\}_{n \in \omega}$ and a set B, $\mathscr{R} \leq_{c.e.} B$ if $R_n \leq_{c.e.} B^{(n)}$ uniformly in n;

Definition

For two sequences of sets ${\mathscr R}$ Đỹ ${\mathscr U}$, we define:

$$\mathscr{R} \leq_{\omega} \mathscr{U} \; \leftrightarrow \; (\forall X \subseteq \mathbb{N})[\mathscr{U} \leq_{c.e.} X \; \rightarrow \; \mathscr{R} \leq_{c.e.} X];$$

The equivalence classes under \leq_{ω} are called ω -enumeration degrees. Introduced by Soskov and studied by him and his students in Sofia in the past decade.

This is a generalization of the enumeration reducibility.

Theorem (Selman)

$$\mathcal{A} \leq_{e} B \leftrightarrow (\forall X \subseteq \mathbb{N})[B \leq_{c.e.} X \Rightarrow A \leq_{c.e.} X].$$

Embedding ω -degrees into Muchnick degrees

Theorem (Soskov 2013)

For every sequence \mathscr{R} , we can build a structures $\mathcal{N}_{\mathscr{R}}$ such that:

$$Spec(\mathcal{N}_{\mathscr{R}}) = \{ d_{\mathcal{T}}(B) \mid \mathscr{R} \leq_{c.e.} B \}.$$

Then we have the following characterization:

$$\mathscr{R} \leq_{\omega} \mathscr{U} \leftrightarrow Spec(\mathcal{N}_{\mathscr{U}}) \subseteq Spec(\mathcal{N}_{\mathscr{R}}).$$

Soskov uses the technique of Marker's extension in his proof. The structure $\mathcal{N}_{\mathscr{R}}$ is defined in an computable infinite language, because for every R_n he builds its *n*-th Marker's extension \mathbb{D} \mathbb{E} \mathbb{P}'_n , which is a (n + 1)-ary relation. The structure $\mathcal{N}_{\mathscr{R}}$ can also be built by coding the sequence \mathscr{R} by pairs of structures. We apply the strong jit theorem for each R_n and take the join of the produced structures.

Concluding remarks

- It would be nice if we can choose N_R to be something nice such us a linear ordering.
- The Marker's extension construction has nice model-theoretic properties, but from the point of view of computable structure theory, it seems that we can replace it by the pairs of structures construction.
- When is it true that N is Medvedev equivalent to M, where N is the strong jit for A, M is the Marker's extension for A ?

The end

Thank you for your attention!

