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Abstract

The present paper continues the studying of the definability in the local
substructure GT,ω of the ω-Turing degrees, started in [Sariev and Ganchev 2014].
We show that the class I of the intermediate degrees is definable in GT,ω.

1 Introduction

The investigation of definability issues in degree structures is a main part of the
research in Computability theory. Suppose given a degree structure possessing an
ordering relation and a least element. If additionally the structure is augmented
with a jump operation, natural questions about the first-order definability (in
the language of the structure order) of degree classes, determined by the struc-
ture jump operation, arise. The same questions can be transferred to its local
substructure (namely, the substructure consisting of the degrees bounded by the
jump of the least element) as well. As an interesting special case one can ask
about the definability of the classes from the jump hierarchy.

The jump hierarchy was firstly introduced for the local substructure of the
Turing degrees in [Cooper 1972] and [Soare 1974]. In this hierarchy, the elements
of the local substructure are partitioned in classes depending to their ‘closeness’
to the least element or to its first jump in the terms of the jump operation.
Namely, a degree in the local substructure is lown (Ln) iff its n-th jump is as
low as possible – the same as the n-th jump of the least element. Analogically,
a degree is highn (Hn) iff its n-th jump is as high as possible – the same as the
n-th jump of the jump of the least element. We shall refer to the degrees in
the local substructure, which are neither in Hn, nor in Ln for any natural n, as
intermediate (I).
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This paper concerns the problem of the first order definability of the class I in
the local substructure of the ω-Turing degrees DT,ω. Unlike the well known struc-
tures of the Turing and the enumeration degrees, DT,ω is induced by a reducibility
on the set Sω of the sequences of sets of natural numbers. The studying of the
degree structures induced by a such kind of reducibilities has been initiated by
Soskov. In the paper [Soskov 2007], he introduces the ω-enumeration reducibility
≤ω, generalizing the enumeration reducibility over sequences.

The structure an object of the current work, DT,ω, is introduced in [Sariev and Ganchev 2014]
as a “Turing” analogue of Dω in the following way. First, to each sequence
A = {Ak}k<ω in Sω, a jump-class JA is assigned:

JA = {degT (X) | Ak ≤T X(k) uniformly in k}.

Then the ω-Turing reducibility ≤T,ω, which induces DT,ω, is set in a such a way
that for each sequences A and B in Sω, A ≤T,ω B if and only if JB ⊆ JA.

The jump A′ of a sequence A is defined so that the class JA′ consists exactly of
the jumps of the Turing degrees in JA, i.e. so that JA′ = J ′A. The jump operator
on sequences is monotone and thus induces a jump operation ′ in DT,ω. Just like
the jump operation in DT , the range of the jump operation in DT,ω is exactly
the cone above the first jump of the least element 0T,ω. In other words a general
jump inversion theorem is valid for DT,ω. Moreover, an even stronger statement
turns out to be true, namely for every ω-Turing degree a above 0T,ω

′ there is a
least degree with jump equal to a. This property is true neither for DT nor for
De.

The strong jump inversion theorem makes the structure DT,ω worth studying,
since using it one may consider a natural copy of the structure DT definable in
DT,ω augmented by the jump operation. Moreover, the automorphism groups of
the structures DT and DT,ω ′ are isomorphic.

Just like the Turing and the enumeration degree structures, the jump opera-
tion in each one of Dω and DT,ω gives rise to the corresponding local substructure:
Gω and GT,ω. What do we know about the definability of the jump classes in these
two local structures? First, in both Gω and GT,ω, for each n the classes Hn and Ln

are first-order definable, as it is shown respectively in [Ganchev and Soskova 2012]
and [Sariev and Ganchev 2014]. The first-order definability of the class I of the
intermediate degrees in Gω is shown in [Ganchev and Sariev 2015]. Note that the
latter does not hold in the local substructures neither of the Turing degrees, nor
of the enumeration degrees.

All of these definability results rely on the existence of a class of remarkable
degrees having no analogue in either R, GT or Ge. These degrees are denoted by
on, n < ω, and are defined so that on is the least degree whose n-th jump is equal



to the (n + 1)-th jump of 0ω. In other words, on is the least highn degree. The
degrees on are also connected to lown degrees. Indeed, a degree in Gω is lown iff
it forms a minimal pair with on. The same connections hold and in GT,ω.

Each one of the degrees on turns out to be definable both in Gω and GT,ω
[Ganchev and Soskova 2012], [Sariev and Ganchev 2014] and hence so are the
classes Hn and Ln, for n ∈ ω. Although the abovementioned similarities be-
tween Gω and GT,ω, the corresponding definitions of the degrees on are quite
different. The definition in Gω of on, given in [Ganchev and Soskova 2012], is
based on the notion of Kalimullin pairs — a notion first introduced and studied
by Kalimullin in the context of the enumeration degrees. Just like in the Turing
degrees, Kalimullin pairs do not exist in the structure of the ω-Turing degrees.
The definition here is based on the notion of noncuppable degrees. Namely, in
[Sariev and Ganchev 2014] it is shown that for each n < ω,

on+1 is the greatest degree below onwhich is noncuppable to on.

Further, to obtain a first-order definition of the class I (no matter in Gω or GT,ω)
it is sufficient to first-order define the class O = {on | n < ω} (of course, in the
corresponding local structure). Indeed, for each degree x in the corresponding
local structure,

x ∈ I ⇐⇒ (∀n)[x 6∈ Hn and x 6∈ Ln] ⇐⇒

⇐⇒ (∀n)[x 6≤ on and x ∧ on 6= 0] ⇐⇒
⇐⇒ (∀o ∈ O)[x 6≤ o and x ∧ o 6= 0].

In the case of Gω, Ganchev and Sariev [Ganchev and Sariev 2015] exploit ad-
ditional connections between the on degrees and the elements of the Kalimullin
pairs in order to find a definition for the class O and hence, a definition for I.

The existing strong parallel between the ω-Turing and the ω-enumeration
degree structures yields the hypothesis that the class of the intermediate degrees
is first-order definable also in GT,ω. In this paper we find an interesting cupping
property of the on degrees – for each degree b above on, the equation on ∨x = b
always has a least solution. Further we use the above property as our main
component in the first-order definition of the classes O and I.

2 Preliminaries

We shall denote the set of all natural numbers by ω. If not stated otherwise, a,
b, c, . . . shall stand for natural numbers, A, B, C, . . . for sets of natural numbers,



a, b, c, . . . for degrees and A, B, C, . . . for sequences of sets of natural numbers.
We shall further follow the following convention: whenever a sequence is denoted
by a calligraphic Latin letter, then we shall use the roman style of the same
Latin letter, indexed with a natural number, say k, to denote the k-th element
of the sequence (we always start counting from 0). Thus, if not stated otherwise,
A = {Ak}k<ω, B = {Bk}k<ω, C = {Ck}k<ω, etc. We shall denote the set of all
sequences (of length ω) of sets of natural numbers by Sω.

As usual A⊕B shall stand for the set {2x | x ∈ A} ∪ {2x+ 1 | x ∈ B}.
We assume that the reader is familiar with the notion of Turing reducibility,

≤T , and with the structure of the Turing degrees.
For every natural e and every function f ∈ ωω, we denote by {e}f the partial

function computed by the oracle Turing machine with index e and using f as an
oracle. Thus for arbitrary sets A,B ⊆ ω, A ≤T B ⇐⇒ χA = {e}χB for some
natural number e. Given a natural number x, we shall indicate by {e}f (x) ↓ that
the function {e}f is defined in x. In case that {e}f is not defined in x, we shall
write {e}f (x) ↑.

Recall, that A is computably enumerable (c.e.) in B iff there is an enumer-
ation f of A (i.e. a surjection from ω onto A), such that f = {e}χB for some
natural number e.

By A′ we shall denote the Turing jump of the set A, i.e.

A′ = {x | {x}χA(x) ↓}.

Recall that A′ is c.e. in A and every set c.e. in A is Turing reducible to A′.
Further, the jump operator preserves uniformly the Turing reducibility, i.e. there
is a computable function f , such that for arbitrary sets A and B, if A is Turing
reducible to B via the oracle Turing machine with index e, then A′ is Turing
reducible to B′ via the oracle Turing machine with index f(e).

The relation ≤T is a preorder on the powerset P(ω) of the natural numbers
and induces a nontrivial equivalence relation ≡T . The equivalence classes under
≡T are called Turing degrees. The Turing degree which contains the set A is
denoted by degT (A). The set of all Turing degrees is denoted by DT . The Turing
reducibility between sets induces a partial order ≤ on DT by

degT (A) ≤ degT (B) ⇐⇒ A ≤T B.

We denote by DT the partially ordered set (DT ,≤). The least element of DT
is the Turing degree 0T of ∅. Also, the Turing degree of A⊕B is the least upper
bound of the degrees of A and B. Therefore DT is an upper semilattice with least
element.



The jump operation gives rise to the local substructure GT , consisting of all
degrees bellow 0′T – the jump of the least Turing degree. Infact, GT is exactly the
collection of all ∆0

2 Turing degrees.
Finally we need the following definition, which we shall use in order to char-

acterise ω-Turing reducibility. Given a sequence A ∈ Sω we define the jump-
sequence P(A) of A as the sequence {Pk(A)}k<ω such that:

1. P0(A) = A0;

2. Pk+1(A) = Pk(A)′⊕Ak+1.

3 The ω-Turing degrees

The structure of the ω-Turing degrees DT,ω is introduced by Sariev and Ganchev
[Sariev and Ganchev 2014] in the following way. For every sequence A ∈ Sω, we
define its jump class JA to be the set:

JA = {degT (X) | Ak ≤T X(k) uniformly in k}. (1)

We set

A ≤T,ω B ⇐⇒ JB ⊆ JA.

Clearly ≤T,ω is a reflexive and transitive relation, and the relation ≡T,ω defined
by

A ≡T,ω B ⇐⇒ A ≤T,ω B & B ≤T,ω A

is an equivalence relation. The equivalence classes under this relation are called
ω-Turing degrees. In particular the equivalence class degω(A) = {B | A ≡T,ω B}
is called the ω-Turing degree of A. The relation ≤ defined by

a ≤ b ⇐⇒ (∃A ∈ a)(∃B ∈ b)[A ≤T,ω B]

is a partial order on the set of all ω-Turing degrees DT,ω. By DT,ω we shall denote
the structure (DT,ω,≤). The ω-Turing degree 0T,ω of the sequence ∅ω = {∅}k<ω is
the least element in DT,ω. Further, the ω-Turing degree of the sequence A⊕B =
{Ak ⊕Bk}k<ω is the least upper bound a ∨ b of the pair of degrees a = degω(A)
and b = degω(B). Thus DT,ω is an upper semi-lattice with least element.

An explicit characterisation of the ω-Turing reducibility is derived in [Sariev and Ganchev 2014].
According to it, A ≤T,ω B ⇐⇒ An ≤T Pn(B) uniformly in n. More formally,
A ≤T,ω B iff there is a computable function f , such that for every natural number



k, χAk
= {f(k)}Pk(B). From here, one can show that each sequence is ω-Turing

equivalent with its jump-sequence, i.e. for all A ∈ Sω,

A ≡T,ω P(A). (2)

Further, for the sake of convenience, for sequences A,B ∈ Sω we shall write
A ≤T B if and only if for each k < ω,Ak ≤T Bk uniformly in k. So A ≤T,ω B ⇐⇒
A ≤T P(B). Note that there exist only countably many computable functions,
so that there could be only countably many sequences ω-Turing reducible to a
given sequence. In particular every ω-Turing degree cannot contain more than
countably many sequences and hence there are continuum many ω-Turing degrees.

Given a set A ⊆ ω, denote by A ↑ ω the sequence (A, ∅, ∅, . . . , ∅, . . .). From
the definition of ≤T,ω and the uniformity of the jump operation, we have that for
all sets A and B,

A ↑ ω ≤T,ω B ↑ ω ⇐⇒ A ≤T B. (3)

The last equivalence means, that the mapping κ : DT → DT,ω, defined by, κ(x) =
degω(X ↑ ω), where X is an arbitrary set in x, is an embedding of DT into DT,ω.
Further, the so defined embedding κ preserves the least element and the binary
least upper bound operation. We shall denote the range of κ by D1.

4 The jump operator

Following the lines of Sariev and Ganchev [Sariev and Ganchev 2014], the ω-
Turing jump A′ of A ∈ Sω is defined as the sequence

A′ = (P1(A), A2, A3, . . . , Ak, . . .).

This operator is defined so that if A′ is the jump of A, then the jump class
JA′ of A′ contains exactly the jumps of the degrees in the jump class JA of A.
Note also, that for each k, Pk(A′) = P1+k(A), so A′ ≡ω {Pk+1(A)}.

The jump operator is strictly monotone, i.e. A �T,ω A′ and A ≤T,ω B ⇒
A′ ≤T,ω B′. This allows to define a jump operation on the ω-Turing degrees by
setting

a′ = degω(A′),

where A is an arbitrary sequence in a. Clearly a < a′ and a ≤ b⇒ a′ ≤ b′.
Also the jump operation on ω-Turing degrees agrees with the jump operation

on the Turing degrees, i.e. we have

κ(x′) = κ(x)′, for all x ∈ DT .



We shall denote by A(n) the n-the iteration of the jump operator on A. Let
us note that

A(n) = (Pn(A), An+1, An+2, . . .) ≡T,ω {Pn+k(A)}k<ω. (4)

It is clear that if A ∈ a, then A(n) ∈ a(n), where a(n) denotes the n-th iteration
of the jump operation on the ω-Turing degree a.

Further, in [Sariev and Ganchev 2014] it is shown that for every natural num-
ber n, if b is above a(n), then there is a least ω-Turing degree x above a with
x(n) = b. We shall denote this degree by Ina(b). An explicit representative of
Ina(b) can be given by setting

InA(B) = (A0, A1, . . . , An−1, B0, B1, . . . , Bk, . . .), (5)

where each A ∈ a and B ∈ b are arbitrary.
From here it follows that for every given a ∈ DT,ω and n < ω, the oper-

ation Ina is monotone. Further its range is a downwards closed subset of the
upper cone with least element a. In fact even a stronger property holds: if
x, a,b ∈ DT,ω are such that a ≤ x, a(n) ≤ b and x ≤ Ina(b) then x is equal
to Ina(x(n)). Detailed proofs of the abovementioned properties one can find in
[Sariev and Ganchev 2014].

It what follows when a = 0T,ω we shall just write In instead of In0T,ω
.

5 The local theory, jump classes and the on de-

grees

The structure of the degrees lying beneath the first jump of the least element
is usually referred to as the local structure of a degree structure. In the case of
the ω-Turing degrees we shall denote this structure by GT,ω. When considering a
local structure, one is usually concerned with questions about the definability of
some classes of degrees, which have a natural definition either in the context of
the global structure (for example the classes of the high and the low degrees) or
in the context of the basic objects from which the degrees are built (for example
the class of the Turing degrees containing a c.e. set).

Recall that a degree in the local structure is said to be highn for some n iff its
n-th jump is as high as possible. Similarly a degree in the local structure is said
to be lown for some n iff its n-th jump is as low as possible. More formally, in
the case of GT,ω, a degree a ∈ GT,ω is highn iff a(n) = (0T,ω

′)(n) = 0T,ω
(n+1), and

is lown iff a(n) = 0T,ω
(n).



As usual we shall denote by Hn the collection of all highn degrees, and by Ln

the collection of all lown degrees. Also H shall denote the union of all the classes
Hn and analogously L shall denote the union of all of the classes Ln. Finally, I
will stand for the collection of the degrees that are neither highn nor lown for any
n. The degrees in I shall be referred to as intermediate degrees.

Using the corresponding results for the structure of the Turing degrees, it is
easy to see that there exist intermediate degrees and for every natural number n,
there are degrees in the local structure of the ω-Turing degrees, that are high(n+1)

(respectively low(n+1)) but are not highn (respectively lown).
Sariev and Ganchev [Sariev and Ganchev 2014] give a characterisation of the

classes Hn and Ln that does not involve directly the jump operation. Let us set on
to be the least n-th jump invert of 0T,ω

(n+1), i.e. on = In(0T,ω
(n+1)). Hence by (5),

for each natural number n, the sequence On = (∅, ∅′, . . . , ∅(n−1), ∅(n+1), ∅(n+2), . . .)
is an element of on.

Note that on is the least element of the class Hn. Thus for arbitrary x ∈ GT,ω,

x ∈ Hn ⇐⇒ on ≤ x. (6)

In particular, since every highn degree is also high(n+1), on+1 ≤ on. On the
other hand, since Hn+1 \Hn 6= ∅, the equality on+1 = on is impossible, so that

0′ω = o0 > o1 > o2 > · · · > on > . . . .

In [Sariev and Ganchev 2014] it is shown that for arbitrary x ∈ GT,ω,

In(x(n)) = x ∧ on. (7)

Indeed, let us take an arbitrary x ∈ GT,ω. Clearly In(x(n)) ≤ x and In(x(n)) ≤
on. On the other hand if y is such that y ≤ x and y ≤ on, then from the second
inequality we have y = In(z) for some z. This together with the first inequality
gives us z = (In(z))(n) = y(n) ≤ x(n). Thus y = In(z) ≤ In(x(n)).

This gives us a characterisation of the lown degrees in terms of the partial
order ≤ in GT,ω and the degrees on, namely

x ∈ Ln ⇐⇒ x ∧ on = 0T,ω. (8)

Note that from the above characterisations, in order to show that the classes
Hn and Ln are first order definable in GT,ω it is sufficient to show this for the degree
on. For the definition of the classes H =

⋃
Hn,L =

⋃
Ln and I = GT,ω \ (H∪L)

it is sufficient to show the definability of the set O = {on | n < ω}.



Also in the paper [Sariev and Ganchev 2014] it is shown a characterisation of
the degrees in D1 ∩ GT,ω in terms of the ordering ≤ and the degree o1. Namely,
for arbitrary a ∈ GT,ω, a is a degree in D1 iff

(∀x ∈ GT,ω)[x ∨ o1 = a ∨ o1 → x ≥ a]. (9)

Moreover, a characterisation of the noncuppable degrees in GT,ω can be derived
again in the terms of the structure order and the degree o1, [Sariev and Ganchev 2014].
Recall that a degree a is said to be noncuppable in a local structure iff the least
upper bound of this degree and any degree strictly less than the top element of
the structure is not equal to the top element of the structure. It is known by a
result proved by Posner and Robinson [Posner and Robinson 1981] that the lo-
cal structure of the Turing degrees features no nonzero noncuppable degrees. In
particular every nonzero degree in D1 ∩ GT,ω is cuppable in GT,ω. On the other
hand taking a to be 0T,ω

′ in (9), we obtain that for all x ∈ GT,ω

x ∨ o1 = 0T,ω
′ ∨ o1 =⇒ x ≥ 0T,ω

′,

and hence o1 is noncuppable in GT,ω.
Now let us fix a noncuppable a ∈ GT,ω and let A ∈ a. The noncuppability

of a yields that the first element A0 of the sequence A is Turing equivalent to ∅,
for otherwise κ(dT (A0)) would be a nonzero cuppable degree beneath a and in
particular a would be cuppable. This, together with the definition of the jump
operator and the definition of the operator I1∅ω , implies A ≡T,ω I1∅ω(A′).

Hence for every noncuppable degree a ∈ GT,ω,

a = I1(a′)

and therefore a ≤ o1.
Thus a degree a ∈ GT,ω is noncuppable iff a ≤ o1. In particular o1 is the

greatest noncuppable degree in GT,ω, and hence o1 is first order definable in GT,ω.
From here, (6), (8) and (9) we obtain that the classes H1, L1 and D1 ∩ GT,ω are
first order definable in GT,ω.

With a reasoning analogous to the one we did for o1, we can prove that on+1 is
the greatest degree beneath on, that is noncuppable to on. Thus for each natural
n, the degree on is first order definable in GT,ω and hence the classes Hn and Ln

are also first order definable in GT,ω.
In the above mentioned work of Sariev and Ganchev the notion of almost

zero (a.z.) degrees is introduced. Namely, the degree x is a.z. iff there is a
representative X ∈ x such that

(∀k)[Pk(X ) ≡T ∅(k)]. (10)



It is clear that the class of the a.z. degrees is downward closed. Note also that
there are continuum many a.z. degrees and hence not all a.z. degrees are in GT,ω.
The a.z. degrees in GT,ω are exactly the degrees bounded by every degree on, i.e.

x ∈ GT,ω is a.z. ⇐⇒ (∀n < ω)[x ≤ on]. (11)

We finish this section with some observations concerning the minimal1

ω-Turing degrees. As has been shown in [Sariev and Ganchev 2014] there
are exactly countably many minimal ω-Turing degrees and all of them are
bounded by 0T,ω

′. This follows from a characterisation of the minimal de-
grees in DT,ω by Sariev and Ganchev, [Sariev and Ganchev 2014]. Namely, an
ω-Turing degree is minimal, if and only if it contains a sequence of the form
(∅, ∅, . . . , ∅︸ ︷︷ ︸

n

, A, ∅, . . . , ∅, . . .), where the Turing degree of A is a minimal cover of

0
(n)
T and A′ ≡T ∅(n+1). Note, that no a.z. degree is minimal. Since each a.z.

degree bounds only a.z. degrees, then no a.z. degree bounds a minimal degree.
In converse, one can easily show that each of the degrees on bounds (countably
many) minimal degrees.

6 Definability in GT,ω
In this last section we shall show how to first order define the set O = {on | n <
ω}. This definition is based on observations for the local theory of the Turing
degrees. Finally, from the fact that the set O = {on | n < ω} is first order
definable in GT,ω, by (6), we conclude the definability of the classes H,L and I.

Further, if D = (D,≤,∨) is an upper semi-lattice, and a, l, r ∈ D are such
that l ≤ r, then by Cup(a, l, r) we shall denote the set of all solutions x of the
equation a ∨ x = r such that l ≤ x ≤ r,

CupD(a, l, r) = {x | l ≤ x ≤ r and a ∨ x = r}.
Let us now consider a degree b in the local substructure GT,ω of the ω-Turing

degrees, which is above o1. Since (∅, ∅(2), ∅(3), . . .) ∈ o1, then b contains a sequence
of the form (B, ∅(2), ∅(3), . . .). Then it is easy to notice that the degree containing
the sequence B ↑ ω is the least degree, which cups o1 to b. Using an analogous
reasoning, one can show that each of the degrees on satisfies the formula:

Φ(a) 
 (∀b ≥ a)[CupGT,ω
(a,0T,ω,b) has a least element].

1A degree m is said to be minimal in a degree structure D = (D,0,≤), if the only degree
strictly less than m is the least element 0 of D. Also, m is a minimal cover of a iff a < m and
the interval D(a,m) is empty.



Indeed, fix a natural number n. Let b ∈ GT,ω be a degree above on. Recall that
on contains the sequence On = (∅, ∅′, . . . , ∅(n−1), ∅(n+1), ∅(n+2), . . .). Hence there
are setsB0, B1, . . . , Bn−1 such that the sequence (B0, B1, . . . , Bn−1, ∅(n+1), ∅(n+2), . . .)

belongs to b. Note that the degree b̃ = degω(B0, B1, . . . , Bn−1, ∅, ∅, . . .) is in the
set CupGT,ω

(on,0T,ω,b). Now, let x be an arbitrary degree, which cups on to b
and let X ∈ x. Hence, for all i < n, we have that Bi ≤T Pi(X ⊕On) ≡T Pi(X ).

Thus, b̃ ≤ x and therefore, b̃ is the least element of CupGT,ω
(on,0T,ω,b).

Further, recall that no a.z. degree bounds a minimal degree. On the other
hand for each n, on bounds a minimal degree. Thus the property

Ψ(a) 
 (∃m)[m is a minimal degree & m < a]

separates O from the a.z. degrees.
In fact, the formula Φ & Ψ defines exactly the degrees on. In order to prove

it, first we need some additional observations concerning the local theory of the
Turing degrees. By [Posner and Robinson 1981], for all Turing degrees a,b ∈
DT (0T ,0

′
T ), there is a (low) Turing degree c ∈ DT (0T ,0

′
T ), such that a∨ c = 0′T

and b � c. Hence, if a is a Turing degree strictly between the least element 0T
and its first jump 0′T , then the set

CupDT
(a,0T ,0

′
T ) = {x | 0T ≤ x ≤ 0′T and a ∨ x = 0′T}

is not empty, but does not have a least element. The result in [Posner and Robinson 1981]
can be relativized straightforward2. Thus for each Turing degree d, if a,b ∈
DT (d,d′) then there is a (low over d) degree c in DT (d,d′), which cups a to d′

and avoids b. Using this relativization, we conclude that if a is in the interval
DT (d,d′), then the set CupDT

(a,d,d′) is not empty, but does not have a least
element.

Now we are ready to prove that Φ & Ψ only defines the degrees in O.
For the purpose, let a be a degree in GT,ω, which is not in O. Sup-
pose also Φ(a) and Ψ(a) hold in GT,ω. Since a bounds a minimal degree,
then a is not a.z. degree. Hence, there exists a greatest natural number
n, such that a < on. Since (∅, ∅′, . . . , ∅(n−1), ∅(n+1), ∅(n+2), . . .) is an element
of on, then there are sets An, An+1, An+2, . . . such that the sequence A =
(∅, ∅′, . . . , ∅(n−1), An, An+1, An+2, . . .) has a degree a. By the choice of n, a is
not below on+1, so ∅(n) <T Pn(A). On the other hand, a ≤ 0T,ω

′ and a 6= on, so
Pn(A) <T ∅(n+1).

Since a < on and Φ(a), then there is a least degree x such that a ∨
x = on. Note that x ≤ on, so it contains a sequence X of the form

2Posner and Robinson themselves use the relativization in the same paper.



(∅, ∅′, . . . , ∅(n−1), Xn, Xn+1, Xn+2, . . .), for some sets Xn, Xn+1, Xn+2, . . .. From
a ∨ x = on we have that Pn(A)⊕Pn(X ) ≡T ∅(n+1) and since Pn(A) <T ∅(n+1),
then ∅(n) <T Pn(X ).

Further, note that if the set of natural numbers Y has a Turing degree in the
set CupDT

(degT (Pn(A)),0
(n)
T ,0

(n+1)
T ), then CupGT,ω

(a,0T,ω,on) contains the ω-

Turing degree of the sequence (∅, ∅′, . . . , ∅(n−1), Y, ∅, ∅, . . .). By the relativization

of the result of Posner and Robinson for d = 0
(n)
T , CupDT

(degT (Pn(A)),0
(n)
T ,0

(n+1)
T )

has an element not equal to 0
(n+1)
T . Therefore, CupGT,ω

(a,0T,ω,on) has an element

strictly below on, and so Pn(X ) <T ∅(n+1).
Finally, since ∅(n) <T Pn(X ) <T ∅(n+1), again by the relativization of the

Posner and Robinson result, there is a set Y , such that ∅(n) <T Y <T ∅(n+1),
Pn(A)⊕Y ≡T ∅(n+1) and Pn(X ) �T Y . Then the ω-Turing degree y of the
sequence (∅, ∅′, . . . , ∅(n−1), Y, ∅, ∅, . . .) is an element of CupGT,ω

(a,0T,ω,on), which
is not above x. A contradiction.

Combining all together, we have that for each degree a below 0T,ω
′, a ∈

O ⇐⇒ GT,ω |= Φ(a) & Ψ(a). In order to conclude our main result, we only have
to notice that Φ & Ψ is equivalent to a first order formula in the language of the
partial orders.

Theorem 1. The classes H,L and I are first order definable in GT,ω

A direct consequence of the latter and (11) is the following corollary.

Corollary 2. The class of the a.z. degrees is first order definable in GT,ω.
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