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Abstract

We show the first order definability of the jump operator in the upper semi-lattice of
the ω-enumeration degrees.

1 The ω-enumeration degrees

The investigation of definability issues in degree structures is a main part of the research in
Computability theory. Given a degree structure possessing a jump, naturally arises the question
of the first order definability of this operator in the language of the structure order. In the both
most explored structures, DT of the Turing degrees and De of the enumeration degrees, Shore
and Slaman [5] and Kalimullin [4] respectively, show the definability of the jump operator.

This paper concerns the problem of the first order definability of the jump in an extension
of De – the ω-enumeration degree structure Dω. The both structures are closely related. More
precisely, Soskov and Ganchev [7] show that the group Aut(De) of the automorphisms of De

and the group Aut(D′
ω) of the jump preserving automorphisms of Dω, are isomorphic. Again in

[7] it is shown also that De is an automorphism base for Dω, which is first order definable in Dω

in the language of the structure order and the jump operation. Note, that the definability of
the jump in Dω guarantees that all automorphisms of Dω preserve the jump, and hence that De

and Dω have isomorphic automorphism groups. Thus the rigidity of the enumeration degrees
is equivalent to the rigidity of the ω-enumeration degrees.

Unlike the well known structures of the Turing and the enumeration degrees, Dω is induced
by a reducibility on the set Sω of the sequences of sets of natural numbers. The study of this
degree structure was initiated by Soskov in [6]. He introduces the ω-enumeration reducibility
≤ω, considering for each sequence A = {Ak}k<ω of sets of natural numbers its jump-class JA.
This class consists of the Turing degrees of all sets, that can compute, in an uniform way, an
enumeration of the n-th element of the considering sequence in their n-th Turing jump:

JA = {degT (X) | Ak is c.e. in X(k) uniformly in k}.

Having this, define A ≤ω B iff JB ⊆ JA. This reducibility is a preorder on Sω, and hence it gives
rise to a degree structure in the usual way, denoted by Dω – the structure of the ω-enumeration
degrees.

The degree of the sequence A we shall denote by degω(A). The relation ≤ defined by
a ≤ b ⇐⇒ ∃A ∈ a∃B ∈ b(A ≤ω B) is a partial order on the set of all ω-enumeration
degrees Dω. By Dω we shall denote the structure (Dω,≤). The ω-enumeration degree 0ω of
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the sequence ∅ω = {∅}k<ω is the least element in Dω. Further, the ω-enumeration degree of
the sequence A ⊕ B = {Ak ⊕ Bk}k<ω is the least upper bound a ∨ b of the pair of degrees
a = degω(A) and b = degω(B). Thus Dω is an upper semi-lattice with least element.

Note that for all A,B ⊆ ω, A ≤e B ⇐⇒ (A, ∅, . . . , ∅, . . .) ≤ω (B, ∅, . . . , ∅, . . .). Hence,
the mapping κ : De → Dω, defined by κ(dege(A)) = degω(A, ∅, . . . , ∅, . . .), is an embedding of
the enumeration degree structure De into Dω. The copy of the enumeration degrees under the
embedding κ we shall denote by D1.

We need the following definition, in order to characterize ω-enumeration reducibility. Given
a sequence A ∈ Sω we define the jump-sequence P(A) of A as the sequence {Pk(A)}k<ω such
that P0(A) = A0 and for each k, Pk+1(A) = Pk(A)′⊕Ak+1, 1.

Now, according to [6], A ≤ω B ⇐⇒ An ≤e Pn(B) uniformly in n. From here, one can show
that each sequence is ω-enumeration equivalent with its jump-sequence, i.e. for all A ∈ Sω,
A ≡ω P(A).

Following the lines of [7], the ω-enumeration jump A′ of A ∈ Sω is defined as the sequence
A′ = (P1(A), A2, A3, . . . , Ak, . . .). This operator is defined in such a way, that the jump-class
JA′ of A′ contains exactly the jumps of the degrees in the jump-class JA of A. Note also, that
for each k, Pk(A′) = P1+k(A), so A′ ≡ω {Pk+1(A)}. The jump operator is strictly monotone,
i.e. A �ω A′ and A ≤ω B ⇒ A′ ≤ω B′. This allows to define a jump operation on the ω-
enumeration degrees by setting a′ = degω(A′), where A ∈ a is an arbitrary. Clearly a < a′ and
a ≤ b⇒ a′ ≤ b′. Let us note that ∅ω ′ ≡ω {∅(k+1)}k<ω.

A partial result concerning the definability of the jump is achieved in [2]. Namely, it is
shown that the jump 0′

ω of the least element is first order definable in Dω. We use this result
as one of the bases of the definition of the jump.

2 Basic steps of the proof

We start with a result, concerning the structure of the enumeration degrees:

Lemma 1. The only enumeration degree x satisfying (∀y)[x ∨ y ≥ 0′
e → y ≥ 0′

e] is the least
degree 0e.

The main tool we use to prove the above Lemma are the K-pairs. They are introduced by
Kalimullin [4] in order to define the enumeration jump operator. One equivalent definition is
the following.

Definition 2. Let a,b be enumeration degrees. Then {a,b} is a K-pair iff for every enumer-
ation degree x, x = (a ∨ x) ∧ (b ∨ x).

We shall call a K-pair nontrivial, if the both its elements are nonzero. Let {a,b} be a
nontrivial K-pair and A ∈ a, B ∈ b. Then the following holds:

• A ≤e B;

• the set of all degrees, which form a K-pair with a is an ideal;

• the degrees a and b are incomparable and quasiminimal.

A proof of all these properties can be found in [4].

1unless otherwise stated, if A is a set, then A′ will denote the enumeration jump of A



Ganchev and M. Soskova [3] find a much simpler definition of the jump than that given by
Kalimullin. Namely, for every nonzero enumeration degree u ∈ De, u′ is the greatest among
the all lest upper bounds a ∨ b of nontrivial K-pairs {a,b}, such that a ≤e u.

From here, one can easily derive that if x in a nonzero enumeration degree, then there is
a degree y such that x ∨ y ≥e 0′

e, but y is not above 0′
e. Indeed, let x ∈ De be a nonzero.

Let {a,b} be a nontrivial K-pair, such that a ≤e x, which realizes x′, i. e. a ∨ b = x′. Since
a ≤e x, we have that x∨b ≥e a∨b = x′ ≥e 0′

e. Suppose now that 0′
e ≤e b. Then {a,0′

e} must
be a nontrivial K-pair. If A ∈ a, then A ≤e ∅′ ≡e ∅′ by the fact that ∅′ is a total set. Hence
a ≤e 0′

e ≤e b. This is a contradiction with the third K-pair property, that were mentioned
above. Thus 0′

e �e b.
Next, let us consider the set of ω-enumeration degrees defined by this formula in Dω. For

the purpose, let X = {Xk}k<ω be a sequence such that for each sequence Y = {Yk}k<ω if
∅ω ′ ≤ω X ⊕Y then ∅ω ′ ≤ω Y. Noting that for each sequence A = {Ak}k<ω, ∅ω ′ ≤ω A is
equivalent to ∅′ ≤e A0, and then using Lemma 1, we conclude that X0 ≡e ∅.

Now, let X = {Xk}k<ω be such that X0 ≡e ∅ and the sequence Y = {Yk}k<ω be such that
∅ω ′ ≤ω X ⊕Y. Then we have that ∅′ ≤e X0⊕Y0 ≡e Y0, hence ∅ω ′ ≤ω Y.

Thus, the degrees in Dω, which satisfy the formula mentioned above, are exactly these that
contain a sequence whose zeroth element is the empty set. We shall denote the set of all these

degrees by D̃1, D̃1 = {x ∈ Dω | (∃{Ak}k<ω ∈ x)[ A0 = ∅ ]}.
Here is the moment when we use the first-order definability of 0′

ω, proved in [2]. By this

result, we now have the first-order definability of the set D̃1.
Further, for each a ∈ Dω, denote by µ(a) the least (ω-enumeration) degree x, for which

exists degree y ∈ D̃1 such that x ∨ y = a. It is not difficult to see that the operation µ
is correctly defined. Moreover, for each a, if {Ak}k<ω ∈ a then µ(a) contains the sequence
(A0, ∅, . . . , ∅, . . .). Hence, the range of µ is exactly the copy D1 of the enumeration degrees
under the embedding κ:

D1 = {µ(a) | a ∈ Dω}.

Combining all together, we conclude the following.

Lemma 3. The copy D1 of the enumeration degrees under the embedding κ is first-order
definable in Dω.

The final step in the proof is a result of Ganchev, [1]. Namely, the result states that the set
D1 is first-order definable in Dω if and only if the jump operation is first-order definable in Dω.

Thus, we have the definability of the jump operation.

Theorem 4. The jump operator is first-order definable in the structure Dω of the ω-
enumeration degrees.
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