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Abstract In the present paper, we show the first order definability of the
jump operator in the upper semilattice of the ω-enumeration degrees. As a
consequence, we derive the isomorphicity of the automorphism groups of the
enumeration and the ω-enumeration degrees.
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1 Introduction

When the classification of the notion of informational content of given ob-
jects is modelled by an algebraic degree structure, the question arises what
is the extent of which the structure captures this notion. More particularly,
is there a way to differentiate between objects with a different informational
content within the algebraic structure itself? Does the informational content
of an object uniquely determine its position in the structure, or can we find a
reorganization of the structure which does not change any of its properties?

Formally, the above questions are described via the notion of rigidity. An
algebraic structure is said to be rigid if and only if it has no nontrivial au-
tomorphisms. Rogers [10] is the first who raised the question of the rigidity
of the structure DT of the Turing degrees. Although the rigidity problem still
remains unsolved, there is a sequence of results which restrict the behavior of
the possible automorphisms of DT .

The authors were partially supported by BNSF Bilateral Grant DNTS/Russia 01/8 from
23.06.2017

H. Ganchev
Faculty of Mathematics and Informatics, Sofia University, Sofia, Bulgaria
E-mail: ganchev@fmi.uni-sofia.bg

A. Sariev
Faculty of Mathematics and Informatics, Sofia University, Sofia, Bulgaria
E-mail: andreys@fmi.uni-sofia.bg



2 Hristo Ganchev, Andrey C. Sariev

Namely, in [14] Slaman and Woodin develop a coding method, which they
use for the analysis of the automorphism group Aut(DT ) of the Turing de-
grees. They succeed in showing that there are at most countably many au-
tomorphisms of DT , each of them is arithmetically definable and there is a
Turing degree on which the action of any automorphism uniquely determines
its global action. Also they prove that each automorphism of DT fixes the
upper cone above the second jump 0′′T of the degree of the recursive sets. They
derive in the same paper strong connections between the Turing degree struc-
ture and second-order arithmetic, leading to their famous Bi-interpretability
conjecture, see Slaman [12] for a precise statement of the original conjecture.
As shown in [13,11], the bi-interpretability of DT and second-order arithmetic
is equivalent to the rigidity of DT . Also, if true, it clarifies the situation with
the definable relations on DT : they are exactly those which are definable in
second-order arithmetic.

An important consequence of the method of Slaman and Woodin is the
definability of the double jump operator. Later, using this result, Shore and
Slaman [11] prove the definability of the Turing jump operator itself.

Another model of computation is presented via the enumeration reducibil-
ity between sets. In contrast to Turing reducibility, where the auxiliary data
is accessed via oracles, here the informational inputs are supplied by enumer-
ations. More precisely, the set A is enumeration reducible to the set B if there
is an effective way of transforming any enumeration of B into one of A. The
world modulo enumeration reducibility is described by the algebraic structure
De of the enumeration degrees. Just like DT , enumeration degrees structure is
an upper semi-lattice with least element. Also an appropriate jump operation
is defined in De, [2,9].

The Turing model of computation can be easily placed into the wider con-
text of the enumeration reducibility via the so called total degrees. An enu-
meration degree is total if it contains as a representative some set B, for which
there exists a set A such that there is an effective transformation between the
enumerations of B and the oracle for A. More formally, the total degrees are
exactly these which contain representative of the form A ⊕ (ω \ A) for some
A. The embedding of DT into De can be done in a way that to preserve the
order, least upper bound operation, and even the jump, simply by mapping
degT (A) 7−→ dege(A⊕ (ω \A)).

Since it is a much richer structure, one should expect that the automor-
phism group of the enumeration degrees is more restricted than Aut(DT ). An
interesting problem is if it is possible to restrict each automorphism of De to an
automorphism of the substructure DT , ad vice versa – if each automorphism of
DT can be extended to such of De? Overall, what are the connections between
the groups Aut(DT ) and Aut(De)?

Recent results by M. Soskova [19] reveal a similar picture in the auto-
morphism group of the enumeration degrees as that in Aut(DT ). Namely, we
have that Aut(De) has at most countably many elements, each of them is
arithmetically definable and De has a singleton automorphism base. Using the
analysis of Aut(De), in [1] Cai, Ganchev, Lempp, Miller and Soskova find the
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answer of a long-standing open question: they prove that the total degrees are
first-order definable in the structure of the enumeration degrees.

Combining the definability of the total degrees with the well known fact
that they form an automorphism base for De leads us to the result that each
automorphism of De induces an automorphism of DT . In other words, Aut(De)
is isomorphic to a subgroup of Aut(DT ), and hence the rigidity of the Turing
degrees implies that of the enumeration degrees. The converse, i.e. if each
automorphism of DT is induced, still remains an open problem.

The definability of the automorphism base of the total enumeration degrees
also guarantees that each automorphism of De is the identity on the upper
cone of the double jump 0′′e of the enumeration degree of the computably
enumerable sets, [1].

In this paper, we address the problem of the first-order definability of the
jump operator in a proper extension of De – the ω-enumeration degree struc-
ture Dω. Unlike the well known structures of the Turing and the enumeration
degrees, which arise as a formal way to describe the corresponding notions
for informational content comparing over the universe 2ω of the sets of natu-
ral numbers, the structure Dω considered here algebraically describes a way of
classification over the universe (2ω)ω of ω-sequences of sets of natural numbers.

The study of this degree structure was initiated by Soskov in [16]. He intro-
duced the ω-enumeration reducibility ≤ω, which compares the informational
content of sequences of sets in a way that generalizes the Selman’s charac-
terization for the enumeration reducibility1. To be more precise, in Soskov’s
definition the informational content of each sequence A = {Ak}k<ω is de-
scribed by the class JA of the Turing degrees of all sets, that can compute in
an uniform way, an enumeration of the k-th element of the sequence in their
k-th Turing jump:

JA = {degT (X) | Ak is c.e. in X(k) uniformly in k}.

Thus A ≤ω B iff JB ⊆ JA. This reducibility is a preorder on (2ω)ω, and hence
it induces a degree structure in the usual way, denoted by Dω – the structure
of the ω-enumeration degrees. Also a jump operation ′ is defined in Dω is
such a way that for each degree, the class that describes the jump of a degree
consists exactly of the (Turing) jumps of the elements of the class describing
the degree.

The mapping dege(A) 7−→ degω(A, ∅, . . . , ∅, . . .) is a natural embedding of
the structure of the enumeration degrees into Dω. It preserves the order, the
least upper bound and the jump operations.

Both structures are closely related. More precisely, Soskov and Ganchev
[17] show that the group Aut(De) of the automorphisms of De and the group
Aut(D′ω) of the jump preserving automorphisms of Dω, are isomorphic. Again
in [17] it is shown also that De is an automorphism base for Dω, which is first
order definable in Dω in the language of the structure order and the jump
operation.

1 Selman’s Theorem states that A ≤e B ⇐⇒ (∀X ⊆ ω)[B ≤c.e. X → A ≤c.e. X].
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The main our aim in this paper, is to prove the first-order definability of
the ω-enumeration jump operator. Roughly, the proof can be divided into two
parts. First, we prove that the (isomorphic copy of the) enumeration degrees
structure is first-order definable in Dω in the language of the structure order
only, in this way improving the above mentioned result of Soskov and Ganchev.
This proof relies on the previously derived fact that the jump of the least
element is first-order definable, Ganchev and Sariev [5]. In the second part, we
prove the equivalence of the definabilities in Dω of the enumeration degrees
and the jump operator.

Note, that the definability of the jump in Dω guarantees that all automor-
phisms of Dω preserve the jump, and hence that De and Dω have isomorphic
automorphism groups. Thus the rigidity of the enumeration degrees is equiv-
alent to the rigidity of the ω-enumeration degrees.

2 Preliminaries

2.1 Basic notions

We shall denote the set of natural numbers by ω. If not stated otherwise,
a, b, c, . . . shall stand for natural numbers, A, B, C, . . . for sets of natural
numbers, a, b, c, . . . for degrees and A, B, C, . . . for sequences of sets of natural
numbers. We shall further follow the following convention: whenever a sequence
is denoted by a calligraphic Latin letter, then we shall use the roman style of
the same Latin letter, indexed with a natural number, say k, to denote the
k-th element of the sequence (we always start counting from 0). Thus, if not
stated otherwise, A = {Ak}k<ω, B = {Bk}k<ω, C = {Ck}k<ω, etc. We shall
denote the set of all sequences (of length ω) of sets of natural numbers by Sω.

As usual A⊕B shall stand for the set {2x | x ∈ A} ∪ {2x+ 1 | x ∈ B}. By
A+ we shall denote the set A⊕ (ω \A).

For every natural number e and every set A ⊆ ω, we denote by WA
e the

domain of the partial function computed by the oracle Turing machine with
index e and using A as an oracle.

2.2 The enumeration degrees

We assume that the reader is familiar with the notion of enumeration reducibil-
ity, ≤e, and with the structure of the enumeration degrees (for an introduction
on the enumeration reducibility and the respective degree structure we refer
the reader to [3,15]).

Intuitively, a set A is enumeration reducible (e-reducible) to a set B if
there is an effective algorithm transforming each enumeration of B into an
enumeration of A. It turns out that A ≤e B iff there is a c.e. set W such that

x ∈ A ⇐⇒ (∃u)[〈x, u〉 ∈W and Du ⊆ B], (1)
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where 〈x, u〉 denotes the code of the tuple of natural numbers (x, u) under
some fixed encoding and Du is the finite set with canonical index u. We say
that A is e-reducible to B via W , and we shall write A = W (B).

The relation ≤e is a preorder on the powerset 2ω of the natural numbers
and induces a nontrivial equivalence relation ≡e. The equivalence classes under
≡e are called enumeration degrees. The enumeration degree which contains the
set A is denoted by dege(A). The set of all enumeration degrees is denoted by
De. The enumeration reducibility between sets induces a partial order ≤e on
De by

dege(A) ≤e dege(B) ⇐⇒ A ≤e B.

We denote by De the partially ordered set (De,≤e). The least element of
De is the enumeration degree 0e of ∅. Also, the enumeration degree of A⊕B
is the least upper bound of the degrees of A and B. Therefore De is an upper
semi-lattice with least element.

The enumeration jump Je(A) of A is defined by Je(A) = {x | x ∈Wx(A)}+.
The jump operation preserves enumeration reducibility, so we can define

dege(A)′ = dege(Je(A)).

Since A <e Je(A), we have a <e a′ for every enumeration degree a. The jump
operator is uniform, i.e. there exists a recursive function j such that for all
sets A and B, if A = We(B) then Je(A) = Wj(e)(Je(B)).

The jump operation gives rise to the local substructure Ge, consisting of
all degrees bellow 0′e – the jump of the least enumeration degree. Cooper [3]
proved that Ge is exactly the collection of all Σ0

2 enumeration degrees.

2.3 The ω-enumeration degrees

ω-enumeration reducibility and the corresponding degree structure Dω were
introduced by Soskov in [16]. An equivalent, but more approachable definition
in terms of the uniform e-reducibility is derived in [18]. We shall focus our
attention only on the latter. According to it, a sequence A is ω-enumeration
reducible to a sequence B, denoted by A ≤ω B, iff for every n < ω,

An ≤e Pn(B) uniformly in n.

Here, for each X ∈ Sω, P(X ) is the so called jump sequence of X and is
defined as the sequence {Pk(X )}k<ω such that: P0(X ) = X0 and for each
k < ω, Pk+1(X ) = Je(Pk(X ))⊕Xk+1.

Clearly ≤ω is a reflexive and transitive relation, and the relation ≡ω defined
by

A ≡ω B ⇐⇒ A ≤ω B and B ≤ω A
is an equivalence relation. The equivalence classes under this relation are called
ω-enumeration degrees. In particular the equivalence class degω(A) = {B |
A ≡ω B} is called the ω-enumeration degree of A. The relation ≤ω defined by

a ≤ω b ⇐⇒ ∃A ∈ a∃B ∈ b(A ≤ω B)
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is a partial order on the set of all ω-enumeration degrees Dω. By Dω we shall
denote the structure (Dω,≤ω). The ω-enumeration degree 0ω of the sequence
∅ω = {∅}k<ω is the least element in Dω. Further, the ω-enumeration degree of
the sequence A⊕B = {Ak⊕Bk}k<ω is the least upper bound a∨b of the pair
of degrees a = degω(A) and b = degω(B). Thus Dω is an upper semi-lattice
with least element.

It is not difficult to notice that each sequence and its jump sequence belong
to the same ω-enumeration degree, i.e. for all A ∈ Sω,

A ≡ω P(A). (2)

In this way, P(A) is an equivalent to A sequence, whose members are mono-
tone with respect to ≤e and each of its members contains full information on
previous members.

Given a set A ⊆ ω, denote by A ↑ ω the sequence (A, ∅, ∅, . . . , ∅, . . .). The
definition of ≤ω and the uniformity of the jump operation imply that for all
sets of natural numbers A and B,

A ↑ ω ≤ω B ↑ ω ⇐⇒ A ≤e B. (3)

The last equivalence implies, that the mapping κ : De → Dω, defined by

κ(dege(X)) = degω(X ↑ ω),

is an embedding of De into Dω. Further, the so defined embedding κ preserves
the order, the least element and the binary least upper bound operation.

We shall refer to κ as the natural embedding of the enumeration degrees
into the ω-enumeration degrees. The range of κ shall be denoted by D1 and
shall be called the natural copy of the enumeration degrees.

As shown in [17], each ω-enumeration degree is uniquely determined by the
set of the degrees in D1, which bound it,

a ≤ω b ⇐⇒ (∀x ∈ De)[b ≤ω κ(x)→ a ≤ω κ(x)]. (4)

From here, one can easily show that D1 is an automorphism base of Dω.

2.4 The jump operator

Following the lines of Soskov and Ganchev [17], the ω-enumeration jump A′
of A ∈ Sω is defined as the jump sequence of A with the first element deleted:

A′ = {Pk+1(A)}k<ω.

Note, that A′ ≡ω (P1(A), A2, A3, . . . , Ak, . . .) = B, because for each k,
Pk(B) = P1+k(A).

The jump operator is strictly monotone, i.e. A �ω A′ and A ≤ω B ⇒
A′ ≤ω B′. This allows to define a jump operation on the ω-enumeration degrees
by setting

degω(A)′ = degω(A′).
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Clearly for all a,b ∈ Dω, a <ω a′ and a ≤ω b⇒ a′ ≤ω b′.
Also the jump operation on ω-enumeration degrees agrees with the jump

operation on the enumeration degrees, i.e. we have

κ(x′) = κ(x)′, for all x ∈ De.

We shall denote by A(n) the n-the iteration of the jump operator on A.
Let us note that

A(n) = {Pn+k(A)}k<ω ≡ω (Pn(A), An+1, An+2, . . .). (5)

It is clear that if A ∈ a, then A(n) ∈ a(n), where a(n) denotes the n-th iteration
of the jump operation on the ω-enumeration degree a.

The first author [4] proved that the jump operator on Dω preserves the
greatest lower bound, i.e. for each x,y, z ∈ Dω,

x ∧ y = z⇒ x′ ∧ y′ = z′. (6)

On the other hand it is not difficult to see that the jump operator does not
always preserve least upper bounds. In [6] one can find a sufficient condition
for the preservation of the least upper bound.

In [16] it is proved that the range of the jump operator is exactly the
upper cone over the first jump 0′ω of the least element. Soskov and Ganchev
[17] showed an even stronger jump inversion property, which does not hold
either in the Turing degrees, or in the enumeration degrees. Namely, for each
natural number n if b is above a(n), then there is a least ω-enumeration degree
x above a with x(n) = b. We shall denote this degree by Ina(b). An explicit
representative of Ina(b) can be given by setting

InA(B) = (A0, A1, . . . , An−1, B0, B1, . . . , Bk, . . .), (7)

where A ∈ a and B ∈ b are arbitrary.

3 A property of the least enumeration degree

The aim of this section is to provide a characterizing property of the least
enumeration degree 0e which we shall use later. Namely, we shall show that
0e is the only degree x in De such that for each enumeration degree b, if
x∨b ≥e 0′e then necessarily b ≥e 0′e. In order to do so, we need the following
notion of K-pair.

Definition 1 Let A and B be sets of natural numbers. The pair {A,B} is a
Kalimullin pair (K-pair) if there is a c.e. set W , such that:

A×B ⊆W and A×B ⊆W.
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Note that if U is c.e. then for any set A of natural numbers, U and A
form a trivial example of a K-pair via the c.e. set U × ω. Further, we shall
call a K-pair {A,B} nontrivial if both A and B are not c.e. The existence of
nontrivial K-pairs follows from the fact that there are semi-recursive non c.e.
sets.

Definition 2 A set of natural numbers A is semi-recursive if there is a total
computable selector function sA : ω × ω → ω, such that for any x, y ∈ ω,

sA(x, y) ∈ {x, y} and whenever {x, y} ∩A 6= ∅, sA(x, y) ∈ A.

By Jockusch [7], every nonzero Turing degree contains a semi-recursive set
A such that both A and A are not c.e. It remains to note that if A is a
semi-recursive then {A,A} is a K-pair. Indeed, if A is semi-recursive set then
A×A ⊆W and A×A ⊆W , where W is the c.e. set {(x, y) | sA(x, y) = x}.

We list some additional properties of K-pairs, which we shall use later. A
proof of all of them can be found in [8].

Proposition 1 Let A and B be a nontrivial K-pair. Then:

1. A ≤e B and A ≤e B ⊕ Je(∅);
2. The enumeration degrees dege(A) and dege(B) are incomparable and quasi-

minimal;
3. The set {x ∈ De | {dege(A),x} is a K-pair} is an ideal.

K-pairs and the definability of the jump in De are closely connected. K-
pairs were introduced by Kalimullin in [8], where he proves the first-order
definability of the enumeration jump operator. Later, Ganchev and M. Soskova
[6] found a much simpler definition of the jump.

Namely for every nonzero enumeration degree u ∈ De, u′ is greatest among
the all the least upper bounds a ∨ b of nontrivial K-pairs {a,b}, such that
a ≤e u.

From here one can easily derive that if x be nonzero enumeration degree,
then there is a degree y such that x∨y ≥e 0′e but y is not above 0′e. Indeed, let
x ∈ De be a nonzero. Let {a,b} be a nontrivial K-pair, such that a ≤e x, which
realizes x′, i. e. a∨b = x′. Since a ≤e x, we have that x∨b ≥e a∨b = x′ ≥e 0′e.
Suppose now that 0′e ≤e b. Then by the third property in Proposition 1,
{a,0′e} must be a nontrivial K-pair. If A ∈ a, then A ≤e Je(∅) ≡e Je(∅) by
the first property in Proposition 1 and the fact that Je(∅) is a total set. Hence
a ≤e 0′e ≤e b, which contradicts with the second property in Proposition 1.
Thus 0′e �e b.

Note also, that the formula: ϕ(x) 
 (∀y)[x ∨ y ≥e 0′e → y ≥e 0′e] is sat-
isfied by the least enumeration degree 0e. Thus, we have proven the following
proposition.

Lemma 1 The least element 0e is the only enumeration degree x such that

(∀y)[x ∨ y ≥e 0′e → y ≥e 0′e].
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4 Definability of the enumeration degrees

In [17] Soskov and Ganchev showed the first-order definability of the isomor-
phic copy D1 under the embedding κ of the enumeration degrees in Dω in
the terms of the structure order and the jump operation. In this section we
shall improve this result by finding a first-order formula only in the language
of structure order which defines D1 in Dω.

For this purpose, let us first consider the set of the ω-enumeration degrees,
defined by the formula ϕ from the previous section. Let X = {Xk}k<ω be a
sequence such that Dω |= ϕ(degω(X )). In other words, X is such that for each
sequence Y = {Yk}k<ω if ∅ω ′ ≤ω X ⊕ Y then ∅ω ′ ≤ω Y. Noting that for each
sequence A = {Ak}k<ω, ∅ω ′ ≤ω A is equivalent to ∅′ ≤e A0, and then using
Lemma 1, we conclude that X0 ≡e ∅.

Now, let X = {Xk}k<ω be such that X0 ≡e ∅ and the sequence Y =
{Yk}k<ω be such that ∅ω ′ ≤ω X ⊕Y. Then we have that ∅′ ≤e X0 ⊕ Y0 ≡e Y0
and hence ∅ω ′ ≤ω Y.

Thus, the degrees in Dω, which satisfy the formula ϕ, are exactly those that
contain a sequence whose zeroth element is the empty set. We shall denote the

set of all these degrees by D̃1,

D̃1 = {x ∈ Dω | (∃{Ak}k<ω ∈ x)[ A0 = ∅ ]}.

Here is the moment when we use the first-order definability of 0′ω, proved
in [5]. By this result, we now conclude the first-order definability of the set

D̃1.
Using the set D̃1 a simple definition of D1 can be derived. Indeed, for each

a ∈ Dω, denote by µ(a) the least (ω-enumeration) degree x for which there

exists degree y ∈ D̃1 such that x ∨ y = a. It is not difficult to see that the
operation µ is correctly defined. Moreover, for each a, if {Ak}k<ω ∈ a then
µ(a) contains the sequence (A0, ∅, . . . , ∅, . . .). Hence, the range of µ is exactly
the copy D1 of the enumeration degrees under the embedding κ:

D1 = {µ(a) | a ∈ Dω}.

Combining all these facts, we conclude that the enumeration degrees are
first order definable in the structure Dω of the ω-enumeration degrees.

Lemma 2 The copy D1 of the enumeration degrees under the embedding κ is
first-order definable in Dω.

5 Definability of the jump

As we noted at the beginning of the previous section, by [17] D1 is first order
definable in the language of the structure order an the jump operator. So
obviously the definability of the jump operator implies the definability of the
isomorphic copy of the enumeration degrees. The aim of this section is to show
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the reverse implication, and by Lemma 2 to conclude the first-order definability
of the jump operator.

We start with a structural property of Dω. As Ganchev showed in [4], for
all ω-enumeration degrees a and g, if a ≤ω g then a is the greatest lower
bound of g and some degree f in D1. From here one can easily derive that
each degree a ∈ Dω is the greatest lower bound of two degrees in D1. Indeed,
it is sufficient to show that each degree a ∈ Dω is bounded by a degree in
D1. In order to show this let us recall that a �ω a′. Then by (4), there is
x ∈ De, such that a ≤ω κ(x) and a′ �ω κ(x). So κ(x) is a degree from D1

which bounds a.
Again in [4] it was shown that the jump operator on Dω preserves the

greatest lower bound. Hence for each ω-enumeration degree a there are ω-
enumeration degrees g, f ∈ D1, such that

a = g ∧ f and a′ = g′ ∧ f ′, (8)

and if there is another pair of degrees, whose greatest lower bound exists and
is equal to a, then the greatest lower bound of their jumps also exists and is
equal exactly to a′.

As we stated in the preliminaries, D1 is closed under the jump, and the
ω-enumeration jump agrees with the enumeration jump. Also, by Kalimullin
[8], the jump operator is definable in the structure De of the enumeration
degrees. Hence the restriction of the ω-enumeration jump operator over D1 is
definable in the structure (D1,≤ω,∨). In this way, by (8), we conclude that
the definability of D1 implies that of the jump. Thus, by Lemma 2, we have
the definability of the jump operation.

Theorem 1 The jump operator is first-order definable in the structure Dω of
the ω-enumeration degrees.

From here we directly have that each automorphism of Dω is jump pre-
serving2, i.e. Aut(D′ω)=Aut(Dω). Now, using the previously mentioned result
by Soskov and Ganchev [17] stating the isomorphicity of the groups of the
automorphisms of the enumeration degrees and of the jump preserving auto-
morphisms of the ω-enumeration degrees, we conclude the following:

Theorem 2 The groups Aut(De) and Aut(Dω) are isomorphic.
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