Definability of the jump operator in the ω -enumeration degrees

Andrey C. Sariev¹ and Hristo Ganchev^{2*}

¹ Sofia University, Sofia, Bulgaria acsariev@gmail.com

² Sofia University, Sofia, Bulgaria ganchev@fmi.uni-sofia.bg

Abstract

We show the first order definability of the jump operator in the upper semi-lattice of the ω -enumeration degrees.

1 The ω -enumeration degrees

The investigation of definability issues in degree structures is a main part of the research in Computability theory. Given a degree structure possessing a jump, naturally arises the question of the first order definability of this operator in the language of the structure order. In the both most explored structures, \mathcal{D}_T of the Turing degrees and \mathcal{D}_e of the enumeration degrees, Shore and Slaman [5] and Kalimullin [4] respectively, show the definability of the jump operator.

This paper concerns the problem of the first order definability of the jump in an extension of \mathcal{D}_e – the ω -enumeration degree structure \mathcal{D}_{ω} . The both structures are closely related. More precisely, Soskov and Ganchev [7] show that the group $Aut(\mathcal{D}_e)$ of the automorphisms of \mathcal{D}_e and the group $Aut(\mathcal{D}'_{\omega})$ of the jump preserving automorphisms of \mathcal{D}_{ω} , are isomorphic. Again in [7] it is shown also that \mathcal{D}_e is an automorphism base for \mathcal{D}_{ω} , which is first order definable in \mathcal{D}_{ω} in the language of the structure order and the jump operation. Note, that the definability of the jump in \mathcal{D}_{ω} guarantees that all automorphisms of \mathcal{D}_{ω} preserve the jump, and hence that \mathcal{D}_e and \mathcal{D}_{ω} have isomorphic automorphism groups. Thus the rigidity of the enumeration degrees is equivalent to the rigidity of the ω -enumeration degrees.

Unlike the well known structures of the Turing and the enumeration degrees, \mathcal{D}_{ω} is induced by a reducibility on the set \mathcal{S}_{ω} of the sequences of sets of natural numbers. The study of this degree structure was initiated by Soskov in [6]. He introduces the ω -enumeration reducibility \leq_{ω} , considering for each sequence $\mathcal{A} = \{A_k\}_{k < \omega}$ of sets of natural numbers its jump-class $J_{\mathcal{A}}$. This class consists of the Turing degrees of all sets, that can compute, in an uniform way, an enumeration of the *n*-th element of the considering sequence in their *n*-th Turing jump:

$$J_{\mathcal{A}} = \{ \deg_T(X) \mid A_k \text{ is c.e. in } X^{(k)} \text{ uniformly in } k \}.$$

Having this, define $\mathcal{A} \leq_{\omega} \mathcal{B}$ iff $J_{\mathcal{B}} \subseteq J_{\mathcal{A}}$. This reducibility is a preorder on \mathcal{S}_{ω} , and hence it gives rise to a degree structure in the usual way, denoted by \mathcal{D}_{ω} – the structure of the ω -enumeration degrees.

The degree of the sequence \mathcal{A} we shall denote by $\deg_{\omega}(\mathcal{A})$. The relation \leq defined by $\mathbf{a} \leq \mathbf{b} \iff \exists \mathcal{A} \in \mathbf{a} \exists \mathcal{B} \in \mathbf{b}(\mathcal{A} \leq_{\omega} \mathcal{B})$ is a partial order on the set of all ω -enumeration degrees \mathbf{D}_{ω} . By \mathcal{D}_{ω} we shall denote the structure $(\mathbf{D}_{\omega}, \leq)$. The ω -enumeration degree $\mathbf{0}_{\omega}$ of

 $^{^*{\}rm The}$ authors were partially supported by an BNSF MON Grant No. DN02/16 and by Sofia University Science Fund, project 80-10-147/21.04.2017

the sequence $\emptyset_{\omega} = \{\emptyset\}_{k < \omega}$ is the least element in \mathcal{D}_{ω} . Further, the ω -enumeration degree of the sequence $\mathcal{A} \oplus \mathcal{B} = \{A_k \oplus B_k\}_{k < \omega}$ is the least upper bound $\mathbf{a} \lor \mathbf{b}$ of the pair of degrees $\mathbf{a} = \deg_{\omega}(\mathcal{A})$ and $\mathbf{b} = \deg_{\omega}(\mathcal{B})$. Thus \mathcal{D}_{ω} is an upper semi-lattice with least element.

Note that for all $A, B \subseteq \omega, A \leq_e B \iff (A, \emptyset, \dots, \emptyset, \dots) \leq_{\omega} (B, \emptyset, \dots, \emptyset, \dots)$. Hence, the mapping $\kappa : \mathbf{D}_e \to \mathbf{D}_{\omega}$, defined by $\kappa(\deg_e(A)) = \deg_{\omega}(A, \emptyset, \dots, \emptyset, \dots)$, is an embedding of the enumeration degree structure \mathcal{D}_e into \mathcal{D}_{ω} . The copy of the enumeration degrees under the embedding κ we shall denote by \mathbf{D}_1 .

We need the following definition, in order to characterize ω -enumeration reducibility. Given a sequence $\mathcal{A} \in \mathcal{S}_{\omega}$ we define the *jump-sequence* $\mathcal{P}(\mathcal{A})$ of \mathcal{A} as the sequence $\{P_k(\mathcal{A})\}_{k < \omega}$ such that $P_0(\mathcal{A}) = A_0$ and for each k, $P_{k+1}(\mathcal{A}) = P_k(\mathcal{A})' \oplus A_{k+1}$, ¹.

Now, according to [6], $\mathcal{A} \leq_{\omega} \mathcal{B} \iff A_n \leq_e P_n(\mathcal{B})$ uniformly in *n*. From here, one can show that each sequence is ω -enumeration equivalent with its jump-sequence, i.e. for all $\mathcal{A} \in \mathcal{S}_{\omega}$, $\mathcal{A} \equiv_{\omega} \mathcal{P}(\mathcal{A})$.

Following the lines of [7], the ω -enumeration jump \mathcal{A}' of $\mathcal{A} \in \mathcal{S}_{\omega}$ is defined as the sequence $\mathcal{A}' = (P_1(\mathcal{A}), A_2, A_3, \ldots, A_k, \ldots)$. This operator is defined in such a way, that the jump-class $J_{\mathcal{A}'}$ of \mathcal{A}' contains exactly the jumps of the degrees in the jump-class $J_{\mathcal{A}}$ of \mathcal{A} . Note also, that for each k, $P_k(\mathcal{A}') = P_{1+k}(\mathcal{A})$, so $\mathcal{A}' \equiv_{\omega} \{P_{k+1}(\mathcal{A})\}$. The jump operator is strictly monotone, i.e. $\mathcal{A} \leq_{\omega} \mathcal{A}'$ and $\mathcal{A} \leq_{\omega} \mathcal{B} \Rightarrow \mathcal{A}' \leq_{\omega} \mathcal{B}'$. This allows to define a jump operation on the ω -enumeration degrees by setting $\mathbf{a}' = \deg_{\omega}(\mathcal{A}')$, where $\mathcal{A} \in \mathbf{a}$ is an arbitrary. Clearly $\mathbf{a} < \mathbf{a}'$ and $\mathbf{a} \leq \mathbf{b} \Rightarrow \mathbf{a}' \leq \mathbf{b}'$. Let us note that $\emptyset_{\omega}' \equiv_{\omega} \{\emptyset^{(k+1)}\}_{k < \omega}$.

A partial result concerning the definability of the jump is achieved in [2]. Namely, it is shown that the jump $\mathbf{0}'_{\omega}$ of the least element is first order definable in \mathcal{D}_{ω} . We use this result as one of the bases of the definition of the jump.

2 Basic steps of the proof

We start with a result, concerning the structure of the enumeration degrees:

Lemma 1. The only enumeration degree \mathbf{x} satisfying $(\forall \mathbf{y})[\mathbf{x} \lor \mathbf{y} \ge \mathbf{0}'_e \to \mathbf{y} \ge \mathbf{0}'_e]$ is the least degree $\mathbf{0}_e$.

The main tool we use to prove the above Lemma are the \mathcal{K} -pairs. They are introduced by Kalimullin [4] in order to define the enumeration jump operator. One equivalent definition is the following.

Definition 2. Let \mathbf{a}, \mathbf{b} be enumeration degrees. Then $\{\mathbf{a}, \mathbf{b}\}$ is a \mathcal{K} -pair iff for every enumeration degree $\mathbf{x}, \mathbf{x} = (\mathbf{a} \lor \mathbf{x}) \land (\mathbf{b} \lor \mathbf{x})$.

We shall call a \mathcal{K} -pair *nontrivial*, if the both its elements are nonzero. Let $\{\mathbf{a}, \mathbf{b}\}$ be a nontrivial \mathcal{K} -pair and $A \in \mathbf{a}, B \in \mathbf{b}$. Then the following holds:

- $A \leq_e \overline{B};$
- the set of all degrees, which form a \mathcal{K} -pair with **a** is an ideal;
- \bullet the degrees ${\bf a}$ and ${\bf b}$ are incomparable and quasiminimal.

A proof of all these properties can be found in [4].

¹unless otherwise stated, if A is a set, then A' will denote the enumeration jump of A

Ganchev and M. Soskova [3] find a much simpler definition of the jump than that given by Kalimullin. Namely, for every nonzero enumeration degree $\mathbf{u} \in \mathbf{D}_e$, \mathbf{u}' is the greatest among the all lest upper bounds $\mathbf{a} \vee \mathbf{b}$ of nontrivial \mathcal{K} -pairs $\{\mathbf{a}, \mathbf{b}\}$, such that $\mathbf{a} \leq_e \mathbf{u}$.

From here, one can easily derive that if \mathbf{x} in a nonzero enumeration degree, then there is a degree \mathbf{y} such that $\mathbf{x} \vee \mathbf{y} \geq_e \mathbf{0}'_e$, but \mathbf{y} is not above $\mathbf{0}'_e$. Indeed, let $\mathbf{x} \in \mathbf{D}_e$ be a nonzero. Let $\{\mathbf{a}, \mathbf{b}\}$ be a nontrivial \mathcal{K} -pair, such that $\mathbf{a} \leq_e \mathbf{x}$, which realizes \mathbf{x}' , i. e. $\mathbf{a} \vee \mathbf{b} = \mathbf{x}'$. Since $\mathbf{a} \leq_e \mathbf{x}$, we have that $\mathbf{x} \vee \mathbf{b} \geq_e \mathbf{a} \vee \mathbf{b} = \mathbf{x}' \geq_e \mathbf{0}'_e$. Suppose now that $\mathbf{0}'_e \leq_e \mathbf{b}$. Then $\{\mathbf{a}, \mathbf{0}'_e\}$ must be a nontrivial \mathcal{K} -pair. If $A \in \mathbf{a}$, then $A \leq_e \emptyset' \equiv_e \emptyset'$ by the fact that \emptyset' is a total set. Hence $\mathbf{a} \leq_e \mathbf{0}'_e \leq_e \mathbf{b}$. This is a contradiction with the third \mathcal{K} -pair property, that were mentioned above. Thus $\mathbf{0}'_e \nleq_e \mathbf{b}$.

Next, let us consider the set of ω -enumeration degrees defined by this formula in \mathcal{D}_{ω} . For the purpose, let $\mathcal{X} = \{X_k\}_{k < \omega}$ be a sequence such that for each sequence $\mathcal{Y} = \{Y_k\}_{k < \omega}$ if $\emptyset_{\omega}' \leq_{\omega} \mathcal{X} \oplus \mathcal{Y}$ then $\emptyset_{\omega}' \leq_{\omega} \mathcal{Y}$. Noting that for each sequence $\mathcal{A} = \{A_k\}_{k < \omega}, \ \emptyset_{\omega}' \leq_{\omega} \mathcal{A}$ is equivalent to $\emptyset' \leq_e A_0$, and then using Lemma 1, we conclude that $X_0 \equiv_e \emptyset$.

Now, let $\mathcal{X} = \{X_k\}_{k < \omega}$ be such that $X_0 \equiv_e \emptyset$ and the sequence $\mathcal{Y} = \{Y_k\}_{k < \omega}$ be such that $\emptyset_{\omega}' \leq_{\omega} \mathcal{X} \oplus \mathcal{Y}$. Then we have that $\emptyset' \leq_e X_0 \oplus Y_0 \equiv_e Y_0$, hence $\emptyset_{\omega}' \leq_{\omega} \mathcal{Y}$.

Thus, the degrees in \mathcal{D}_{ω} , which satisfy the formula mentioned above, are exactly these that contain a sequence whose zeroth element is the empty set. We shall denote the set of all these degrees by $\widetilde{\mathbf{D}_1}$, $\widetilde{\mathbf{D}_1} = \{\mathbf{x} \in \mathbf{D}_{\omega} \mid (\exists \{A_k\}_{k < \omega} \in \mathbf{x}) \mid A_0 = \emptyset \}$.

Here is the moment when we use the first-order definability of $\mathbf{0}'_{\omega}$, proved in [2]. By this result, we now have the first-order definability of the set $\widetilde{\mathbf{D}}_1$.

Further, for each $\mathbf{a} \in \mathbf{D}_{\omega}$, denote by $\mu(\mathbf{a})$ the least (ω -enumeration) degree \mathbf{x} , for which exists degree $\mathbf{y} \in \widetilde{\mathbf{D}}_1$ such that $\mathbf{x} \vee \mathbf{y} = \mathbf{a}$. It is not difficult to see that the operation μ is correctly defined. Moreover, for each \mathbf{a} , if $\{A_k\}_{k < \omega} \in \mathbf{a}$ then $\mu(\mathbf{a})$ contains the sequence $(A_0, \emptyset, \ldots, \emptyset, \ldots)$. Hence, the range of μ is exactly the copy \mathbf{D}_1 of the enumeration degrees under the embedding κ :

$$\mathbf{D}_1 = \{ \mu(\mathbf{a}) \mid \mathbf{a} \in \mathbf{D}_\omega \}.$$

Combining all together, we conclude the following.

Lemma 3. The copy \mathbf{D}_1 of the enumeration degrees under the embedding κ is first-order definable in \mathcal{D}_{ω} .

The final step in the proof is a result of Ganchev, [1]. Namely, the result states that the set \mathbf{D}_1 is first-order definable in \mathcal{D}_{ω} if and only if the jump operation is first-order definable in \mathcal{D}_{ω} . Thus, we have the definability of the jump operation.

Theorem 4. The jump operator is first-order definable in the structure \mathcal{D}_{ω} of the ω -enumeration degrees.

References

- [1] Ganchev, H., The ω -enumeration degrees, PhD thesis, (in bulgarian).
- [2] Ganchev, H. and A. Sariev, Definability of jump classes in the local theory of the ω -enumeration degrees, Annuaire de Université de Sofia, Faculté de Mathématiques et Informatique, to appear.
- [3] Ganchev, H. and M. Soskova, *Definability via Kalimullin pairs in the structure of the enumeration degrees*, to appear in Trans. Amer. Math. Soc.
- Kalimullin, I. Sh., Definability of the jump operator in the enumeration degrees, Journal of Mathematical Logic 3 (2003), 257-267.

- [5] Shore, R. A. and T. A. Slaman, Defining the Turing jump, Math. Res. Lett., 6(5-6): 711-722, 1999.
- [6] Soskov, I. N., The $\omega\text{-enumeration Degrees},$ J. Log. Comput., 6, pp. 1193-1214, 2007.
- [7] Soskov, I. N. and H. Ganchev The jump operator on the ω -enumeration degrees, Ann. Pure and Appl. Logic, Volume 160, Issue 30, September 2009, pp 289-301.