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Abstract

We show the equivalence of the first order definabilities of the jump of
the least element and of the jump operator in the upper semilattice of the
ω-Turing degrees.

1 Introduction

The ω-Turing reducibility ≤T,ω arises as a formal way to compare the informa-
tional content of the sequences of sets of natural numbers. In this computational
framework the informational content of a sequence is uniquely determined by
the set of the Turing degrees of the sets that code the sequence. We say that a
set codes a sequence iff uniformly in k, it can compute the k-th element of the
considered sequence in its k-th Turing jump:

X ⊆ ω codes {Ak}k<ω ⇐⇒ Ak ≤T X
(k) uniformly in k.

Having this, we shall say that the sequence A is ω-Turing reducible to the se-
quence B iff each set that codes B also codes A:

A ≤T,ω B ⇐⇒ (∀X ⊆ ω)[X codes B ⇒ X codes A].

This reducibility is introduced in [7], where its basic properties are explored.
The relation ≤T,ω is a preorder on the set of the sequences of sets of natural
numbers and in the standard way induces a degree structure – the upper semi-
lattice DT,ω of the ω-Turing degrees.
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Again in [7] is defined a jump operation on sequences, which induces a cor-
responding jump operation in the degree structure. Namely the jump A′ of the
sequence A is defined in such a way that:

X codes A′ ⇐⇒ (∃Y )[X ≡T Y
′ & Y codes A].

How DT,ω can be seen as an extension of the structure DT of the Turing
degrees? By the uniform properties of the Turing jump, it is well known that for
all A,X ⊆ ω:

A ≤T X ⇐⇒ A(k) ≤T X
(k) uniformly in k.

Thus, the informational content of the set A, described in the Turing universe by
the set of the degrees of the sets that decides A, is the same as the content of the
sequence {A(k)}k<ω in the context of the ω-Turing reducibility. This observation
allows us to define a very natural embedding of the Turing degrees into the ω-
Turing:

degT (A) 7−→ deg
T,ω

({A(k)}k<ω).

This embedding preserves the order, the least upper bound operation and even the
jump. In this way we may assume the Turing degrees as a proper substructure of
DT,ω. But there are much more strong connections between the both structures.
In [7] it is shown that DT is definable in DT,ω by a first-order formula in the
language of the structure order and the jump operation. Also it is proved that
the group Aut(DT ) of the automorphisms of the Turing degrees is isomorphic to a
subgroup of the automorphism group Aut(DT,ω) of DT,ω – namely to the subgroup
Aut(D′T,ω) of the jump preserving automorphisms of the ω-Turing degrees.

The purpose of this paper is to show that in order to prove that the jump
operator is first-order definable in the ω-Turing degrees it is sufficient to prove
that the jump 0′ of the least element is definable by a first-order formula in the
language of the structure order. We also show that the definability of 0′ implies
the definability of DT only in the language of the structure order.

2 Preliminaries

2.1 Basic notions

We shall denote the set of natural numbers by ω. If not stated otherwise, a, b,
c, . . . shall stand for natural numbers, A, B, C, . . . for sets of natural numbers,
a, b, c, . . . for degrees and A, B, C, . . . for sequences of sets of natural numbers.
We shall further follow the following convention: whenever a sequence is denoted



by a calligraphic Latin letter, then we shall use the roman style of the same
Latin letter, indexed with a natural number, say k, to denote the k-th element
of the sequence (we always start counting from 0). Thus, if not stated otherwise,
A = {Ak}k<ω, B = {Bk}k<ω, C = {Ck}k<ω, etc. We shall denote the set of all
sequences (of length ω) of sets of natural numbers by Sω.

As usual A ⊕ B shall stand for the set {2x | x ∈ A} ∪ {2x + 1 | x ∈ B}. By
A+ we shall denote the set A⊕ (ω \ A).

We assume that the reader is familiar with the notion of Turing reducibility,
≤T , and with the structure of the Turing degrees DT (for a survey of basic results
on the Turing degree structure we refer the reader to [3, 4, 5]).

The relation ≤T is a preorder on the powerset 2ω of the natural numbers
and induces a nontrivial equivalence relation ≡T . The equivalence classes under
≡T are called Tuirng degrees. The Tuirng degree which contains the set A is
denoted by degT (A). The set of all Turing degrees is denoted by DT . The Tuirng
reducibility between sets induces a partial order ≤T on DT by

degT (A) ≤T degT (B) ⇐⇒ A ≤T B.

We denote by DT the partially ordered set (DT ,≤T ). The least element of
DT is the Turing degree 0T of ∅. Also, the degree of A⊕B is the least upper
bound of the degrees of A and B. Therefore DT is an upper semi-lattice with
least element.

The (Turing) jump A′ of A ⊆ ω is defined as the halting problem for machines
with an oracle A,

A′ = {e | the e-th Turing machine with oracle A halts on input e}.

The jump operation preserves the Turing reducibility, so we can define degT (A)′ =
degT (A′). Since A <T A

′, then we have a <T a′ for every Turing degree a. The
jump operator is uniform, i.e. there exists a recursive function j such that for
every sets A and B, if A ≤T B via the Turing operator with index e, then
A′ ≤T B

′ via the operator with index j(e).

2.2 The ω-Turing degrees

The ω-Turing reducibility and the corresponding degree structure DT,ω are in-
troduced by Sariev and Ganchev in [7]. An equivalent, but more approachable
definition in the terms of the uniform Turing reducibility is derived again in the
same paper. Here we shall present only on the latter definition. According to it,



the sequence A is ω-Turing reducible to the sequence B, denoted by A ≤T,ω B,
iff for every n < ω,

An ≤T Pn(B) uniformly in n.

Here, for each X ∈ Sω, P(X ) is the so called jump sequence of X and it is
defined as the sequence {Pk(X )}k<ω such that: P0(X ) = X0 and for each k < ω,
Pk+1(X ) = (Pk(X ))′⊕Xk+1.

Clearly ≤T,ω is a reflexive and transitive relation, and the relation ≡T,ω defined
by

A ≡T,ω B ⇐⇒ A ≤T,ω B and B ≤T,ω A
is an equivalence relation. The equivalence classes under this relation are called
ω-Turing degrees. In particular the equivalence class deg

T,ω
(A) = {B | A ≡T,ω B}

is called the ω-Tuirng degree of A. The relation ≤T,ω defined by

a ≤T,ω b ⇐⇒ ∃A ∈ a∃B ∈ b(A ≤T,ω B)

is a partial order on the set of all ω-Turing degrees DT,ω. By DT,ω we shall
denote the structure (DT,ω,≤T,ω). The ω-Turing degree 0T,ω of the sequence
∅ω = {∅}k<ω is the least element in DT,ω. Further, the ω-Turing degree of the
sequence A ⊕ B = {Ak ⊕ Bk}k<ω is the least upper bound a ∨ b of the pair of
degrees a = deg

T,ω
(A) and b = deg

T,ω
(B). Thus DT,ω is an upper semi-lattice

with least element.
It is not difficult to notice that each sequence and its jump sequence belong

to the same ω-Turing degree, i.e. for all A ∈ Sω,

A ≡T,ω P(A). (1)

In this way, P(A) is an equivalent to A sequence, whose members are monotone
with respect to ≤T and each its member decides the halting problems of the
previous members.

Given a set A ⊆ ω, denote by A ↑ ω the sequence (A, ∅, ∅, . . . , ∅, . . .). The
definition of ≤T,ω and the uniformity of the jump operation imply that for all sets
of natural numbers A and B,

A ↑ ω ≤T,ω B ↑ ω ⇐⇒ A ≤T B. (2)

The last equivalence means, that the mapping κ : DT → DT,ω, defined by

κ(degT (X)) = deg
T,ω

(X ↑ ω),

is an embedding of DT into DT,ω. Further, the so defined embedding κ preserves
the order, the least element and the binary least upper bound operation.



We shall refer to κ as the natural embedding of the Turing degrees into the
ω-Turing degrees. The range of κ shall be denoted by D1 and shall be called the
natural copy of the Turing degrees.

The following theorem makes the connection between the original definition
of the ω-Turing reducibility and this one we took here. A full proof1 can be found
in the author’s PhD thesis, [6].

Theorem 1. Let a ∈ DT,ω be a ω-Turing degree and C ⊆ DT,ω be at most
countable set of ω-Turing degrees. Let for each x ∈ C, x �T,ω a. Then there
exists f ∈ D1 such that a ≤T,ω f and for each x ∈ C, x �T,ω f .

From the above property easily follows that each ω-Turing degree is uniquely
determined by the set of the degrees in D1, which bound it,

a ≤T,ω b ⇐⇒ (∀x ∈ De)[b ≤T,ω κ(x)→ a ≤T,ω κ(x)], (3)

and hence, as one can see, D1 is an automorphism base of DT,ω.

2.3 The jump operator

Following the lines of Sariev and Ganchev [7], the ω-Turing jump A′ of A ∈ Sω
is defined as the sequence A′ = (P1(A), A2, A3, . . . , Ak, . . .).

Note, that A′ ≡T,ω {Pk+1(A)}k<ω, because for each k, Pk(A′) = P1+k(A).
The jump operator is strictly monotone, i.e. A �

T,ω
A′ and A ≤T,ω B ⇒

A′ ≤T,ω B′. This allows to define a jump operation on the ω-Turing degrees by
setting

deg
T,ω

(A)′ = deg
T,ω

(A′).
Clearly for all a,b ∈ DT,ω, a <

T,ω
a′ and a ≤T,ω b⇒ a′ ≤T,ω b′.

Also the jump operation on ω-Turing degrees agrees with the jump operation
on the Turing degrees, i.e. we have

κ(x′) = κ(x)′, for all x ∈ DT .

1here we present only a sketch of the proof: the idea is to use a similar result for the
ω-enumeration degrees. First note that there is an embedding ι : DT → De of the Turing
degrees into the enumeration degrees such that a ≤T b ⇔ ι(a) ≤e ι(b). Similary, there is
an embedding ιω : DT,ω → Dω of the ω-Turing degrees into the ω-enumeration degrees such
that a ≤T,ω b ⇔ ιω(a) ≤ω ιω(b). And finally, there is an embedding κe : De → Dω of the
enumeration degrees into the ω-enumeration degrees such that a ≤e b⇔ κe(a) ≤ω κe(b). More
precisely these mappings are described, for example, in [7]. The property we use in the proof
is that for each a ∈ DT , ιω(κ(a)) = κe(ι(a)). The last part of the proof is the counterpart
result of Theorem 1 concerning the ω-enumeration degrees. The main difference in it is that
the degree f is not only in κe[De], but additionally is in κe ◦ ι[DT ]. The proof of this result can
be found in [11].



We shall denote by A(n) the n-the iteration of the jump operator on A. Let
us note that

A(n) = (Pn(A), An+1, An+2, . . .) ≡T,ω {Pn+k(A)}k<ω. (4)

It is clear that if A ∈ a, then A(n) ∈ a(n), where a(n) denotes the n-th iteration
of the jump operation on the degree a.

In [7] it is proved that the range of the jump operator is exactly the upper
cone over the first jump 0T,ω

′ of the least element. Again in the same paper, it is
shown even a stronger jump inversion property, which do not posses neither the
Turing degrees, nor the enumeration degrees. Namely, for each natural number n
if b is above a(n), then there is a least ω-Turing degree x above a with x(n) = b.
We shall denote this degree by Ina(b). An explicit representative of Ina(b) can be
given by setting

InA(B) = (A0, A1, . . . , An−1, B0, B1, . . . , Bk, . . .), (5)

where each A ∈ a and B ∈ b are arbitrary.
In the case when a = 0T,ω and n = 1, for the sake of simplicity, we shall use

the notation I instead of I10T,ω
. Sariev and Ganchev [7] show that the operation

I is monotone,

0T,ω
′ ≤T,ω x ≤T,ω y⇒ I(x) ≤T,ω I(y).

3 The Turing degrees generate DT,ω

Our goal in this section is to prove that the isomorphic copy D1 of the Turing
degrees under the natural embedding κ generates DT,ω under the meet operation.
More specifically, we will prove that for every ω-Turing degree a there exist de-
grees g and f from D1 such that a = g∧ f . We begin with the simple observation
that each ω-Turing degree is bounded by a degree in D1.

Lemma 2. Let a ∈ DT,ω. Then there is a degree g ∈ D1 such that a ≤T,ω g.

Proof. Recall that a �T,ω a′. Then by Theorem 1 applied for C = {a′}, there
is g ∈ D1, such that a ≤T,ω g, but a′ �T,ω g. So g is a degree from D1, which
bounds a.

Lemma 3. Let a,g ∈ DT,ω and a ≤T,ω g. Then there is a degree f ∈ D1 such
that a = g ∧ f .



Proof. Let a ≤T,ω g. Consider the set C = {x ∈ DT,ω | x ≤T,ω g & x �T,ω a}.
Clearly C is countable and, hence, by Theorem 1, there exists a degree f in D1

such that a ≤T,ω f and for every x ∈ C, x �T,ω f .

Finally, let b ≤T,ω g, f . Then b 6∈ C and so b ≤T,ω a. Thus a = g ∧ f .

Combining the above lemmas, we have the following.

Theorem 4. Let a ∈ DT,ω. Then there are degrees g, f ∈ D1 such that a = g∧ f .

As a corollary we also have that (the isomorphic copy of) the Turing degrees
form an automorphism base for the ω-Turing degrees.

Note that for each degree a = g ∧ f with g, f ∈ D1, the jump a′ can be
expressed as the greatest lower bound of two degrees g1 and f1 from D1. The
next lemma shows that g′ and f ′ are such a pair.

Lemma 5. Let a,g and f are ω-Turing degrees such that a = g ∧ f . Then
a′ = g′ ∧ f ′.

Proof. Let a = g ∧ f . Then a ≤T,ω g, f and by the monotonicity of the jump,
a′ ≤T,ω g′, f ′.

Now let b is a lower bound of g′ and f ′. Let b1 = b ∨ 0T,ω
′. Then b ≤T,ω

b1 ≤T,ω g′, f ′ and 0T,ω
′ ≤T,ω b1. Let c = I(b1). Since the jump inversion

operation is monotone, we have that c = I(b1) ≤T,ω I(g′) ≤T,ω g and c =
I(b1) ≤T,ω I(f ′) ≤T,ω f . But a = g ∧ f , so c ≤T,ω a. Thus b ≤T,ω b1 = c′ ≤T,ω a′

by the monotonicity of the jump.

4 A property of the least Turing degree

The aim of this section is to provide a characterizing property of the least Turing
degree 0T , which shall help us later to find a definition of D1 in the terms of
0T,ω

′. We start by showing that 0T is the only degree x in DT , such that for each
Turing degree b, if x ∨ b ≥T 0′T then necessary b ≥T 0′T . In order to do so, we
first need the following notion of minimal complementation.

Definition 6. We shall say that the (Turing) degree d >T 0T satisfies the min-
imal complementation property (MCP) if for every degree 0T <T a <T d there
exists a minimal degree m <T d such that a∨m = d (and therefore a∧m = 0T ):

MCP (d) 
 (∀a < d)[a 6= 0T → (∃m)[m is minimal & a ∨m = d]].



In [2] Lewis proves that every degree d ≥T 0′T satisfies the minimal comple-
mentation property.

From here, one can easily derive that if x is a nonzero Turing degree, then
there is a degree y such that x ∨ y ≥T 0′T , but y is not above 0′T . Indeed, let
x ∈ DT be a nonzero. Then x′ ≥T 0′T , and hence MCP (x′). Since 0T <T x <T x′

we have a minimal degree y <T x′ such that x ∨ y = x′. But y is not above 0′T
because it is minimal. Thus 0′T �T y.

Note also, that the formula: ϕ(x) 
 (∀y)[x∨y ≥T 0′T → y ≥T 0′T ] is satisfied
by the Turing degree 0T of the recursive sets. Thus, we have proven the following
proposition.

Lemma 7. The least element 0T is the only Turing degree x such that

(∀y)[x ∨ y ≥T 0′T → y ≥T 0′T ].

As an end of this section we move to the structure of the ω-Turing degrees,
where we shall investigate the degrees defined by the formula ϕ. Namely, we shall
describe all the ω-Turing degrees x such that

(∀y)[x ∨ y ≥T,ω 0T,ω
′ → y ≥T,ω 0T,ω

′].

First let us consider a sequence X = {Xk}k<ω such that DT,ω |= ϕ(deg
T,ω

(X )).

In other words, X is such that for each sequence Y = {Yk}k<ω if ∅ω ′ ≤T,ω X ⊕Y
then ∅ω ′ ≤T,ω Y . Noting that for each sequence A = {Ak}k<ω, ∅ω ′ ≤T,ω A is
equivalent to ∅′ ≤T A0, and then using Lemma 7, we conclude that X0 ≡T ∅.

Now, let X = {Xk}k<ω be such that X0 ≡T ∅ and the sequence Y = {Yk}k<ω

be such that ∅ω ′ ≤T,ω X ⊕Y . Then we have that ∅′ ≤T X0⊕Y0 ≡T Y0, and hence
∅ω ′ ≤T,ω Y .

Thus, the degrees in DT,ω, which satisfy the formula ϕ, are exactly these that
contain a sequences whose zeroth element is the empty set. Further we shall
denote the set of all these degrees by D̃1,

D̃1 = {x ∈ DT,ω | (∃{Ak}k<ω ∈ x)[ A0 = ∅ ]}.

5 Definability in the ω-Turing degrees

In [7] Sariev and Ganchev show the first-order definability of the natural copy D1

of the Turing degrees in DT,ω in the terms of the structure order and the jump
operation. In this section we shall improve this result by showing that only in
the language of structure order and using 0T,ω

′ as a parameter, we can define D1

in DT,ω. As a consequence, we derive that the definability of 0T,ω
′ implies this

one of the whole jump operator.



Theorem 8. The following are equivalent:

1. the jump operator is first-order definable in DT,ω;

2. the jump 0T,ω
′ of the least element is first-order definable in DT,ω;

3. the isomorphic copy D1 of the Turing degrees is first-order definable in DT,ω

Proof. (1)⇒ (2): obvious;

(2)⇒ (3): Note that the first-order definability of 0T,ω
′ implies the first-order

definability of the set D̃1, defined in the previous section. But using the set D̃1 a
simple definition of D1 can be derived. Indeed, for each a ∈ DT,ω, denote by µ(a)

the least (ω-Turing) degree x, for which exists degree y ∈ D̃1 such that x∨y = a.
It is not difficult to see that the operation µ is correctly defined. Moreover, for
each a, if {Ak}k<ω ∈ a then µ(a) contains the sequence (A0, ∅, . . . , ∅, . . .). Hence,
the range of µ is exactly the copy D1 of the Turing degrees under the embedding
κ:

D1 = {µ(a) | a ∈ DT,ω}.

Thus the Turing degrees are first-order definable in the structure DT,ω of the
ω-Turing degrees.

(3)⇒ (1): By Theorem 4 and Lemma 5, for each ω-Turing degree a there are
ω-Turing degrees g, f ∈ D1, such that

a = g ∧ f and a′ = g′ ∧ f ′, (6)

and if there is another pair of degrees, whose greatest lower bound exists and is
equal to a, then the greatest lower bound of their jumps also exists and is equal
exactly to a′.

As we stated in the preliminaries, D1 is closed under the jump and the ω-
Turing jump agrees with the Turing jump. Also, by Shore and Slaman [8], the
jump operator is definable in the structure DT of the Turing degrees. Hence the
restriction of the ω-Turing jump operator over D1 is definable in the structure
(D1,≤T,ω,∨). Thus, by (6), we conclude that the definability of D1 implies this
of the jump.

The definability of 0T,ω
′, alas, still remains an open question.

Question 9. Is the jump 0T,ω
′ of the least element first-order definable in DT,ω?



One of the main consequences of the definability of the jump operator will be
that each automorphism of DT,ω is jump preserving2, i.e. Aut(D′T,ω)=Aut(DT,ω).
This combined with the previously mentioned result by Sariev and Ganchev [7]
stating the isomorphicity of the groups of the automorphism of the Turing degrees
and of the jump preserving automorphism of the ω-Turing degrees, implies that
the groups Aut(DT ) and Aut(DT,ω) are isomorphic.
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