
ASH'S THEOREM FOR ABSTRACT STRUCTURESI. N. SOSKOV AND V. BALEVAAbstract. We introduce and study the class of relatively �-intrinsic setson partial abstract structures. The main results are the Abstract jump in-version theorem and the Normal form theorem for the relatively �-intrinsicsets. 1. IntroductionIn this paper we are going to prove an analog of Ash's Theorem [1] for abstractstructures. We shall consider partial structures A = (N;R1; : : : ; Rk), where each Riis a subset of Nri and the equality "=" and unequality "6=" are among the predicatesR1; : : : ; Rk.Evidently every total structure A = (N;R1; : : : ; Rk) can be considered as a partialstructure, since we can replace a total predicate Ri on N by two partial predicatesR+i and R�i , where R+i = fx : Ri(x) = trueg and R�i = fx : Ri(x) = falseg.A total mapping from N onto N is called enumeration of A.Given an enumeration f of A and a subset of A of Na, letf�1(A) = fhx1; : : : ; xai : (f(x1); : : : ; f(xa)) 2 Ag:By f�1(A) we shall denote the set f�1(R1)�� � ��f�1(Rk). In particular, if f = �x:x,then f�1(A) will be denoted by D(A).Next we de�ne for every recursive ordinal � the relatively �-intrinsic sets. Thisnotion is a generalization of the respective notion of relatively intrinsically �0� sets,introduced in [2] and independently in [3] for total structures. Given a set Dof natural numbers and a recursive ordinal �, by D(�)e we shall denote the �-thenumeration jump of D. The exact de�nition will be given in the next section.1.1. De�nition. Let � be a constructive ordinal and let A � Na. The set A isrelatively �-intrinsic on the partial structure A if for every enumeration f of A theset f�1(A) is enumeration reducible to (f�1(A))(�)e .1991 Mathematics Subject Classi�cation. 03D75,03D30.Key words and phrases. abstract computability,enumeration reducibility, enumerationjump. 1



2 I. N. SOSKOV AND V. BALEVAFrom the properties of the enumeration jump it follows that for total structures,i.e. partial structures obtained from total ones, for every recursive � the relatively�-intrinsic sets coincide with the relatively intrinsic �0�+1 sets.In [2] and in [3] an internal characterization of the relatively intrinsic �0� sets isobtained. Namely it is shown that these sets coincide with the sets de�nable on Aby means of the so called recursive �0� formulae. Because of this result we may thinkthat on total structures the relatively intrinsically �0� sets are the right counterpartof the classical �0� sets.Here we shall obtain a similar characterization of the relatively �-intrinsic setson partial structures generalizing the respective results for total structures. On theother hand the results in [2] and [3] admit another kind of generalization which isin the spirit of the Ash's Theorem [1].Consider a set B � Na. Suppose that you want to add this set to the structureA as a partial predicate which is relatively �-intrinsic on A. It is not clear how togive an explicit de�nition of this kind of expansion of A for recursive ordinals � > 0.Nevertheless we can obtain a new class of relatively �-intrinsic sets by restrictingthe class of all enumerations of A to the class of those enumerations f of A for whichf�1(B) is enumeration reducible to (f�1(A))(�)e . In other words, we consider onlythose enumerations of A which "know" that B is relatively �-intrinsic on A. Moregenerally, consider a sequence fBg�� , where each B is a subset of Na , � is aconstructive ordinal and there exists a recursive function � such that �() = a forall  � �.1.2. De�nition. Let � < !CK1 . A subset A of Na is relatively �-intrinsic on Awith respect to the sequence fBg�� if for every enumeration f of A such that(8 � �)(f�1(B) �e (f�1(A))()) uniformly in , the set f�1(A) is enumerationreducible to (f�1(A))(�).In what follows we are going to present an explicit internal characterization ofthe relatively �-intrinsic with respect to the sequence fBg sets. For the sake ofsimplicity we shall assume that all sets B are subsets of N, i.e. (8 � �)(a = 1).The proofs in the general case are similar.2. Preliminaries2.1. Ordinal notations. We shall consider only recursive ordinals � which arebelow a �xed recursive ordinal �. We shall suppose that a notation e 2 O for �is �xed and the notations for the ordinals � < � are elements a of O such thata <o e. For the de�nitions of the set O and the relation "<o" the reader mayconsult [7] or [8]. We shall identify every ordinal with its notation and denote theordinals by the letters �; �;  and �. In particular we shall write � < � instead of� <o �. If � is a limit ordinal then by f�(p)gp2Nwe shall denote the unique stronglyincreasing sequence of ordinals with limit �, determined by the notation of �, andwrite � = lim �(p).



ASH'S THEOREM FOR ABSTRACT STRUCTURES 32.2. The enumeration jump. Given two sets of natural numbers A andB, we saythat A is enumeration reducible to B (A �e B) if A = �z(B) for some enumerationoperator �z . In other words, using the notationDv for the �nite set having canonicalcode v and W0; : : : ;Wz; : : : for the G�odel enumeration of the r.e. sets, we haveA �e B () 9z8x(x 2 A () 9v(hv; xi 2 Wz & Dv � B)):The relation �e is reexive and transitive and induces an equivalence relation�e on all subsets of N. The respective equivalence classes are called enumerationdegrees. For an introduction to the enumeration degrees the reader might consultCooper [5].Given a set A denote by A+ the set A � (N n A). The set A is called total i�A �e A+. Clearly A is recursively enumerable in B i� A �e B+ and A is recursivein B i� A+ �e B+ . Notice that the graph of every total function is a total set.Evidently if A is a partial structure, obtained from a total one, then for everyenumeration f of A the set f�1(A) is total. So we may give the following de�nition:2.1. De�nition. An abstract structure A is total if for every enumeration f of Athe set f�1(A) is total.The enumeration jump operator is de�ned in Cooper [4] and further studiedby McEvoy [6]. Here we shall use the following de�nition of the e-jump which ism-equivalent to the original one, see [6]:2.2. De�nition. Given a set A, let K0A = fhx; zi : x 2 �z(A)g. De�ne the e-jumpA0e of A to be the set (K0A)+.The following properties of the enumeration jump are proved in [6]:Let A and B be sets of natural numbers. Set B(0)e = B and B(n+1)e = (B(n)e )0e.(J1) If A �e B, then A0e �e B0e.(J2) A is �0n+1 relatively to B i� A �e (B+)(n)e .Let � be a recursive ordinal. To de�ne the �-th enumeration jump of a set Awe are going to use a construction very similar to that used in the de�nition of the�-th Turing jump. For every recursive ordinal � we de�ne the set EA� by means oftrans�nite recursion on �:2.3. De�nition.(i) EA0 = A.(ii) EA�+1 = (EA� )0e.(iii) If � = lim �(p), then EA� = fhp; xi : x 2 EA�(p)g.From now on A(�)e will stand for EA� .Of course the de�nition of the set A(�)e depends on the �xed notation of theordinal �. On the other hand, it is easy to see by a minor modi�cation of the proofof the respective Theorem of Spector for the HA� sets, see [7] or [8], that if �1 and�2 are two notations of the same recursive ordinal, then A(�1)e �e A(�2)e .The following properties of the trans�nite iterations of the enumeration jumpfollow easily from the de�nition:



4 I. N. SOSKOV AND V. BALEVA(E1) If � � � are recursive ordinals, then A(�)e �e A(�)e uniformly in � and �.(E2) If A �e B, then for every recursive ordinal �, A(�)e �e B(�)e .(E3) If � > 0, then A(�)e is a total set.Finally, we have that for total sets the �-th enumeration jump and the �-thTuring jump are equivalent. Namely the following is true:2.4. Proposition. Let A be a total set of natural numbers. Then for every recursiveordinal �, EA� �e (HA� )+ uniformly in �.Since we are going to consider only e-jumps here, from now on we shall omit thesubscript e in the notation of the enumeration jump. So for every recursive ordinal� by A(�) we shall denote the �-th enumeration jump of A.2.3. The jump set of a sequence of sets. Let � be a recursive ordinal and letfBg�� be a sequence of sets of natural numbers. For every recursive ordinal � wede�ne the jump set P� of the sequence fBg by means of trans�nite recursion on �:2.5. De�nition.(i) P0 = B0.(ii) Let � = � + 1. Then letP� = (P0� � B� if � � �;P0� otherwise:(iii) Let � = lim �(p). Then set P<� = fhp; xi : x 2 P�(p)g and letP� = (P<� �B� if � � �;P<� otherwise.Notice that if the sequence fBg contains only one member, i.e � = 0, then forevery recursive �, P� = B(�)0 .The properties of the jump sets P� are similar to the properties of the enumerationjumps. Again we have that if �1 and �2 are two notations of the same recursiveordinal, then P�1 �e P�2 . We shall omit the proof since it is very close to the proofof the respective result for the HA� sets mentioned above.We shall use the following properties of the jump sets which follow easily fromthe de�nition:(P1) If � � �, then P� �e P� uniformly in � and �.(P2) If  � min(�; �), then B �e P� uniformly in  and �.(P3) Let (8 � min(�; �))(B �e A() uniformly in ). Then P� �e A(�).(P4) If � is a limit ordinal, then the set P<� is total.(P5) If � < �, then the set P� is total.We conclude the preliminaries by a jump inversion theorem proved in [9]:



ASH'S THEOREM FOR ABSTRACT STRUCTURES 52.6. Theorem. Let A � N and fBg�� be a sequence of sets of natural numbers.Suppose that � < � is a recursive ordinal such A 6�e P�. Let Q be a total subsetof N such that P� �e Q and A+ �e Q. Then there exists a total set F having thefollowing properties:(1) For all  � �, B �e F () uniformly in ;(2) For all  � � if  = � + 1, then F () �e F � P0� uniformly in ;(3) For all limit  � �, F () �e F � P< uniformly in ;(4) F (�) �e Q.(5) A 6�e F (�).Here we shall use the following obvious corollary of the above Theorem.2.7. Theorem. Let fBg�� be a sequence of sets of natural numbers. Let � be arecursive ordinal and � = max(� + 1; �). Suppose that A � N and A 6�e P�, Q isa total set and P� � A+ �e Q. Then there exists a total set F with the followingproperties:(1) For all  � �, B �e F () uniformly in ;(2) F (�) �e Q.(3) A 6�e F (�).Proof. For every  such that � <  � � set B = ;. Apply the previous Theoremfor the sequence fBg��.Throughout the rest of the paper we shall suppose �xed a partial structure A =(N;R1; : : : ; Rk) and a sequence fBg�� of sets of natural numbers. Without lossof generality we shall assume that all sets B are not empty.3. Forcing fundamentalsLet f be an enumeration of A. For every recursive ordinal � by Pf� we shalldenote the �-th jump set of the sequence f�1(A)� f�1(B0); f�1(B1); : : : ; f�1(B�).For every �, e and x in N we de�ne the relations f j=� Fe(x) and f j=� :Fe(x)as follows:(i) f j=0 Fe(x) i� there exists a v such that hv; xi 2 We and for all u 2 Dveithera) u = h0; hi; xu1; : : : ; xuriii & (f(xu1); : : : ; f(xuri)) 2 Ri orb) u = h2; xui & f(xu) 2 B0.(ii) Let � = � + 1. Thena) if � � �, thenf j=� Fe(x) () (9v)(hv; xi 2 We & (8u 2 Dv)((u = h0; eu; xui & f j=� Feu(xu))_(u = h1; eu; xui & f j=� :Feu(xu))_(u = h2; xui & f(xu) 2 B�)));



6 I. N. SOSKOV AND V. BALEVAb) if � < �, thenf j=� Fe(x) () (9v)(hv; xi 2We & (8u 2 Dv)((u = h0; eu; xui & f j=� Feu(xu))_(u = h1; eu; xui & f j=� :Feu(xu)))):(iii) Let � = lim �(p). Thena) if � � �, thenf j=� Fe(x) () (9v)(hv; xi 2 We & (8u 2 Dv)((u = h0; pu; eu; xui & f j=�(pu) Feu(xu))_(u = h2; xui & f(xu) 2 B�)));b) if � < �, thenf j=� Fe(x) () (9v)(hv; xi 2 We & (8u 2 Dv)((u = h0; pu; eu; xui & f j=�(pu) Feu(xu)))):(iv) f j=� :Fe(x) () f 6j=� Fe(x).An immediate corollary of the de�nitions above is the following:3.1. Lemma. Let A � N and let � � �. Then A �e Pf� i� there exists an e suchthat A = fx : f j=� Fe(x)g.The forcing conditions, which we shall call �nite parts, are arbitrary �nite map-pings of N into N. We shall denote the �nite parts by the greek letters � , � and�. For every � � �, e and x in N and every �nite part � we de�ne the forcingrelations � � Fe(x) and � � :Fe(x) following the de�nition of "j=":(i) � 0 Fe(x) i� there exists a v such that hv; xi 2 We and for all u 2 Dv eithera) u = h0; hi; xu1; : : : ; xuriii, xu1 ; : : : ; xuri 2 dom(�) and (�(xu1); : : : ; �(xuri)) 2Ri orb) u = h2; xui, xu 2 dom(�) and �(xu) 2 B0.(ii) Let � = � + 1. Thena) if � � �, then� � Fe(x) () (9v)(hv; xi 2 We & (8u 2 Dv)((u = h0; eu; xui & � � Feu(xu))_(u = h1; eu; xui & � � :Feu(xu))_(u = h2; xui & !�(xu) 2 B�)));b) if � < �, then� � Fe(x) () (9v)(hv; xi 2We & (8u 2 Dv)((u = h0; eu; xui & � � Feu(xu))_(u = h1; eu; xui & � � :Feu(xu)))):(iii) Let � = lim �(p). Then



ASH'S THEOREM FOR ABSTRACT STRUCTURES 7a) if � � �, then� � Fe(x) () (9v)(hv; xi 2 We & (8u 2 Dv)((u = h0; pu; eu; xui & � �(pu) Feu(xu))_(u = h2; xui & !�(xu) 2 B�)));b) if � < �, then� � Fe(x) () (9v)(hv; xi 2 We & (8u 2 Dv)((u = h0; pu; eu; xui & � �(pu) Feu(xu)))):(iv) � � :Fe(x) () (8� � �)(� 1� Fe(x)).For every recursive ordinal �, e; x 2 N set X�he;xi = f� : � � Fe(x)g.3.2. De�nition. An enumeration f of A is �-generic if for every � < �, e; x 2 Nthe following condition holds:(8� � f)(9� 2 X�he;xi)(� � �)) (9� � f)(� 2 X�he;xi):(3.1)The following standard properties of the forcing relation follow immediately fromthe de�nitions:3.3. Lemma.(TLA)(1) Let � be a recursive ordinal, e; x 2 N and let � � � be �nite parts. Then� � (:)Fe(x)) � � (:)Fe(x):(2) Let f be an �-generic enumeration. Thenf j=� Fe(x) () (9� � f)(� � Fe(x)):(3) Let f be an � + 1-generic enumeration. Thenf j=� :Fe(x) () (9� � f)(� � :Fe(x)):Finally we would like to estimate an upper bound of the complexity of the forcingrelation.Given a sequence fXng of sets of natural numbers, say that fXng is e-reducibleto the set P if there exists a recursive function g such that for all n we have thatXn = �g(n)(P ). The sequence fXng is T -reducible to P , if the function �n; x:�Xn(x)is recursive in P .From the de�nition of the enumeration jump it follows immediately that if fXngis e-reducible to P , then fXng is T -reducible to P 0.For every recursive ordinal � let P� be the �-th jump set of the sequence B0 �D(A); B1; : : : ; B� .3.4. Lemma. For every � the sequence fX�ng is uniformly in � e-reducible to P�and hence it is uniformly in � T -reducible to P0�.



8 I. N. SOSKOV AND V. BALEVAProof. Using e�ective trans�nite recursion and following the de�nition of the forc-ing, one can de�ne a recursive function g(�; n) such that for every �, X�n =�g(�;n)(P�). 4. An abstract jump inversion theorem4.1. De�nition. Let A � N and let � be a recursive ordinal. The set A is forcing�-de�nable on A if there exist a �nite part � and e; x 2 N such thatA = fs : (9� � �)(�(x) ' s & � � Fe(x))g:Clearly if A is forcing �-de�nable on A, then A �e P�. The vice versa is notalways true. As we shall see later the forcing �-de�nable sets coincide with the setswhich are relatively �-intrinsic with respect to sequence fBg�� .4.2. Proposition.(Poli) Let � be a recursive ordinal and let A � N be not forcing�-de�nable on A. Set � = max(� + 1; �). There exists an enumeration f of Asatisfying the following conditions:(1) f �e A+ � P�.(2) If  � �, then Pf �e f � P.(3) f�1(A) 6�e Pf�.Proof. We shall construct the enumeration f by steps. At each step q we shall de�nea �nite part �q so that �q � �q+1 and take f = Sq �q. We shall consider three kindsof steps. On steps q = 3r we shall ensure that the mapping f is total and surjective.On steps q = 3r + 1 we shall ensure that f is �-generic and on steps q = 3r + 2 weshall ensure that f satis�es (3).Let 0; 1; : : : be a recursive enumeration of all ordinals less than �. For everynatural number n set Yn = X(n)0(n)1 . Notice that the sequence fYng is T -reducible toP�.Let �0 be the empty �nite part and suppose that �q is de�ned.a) Case q = 3r. Let x0 be the least natural number which does not belong todom(�q) and let s0 be the least natural number which does not belong to the rangeof �q. Set �q+1(x0) ' s0 and �q+1(x) ' �q(x) for x 6= x0.b) Case q = 3r+1. Consider the set Yr . Check whether there exists an element �of Yr such that �q � �. If the answer is positive, then let �q+1 be the least extensionof �q belonging to Yr . If the answer is negative then let �q+1 = �q .c) Case q = 3r+2. Let xq be the least natural number which does not belong todom(�q). Consider the setCr = fs : (9� � �q)(�(xq) ' s & � � Fr(xq))gClearly Cr is forcing �-de�nable on A and hence Cr 6= A. Notice that Cr �e P�uniformly in r and �q. Therefore, since � < �, the set Cr is recursive in P� uniformlyin r and �q . Let s0 be the least natural number such thats0 2 Cr & s0 62 A _ s0 62 Cr & s0 2 A:



ASH'S THEOREM FOR ABSTRACT STRUCTURES 9Suppose that s0 2 Cr. Then there exists a � such that�q � � & �(xq) ' s0 & � � Fr(xq):(4.1)Let �q+1 be the least � satisfying (4:1).If s0 62 Cr, then set �q+1(xq) ' s0 and �q+1(x) ' �q(x) for x 6= xq. Notice that inthis case we have that �q+1 � :Fr(xq).From the construction above it follows immediately that f = Sq �q is e-reducibleto A+ � P� and hence it satis�es (1).Let  � �. Then there exists an e such that Pf = fx : f j= Fe(x)g. Since fis �-generic, we can rewrite the last equality as Pf = fx : (9� � f)(�  Fe(x))gTherefore Pf �e f � P .It remains to show that f�1(A) 6�e Pf�. Towards a contradiction assume thatf�1(A) �e Pf�. Then there exists an r such thatA = ff(x) : f j=� Fr(x)g:Consider the step q = 3r+ 2. By the construction we have that�q+1(xq) 62 A & �q+1 � Fr(xq)_ �q+1(xq) 2 A & �q+1 � :Fr(xq):Hence by the genericity of ff(xq) 62 A & f j=� Fr(xq)_ f(xq) 2 A & f j=� :Fr(xq):A contradiction.The following theorem is an abstract version of Theorem 2.7.4.3. Theorem.(AJIT) Let � be a recursive ordinal and let A � N be not forcing �-de�nable on A. Set � = max(�+1; �) and let Q be a total set such that A+�P� �e Q.Then there exists an enumeration f of A satisfying the following conditions:(1) f �e Q.(2) The enumeration degree of f�1(A) is total, i.e. it contains a total set.(3) For all  � �, f�1(B) �e (f�1(A))() uniformly in .(4) f�1(A) 6�e (f�1(A))(�).(5) (f�1(A))(�) �e Q.Proof. According Proposition 4.2 there exists an enumeration g of A such that g �eQ, Pg� �e Q and g�1(A) 6�e Pg�. Since A+ �e Q, we have also that (g�1(A))+ �e Q.From Theorem 2.7 it follows that there exists a total set F such that the followingassertions are true:(i) g�1(A) �e F .(ii) For all  � �, g�1(B) �e F () uniformly in .(iii) g�1(A) 6�e F (�).(iv) F (�) �e Q.



10 I. N. SOSKOV AND V. BALEVAWe shall construct the enumeration f so that f�1(A) �e F . Let s and t be twodistinct elements of N. Fix also two numbers xs and xt such that g(xs) ' s andg(xt) ' t.For x 2 N set f(x) ' 8>><>>:g(x=2) if x is even;s if x = 2z + 1 and z 2 F;t if x = 2z + 1 and z 62 F:Since "=" and "6=" are among the underlined predicates of A, we have thatF �e f�1(A). To prove that f�1(A) �e F consider the partial predicate Ri of A.Let x1; : : : ; xri be arbitrary natural numbers. De�ne the natural numbers y1; : : : ; yriby means of the following recursive in F procedure. Let 1 � j � ri. If xj is eventhen let yj = xj=2. If xj = 2z + 1 and z 2 F , then let yj = xs. If xj = 2z + 1 andz 62 F , then let yj = xt. Clearlyhx1; : : : ; xrii 2 f�1(Ri) () hy1; : : : ; yrii 2 g�1(Ri):Since g�1(A) � F , from the last equivalence it follows that f�1(Ri) �e F . So weobtain that f�1(A) �e F .To prove (2) it is su�cient to show that if  � �, then f�1(B) �e F () uniformlyin . Denote by Ef the set f�1(=). Clearly for all  � � we have that Ef andg�1(B) are e-reducible to F () uniformly in . Let us �x a  � �. From thede�nition of f it follows thatf�1(B) = fx : (9y 2 g�1(B))(hx; 2yi 2 Ef)g:Therefore f�1(B) �e F () uniformly in .It remains to see that f�1(A) 6�e F (�). Assume that f�1(A) �e F (�). Clearlyg�1(A) = fx : 2x 2 f�1(A)g:Then g�1(A) �e f�1(A) �e F (�). A contradiction.4.4. De�nition. Let Q be a total subset of N and � < !CK1 . An enumerationf of A is �; Q-acceptable (with respect to the sequence fBg��) if f satis�es thefollowing conditions:(i) The enumeration degree of f�1(A) is total.(ii) (8 � �)(f�1(B) �e (f�1(A))()) uniformly in .(iii) (f�1(A))(�) �e Q.4.5. Theorem.(AJIT1) Given a total set Q such that P� �e Q, one can constructa �; Q-acceptable enumeration f �e Q.Proof. Repeat the proof of the previous Theorem without bothering about the setA.4.6. Theorem.(AJIT2) Let � < !CK1 and let A � N. Let � = max(� + 1; �).Suppose that Q �e P�, Q is a total set and for all �; Q-acceptable enumerations fof A we have that f�1(A) �e (f�1(A))(�). Then A is forcing �-de�nable on A.



ASH'S THEOREM FOR ABSTRACT STRUCTURES 11Proof. First we shall show that A+ �e Q. By the previous Theorem there existsan enumeration g of A such that g �e Q and g is �; Q-acceptable. Then g�1(A) �e(g�1(A))(�). By the monotonicity of the enumeration jump we can conclude that(g�1(A))0 �e (g�1(A))(�+1) �e (g�1(A))(�) �e Q:Since (g�1(A))+ �e (g�1(A))0, we get that (g�1(A))+ �e Q. Therefore both A andN nA are enumeration reducible to Q and hence A+ �e Q.Assume that A is not forcing �-de�nable on A. Applying Theorem 4.3 we obtainan �; Q-acceptable enumeration f such that f�1(A) 6�e (f�1(A))(�). A contradic-tion. 5. Normal form of the forcing definable setsIn this section we shall show that the forcing de�nable sets on the partial structureA coincide with the sets which are de�nable on A by means of a certain kind ofpositive recursive �0� formulae. This formulae can be considered as a modi�cationof the formulae introduced in [1], which is appropriate for their use on abstractstructures.Let L = fT1; : : : ; Tkg be the �rst order language corresponding to the structureA. So every Ti is an ri-ary predicate symbol. Let fPg�� be a recursive sequenceof unary predicate symbols intended to represent the sets B . We shall suppose also�xed a sequence X0; : : : ;Xn; : : : of variables. The variables will be denoted by theletters X; Y;W possibly indexed.Next we de�ne for � < !CK1 the �+� formulae. The de�nition is by trans�niterecursion on � and goes along with the de�nition of indices (codes) for every formula.We shall leave to the reader the explicit de�nition of the indices of our formulaewhich can be done in a natural way.5.1. De�nition.(i) Let � = 0. The elementary �+� formulae are formulae in prenex normalform with a �nite number of existential quanti�ers and a matrix which is a�nite conjunction of atomic predicates built up from the variables and thepredicate symbols T1; : : : ; Tk and P0.(ii) Let � = � + 1 and � � �. An elementary �+� formula is in the form9Y1 : : :9YlM(X1; : : : ; Xl; Y1; : : : ; Ym);where M is a �nite conjunction of atoms of the form P�(Xi) or P�(Yj), �+�formulae and negations of �+� formulae with free variables amongX1; : : : ; Xl,Y1; : : : ; Ym.(iii) Let � = � + 1 and � > �. An elementary �+� formula is in the form9Y1 : : :9YlM(X1; : : : ; Xl; Y1; : : : ; Ym);where M is a �nite conjunction of atoms of �+� formulae and negations of�+� formulae with free variables among X1; : : : ; Xl, Y1; : : : ; Ym.



12 I. N. SOSKOV AND V. BALEVA(iv) Let � = lim �(p) be a limit ordinal and � � �. The elementary �+� formulaare in the form 9Y1 : : :9YlM(X1; : : : ; Xl; Y1; : : : ; Ym);where M is a �nite conjunction of atoms of the form P�(Xi) or P�(Yj) and�+�(p) formulae with free variables among X1; : : : ; Xl; Y1; : : : ; Ym.(v) Let � = lim �(p) be a limit ordinal and � > �. The elementary �+� formulaare in the form 9Y1 : : :9YlM(X1; : : : ; Xl; Y1; : : : ; Ym);where M is a �nite conjunction of �+�(p) formulae with free variables amongX1; : : : ; Xl; Y1; : : : ; Ym.(vi) A �+� formula with free variables among X1; : : : ; Xl is an r.e. in�nitarydisjunction of elementary �+� formulae with free variables amongX1; : : : ; Xl.Notice that the �+� formulae are e�ectively closed under existential quanti�cationand in�nitary r.e. disjunctions.Let � be a �+� formula with free variables among W1; : : : ;Wn and let t1; : : : ; tnbe elements of N. Then by A j= �(W1=t1; : : : ;Wn=tn) we shall denote that � is trueon A under the variable assignment v such that v(W1) = t1; : : : ; v(Wn) = tn.5.2. De�nition. Let A � N and let � < �. The set A is formally �-de�nableon A with respect to the sequence fBg<� if there exists a �+� formula � withfree variables among W1; : : : ;Wr; X and elements t1; : : : ; tr of N such that for everyelement s of N the following equivalence holds:s 2 A () A j= �(W1=t1; : : : ;Wr=tr; X=s):We shall show that every forcing �-de�nable set is formally �-de�nable.Let var be an e�ective mapping of the natural numbers onto the variables. Givena natural number x, by X we shall denote the variable var(x).Let y1 < y2 < : : : < yk be the elements of a �nite set D, let Q be one of thequanti�ers 9 or 8 an let � be an arbitrary formula. Then by Q(y : y 2 D)� weshall denote the formula QY1 : : :QYk�.5.3. Lemma. Let D = fw1; : : : ; wrg be a �nite and not empty set of natural num-bers and x; e be elements of N. Let � < !CK1 . There exists an uniform recursiveway to construct a �+� formula ��D;e;x with free variables among W1; : : : ;Wr suchthat for every �nite part � such that dom(�) = D the following equivalence is true:A j= ��D;e;x(W1=�(w1); : : : ;Wr=�(wr)) () � � Fe(x):Proof. We shall construct the formula ��D;e;x by means of e�ective trans�nite recur-sion on � following the de�nition of the forcing.1) Let � = 0. Let V = fv : hv; xi 2 Weg. Consider an element v of V . For everyu 2 Dv de�ne the atom �u as follows



ASH'S THEOREM FOR ABSTRACT STRUCTURES 13a) If u = h0; hi; xu1; : : : ; xuriii, where 1 � i � k and all xu1 ; : : : ; xuri are elementsof D, then let �u = Ti(Xu1 ; : : : ; Xuri).b) If u = h2; xui and xu 2 D, then let �u = P0(Xu).c) Let �u = W1 6= W1 in the other cases.Set �v = Vu2Dv �u and ��D;e;x = Wv2V �v.2) Let � = � + 1 Let again V = fv : hv; xi 2 Weg and v 2 V .For every u 2 Dv de�ne the formula �u as follows:a) If u = h0; eu; xui, then let �u = ��D;eu;xu .b) If u = h1; eu; xui, then let�u = :[ _D��D(9y 2 D� nD)��D�;eu;xu ]:c) If � � �, u = h2; xui and xu 2 D then let �u = P�(Xu).d) Let �u = ��f0g;0;0 ^ :��f0g;0;0 in the other cases.Now let �v = Vu2Dv �u and set ��D;e;x = Wv2V �v.3) Let � = lim�(p) be a limit ordinal. Let V = fv : hv; xi 2 Weg. Consider av 2 V . For every element u of Dv we de�ne the formula �u as follows:a) If u = h0; pu; eu; xui, then let �u = ��(pu)D;eu;xu.b) If � � �, u = h2; xui and xu 2 D, then let �u = P�(Xu).c) Let �u = ��(0)f0g;0;0 ^ :��(0)f0g;0;0 in the other cases.Set �v = Vu2Dv �u and ��D;e;x = Wv2V �vAn easy trans�nite induction on � shows that for every � the �+� formula ��D;e;xsatis�es the requirements of the Lemma.5.4. Theorem. Let � < !CK1 and let A � N be forcing �-de�nable on A. Then Ais formally �-de�nable on A.Proof. Suppose that for all s 2 N we have thats 2 A () (9� � �)(�(x) ' s & � � Fe(x));where � is a �nite part, e; x are �xed elements of N. Let D = dom(�) = fw1; : : : ; wrgand let �(wi) = ti, i = 1; : : : ; r. Consider a �nite set D� � D[fxg). By the previousLemma A j= 9(y 2 D� n (D [ fxg))��D�;e;x(W1=t1; : : : ;Wr=tr ; X=s)if and only if there exists a �nite part � such that dom(�) = D�, � � �,�(x) ' sand � � Fe(x). Hence we have that for all s 2 N the following equivalence is true:s 2 A () A j= _D��D[fxg 9(y 2 D� n (D [ fxg))��D�;e;x(W1=t1; : : : ;Wr=tr):From here we can conclude that A is formally �-de�nable on A.5.5. Theorem. Let A � N. Suppose that � < !CK1 and � = max(�+ 1; �). Let Qbe a total set such that P� �e Q. Then the following are equivalent:(1) A is relatively �-intrinsic with respect to the sequence fBg<�.



14 I. N. SOSKOV AND V. BALEVA(2) For every �; Q-acceptable enumeration f of A, f�1(A) �e (f�1(A))(�).(3) A is forcing �-de�nable on A.(4) A is formally �-de�nable on A.Proof. The implication (1)) (2) is obvious.The implication (2)) (3) follows from Theorem 4.6.The implication (3)) (4) follows from the previous Theorem.The last implication (4)) (1) can be proved by trans�nite induction on �.The characterization of the relatively �-intrinsic sets can be obtained from theTheorem above by taking � = 0 and B0 = N. In particular if the structure A istotal, one can easyly derive from here the normal form of the relatively intrinsically�0� sets, obtained in [2] and [3]. Moreover we can get a slight improvement of theupper bound of the level of genericity compared to that obtained in [3]. Namelythe following is true:5.6. Corollary. Suppose that A is a partial structure with recursively enumerableunderlined predicates and � < !CK1 . Let A � N and let for all enumerations f of Asuch that (f�1(A))(�+1) �e ;(�+1) we have that f�1(A) is enumeration reducible to(f�1(A))(�). Then A is relatively �-intrinsic on A.The last Corollary generalizes the respective result (Corollary V.18, [3]), wherethe same upper bound is obtained for recursive structures under the additionalcondition that A is a �0�+1 set. References1. C. J. Ash, Generalizations of enumeration reducibility using recursive in�nitary proposi-tional senetences, Ann. Pure Appl. Logic 58 (1992), 173{184.2. C. J. Ash, J. F. Knight, M. Manasse, and T. Slaman, Generic copies of countable struc-tures, Ann. Pure Appl. Logic 42 (1989), 195{205.3. J. Chisholm, E�ective model theory vs. recursive model theory, J. Symbolic Logic 55(1990), 1168{1191.4. S. B. Cooper, Partial degrees and the density problem. Part 2: The enumeration degreesof the �2 sets are dense, J. Symbolic Logic 49 (1984), 503{513.5. , Enumeration reducibilty, nondeterministic computations and relative com-putability of partial functions, Recursion theory week, Oberwolfach 1989, Lecture notesin mathematics (Heidelberg) (G. E. Sacks K. Ambos-Spies, G. Muler, ed.), vol. 1432,Springer-Verlag, 1990, pp. 57{110.6. K. McEvoy, Jumps of quasi-minimal enumeration degrees, J. Symbolic Logic 50 (1985),839{848.7. H. Rogers Jr., Theory of recursive functions and e�ective computability, McGraw-HillBook Company, New York, 1967.8. G. E. Sacks, Higher recursion theory, Springer-Verlag, Berlin Heidelberg New York Lon-don, 1990.9. I. N. Soskov and V. Baleva, Regular enumerations, submitted.
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