
UNIFORM REGULAR ENUMERATIONS

IVAN N. SOSKOV AND BOGOMIL KOVACHEV

Abstract. In the paper we introduce and study the uniform regular enumer-
ations for arbitrary recursive ordinals. As an application of the technique we
obtain a uniform generalization of a theorem of Ash and a characterization of a
class of uniform operators on transfinite sequences of sets of natural numbers.

1. Introduction

Let ζ be a recursive ordinal and let {Bα}α≤ζ be an arbitrary sequence of sets of
natural numbers. The regular with respect to the sequence {Bα}α≤ζ enumerations
were introduced in [10] and used to characterize the sets A satisfying the following
condition:

(*) (∀X)[(∀α ≤ ζ)(Bα is r.e. in X(α) uniformly in α) ⇒ A is r.e. in X(α)],

where α is a recursive ordinal.
In the present paper we are concerned with the characterization of all sequences

{Aα}α≤ζ of sets satisfying a uniform generalization of (*):

(∀X)[(∀α ≤ ζ)(Bα is r.e. in X(α) uniformly in α) ⇒
(∀α ≤ ζ)(Aα is r.e. in X(α) uniformly in α) ].

(**)

It turned out that the technique developed in [10] cannot be applied directly
to obtain this characterization which led to the uniform regular enumerations pre-
sented here.

Using the technique of the uniform regular enumerations we also obtain a char-
acterization of a class of uniform operators mapping transfinite sequences of sets
of natural numbers to sequences of sets of natural numbers, which generalize the
operators studied in [9], and show that a two sequences {Bα}α≤ζ and {Aα}α≤ζ

satisfy (**) if and only if there exists a uniform operator Γ such that

Γ({Bα}α≤ζ) = {Aα}α≤ζ .

2. Preliminaries

2.1. Ordinal notations. In what follows we shall consider only recursive ordinals
α which are below a fixed recursive ordinal η. We shall suppose that a notation
e ∈ O for η is fixed and the notations for the ordinals α < η are elements a of O
such that a <o e. For the definitions of the set O and the relation ”<o” the reader
may consult [6] or [7]. We shall identify every ordinal with its notation and denote
the ordinals by the letters α, β, γ and δ. In particular we shall write α < β instead
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of α <o β. If α is a limit ordinal then by {α(p)}p∈N we shall denote the unique
strongly increasing sequence of ordinals with limit α, determined by the notation
of α, and write α = lim α(p).

2.2. The enumeration jump. Given two sets of natural numbers A and B, we
say that A is enumeration reducible to B (A ≤e B) if A = Φz(B) for some enumer-
ation operator Φz. In other words, using the notation Dv for the finite set having
canonical code v and W0, . . . ,Wz, . . . for the Gödel enumeration of the r.e. sets,
we have

A ≤e B ⇐⇒ ∃z∀x(x ∈ A ⇐⇒ ∃v(〈v, x〉 ∈ Wz & Dv ⊆ B)).

The relation ≤e is reflexive and transitive and induces an equivalence relation
≡e on all subsets of N. The respective equivalence classes are called enumeration
degrees. For an introduction to the enumeration degrees the reader might consult
Cooper [4].

Given a set A denote by A+ the set A ⊕ (N \ A). The set A is called total iff
A ≡e A+. Clearly A is recursively enumerable in B iff A ≤e B+ and A is recursive
in B iff A+ ≤e B+.

Since B ≤e B+, if A ≤e B, then A is r.e. in B. It is easy to see that there exists
a recursive function t such that if A ⊆ N then for every z,

Φz(A) = WA
t(z),

where as usual WA
z denotes the domain of the z-th Turing machine using as oracle

the characteristic function of A, in other words the z-th r.e. in A set.
In the reverse direction there exist recursive functions e1 and e2 such that for all

total functions f ,
W f

z = Φe1(z)(Gf ),
where Gf = {〈x, y〉 : f(x) ' y}, and for all A ⊆ N,

WA
z = Φe2(z)(A+).

Notice that the graph of every total function is a total set.
The enumeration jump operator is defined in Cooper [3] and further studied

by McEvoy [5]. Here we shall use the following definition of the e-jump which is
m-equivalent to the original one, see [5]:

2.1. Definition. Given a set A, let K0
A = {〈x, z〉 : x ∈ Φz(A)}. Define the e-jump

A′e of A to be the set (K0
A)+.

The following properties of the enumeration jump are proved in [5]:
Let A and B be sets of natural numbers. Set B

(0)
e = B and B

(n+1)
e = (B(n)

e )′e.
(J1) If A ≤e B, then A′e ≤e B′

e.
(J2) A is Σ0

n+1 relative to B iff A ≤e (B+)(n)
e .

Let α be a recursive ordinal. To define the α-th enumeration jump of a set A
we are going to use a construction very similar to that used in the definition of the
α-th Turing jump. The idea is to modify the definition of the sets HA

α , see [6] or
[7], by taking enumeration jump instead of Turing jump:

2.2. Definition.
(i) EA

0 = A.
(ii) EA

β+1 = (EA
β )′e.
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(iii) If α = lim α(p), then EA
α = {〈p, x〉 : x ∈ EA

α(p)}.

From now on A
(α)
e will stand for EA

α .
Of course the definition of the set A

(α)
e depends on the fixed notation of the

ordinal α. On the other hand, it is easy to see by a minor modification of the proof
of the corresponding theorem of Spector for the sets HA

α , see [6] or [7], that if α1

and α2 are two notations of the same recursive ordinal, then A
(α1)
e ≡e A

(α2)
e .

The following properties of the transfinite iteration of the enumeration jump
follow easily from the definition:

(E1) If β ≤ α are recursive ordinals, then A
(β)
e ≤e A

(α)
e uniformly in β and α.

(E2) If A ≤e B, then for every recursive ordinal α, A
(α)
e ≤e B

(α)
e .

(E3) If α > 0, then A
(α)
e is a total set.

Finally, we have that for total sets the α-th enumeration jump and the α-th
Turing jump are equivalent. Namely the following is true:

2.3. Proposition. Let A be a total set of natural numbers. Then for every recur-
sive ordinal α, EA

α ≡e (HA
α )+ uniformly in α.

Since we are going to consider only e-jumps here, from now on we shall omit the
subscript e in the notation of the enumeration jump. So for every recursive ordinal
α by A(α) we shall denote the α-th enumeration jump of A.

For every function f and every recursive ordinal α by fα we shall denote the
α-th jump of the graph Gf of f . It is easy to see that there exists a recursive
function e(z, α) such that if f is a total function and α is a recursive ordinal, then

W f(α)

z = Φe(z,α)(f (α)).

Hence for jumps of total functions the relations ”r.e.” in and ”≤e” are uniformly
equivalent.

2.3. The jump set of a sequence of sets. Let ζ be a recursive ordinal and let
{Bα}α≤ζ be a sequence of sets of natural numbers. For every recursive ordinal α
we define the jump set Pα of the sequence {Bα} by means of transfinite recursion
on α:

2.4. Definition.
(i) P0 = B0.
(ii) Let α = β + 1. Then let

Pα =

{
P ′β ⊕Bα if α ≤ ζ,

P ′β otherwise.

(iii) Let α = lim α(p). Then set P<α = {〈p, x〉 : x ∈ Pα(p)} and let

Pα =

{
P<α ⊕Bα if α ≤ ζ,

P<α otherwise.

Notice that if the sequence {Bα} contains only one member, i.e ζ = 0, then for
every recursive α, Pα = B

(α)
0 .

The properties of the jump sets Pα are similar to the properties of the enumera-
tion jumps. Again we have that if α1 and α2 are two notations of the same recursive
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ordinal, then Pα1 ≡e Pα2 . We shall omit the proof since it is very close to the proof
of the corresponding result for the HA

α sets mentioned above.
We shall use the following properties of the jump sets which follow easily from

the definition:
(P1) If β ≤ α, then Pβ ≤e Pα uniformly in β and α.
(P2) If α ≤ ζ, then Bα ≤e Pα uniformly in α.
(P3) Let (∀α ≤ ζ)(Bα ≤e A(α) uniformly in α). Then Pζ ≤e A(ζ).
(P4) If α is a limit ordinal, then the set P<α is total.
(P5) If ζ < α, then the set Pα is total.

2.4. The Results. Let us fix a recursive ordinal ζ and a sequence {Bα}α≤ζ of
subsets of N. For every recursive ordinal α denote by Pα the α-th jump set of the
sequence {Bα}α≤ζ .

The following version of Ash’s Theorem [1] is proved in [10]:

2.5. Theorem. Let α be a recursive ordinal and A ⊆ N. Suppose that for all total
sets X such that (∀γ ≤ ζ)(Bγ ≤e X(γ)) uniformly in γ we have that A ≤e X(α).
Then A ≤e Pα.

In particular if we take ζ = α = 0, then from Theorem 2.5 we get Selman’s
Theorem [8] which describes the enumeration reducibility in terms of the relation
”r. e. in”:

2.6. Theorem.(Selman) Let A and B be sets of natural numbers. Then A ≤e B
if and only if (∀X)(B is r.e. in X ⇒ A is r.e. in X).

Another direct consequence of Theorem 2.5 is the following Theorem of Case
[2]:

2.7. Theorem.(Case) Let A and B be sets of natural numbers and n < ω. Then
A ≤e B ⊕ ∅(n) if and only if (∀X)(B is ΣX

n ⇒ A is ΣX
n ).

So, while the theorems of Selman and Case describe a kind of positive reducibil-
ities between sets of natural numbers in terms of the classical relation ”Σ0

n in”,
Theorem 2.5 gives a description of a positive reducibility of a transfinite sequence
of sets to a set. A natural further step is to generalize Theorem 2.5 in order to
obtain a reducibility of transfinite sequences of sets to transfinite sequences of sets.

2.8. Definition. Let ζ be a recursive ordinal and let A = {Aα}α≤ζ and B =
{Bα}α≤ζ be two sequences of sets of natural numbers. ThenA is uniformly reducible
to B (A ≤u B) if there exists a recursive function g such that

(∀α ≤ ζ)(Aα = Φg(α)(Pα(B))),

where Pα(B) denotes the α-th jump set of the sequence B.

The following theorem is our first result:

2.9. Theorem. Let ζ be a recursive ordinal and let A = {Aα}α≤ζ and B =
{Bα}α≤ζ be two sequences of sets of natural numbers. Then

A ≤u B ⇐⇒ (∀ total X)[(∀α ≤ ζ)(Bα ≤e X(α) uniformly in α) ⇒
(∀α ≤ ζ)(Aα ≤e X(α) uniformly in α)].

The uniform operators are introduced in [9]. Let us fix natural numbers k0, . . . , kr

and k.
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2.10. Definition. A mapping Γ : P(N)r → P(N) is a uniform operator of type
(k0, . . . , kr → k) if there exists a function g on the natural numbers such that for
all X ⊆ N and for all b0, . . . , br ∈ N,

Γ(WX(k0)

b0 , . . . ,WX(kr)

br
) = WX(k)

g(b0,...,br).

Given sets B0, . . . , Br of natural numbers, denote by Pk
k0,...,kr

(B0, . . . , Br) the
k-th jump set of the sequence {Al}l≤k, where

Al =

{
∅, if l /∈ {k0, . . . , kr},
Bm, if l = km, 0 ≤ m ≤ r.

2.11. Theorem. ([9]) A mapping Γ : P(N)r → P(N) is a uniform operator of type
(k0, . . . , kr → k) if and only if there exists an enumeration operator Φ such that for
all sets B0, . . . , Br,

Γ(B0, . . . , Br) = Φ(Pk
k0,...,kr

(B0, . . . , Br)).

Combining this result with the theorems of Selman and Case, we obtain the
following corollary:

2.12. Corollary. Let n ≥ 1 and A and B be sets of natural numbers. Then
(∀X)(B is ΣX

n ⇒ A is ΣX
n ) if and only if there exists a uniform operator Γ of type

(n → n) such that A = Γ(B).

Here we are going to study uniform operators on transfinite sequences of sets.
Let ζ be a recursive ordinal. Denote by Sζ the set of all sequences {Aα}α≤ζ of sets
of natural numbers.

2.13. Definition. A mapping Γ : Sζ → Sζ is uniform operator if there exists a
function g on the natural numbers such that if a is an index of a recursive function
ϕ, then g(a) is an index of a recursive function ψ such that for all X ⊆ N,

Γ({WX(α)

ϕ(α) }α≤ζ) = {WX(α)

ψ(α) }α≤ζ .

Our second result is the following generalization of Theorem 2.11.
Given a sequence B ∈ Sζ , denote by Pα(B) the α-th jump set of B.

2.14. Theorem. A mapping Γ : Sζ → Sζ is a uniform operator if and only if there
exists a recursive function h such that for every sequence B ∈ Sζ ,

Γ(B) = {Φh(α)(Pα(B))}.
Combining Theorem 2.9 and Theorem 2.14 we obtain and the following

2.15. Corollary. Let A = {Aα} and B = {Bα} be elements of Sζ . Then the
following assertions are equivalent:

(1) A ≤u B.
(2)

(∀ total X)[(∀α ≤ ζ)(Bα ≤e X(α) uniformly in α) ⇒
(∀α ≤ ζ)(Aα ≤e X(α) uniformly in α)].

(3) There exists a uniform operator Γ : Sζ → Sζ such that A = Γ(B).

In the rest of the paper we shall introduce the reader to he technique of the
uniform regular enumerations which will be used in the proofs of Theorem 2.9 and
Theorem 2.14.
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3. Ordinal approximations

3.1. Definition. Given an ordinal α > 0, an ordinal approximation of α is a finite
sequence α = α1 < α2 < . . . αn < α of ordinals, where n ≥ 1 and α1 = 0.

The only ordinal approximation of 0 is 0.

For every ordinal approximation α = α1, α2, . . . , αn, α and every β < α we define
the β-predecessor β of α by means of the following inductive definition:

3.2. Definition.

1) Let β ≤ αn. Then
1.1) If β = αi for some i ∈ [1, n], then β = α1, . . . , αi;
1.2) Otherwise, if αi is the least element of the sequence α1, . . . , αn such

that β < αi, then β is the β-predecessor of α1, . . . , αi;
2) Let αn < β < α. Then

2.1) If α = δ + 1 and β = δ, then β = α1, . . . , αn, δ;
2.2) If α = δ + 1 and β < δ, then β is the β-predecessor of α1, . . . , αn, δ;
2.3) If α = lim α(p), then β is the β-predecessor of

α1, . . . , αn, α(p0), α(p0 + 1), . . . , α(p1), where

p0 = µp[αn < α(p)] and p1 = µp[β < α(p)].

The following simple lemma can be proved by means of transfinite induction on
α.

3.3. Lemma. For every ordinal approximation α and every β < α, there exists
exactly one β-predecessor β of α.

From the definition it follows immediately that there exists a recursive function
π such that if α is an ordinal approximation and β < α, then π(α, β) yields the
β-predecessor of α.

By β ≺ α we shall denote that β is the β-predecessor of α. As usual β ¹ α will
stand for β ≺ α or β = α.

Let us point out some useful properties of the predecessor relation which follow
directly from the definition.

3.4. Lemma. Let α = α1, . . . , αn, α be an ordinal approximation of α. Then the
following assertions hold:

(1) If β ≤ αk, 1 ≤ k ≤ n, then β ≺ α ⇐⇒ β ¹ α1, . . . , αk.
(2) If for some k ∈ [1, n], αk ≤ β < α and β1, . . . , βl is the β-predecessor of α,

then k ≤ l and αi = βi, i = 1, . . . , k.
(3) Let α = δ + 1, αn < δ and β ≤ δ. Then β ≺ α ⇐⇒ β ¹ α1, . . . , αn, δ.
(4) Let α = limα(p) be a limit ordinal and p0 = µp[αn < α(p)]. Let β < α,

p1 ≥ p0 and α(p1) ≥ β. Then

β ≺ α ⇐⇒ β ¹ α1, . . . , αn, α(p0), α(p0 + 1), . . . , α(p1).

3.5. Lemma. Let γ < β < α be ordinals, γ ≺ β and β ≺ α. Then γ ≺ α.

Proof. Transfinite induction on α. Suppose that α = α1, . . . , αn, α.
Let β ≤ αn. Then β ¹ α1, . . . , αn. By the induction hypothesis, γ ≺ α1, . . . , αn.

Therefore by Lemma 3.4 γ ≺ α.
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Suppose now that αn < β. Let α = δ + 1. Set δ = α1, . . . , αn, δ. Since β ≤ δ,
αn < δ. By Lemma 3.4 β ¹ δ. By the induction hypothesis γ ≺ δ. From here
again by Lemma 3.4 it follows that γ ≺ α.

It remains to consider the case αn < β and α = lim α(p). Let

p0 = µp[αn < α(p)] and pβ = µp[β < α(p)]

.
Set α(pβ) = α1, . . . , αn, α(p0), α(p0+1), . . . , α(pβ). Now we have that β ≺ α(pβ).

By induction γ ≺ α(pβ) and hence by Lemma 3.4 γ ≺ α. ¤

From the last lemma it follows that if we fix an ordinal approximation α and
consider the set of all ordinal approximations β ≺ α, then this set is well ordered
by the relation ” ≺ ” and its order type is α.

4. Regular finite parts

Let us fix a sequence {Bα}α≤ζ , of subsets of N.
For every α ≤ ζ set B∗

α = N⊕Bα.
In what follows we shall use the term finite part for finite mappings of N into N

defined on finite segments [0, q−1] of N. Finite parts will be denoted by the letters
τ, ρ. If dom(τ) = [0, q − 1], then let lh(τ) = q.

We shall suppose that an effective coding of all finite sequences and hence of all
finite parts is fixed. Given two finite parts τ and ρ we shall say that τ is less than
or equal to ρ if the code of τ is less than or equal to the code of ρ. By τ ⊆ ρ we
shall denote that the partial mapping ρ extends τ and say that ρ is an extension of
τ . For any τ , by τ ¹ n we shall denote the restriction of τ on [0, n− 1].

Below we define for every α ≤ ζ and every ordinal approximation α of α the
α-regular finite parts. The definition is by transfinite recursion on α.

Let α ≤ ζ. Suppose that for all β < α we have defined the β-regular finite
parts and for every β-regular τ we have defined the β-rank |τ |β of τ . Suppose also
that for all finite parts ρ and for all e, x ∈ N we have defined the forcing relations
ρ °β Fe(x) and ρ °β ¬Fe(x)

4.1. Definition. Given a β-regular finite part τ , say that ρ ⊇ τ is a normal
β-regular extension of τ if |ρ|β = |τ |β + 1.

Let us fix an ordinal approximation α of α.
1) α = 0. Then α = 0. The 0-regular finite parts are finite parts τ such that

dom(τ) = [0, 2q + 1] and for all odd z ∈ dom(τ), τ(z) ∈ B∗
0 .

If dom(τ) = [0, 2q + 1], then the 0-rank |τ |0 of τ is equal to the number q + 1 of
the odd elements of dom(τ).

Given a finite part ρ, let

ρ °0 Fe(x) ⇐⇒ ∃v(〈v, x〉 ∈ We & (∀u ∈ Dv)(ρ((u)0) ' (u)1))

ρ °0 ¬Fe(x) ⇐⇒ ∀(0-regular τ)(ρ ⊆ τ ⇒ τ 6°0 Fe(x)).

2) α = β + 1. Let β be the β-predecessor of α.
Set Xβ

p = {ρ : ρ is β-regular & ρ °β F(p)0((p)1)}.
Given a finite part τ and a set X of β-regular finite parts, let µβ(τ,X) be the

least extension of τ belonging to X if any, and µβ(τ,X) be the least β-regular
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extension of τ otherwise. We shall assume that µβ(τ, X) is undefined if there is no
β-regular extension of τ .

Let τ be a finite part defined on [0, q − 1] and r ≥ 0. Then τ is α-regular of
α-rank r + 1 if there exist natural numbers

0 < n0 < l0 < m0 < b0 < n1 < l1 < m1 < b1 · · · < nr < lr < mr < br < nr+1 = q

such that τ ¹ n0 is a β-regular finite part of rank 1 and for all j, 0 ≤ j ≤ r, the
following conditions are satisfied:

s a) τ ¹ lj is a normal β-regular extension of τ ¹ nj ;
s b)

τ ¹ mj =





µβ(τ ¹ (lj + 1), Xβ
〈e,lj〉), if τ(nj) ' 〈0, β, e〉 + 1,

µβ(τ ¹ (lj + 1), Xβ
p ), if τ(nj) ' 〈1, β, p〉+ 1,

a normal β-regular extension of τ ¹ lj , otherwise;

s c) τ ¹ bj is a normal β-regular extension of τ ¹ mj and τ(bj) ∈ B∗
α;

s d) τ ¹ nj+1 is a normal β-regular extension of τ ¹ bj .

To conclude with the definition of the α-regular finite parts in this case, let for
every ρ, e and x

ρ °α Fe(x) ⇐⇒ ∃v(〈v, x〉 ∈ We & (∀u ∈ Dv)((u = 〈eu, xu, 0〉 & ρ °β Feu(xu))∨
(u = 〈eu, xu, 1〉 & ρ °β ¬Feu(xu)))).

ρ °α ¬Fe(x) ⇐⇒ ∀(α-regular τ)(ρ ⊆ τ ⇒ τ 6°α Fe(x)).

3) α = lim α(p) is a limit ordinal. Let α = α1, . . . , αn, α. Set p0 = µp[α(p) > αn].
For every p denote by α(p) the α(p)-predecessor of α. Notice that for every p ≥ p0

α(p) = α1, . . . , αn, α(p0), α(p0 + 1), . . . , α(p).

A finite part τ defined on [0, q − 1] is α-regular with α-rank r + 1 if there exists
natural numbers

0 < n0 < b0 < m0 < n1 < b1 < m1... < nr < br < mr < nr+1 = q,

such that τ ¹ n0 is an α1, . . . , αn-regular finite part of rank 1 and for all j, 0 ≤ j ≤ r,
the following conditions are satisfied:

l a) τ ¹ bj is an α(p0 + 3j)-regular finite part of rank 1 and τ(bj) ∈ B∗
α;

l b) τ ¹ mj is an α(p0 + 3j + 1)-regular finite part of rank 1;
l c) τ ¹ nj+1 is an α(p0 + 3j + 2)-regular finite part of rank 1.

For every finite part ρ and every e, x ∈ N set:

ρ °α Fe(x) ⇐⇒ ∃v(〈v, x〉 ∈ We & (∀u ∈ Dv)(u = 〈pu, eu, xu〉& ρ °
α(pu)

Feu(xu))).

ρ °α ¬Fe(x) ⇐⇒ ∀(α-regular τ)(ρ ⊆ τ ⇒ τ 6°α Fe(x)).

The following lemma shows that the α-rank is well defined.

4.2. Lemma. Let α ≤ ζ and let τ be an α-regular finite part. Then the following
assertions hold:
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(1) Suppose that α = β+1. Let n′0, l
′
0,m

′
0, b

′
0, . . . , n

′
p, l

′
p,m

′
p, n

′
p+1 and n0, l0,m0, b0,. . . ,

nr, lr,mr, br, nr+1 be two sequences of natural numbers satisfying s a)–
s d) from the definition above. Then r = p, np+1 = n′p+1 and for all
j ≤ r, nj = n′j , lj = l′j ,mj = m′

j and bj = aj.
(2) Suppose that α = lim α(p) is a limit ordinal and let n′0, b

′
0,m

′
0 . . . , n′p, b

′
p,m

′
p, n

′
p+1

and n0, b0, m0 . . . , nr, br,mr, nr+1 be two sequences of natural numbers sat-
isfying the conditions l a) – l c). Then r = p, np+1 = n′p+1 and for all
j ≤ r, n′j = nj, b′j = bj and m′

j = mj.
(3) If ρ is α-regular, τ ⊆ ρ and |τ |α = |ρ|α, then τ = ρ.

Proof. The proof follows easily from the definition of the α-regular finite parts by
transfinite induction on α. ¤

4.3. Corollary. Let α = β+1, α be an ordinal approximation of α and let β be the
β-predecessor of α. Then every α-regular finite part τ is β-regular and |τ |β > |τ |α.

We shall state several properties of the regular finite parts omitting the proofs
which can be found in [10].

4.4. Lemma. Let 1 ≤ α ≤ ζ and α = α1, . . . , αn, α, 1 ≤ k ≤ n. Then every
α-regular finite part τ is α1, . . . , αk-regular and the α1, . . . , αk-rank of τ is strictly
greater than |τ |α.

4.5. Lemma. Let α = lim α(p) be a limit ordinal. Let α = α1, . . . , αn, α and
p0 = µp[α(p) > αn]. Suppose that p1 ≥ p0 and τ is an α1, . . . , αn, α(p0), . . . , α(p1)-
regular finite part of rank 1. Then for every β ≺ α if τ is β-regular, then β ≤ α(p1).

4.6. Definition. For every finite part τ and every ordinal approximation α let

Reg(τ, α) = {β : β ¹ α and τ is β-regular}.
4.7. Lemma. Let α ≤ ζ, let α = α1, . . . , αn, α be an ordinal approximation of α
and let τ be an α-regular finite part. Then the following assertions are true:

(1) If α = δ + 1 and δ is the δ-predecessor of α, then

β ∈ Reg(τ, α) ⇐⇒ β = α ∨ β ∈ Reg(τ, δ).

(2) Let α = lim α(p). Set p0 = µp[α(p) > αn] and for every p ≥ p0 let α(p) be
the α(p)-predecessor of α. Suppose that p1 ≥ p0 and τ is an α(p1)-regular
finite part of rank 1. Then

β ∈ Reg(τ, α) ⇐⇒ β = α ∨ β ∈ Reg(τ, α(p1)).

4.8. Lemma. Let α ≤ ζ and let α be an approximation of α. Suppose that β ¹ α.
Then there exists a natural number k(α, β) such that every α-regular finite part of
rank greater than or equal to k(α, β) is β-regular.

Proof. We shall use transfinite induction on α. The assertion is obviously true for
α = 0.

Suppose that α = δ + 1 and δ is the δ-predecessor of α. Let β ≺ α. Then β ¹ δ.
By induction every δ-regular finite part of rank at least k(δ, β) is β-regular. Set
k(α, β) = k(δ, β) = k. Consider an α-regular finite part τ of rank at least k. Then
τ is δ-regular of rank greater than k and hence τ is β-regular.
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Let α = lim α(p), α = α1, . . . , αn, α and β ≺ α. Set p0 = µp[α(p) > αn]. By
definition an α-regular finite part τ is of rank r+1 if and only if τ is α(p0 + 3r + 2)-
regular of rank 1. Let p1 = µp[p > p0 ∧ α(p) > β].

By Lemma 3.4 β ¹ α(p1). Hence, by induction, every α(p1)-regular finite part
of rank at least k = k(α(p1), β) is β-regular.

Now let r be the least natural number such that p0+3r+2 > p1+k. Consider an
α-regular finite part τ of rank greater than or equal to r + 1. Then by Lemma 4.4
τ is α(p1 + k)-regular of rank at least 2 and hence again by Lemma 4.4 τ is α(p1)-
regular of rank greater than k. So τ is β-regular. ¤

4.9. Remark. From the proof above it follows that we may assume that the func-
tion k is recursive.

4.10. Corollary. Let α ≤ ζ, α be an ordinal approximation of α and β ¹ α.
Suppose that τ is an α-regular finite part of rank greater than k(α, β) + s. Then
|τ |β > s.

Let α ≤ ζ and let α be an ordinal approximation of α.
Denote by Rα the set of all α-regular finite parts.
For every p ∈ N let

Y α
p = {τ : τ ∈ Rα & (∃ρ ⊇ τ)(ρ ∈ Rα & ρ °α F(p)0((p)1))},

Zα
p = {τ : τ ∈ Rα& τ °α ¬F(p)0((p)1)}.

Let µX
α (τ, p) ' µα(τ, Xα

p )

4.11. Proposition. There exist recursive functions h1, . . . , h5 such that for every
sequence B ∈ Sζ and for every ordinal approximation α, α ≤ ζ, the following
assertions are true:

(1) Rα = Φh1(α)(Pα(B)).
(2) For every p ∈ N, Xα

p = Φh2(α,p)(Pα(B)).
(3) For every p ∈ N, Y α

p = Φh3(α,p)(Pα(B)).
(4) For every p ∈ N the characteristic function of {Zα

p } is equal to {h4(α)}P′α(B).
(5) µX

α = {h5(α)}P′α(B).

5. Regular enumerations

For every α-regular finite part τ of rank r + 1 we define the subsets Nτ
α and Bτ

α

of dom(τ) as follows.

5.1. Definition.

a) If α = 0, then let Nτ
α = {n : n ∈ dom(τ) & n is even} and Bτ

α = {b : b ∈
dom(τ) & b is odd}.

b) Let α = β + 1 and let n0, l0,m0, b0, . . . , nr, lr,mr, br, nr+1 satisfy the con-
ditions s a)–s d) from the definition of the regular finite parts. Set Nτ

α =
{n0, . . . , nr} and Bτ

α = {b0, . . . , br}.
c) Let α = lim α(p) and n0, b0,m0 . . . , nr, br,mr, nr+1 satisfy the conditions

l a)–l c) from the definition of the regular finite parts. Set Nτ
α = {n0, . . . , nr}

and Bτ
α = {b0, . . . , br}.
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5.2. Definition. Let ζ be an ordinal approximation of ζ. A a total mapping f
of N in N is called regular enumeration (with respect to ζ) if the following two
conditions hold:

(i) For every finite part ρ ⊆ f , there exists a ζ-regular extension τ of ρ such
that τ ⊆ f .

(ii) If α ¹ ζ and z ∈ B∗
α, then there exists an α-regular τ ⊆ f , such that

z ∈ τ(Bτ
α).

(iii) If α + 1 ¹ ζ and p ∈ N, then there exists an α + 1-regular τ ⊆ f , such that
〈1, α, p〉+ 1 ∈ τ(Nτ

α+1
).

Clearly, if f is a regular enumeration and α ¹ ζ, then for every ρ ⊆ f , there
exists an α-regular τ ⊆ f such that ρ ⊆ τ . Moreover there exist α-regular finite
parts of f of arbitrary large rank.

Given a regular f and α ¹ ζ, let Bf
α = {b : (∃τ ⊆ f)(τ is α-regular & b ∈ Bτ

α)}.
Evidently f(Bf

α) = B∗
α.

5.3. Proposition. Suppose that f is a regular enumeration. Then
(1) B0 ≤e f .
(2) If α = β + 1 ≤ ζ, then Bα ≤e f ⊕P ′β uniformly in α.
(3) If α ≤ ζ is a limit ordinal, then Bα ≤e f ⊕ P<α uniformly in α.
(4) Pα ≤e f (α) uniformly in α.
(5) Bα ≤e f (α) uniformly in α.

Proof. Notice that since B∗
α = N⊕Bα, we have that for every α,

Bα = {x : 2x + 1 ∈ B∗
α}

.
Since f is regular, B∗

0 = f(Bf
0 ). Clearly Bf

0 is equal to the set of all odd natural
numbers.

Let us turn to the proof of (2) and (3). We shall describe an effective procedure
satisfying the requirements of (2) and (3) by means of effective transfinite recursion
on α.

Let α = β+1. Suppose that α is the α-predecessor of ζ and β is the β-predecessor
of α.

Since f is regular, for every finite part ρ of f there exists an α-regular τ ⊆ f
such that ρ ⊆ τ . Hence there exist natural numbers

0 < n0 < l0 < m0 < b0 < n1 < l1 < m1 < b1 < · · · < nr < lr < mr < br < . . . ,

such that for every r ≥ 0, the finite part τr = f ¹ nr+1 is α-regular and n0, l0,m0, b0, . . . ,
nr, lr, mr, br, nr+1 are the numbers satisfying the conditions s a)–s d) from the def-
inition of the α-regular finite part τr. Clearly Bf

α = {b0, b1 . . . }. We shall show
that there exists a recursive in f ⊕P ′β way to list n0, l0,m0, b0, . . . in an increasing
order.

Clearly f ¹ n0 is β-regular and |f ¹ n0|β = 1. By Proposition 4.11 Rβ is
uniformly recursive in P ′β . Using f we can generate consecutively the finite parts
f ¹ q for q = 1, 2 . . . . By Lemma 4.2 f ¹ n0 is the first element of this sequence
which belongs to Rβ . Clearly n0 = lh(f ¹ n0).

Suppose that r ≥ −1 and n0, l0,m0, b0, . . . , nr, lr,mr, br, nr+1 have already been
listed. Since f ¹ lr+1 is a normal β-regular extension of f ¹ nr+1, it is the first



12 IVAN N. SOSKOV AND BOGOMIL KOVACHEV

element of the sequence f ¹ q, q > nr+1, belonging to Rβ . This way we get lr+1.
In order to determine mr+1 we have to consider the value y of f(nr+1):

a) y = 〈0, β, e〉+ 1. Then mr+1 = lh(µX
β

(f ¹ (lr+1 + 1), 〈e, lr+1〉)).
b) y = 〈1, β, p〉+ 1. Then mr+1 = lh(µX

β
(f ¹ (lr+1 + 1), p)).

c) Otherwise, mr+1 is equal to the least q > lr+1 such that f ¹ q ∈ Rβ .

Since f ¹ br+1 is a normal β-regular extension of f ¹ mr+1 and f ¹ nr+2 is a
normal β-regular extension of f ¹ br+1, we can find br+1 and nr+2 in the same way
as above.

So Bf
α is recursive in f ⊕ P ′β . Hence, since B∗

α = f(Bf
α), B∗

α ≤e f ⊕P ′β .
Suppose now that α = lim α(p) is a limit ordinal. Clearly for every p the set Pα(p)

is recursive in P<α uniformly in p. Let α be the α-predecessor of ζ and for every p

let α(p) be the α(p)-predecessor of α. We may think that f is an infinite union of
α-regular finite parts. So there exists an infinite sequence of natural numbers

n0 < b0 < m0 < n1 < b1 < m1 < ... < nr < br < mr < nr+1...

such that for every r the finite part f ¹ nr+1 is α-regular of rank r + 1 and
n0, b0,m0 . . . , nr, br,mr are the elements of dom(f ¹ nr+1) satisfying the condi-
tions l a)–l c) from the definition of the α-regular finite part. As in the previous
case there exists an recursive in f ⊕ P<α way to list the numbers n0, b0,m0 . . . in
an increasing order. To show this we need to know only that for every p the set
R

α(p)
is uniformly recursive P ′α(p) and hence, it is uniformly recursive in P<α.

The assertions (4) and (5) follow easily from (1), (2) and (3). ¤
5.4. Remark. An inspection of the proof above shows there exists a recursive
function ϕ such that for every sequence {Bα}α≤ζ of sets of natural numbers and
every regular with respect to this sequence enumeration f , we have that

Bα = W f(α)

ϕ(α).

Let f be a total mapping on N. We define for every recursive ordinal α, e, x ∈ N
the relations f |=α Fe(x) and f |= ¬Fe(x) by means of transfinite recursion on α:

5.5. Definition.
(i) Let α = 0. Then

f |=0 Fe(x) ⇐⇒ ∃v(〈v, x〉 ∈ We & (∀u ∈ Dv)(f((u)0) = (u)1)).

(ii) Let α = β + 1. Then
f |=α Fe(x) ⇐⇒ ∃v(〈v, x〉 ∈ We & (∀u ∈ Dv)((u = 〈eu, xu, 0〉 &

f |=β Feu(xu)) ∨ (u = 〈eu, xu, 1〉 & f |=β ¬Feu(xu)))).

(iii) Let α = lim α(p) be a limit ordinal. Then
f |=α Fe(x) ⇐⇒ ∃v(〈v, x〉 ∈ We & (∀u ∈ Dv)(u = 〈pu, eu, xu〉 &

f |=α(pu) Feu(xu))).

(iv) f |=α ¬Fe(x) ⇐⇒ f 6|=α Fe(x).

Following the definition of the enumeration jump and the definition above, we
can define a recursive function h such that for every recursive ordinal α and every
enumeration operator Φz the following equivalence is true:

x ∈ Φz(f (α)) ⇐⇒ f |=α Fh(α,z)(x).
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Therefore we have the following lemma:

5.6. Lemma. Let f be a total mapping on N and let α be a recursive ordinal.
Then A ≤e f (α) iff there exists an e such that for all x, x ∈ A ⇐⇒ f |=α Fe(x).

Our next goal is the proof of the Truth Lemma. Notice that for all α ¹ ζ the
relation °α is monotone, i.e. if τ ⊆ ρ are α-regular and τ °α (¬)Fe(x), then
ρ °α (¬)Fe(x).

Suppose that f is a regular enumeration.

5.7. Lemma. Let α < ζ and let α be the α-predecessor of ζ. Assume also that

f |=α Fe(x) ⇐⇒ (∃τ ⊆ f)(τ is α-regular & τ °α Fe(x)).

Then
f |=α ¬Fe(x) ⇐⇒ (∃τ ⊆ f)(τ is α-regular & τ °α ¬Fe(x)).

Proof. Assume that f |=α ¬Fe(x) and for all α-regular τ ⊆ f , τ 1α ¬Fe(x).
Then for all α-regular finite parts τ of f there exists an α-regular ρ ⊇ τ such that
ρ °α Fe(x).

Since f is regular there exists an α + 1-regular finite part τ ⊆ f such that
〈1, α, 〈e, x〉〉+ 1 ∈ τ(Nτ

α+1
). Let |τα+1| = r + 1 and let

0 < n0 < l0 < m0 < b0 < · · · < nr < lr < mr < br < nr+1

be the natural numbers satisfying the conditions s a)–s d) of the definition of the
α + 1-regular finite parts. Then Nτ

α+1
= {n0, . . . , nr}. Let τ(nj) ' 〈1, α, 〈e, x〉〉+1.

Hence τ ¹ bj = µα(τ ¹ (lj + 1), Xα
〈e,x〉).

Clearly there exists an α-regular extension τ1 of τ such that τ1 ⊆ f . Therefore
there exists an α-regular extension ρ of τ ¹ (lj + 1) in Xα

〈e,x〉. Then τ ¹ bj ∈ Xα
〈e,x〉.

Clearly τ ¹ bj is an α-regular finite part of f and hence f |=α Fe(x). A contradiction.
Assume now that τ ⊆ f is α-regular, τ °α ¬Fe(x) and f |=α Fe(x). Then there

exists an α-regular ρ ⊆ f such that ρ °α Fe(x). Using the monotonicity of °α, we
can assume that τ ⊆ ρ and get a contradiction. ¤

5.8. Lemma. Let f be a regular enumeration. Then
(1) For all α ¹ ζ, f |=α Fe(x) ⇐⇒ (∃τ ⊆ f)(τ is α-regular & τ °α Fe(x)).
(2) For all α ≺ ζ, f |=α ¬Fe(x) ⇐⇒ (∃τ ⊆ f)(τ is α-regular & τ °α

¬Fe(x)).

Proof. We shall use transfinite induction on α. The condition (1) is obviously true
for α = 0 and hence according to the Lemma above (2) is also true in this case.

Let α = β+1. The truth of (1) for α follows easily from the induction hypothesis.
The truth of (2) follows from the Lemma above.

Suppose that α ¹ ζ and α = lim α(p) is limit ordinal. It is sufficient to show that
(1) is true for α. Assume that f |=α Fe(x). Then there exists a pair 〈v, x〉 ∈ We such
that if u ∈ Dv, then u = 〈pu, eu, xu〉 and f |=α(pu) Feu(xu). By induction for every
u ∈ Dv there exists a α(pu)-regular finite part τu ⊆ f such that τu °

α(pu)
Feu(xu).

Clearly there exists a α-regular finite part τ of f such that for all u ∈ Dv, τu ⊆ τ
and τ is α(pu)-regular. Then τ °α Fe(x).

To prove (1) in the reverse direction assume that τ ⊆ f and τ °α Fe(x). Again
there exists an element 〈v, x〉 of We such that for all u ∈ Dv, u = 〈pu, eu, xu〉
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and τ °
α(pu)

Feu(xu). Without loss of generality, we may assume that τ is α(pu)-
regular for every u ∈ Dv. By induction f |=α(pu) Feu

(xu) for all u ∈ Dv. So
f |=α Fe(x). ¤

6. Regular extensions

Given a finite mapping τ defined on [0, q − 1], by τ ∗ z we shall denote the
extension ρ of τ defined on [0, q] and such that ρ(q) ' z.

6.1. Proposition. Let α ≤ ζ and let α be an approximation of α. Then
(1) For every α-regular finite part τ and every y ∈ N there exists a normal

α-regular extension ρ of τ such that ρ(lh(τ)) ' y.
(2) For every δ ≺ α, every δ-regular τ of rank 1 and every y ∈ N there exists a

δ, α-regular extension ρ of τ of rank 1 and such that ρ(lh(τ)) ' y.

Proof. We shall prove simultaneously (1) and (2) by means of transfinite induction
on α.

Notice that since B∗
α = N⊕Bα, we have that 0 ∈ B∗

α.
a) α = 0. In this case (2) is trivial. To prove (1) suppose that τ is 0-regular and

y ∈ N. Define ρ as follows

ρ(x) '





τ(x), if x < lh(τ),
y, if x = lh(τ),
0, if x = lh(τ) + 1,
undefined, if x > lh(τ) + 1.

b) Let α = β + 1 and let β be the β-predecessor of α.
We start with the proof of (1). Suppose that we are given an α-regular τ and

y ∈ N. Let dom(τ) = [0, q − 1] and |τ |α = r + 1. Set nr+1 = q. By induction,
there exists a β-normal extension ρ0 of τ ∗y. Set lr+1 = lh(ρ0). Clearly there exists
a normal β-regular extension µ of ρ0 ∗ 0 and hence for every p ∈ N the function
µX

β
(ρ0 ∗ 0, p) is defined. Now, let

ρ1 =





µX
β

(ρ0 ∗ 0, 〈e, lr+1)〉 if y = 〈0, β, e〉+ 1,

µX
β

(ρ0 ∗ 0, p) if y = 〈1, β, p〉+ 1,

µ otherwise.

Set mr+1 = lh(ρ1). Let ρ2 be a normal β-regular extension of ρ1 and ρ be a
normal β-regular extension of ρ2 ∗ 0. Clearly ρ is a normal α-regular extension of
τ and ρ(lh(τ)) ' y.

Let us turn to the proof of (2). Let δ ≺ α and let τ be a δ-regular finite part of
rank 1 and y ∈ N.

Suppose that δ = β. Then β = δ. Notice that the β-predecessor of δ, α is β.
Let n0 = lh(τ). Clearly we can find a normal β-regular extension ρ0 of τ ∗ y.

After that we obtain the β-regular extensions ρ1, ρ2 and ρ as above. Then ρ is a
β, α-regular extension of τ of rank 1.

Suppose that δ < β. Then the β-predecessor of δ, α is δ, β and δ ≺ β. Using
the induction hypothesis, we extend τ ∗ y to a δ, β-regular finite part ρ1 of rank 1.
After that we extend ρ1 to a δ, α-regular finite part ρ of rank 1 in the same way as
in the previous case.
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c) Let α = lim α(p) be a limit ordinal. Let α = α1, . . . , αn, α and p0 = µp[αn <

α(p)]. For every p by α(p) we shall denote the α(p)-predecessor of α.
To prove (1) suppose that τ is an α-regular finite part of rank r + 1 and y ∈ N.

Then τ is an α(p0 + 3r + 2)-regular finite part of rank 1. By induction there exists
an α(p0 + 3r + 2), α(p0 + 3r + 3)-regular extension ρ0 of τ of rank 1 and such that
ρ0(lh(τ)) ' y. Set br+1 = lh(ρ0). Applying again the induction hypothesis we
obtain an α(p0 + 3r + 2), α(p0 +3r+3), α(p0 +3r+4)-regular extension ρ1 of ρ0 ∗0
which is of rank 1. Set mr+1 = lh(ρ1) and extend ρ1 to an α(p0 + 3r + 2), α(p0 +
3r + 3), α(p0 + 3r + 4), α(p0 + 3r + 5)-regular finite part of rank 1. Clearly ρ is an
α-regular finite part of rank r + 2.

Let us turn to the proof of (2). Let δ ≺ α, let τ be a δ-regular finite part of rank
1 and y ∈ N. Let pδ = µp[δ < α(p)]. By induction there exists a δ, α(pδ)-regular
extension ρ1 of τ which is of rank 1 and such that ρ1(lh(τ)) ' y. Set b0 = lh(ρ1).
Applying twice the induction hypothesis, we get an δ, α(pδ), α(pδ + 1), α(pδ + 2)-
regular extension ρ of ρ1 ∗ 0 which is of rank 1. Clearly ρ is a δ, α-regular extension
of τ which is of rank 1. ¤

Let us fix a pair of total functions σ and ν on N such that for every α ≤ ζ,
σ(α) ∈ Bα.

6.2. Definition. Let α ≤ ζ and let α be an ordinal approximation of α. A finite
part τ is α complete (with respect to σ, ν) if

β ∈ Reg(τ, α) ⇒ σ(β) ∈ τ(Bτ
β
) and

β ∈ Reg(τ, α) ⇒ ν(β) ∈ τ(Nτ
β
).

6.3. Proposition. Let α ≤ ζ and let α be an ordinal approximation of α.

(1) For every α-regular finite part τ there exist a normal α-regular extension ρ
of τ which is α complete.

(2) For every δ ≺ α and every δ-regular τ of rank 1 there exists a δ, α-regular
extension ρ of τ which is of rank 1 and δ, α complete.

Proof. Transfinite induction on α.
a) α = 0. Given a 0-regular τ , define ρ as follows

ρ(x) '





τ(x), if x < lh(τ),
ν(0), if x = lh(τ),
σ(0), if x = lh(τ) + 1,
undefined, if x > lh(τ) + 1.

b) α = β + 1. We start with the proof of (1). Suppose that we are given an
α-regular τ . Let dom(τ) = [0, q−1] and |τ |α = r+1. Set nr+1 = q. By the previous
proposition there exists a β-normal extension ρ0 of τ ∗ ν(α). Set lr+1 = lh(ρ0). Let
µ be a normal β-regular extension of ρ0. Now, let

ρ1 =





µX
β

(ρ0 ∗ 0, 〈e, lr+1)〉 if ν(α) = 〈0, β, e〉+ 1,

µX
β

(ρ0 ∗ 0, p) if ν(α) = 〈1, β, p〉+ 1,

µ otherwise.
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Set mr+1 = lh(ρ1). By induction there exists a normal β-regular extension ρ2 of
ρ1 which is β complete. Set br+1 = lh(ρ2) and let ρ be a normal β-regular extension
of ρ2 ∗ σ(α). Clearly ρ is a normal α-regular extension of τ and ρ is α complete.

Let us turn to the proof of (2). Let δ ≺ α and let τ be a δ-regular finite part of
rank 1.

Suppose that δ = β. Then β = δ and β is the β-predecessor of δ, α.
Let n0 = lh(τ). Clearly we can find a normal β-regular extension ρ0 of τ ∗ ν(α).

After that we obtain consecutively the β-regular extensions ρ1, ρ2 and ρ as above.
Then ρ is a β, α-regular extension of τ of rank 1 which is α complete.

Suppose that δ < β. Then the β-predecessor of δ, α is δ, β and δ ≺ β. Using the
induction hypothesis, we extend τ to a δ, β-regular finite part τ1 of rank 1. After
that we extend τ1 to a δ, α-regular finite part ρ which is of rank 1 and δ, α complete
in same way as in the previous case.

c)Let α = lim α(p) be a limit ordinal. Let α = α1, . . . , αn, α and p0 = µp[αn <

α(p)]. For every p by α(p) we shall denote the α(p)-predecessor of α.
To prove (1) suppose that τ is an α-regular finite part of rank r + 1. Then τ is

an α(p0 + 3r + 2)-regular finite part of rank 1. Set nr+1 = lh(τ). By the previous
proposition there exists an α(p0 + 3r + 2), α(p0 + 3r + 3)-regular extension ρ0 of
τ ∗ ν(α) of rank 1. Set br+1 = lh(ρ0). There exists an α(p0 + 3r + 2), α(p0 +
3r + 3), α(p0 + 3r + 4)-regular extension ρ1 of ρ0 ∗ σ(α) which is of rank 1. Let
mr+1 = lh(ρ1). Finally, by induction, there exists a α(p0 + 3r + 2), α(p0 + 3r +
3), α(p0 + 3r + 4), α(p0 + 3r + 5)-regular extension ρ of ρ1 which is of rank 1 and
α(p0 + 3r + 2), α(p0 + 3r + 3), α(p0 + 3r + 4), α(p0 + 3r + 5) complete. So, we have
constructed an α(p0 + 3r + 5) extension ρ of τ of rank 1 which is α(p0 + 3r + 5)
complete and such that ρ(nr+1) ' ν(α) and ρ(br+1) ' σ(α). Clearly ρ is α-regular
of rank r+2. To see that ρ is α complete consider an element β of Reg(ρ, α). Then
by Lemma 4.7

β = α ∨ β ∈ Reg(ρ, α(p0 + 3r + 5)).

In both cases it follows from the construction of ρ that it satisfies the completeness
conditions with respect to β.

Let us turn to the proof of (2). Let δ ≺ α, let τ be a δ-regular finite part of rank
1. Let pδ = µp[δ < α(p)]. There exists a δ, α(pδ)-regular extension ρ1 of τ which
is of rank 1 and such that ρ1(lh(τ)) ' ν(α). Set b0 = lh(ρ1). After that we get an
δ, α(pδ), α(pδ + 1)-regular extension ρ2 of ρ1 ∗ σ(α) which is of rank 1. Finally we
extend ρ2 to a δ, α(pδ), α(pδ + 1), α(pδ + 2)-regular finite part of rank 1 which is
complete. Clearly ρ is a δ, α-regular extension of τ which is of rank 1 which is α
complete. ¤

6.4. Proposition. Let α ≤ ζ and let α be an ordinal approximation of α.

(1) Suppose that τ is an α-regular finite part, γ ∈ Reg(τ, α) and µ is a normal
γ-regular extension of τ . Then there exists a normal α-regular extension ρ
of τ such that µ ⊆ ρ.

(2) Let δ ≺ α, let τ be δ-regular of rank 1 and γ ∈ Reg(τ, δ). Then every normal
γ-regular extension µ of τ can be extended to a δ, α-regular extension ρ of
τ such that |ρ|δ,α = 1.

Proof. Transfinite induction on α. (1) and (2) are trivial for α = 0.
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Suppose that α = β + 1. Let α be an approximation of α and let β be the
β-predecessor of α.

We start with the proof of (1). Consider an α-regular finite part τ , let γ ∈
Reg(τ, α) and let µ be a normal γ-regular extension of τ . If γ = α, then µ is an
α-regular extension of τ . Set ρ = µ. Otherwise, γ ∈ Reg(τ, β). By induction µ can
be extended to a normal β-regular extension ρ1 of τ which can be extended to a
normal α-regular extension ρ of τ by means of Proposition 6.1.

The proof of (2) is similar. Let δ ≺ α, let τ be a δ-regular finite part of rank
1, let γ ∈ Reg(τ, δ) and µ be a normal γ-regular extension of τ . Now, we have to
consider two cases.

a) δ = β. In this case δ = β and β is the β predecessor of δ, α. By induction
we can extend µ to a normal β-regular extension ρ1 of τ and by Proposition 6.1 we
can extend ρ1 to a δ, α-regular finite part of rank 1.

b) δ < β. Then δ ≺ β and the β predecessor of δ, α is δ, β. By induction there
exists a δ, β-regular extension ρ1 of τ such that µ ⊆ ρ1. Then we can extend ρ1 to
an δ, α-regular finite part of rank 1 by Proposition 6.1.

Suppose now that α = lim α(p) is a limit ordinal. Let α = α1, . . . , αn, α and
p0 = µp[α(p) > αn]

To prove (1) let τ be an α-regular finite part of rank r +1, let γ ∈ Reg(τ, α) and
let µ be a normal γ-regular extension of τ .

Clearly τ is an α(p0 + 3r + 2)-regular finite part of rank 1. By Lemma 4.7,

γ = α ∨ γ ∈ Reg(τ, α(p0 + 3r + 2)).

The case γ = α is trivial. Let γ ∈ Reg(τ, α(p0 + 3r + 2)). By induction we can
extend µ to an α(p0 + 3r + 2), α(p0 + 3r + 3)-regular extension ρ1 of τ which is of
rank 1. After that we can extend ρ1 to a normal α-regular extension ρ of τ using
Proposition 6.1.

It remains to prove (2) in this case. Let δ ≺ α and let τ be δ-regular finite part
of rank 1. Let γ ∈ Reg(τ, δ) and let µ be a normal γ-regular extension of τ . Set
pδ = µp[α(p) > δ].

By induction we can extend µ to a δ, α(pδ)-regular ρ1 of rank 1 and after that
using Proposition 6.1 we can extend ρ1 to an δ, α-regular ρ of rank 1. ¤

6.5. Definition. Let τ be an α-regular finite part. An extension ρ of τ is canonical
if (∀x ∈ dom(ρ))(x > lh(τ) ⇒ ρ(x) ' 0).

6.6. Definition. Given an α-regular finite part define the α-characteristic Dτ
α to

be the set
{〈β, |τ |β〉 : β ∈ Reg(τ, α)}.

Notice that by Lemma 4.7 the set Reg(τ, α) is finite and hence the set Dτ
α is also

finite.

6.7. Definition. Let α ≤ ζ. A natural number y is α-nice if y = 0 or y − 1 is not
of the form 〈0, β, e〉 or 〈1, β, p〉 for any β < α.

Clearly if y is α-nice, then it is β-nice for every β < α.

6.8. Proposition. There exist recursive functions ext, extl, chs and chsl such
that for every approximation α of an ordinal α ≤ ζ the following assertions hold:
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(1) For every α-regular finite part τ and every α-nice y, ext(α, τ, Dτ
α, y) is a

canonical α-regular extension of τ ∗ y with α-characteristic chs(α, τ,Dτ
α, y)

and α-rank equal to |τα|+ 1.
(2) For every δ ≺ α, every δ-regular finite part τ of rank 1 and every α-nice

y, extl((δ, α), τ,Dτ
δ
, y) is a δ, α-regular and canonical extension of τ ∗ y of

rank 1 with characteristic chsl((δ, α), τ, Dτ
δ
, y)

Proof. We shall construct the functions ext, chs, extl and chsl simultaneously by
means of effective transfinite recursion on α.

Let α = 0. Then α = 0. Let τ be a 0-regular finite part. Using Dτ
0 we can

determine the 0-rank r + 1 of τ . Let

ρ(x) '





τ(x), if x < lh(τ),
y, if x = lh(τ),
0, if x = lh(τ) + 1,

undefined, otherwise.

Set ext(α, τ,Dτ
α, y) = ρ and chs(α, τ,Dτ

α, y) = {〈0, r + 2〉}.
Let α = β + 1. Given an approximation α of α find first the β predecessor β of

α.
Let τ be an α-regular finite part and y be α-nice. Using the α-characteristic Dτ

α

of τ we can find the β-characteristic Dτ
β

of τ and the α-rank r + 1 of τ . Now let

ρ0 = ext(β, τ, Dτ
β
, y), ρ1 = ext(β, ρ, Dρ0

β
, 0), . . . , ρ3 = ext(β, ρ2, D

ρ2

β
, 0).

Set ext(α, τ,Dτ
α, y) = ρ3 and chs(α, τ, Dτ

α, y) = Dρ3

β
∪ {〈α, r + 2〉}.

Suppose now that δ ≺ α and let τ be a δ-regular finite part of rank 1 and let y
be α-nice.

a) δ = β. Set ρ0 = ext(β, τ, Dτ
β
, y), . . . ,ρ3 = ext(β, ρ2, D

ρ2

β
, 0).

Let extl((δ, α), τ, Dτ
δ
, y) = ρ3 and chsl((δ, α), τ, Dτ

δ
, y) = Dρ3

β
∪ {〈(δ, α), 1〉}.

b) δ ≺ β. Set τ ′ = extl((δ, β), τ, Dτ
δ
, y),

ρ0 = ext((δ, β), τ ′, Dτ ′

δ,β
, 0), . . . , ρ3 = ext((δ, β), ρ2, D

ρ2

δ,β
, 0).

Let extl((δ, α), τ, Dτ
δ
) = ρ3 and chsl((δ, α), τ, Dτ

δ
) = Dρ3

δ,β
∪ {〈(δ, α), 1〉}.

Let α = lim α(p) be a limit ordinal. Consider an approximation α = α1, . . . , αn, α

of α. Let p0 = µp[α(p) > αn]. For every p ≥ p0 let α(p) be the α(p)-predecessor of
α.

Let τ be an α-regular finite part with characteristic Dτ
α and let y be α-nice.

Let |τ |α = r + 1. Then τ is an α(p0 + 3r + 2)-regular finite part of rank 1. By
Lemma 4.7

D = Dτ
α(p0+3r+2)

= {〈β, k〉 : β ¹ α(p0 + 3r + 2) & 〈β, k〉 ∈ Dτ
α}.

Set

ρ0 = extl((α(p0 + 3r + 2), α(p0 + 3r + 3)), τ, D, y), . . . ,

ρ2 = extl((α(p0 + 3r + 4), 0, α(p0 + 3r + 5)), ρ1, D
ρ1

α(p0+3r+4)
, 0).

Let ext(α, τ, Dτ
α, y) = ρ2 and chs(α, τ, Dτ

α, y) = Dρ2

α(p0+3r+5)
∪ {〈α, r + 2〉}.
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Now suppose that δ ≺ α and let τ be a δ-regular finite part of rank 1. Set
l = µp[α(p) > δ]. Let

ρ0 = extl((δ, α(l)), τ,Dτ
δ
, y), ρ1 = extl((δ, α(l), α(l + 1)), ρ0, D

ρ0

δ,α(l)
, 0) and

ρ2 = extl((δ, α(l), α(l + 1), α(l + 2)), ρ1, D
ρ1

δ,α(l),α(l+1)
0).

Let extl((δ, α), τ, Dτ
δ
, y) = ρ2 and

chsl((δ, α), τ, Dτ
δ
, y) = Dρ2

δ,α(l),α(l+1),α(l+2)
∪ {〈(δ, α), 1〉}.

¤

6.9. Corollary. There exists an effective way to construct for every ordinal ap-
proximation α and every r ≥ 0 an α-regular finite part τα of rank r + 1 and such
that (∀x ∈ dom(τα))(τα(x) ' 0).

7. The proofs

In this section we shall present the proofs of Theorem 2.9 and Theorem 2.14.
We start with the proof of Theorem 2.9. Let two sequences A = {Aα}α≤ζ and

B = {Bα}α≤ζ of sets of natural numbers be given. Suppose that A 6≤u B, i.e. there
does not exist a recursive function g such that

(∀α)(Aα = Φg(α)(Pα(B))).

To prove the Theorem it is sufficient to construct a total set X such that
(1) for some recursive h, (∀α ≤ ζ)(Bα = Φh(α)(X(α))) and
(2) there does not exist a recursive function g such that (∀α)(Aα = Φg(α)(X(α))).

If for some α ≤ ζ, Aα 6≤e Pα(B), then we can get the desired X by means of
Theorem 2.5.

Assume that (∀α)(Aα ≤e Pα(B)).
We shall construct X as a graph of a regular enumeration f . This way, by

Theorem 5.3, we will automatically ensure that X satisfies (1).
Let ζ be an ordinal approximation of ζ. For every α ≤ ζ set B∗

α = N⊕ Bα and
let Pα denote the set Pα(B). Fix two total functions σ(α, s) and ν(α, s) such that

(i) (∀α ≤ ζ)(λs.σ(α, s) enumerates the set B∗
α).

(ii) (∀α ≤ ζ)(λs.ν(α, s) enumerates the set N).
Set for every s ∈ N, σs = λα.σ(α, (s)0) and νs = λα.ν(α, (s)0).
The construction f will be carried out by steps. At each step s we shall construct

a ζ-regular finite part τs so that τs ⊆ τs+1 and |τs|ζ < |τs+1|ζ . We shall ensure that
for every s the finite part τs+1 is complete with respect to σs, τs. After that we
shall define f =

⋃
τs. The obtained this way f is a regular enumeration. Indeed,

since f contains finite parts of arbitrary large rank, for every ρ ⊆ f there exists a
ζ-regular finite part τs of f such that ρ ⊆ τs.

Let α ≤ ζ and z ∈ B∗
α. Let s be so large that α ∈ Reg(τs+1, ζ, ) and such that

σ(α, (s)0) ' z. Then σs(α) ' z and hence since τs+1 is complete with respect to
σs, νs, z ∈ τs+1(B

τs+1
α ).

Let p ∈ N. Consider an s1 > s such that ν(α, (s1)0) ' p. Then νs1(α) ' p
and hence by the completeness of τs1+1 with respect to σs1 , νs1 we have that p ∈
τs1+1(N

τs1+1

α ).
Fix an enumeration g0, g1, . . . , gs, . . . of all total recursive functions.
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Let τ0 be a ζ-regular finite part of rank 1. Suppose that τs is defined and let
D = Dτs

ζ be the characteristic of τs.
Fix an α ≺ ζ and let α + 1 be the α+1-predecessor of ζ. Construct an α-regular

extension δα of τs as follows. First let k = k(ζ, α + 1) be the number such that
every ζ-regular finite part of rank greater than k is also α + 1-regular. Using the
functions ext and chs from Proposition 6.8 find a canonical ζ-regular extension δ0

of τs which is of ζ-rank equal to max(|τs|ζ , k). Clearly δ0 is α + 1-regular and hence
it also α-regular. Let gs(α) = eα. Using again Proposition 6.8, define recursively a
canonical α-regular extension δ1 of δ0 ∗ (〈0, α, eα〉+ 1) such that |δ1|α = |δ0|α + 1.
Set δα = δ1. Let lα = lh(δα) and set

Cα = {x : (∃ρ ⊇ δα)(ρ is α-regular, ρ(lα) ' x and ρ °α Feα
(lα))}.

Set Cζ = ∅.
From the construction of δα and from Proposition 4.11 it follows that there exist

a recursive function h such that (∀α ≤ ζ)(Cα = Φh(α)(Pα)). Hence there exist an
α such that Aα 6= Cα. Actually there exist infinitely many such α, otherwise since
(∀α ≤ ζ)(Aα ≤e Pα), we could redefine the function h and obtain that A ≤u B. So
we may assume that there exists an α < ζ such that Aα 6= Cα. Let αs be the least
α ≤ ζ such that Aα 6= Cα.

Now let xs be the least natural number such that

(xs ∈ Aαs & xs 6∈ Cαs) ∨ (xs 6∈ Aαs & xs ∈ Cαs).

Set δ2 = µαs(δαs ∗xs, X
αs

〈eαs ,lαs 〉). After that let δ3 be a normal αs-regular extension
of δ2 and δ4 be a normal αs-regular extension of δ3∗0. Clearly δ4 is a normal αs + 1-
regular extension of δ0. By Proposition 6.4 there exist a normal ζ-regular extension
τ of δ0 such that δ4 ⊆ τ . Let τs+1 be a normal ζ-regular extension of τ which is
complete with respect to σs, νs.

Towards a contradiction assume that there exists a recursive function g such
that (∀α ≤ ζ)(Aα = Φg(α)(f (α))). Then there exists a recursive function h such
that (∀α ≤ ζ)(f−1(Aα) = Φh(α)(f (α))) and hence there exist a recursive function
gs such that

(∀α ≤ ζ)(f−1(Aα) = {n : f |=α Fgs(α)(n)}).
Consider the step s of the construction. Clearly f(lαs) ' xs and gs(αs) = eαs .

Hence
xs ∈ Aαs ⇐⇒ f |= Feαs

(lαs).

Now, assume that xs ∈ Aαs . Then f |= Feαs
(lαs). Clearly δαs ⊆ f . Hence, by

Lemma 5.8 there exists a αs-regular ρ ⊇ δαs such that

ρ(lαs) ' xs & ρ °αs Feαs
(lαs).

Therefore xs ∈ Cαs . A contradiction.
So, xs 6∈ Aαs . Then xs ∈ Cαs and hence there exists an α-regular extension ρ of

δαs such that ρ(lαs) ' xs and ρ °αs Feαs
(lαs). From here, by the construction, it

follows that δ2 °αs Feαs
(lαs) and hence f |= Feαs

(lαs). A contradiction.
So we have proved that there does not exist a recursive function g such that

(∀α ≤ ζ)(Aα = Φg(α)(f (α))) which concludes the proof Theorem 2.9.

Now we proceed with the proof of Theorem 2.14. Let ζ be a recursive ordinal
and let Γ : Sζ → Sζ be a uniform operator. Suppose that g is a function on the
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natural numbers such that given a recursive function ϕ with index a, g(a) is an
index of a recursive function ψ such that for all X ⊆ N,

Γ({WX(α)

ϕ(α) }α≤ζ) = {WX(α)

ψ(α) }α≤ζ .

Given B ∈ Sζ and α ≤ ζ, by Γ(B)α we shall denote the α-th member of the
sequence Γ(B).

Our goal is to show that there exists a recursive function h such that for every
B ∈ Sζ and every α ≤ ζ,

Γ(B)α = Φh(α)(Pα(B)).

Fix an ordinal approximation ζ + 1 of ζ + 1. For every α ≤ ζ let α be the
α-predecessor of ζ + 1.

From now on, given a sequence B ∈ Sζ , we shall call f regular enumeration with
respect to B if it is regular with respect to ζ + 1 and the sequence B, extended to a
sequence of length ζ + 1 by setting Bζ+1 = ∅.

As remarked after the proof of Proposition 5.3 there exists a recursive function
ϕ such that for every sequence B = {Bα}α≤ζ and every regular with respect to B
enumeration f ,

(∀α ≤ ζ)(Bα = W f(α)

ϕ(α)).

Let a be an index of ϕ and let g(a) be the index of the recursive function ψ.
Then for every sequence B ∈ Sζ , every α ≤ ζ and every regular with respect to B
enumeration f we have that

Γ(B)α = W f(α)

ψ(α).

Then there exists a recursive function χ such that for every regular sequence B
and every regular with respect to B enumeration f ,

(∀α ≤ ζ)(f−1(Γ(B)α) = {n : f |=α Fχ(α)(n)}).
Given an α ¹ ζ define the α-regular finite part δα as follows. First set k =

k(ζ + 1, α + 1). Let δ0 be a ζ + 1-regular finite part of rank k such that (∀x ∈
dom(δ0))(δ0(x) ' 0). Clearly δ0 is α + 1-regular and hence it is also α-regular.
Let χ(α) = eα. Notice that 〈0, α, eα〉 + 1 is α-nice. Let δ1 be canonical α-regular
extension of δ0 ∗ (〈0, α, eα〉 + 1) of α-rank equal to |δ0|α + 1. Set δα = δ1. By
Proposition 6.8. There exists a recursive function yielding for every α ≤ ζ the
(code of) δα.

Let lα = lh(δα). We shall show that for every sequence B ∈ Sζ ,

Γ(B)α = {x :(∃ρ ⊇ δα)(ρ is α-regular with respect to B,

ρ(lα) ' x and ρ °α Feα(lα))}.(1)

Indeed, fix a sequence B ∈ Sζ and let α ≤ ζ. Denote by Cα the set

{x : (∃ρ ⊇ δα)(ρ is α-regular with respect to B, ρ(lα) ' x and ρ °α Feα(lα))}.
Consider a x ∈ Γ(B)α. Clearly there exists an α + 1-regular extension δ of δα ∗x

which can be extended to a ζ + 1-regular finite part τ by Proposition 6.4. After that
we can extend τ to a regular with respect to B enumeration f as in the previous
proof. Since f(lα) ' x, we have that f |=α Fχ(α)(lα), i. e. f |=α Feα(lα). By
Lemma 5.8, there exists an α-regular ρ ⊆ f such that ρ °α Feα(lα). We may
assume that δα ⊆ ρ and ρ(lα) ' x. Thus x ∈ Cα.
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Assume that x ∈ Cα. Let δ2 = µα(δα ∗ x,Xα
〈eα,lα〉). Clearly δ2 °α Feα(lα). Let

δ3 be a normal α-regular extension of δ2 and δ4 be a normal α-regular extension
of δ2 ∗ 0. Clearly δ4 is an α + 1-regular extension of δ0. Then there exists a ζ + 1-
regular extension τ of δ0 such that δ4 ⊆ τ . Finally, let f be a regular with respect
to B enumeration such that τ ⊆ f . By Lemma 5.8, f |=α Feα(lα) and hence
x = f(lα) ∈ Γ(B)α.

From (1) by Proposition 4.11 it follows that there exists a recursive function h
such that for all B ∈ Sζ ,

Γ(B)α = Φh(α)(Pα(B)).
It is a matter of routine computation to show that every operator Γ : Sζ → Sζ ,

for which there exists a recursive function h such that for every sequence B ∈ Sζ ,
Γ(B) = {Φh(α)(Pα(B))}α≤ζ , is uniform.
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