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Abstract. The Turing degree of a real measures the computational difficulty

of producing its binary expansion. Since Turing degrees are tailsets, it fol-

lows from Kolmogorov’s 0-1 law that for any property which may or may not
be satisfied by any given Turing degree, the satisfying class will either be of

Lebesgue measure 0 or 1, so long as it is measurable. So either the typical

degree satisfies the property, or else the typical degree satisfies its negation.
Further, there is then some level of randomness sufficient to ensure typicality

in this regard. We describe and prove a large number of results in a new pro-

gramme of research which aims to establish the (order theoretically) definable
properties of the typical Turing degree, and the level of randomness required

in order to guarantee typicality.
A similar analysis can be made in terms of Baire category, where a standard

form of genericity now plays the role that randomness plays in the context

of measure. This case has been fairly extensively examined in the previous
literature. We analyse how our new results for the measure theoretic case

contrast with existing results for Baire category, and also provide some new

results for the category theoretic analysis.
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1. Introduction

The inspiration for the line of research which led to this paper begins essentially
with Kolmogorov’s 0-1 law, which states that any (Lebesgue) measurable tailset is
either of measure 0 or 1. The importance of this law for computability theory then
stems from the fact that Turing degrees 1 are clearly tailsets—adding on or taking
away any finite initial segment does not change the difficulty of producing a given
infinite sequence. Upon considering properties which may or may not be satisfied
by any given Turing degree, we can immediately conclude that, so long as the
satisfying class is measurable2, it must either be of measure 0 or 1. Thus either the
typical degree satisfies the property, or else the typical degree satisfies its negation,
and this suggests an obvious line of research. Initially we might concentrate on
definable properties, where by a definable set of Turing degrees we mean a set
which is definable as a subset of the structure in the (first order) language of partial
orders. For each such property we can look to establish whether the typical degree
satisfies the property, or whether it satisfies the negation. In fact we can do a little
better than this. If a set is of measure 1, then there is some level of algorithmic
randomness3 which suffices to ensure membership of the set. Thus, once we have
established that the typical degree satisfies a certain property, we may also look to
establish the level of randomness required in order to ensure typicality as far as the
given property is concerned.

Lebesgue measure though, is not the only way in which we can gauge typicality.
One may also think in terms of Baire category. For each definable property, we
may ask whether or not the satisfying class is comeager and, just as in the case for
measure, it is possible to talk in terms of a hierarchy which allows us to specify levels
of typicality. The role that was played by randomness in the context of measure, is
now played by a very standard form of genericity. For any given comeager set, we
can look to establish the level of genericity which is required to ensure typicality in
this regard.

1.1. A heuristic principle. During our research, we have isolated the following
heuristic principle: if a property holds for all highly random/generic degrees then it
is likely to hold for all non-zero degrees that are bounded by a highly random/generic
degree. Here by ‘highly random/generic’ we mean at least 2-random/generic.4 Thus,
establishing levels of typicality which suffice to ensure satisfaction of a given prop-
erty, also gives a way of producing lower cones and sets of degrees which are down-
ward closed (at least amongst the non-zero degrees), such that all of the degrees in
the set satisfy the given property. For example, by a simple analysis of a theorem

1The Turing degrees were introduced by Kleene and Post in [KP54] and are a measure of the

incomputability of an infinite sequence. For an introduction we refer the reader to [Odi89] and
[Coo04].

2By the measure of a set of Turing degrees is meant the measure of its union.
3The basic notions from algorithmic randomness will be described in Section 2. For an intro-

duction we refer the reader to [Nie09] and [DH10].
4The relevant forms of randomness, genericity and the corresponding hierarchies will be defined

in section 2.
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of Martin [Mar67], Kautz [Kau91] showed that every 2-random degree is hyperim-
mune.5 In fact, this is just a special case of (1.1).

(1.1) Every non-zero degree that is bounded by a 2-random degree is hyperimmune.

We may deduce (1.1) from certain facts that involve notions from algorithmic ran-
domness. Fixing a universal prefix-free machine, we let Ω denote the halting prob-
ability. A set A is called low for Ω, if Ω is 1-random relative to A. By [Nie09,
Theorem 8.1.18] every non-zero low for Ω degree is hyperimmune. Since every 2-
random real is low for Ω (a consequence of van Lambalgen’s theorem, see [Nie09,
Theorem 3.4.6]) we have (1.1).

In this paper we will give several other examples that support this heuristic
principle. Moreover, in Section 5 we give an explanation of the fact that it holds
for the measure theoretic case, by showing how to translate standard arguments
which prove that a property holds for all highly random degrees, into arguments that
prove that the same property holds for all non-zero degrees that are bounded by a
highly random degree. The heuristic principle often fails for notions of randomness
that are weaker than 2-randomness and we provide a number of counterexamples
throughout this paper. It is well known that the hyperimmunity example above
fails for weak 2-randomness. However Martin’s proof in [Mar67] actually shows that
every Demuth random degree is hyperimmune. We shall give examples concerning
minimality, the cupping property and the join property, which also demonstrate
the principle for highly generic degrees.

1.2. The history of measure and category arguments in the Turing de-
grees. Measure and Baire category arguments in degree theory are as old as the
subject itself. For example, Kleene and Post [KP54] used arguments that resemble
the Baire category theorem construction in order to build Turing degrees with cer-
tain basic properties. Moreover de Leeuw, Moore, Shannon and Shapiro [dLMSS55]
used a so-called ‘majority vote argument’ in order to show that if a subset of ω can
be enumerated relative to every set in a class of positive measure then it has an
unrelativised computable enumeration. A highly influential yet unpublished man-
uscript by Martin [Mar67] showed that more advanced degree-theoretic results are
possible using these classical methods. By that time degree theory was evolving into
a highly sophisticated subject and the point of this paper was largely that category
and measure can be used in order to obtain advanced results, which go well beyond
the basic methods of [KP54]. Of the two results in [Mar67] the first was that the
Turing upward closure of a meager set of degrees that is downward closed amongst
the non-zero degrees, but which does not contain 0, is meager (see [Odi89, Section
V.3] for a concise proof of this). Given that the minimal degrees form a meager
class, an immediate corollary of this was the fact that there are non-zero degrees
that do not bound minimal degrees. The second result was that the measure of the
hyperimmune degrees is 1. Martin’s paper was the main inspiration for much of
the work that followed in this topic, including [Yat76], [Par77] and [Joc80].

Martin’s early work seemed to provide some hope that measure and category
arguments could provide a simple alternative to conventional degree-theoretic con-
structions which are often very complex. This school of thought received a serious

5A degree is hyperimmune if it contains a function f : ω → ω which is not dominated by any
computable function, i.e. such that for any computable function g : ω → ω there exist infinitely

many n with f(n) > g(n). If a degree is not hyperimmune then we say it is hyperimmune-free.



4 GEORGE BARMPALIAS, ADAM R. DAY, AND ANDREW E.M. LEWIS

blow, however, with [Par77]. Paris answered positively a question of Martin which
asked if the analogue of his category result in [Mar67] holds for measure: are the
degrees that do not bound minimal degrees of measure 1? Paris’ proof was consider-
ably more involved than the measure construction in [Mar67] and seemed to require
sophisticated new ideas. The proposal of category methods as a simple alternative
to ‘traditional’ degree theory had a similar fate. Yates [Yat76] started working on
a new approach to degree theory that was based on category arguments and was
even writing a book on this topic. Unfortunately the merits of his approach were
not appreciated at the time (largely due to the heavy notation that he used) and
he gave up research on the subject altogether.

Yates’ work in [Yat76] deserves a few more words, however, especially since it
anticipated much of the work in [Joc80]. Inspired by [Mar67], Yates started a sys-
tematic study of degrees in the light of category methods. A key feature in this work
was an explicit interest in the level of effectivity possible in the various category
constructions and the translation of this level of effectivity into category concepts
(like ‘0′-comeager’ etc.). Using his own notation and terminology, he studied the
level of genericity that is sufficient in order to guarantee that a set belongs to certain
degree-theoretic comeager classes, thus essentially defining various classes of gener-
icity already in 1974. He analysed Martin’s proof that the Turing upper closure of
a meager class which is downward closed amongst the non-zero degrees but which
does not contain 0 is meager, for example (see [Yat76, Section 5]), and concluded
that no 2-generic degree bounds a minimal degree. Moreover, he conjectured (see
[Yat76, Section 6]) that there is a 1-generic that bounds a minimal degree. These
concerns occurred later in a more appealing form in Jockusch [Joc80], where sim-
pler terminology was used and the hierarchy of n-genericity was explicitly defined
and studied.

With Jockusch [Joc80], the heavy notation of Yates was dropped and a clear
and systematic calibration of effective comeager classes (mainly the hierarchy of
n-generic sets) and their Turing degrees was carried out. A number of interesting
results were presented along with a long list of questions that set a new direc-
tion for future research. The latter was followed up by Kumabe [Kum90, Kum91,
Kum93a, Kum93b, Kum00] (as well as other authors, e.g. [CD90]) who answered a
considerable number of these questions.

The developments in the measure approach to degree theory were similar but
considerably slower, at least in the beginning. Kurtz’s thesis [Kur81] is probably
the first systematic study of the Turing degrees of the members of effectively large
classes of reals, in the sense of measure. Moreover the general methodology and the
types of questions that Kurtz considers are entirely analogous to the ones proposed
in [Joc80] for the category approach (e.g. studying the degrees of the n-random
reals as opposed to the n-generic reals, minimality, computable enumerability and
so on). Kučera [Kuč85] focused on the degrees of 1-random reals. Kautz [Kau91]
continued in the direction of [Kur81] but it was not until the last ten years (and in
particular with the writing of [DH10, Chapter 8]) that the study of the degrees of
n-random reals became well known and this topic became a focused research area.

The programme of research undertaken in the present paper can be seen as
something new, in the sense that this is the first attempt at a systematic analysis
of the order theoretically definable properties satisfied by the typical Turing degree,
where typicality is gauged in terms of measure (although some previous results do
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exist, such as those of Sacks and Paris concerning minimality and the bounding of
minimal degrees).

2. Technical background, notation and terminology

We let 2ω denote the set of infinite binary sequences and denote the standard
Lebesgue measure on 2ω by µ. We let 2<ω denote the set of finite binary strings.
We use the variables c, d, e, i, j, k, `,m, n, p, q, s, t to range over ω; f, g to range over
functions ω → ω; α, β, σ, τ, η, ρ to range over 2<ω; A,B,C,D,X, Y, Z to range over
2ω; we use J, S, T, U, V,W to range over subsets of 2<ω and we use F,G, P and Q to
range over subsets of 2ω. We shall also use the variable P to range over the various
definable degree theoretic properties. In the standard way we identify subsets of ω
and their characteristic functions.

2.1. Turing functionals, Cantor space, strings and functions. For σ ∈ 2<ω

and A ∈ 2ω we write σ ∗ A to denote the concatenation of σ and A, and we say
that P ⊆ 2ω is a tailset if, for all σ ∈ 2<ω and all A ∈ 2ω, σ ∗ A ∈ P if and only if
A ∈ P . A set V ⊆ 2<ω is said to be downward closed if, whenever τ ∈ V , all initial
segments of τ are in this set, and is said to be upward closed if, whenever τ ∈ V ,
all extensions of τ are in this set. We write JV K to denote the set of infinite strings
which extend some element of V , and we write µ(V ) to denote µ(JV K).

We use the variables Φ,Ψ,Θ and Ξ to range over the Turing functionals, and
let Ψi be the ith Turing functional in some fixed effective listing of all Turing
functionals. Then Ψσ

i (n) denotes the output of Ψi given oracle input σ on argument
n. We make the assumption that Ψσ

i (n) ↑ unless the computation converges in < |σ|
steps and Ψσ

i (n′) ↓ for all n′ < n (these assumption are also made for any given
Turing functional Φ, but we do not worry about adhering to these conventions
when constructing Turing functionals). Letting 〈i, j〉 be a computable bijection
ω×ω → ω, we write ω[e] to denote the set of all numbers of the form 〈e, j〉 for some
j ∈ ω.

To help with readability, we shall generally make some effort to maintain a
certain structure in our use of variables. In situations in which we consider the
actions of a functional, we shall normally use the variables X and τ for sequences
and strings in the domain, and the variables Y and σ for sequences and strings
in the image. When another functional then acts on the image space, we shall
generally use the variables Z and η for sequences and strings in the second image
space. The variables X,Y and Z will generally be used in situations in which we
are simultaneously dealing with all sets of natural numbers. When a specific set is
given for a construction, or has to be built by a construction, then we will use the
variables A,B,C and D.

2.2. Randomness and Martin-Löf tests. If each Vi is a set of finite binary
strings and the sequence {Vi}i∈ω is uniformly computably enumerable (c.e.), i.e.
the set of all pairs (i, τ) such that τ ∈ Vi is c.e., then we say that this sequence is a
Martin-Löf test if µ(Vi) < 2−i for all i. Then we say that X is Martin-Löf random
if there doesn’t exist any Martin-Löf test such that X ∈

⋂
iJViK. It is not difficult

to show that there exists a universal Martin-Löf test, i.e. a Martin-Löf test {Vi}i∈ω
such that X is Martin-Löf random if and only if X /∈

⋂
iJViK.

These notions easily relativize. We say that {Vi}i∈ω is a Martin-Löf test relative
to X if it satisfies the definition of a Martin-Löf test, except that now the sequence
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need only be uniformly c.e. relative to X. Now Y is Martin-Löf random relative to
X if there does not exist any Martin-Löf test relative to X such that Y ∈

⋂
iJViK.

Once again, it can be shown that there exists a universal test relative to any oracle,
and that, in fact, this universal test can be uniformly enumerated for all oracles.
We let {Ui}i∈ω be a uniformly c.e. sequence of operators such that, for any X,
{UXi }i∈ω is a universal test relative to X. We assume that, for each i and τ , Uτi
is finite, and is empty unless |τ | > i. We assume furthermore, that the function
τ 7→ Uτi is computable.

If a subset of Cantor space P is of measure 1, then it is clear that there is some
oracle X such that all sets which are Martin-Löf random relative to X belong to
P . For n ≥ 1 we say that X is n-random if it is Martin-Löf random relative to
0(n−1) (and that a degree is n-random if it contains an n-random set). Martin-Löf
randomness is in many respects the standard notion of algorithmic randomness.
Other randomness notions may be obtained by varying the level of computability
in the above definition. For example, a set is weakly 2-random if it is not a member
of any Π0

2 null class. In order to define Demuth randomness, we need to consider
the wtt-reducibility. We say X ≤wtt Y if there exists i such that ΨX

i = Y and
there exists a computable function f such that the use on argument n is bounded
by f(n). Let Wi be the ith c.e. set of finite binary strings according to some fixed
effective listing of all such sets. We say that X is Demuth random if there is no
f which is wtt- reducible to ∅′, such that µ(Wf(i)) < 2−i and X ∈ JWf(i)K for
infinitely many i. Demuth randomness and weak 2-randomness are incomparable
notions, both stronger than 1-randomness and weaker than 2-randomness.

2.3. The n-generics. We say that Y is 1-generic relative to X if, for every W ⊆
2<ω which is c.e. relative to X:

(∃σ ⊂ Y )[σ ∈W ∨ (∀σ′ ⊃ σ)(σ′ /∈W )].

It is clear that if a set P is comeager then there is some oracle X such that every set
which 1- generic relative to X belongs to P . For n ≥ 1, we say that Y is n-generic
if it is 1-generic relative to 0(n−1), and that a degree is n-generic if it contains an
n-generic set.

2.4. Jump classes. The generalized jump hierarchy is defined as follows. For
n ≥ 1 a Turing degree is generalized lown (GLn), if a(n) = (a ∨ 0′)(n−1), and we
say that a is generalized highn (GHn) if a(n) = (a ∨ 0′)(n). A degree is generalized
low if it is GL1 and is generalized high if it is GH1. A degree is lown if it is GLn
and below 0′. A degree is highn if it is GHn and below 0′. By low is meant low1

and by high is meant high1.

3. 0-1 laws in category and measure

In the analysis we have considered so far, we have left a gap which we now close.
If a tailset is measurable then it is either of measure 0 or 1, and there is then some
level of randomness that suffices to ensure typicality. If we restrict to considering
definable sets of Turing degrees, however (and where by definable we mean definable
in the first order language of partial orders), this begs the question, do all such sets
have to be measurable? Similarly we may ask, do all such sets have to be either
meager or comeager? In this section we make the following two observations, which
were hashed out in an email correspondence with Richard Shore and Yu Liang:
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(3.1)
Whether or not all definable sets of degrees are measurable is
independent of ZFC.

(3.2)
Whether or not all definable sets of degrees are either meager or
comeager is independent of ZFC.

We consider first how to prove 3.1, the proof of 3.2 will be similar. On the one
hand, is known that there is a generic extension of L not collapsing cardinals nor
violating CH, in which every set of reals which is definable (with no parameter) is
measurable [She84]. On the other hand, we wish to make use of the fact, due to
Slaman and Woodin [SW86], that any set of Turing degrees above 0′′ is definable
as a subset of the Turing degrees if and only if its union is definable in second order
arithmetic. Initially there might seem a basic obstacle to using this fact. We wish
to construct a set which is of outer measure 1 and whose complement is also of
outer measure 1. The degrees above 0′′ are of measure 0, and so any subset will
be measurable. It is easy to see, however, that the result of Slaman and Woodin
extends to any set of degrees which is invariant under double jump—meaning that
if a belongs to the set, then all b with b′′ = a′′ are also members. Now, it is easy
enough to construct a tailset which is of outer measure 1 and whose complement is
also of outer measure 1, a result due to Rosenthal [Ros75]. One simply defines the
set using a transfinite recursion which diagonalises against the open sets of measure
< 1. This recursion uses a well-ordering of the reals (which suffices to specify a
well-ordering of the open sets). If we assume V=L then we have a well-ordering
of the reals which is definable in second order arithmetic, and the set constructed
will be definable in second order arithmetic. Finally we just have to modify the
construction so as to make the set constructed invariant under double jump. This
means that whenever we enumerate a real into the set or its complement, we also
enumerate all reals which double jump to the same degree. Since we still add only
countably many reals into either the set or its complement at each stage of the
transfinite recursion, the argument still goes through as it did previously.

In order to prove 3.2 we proceed in almost exactly the same way. The first
direction is once again given by Shelah in [She84]. For the other direction, in
order to show that there exist ZFC models with a definable set of degrees which
is neither meager nor comeager, we once again assume V=L, but we consider this
time a transfinite recursion which defines a set which does not satisfy the property
of Baire (see [Kec95], for example, for the description of such a construction).

4. Methodology

In this section we discuss a framework for constructions which calculate the mea-
sure of a given degree-theoretic class. By (3.1) no methodology can be completely
general, and as one moves to consider more complicated properties it is to be ex-
pected that more sophisticated techniques will be required. The methodology we
shall present here, however, does seem to be very widely applicable. All previously
known arguments of this type, and all of the new theorems we present here, fit
neatly into the framework. An informal presentation of the framework is given in
Section 4.1.

Given a degree-theoretic property P which holds for almost all reals, we consider
(oracle-free) constructions which work for all sets simultaneously and which specify
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a Gδ null set such that every real is either in this set or satisfies P . By examining
the oracle required to produce arbitrarily small open coverings of this Gδ set, we
establish a level of randomness which is sufficient for a real to satisfy P . In all
known examples it turns out that 2-randomness suffices and, moreover, that every
non-zero degree that is bounded by a 2-random also satisfies P . A widely applicable
methodology for results of the latter type is given in Section 5. In Section 4.2 we give
a number of rather basic facts about measure in relation to Turing computations
that will be used routinely in most of the proofs in this paper.

Our framework rests on various ideas from [Mar67], [Par77] and [Kur81], but
introduces new features (like the use of measure density theorems) which simplify
and refine the classic arguments as well as establishing new results in a uniform
fashion.

4.1. All sufficiently random degrees. The strategy for showing that all suffi-
ciently random sets X satisfy a certain degree-theoretic property is as follows:

(a) Translate the property into a countable sequence of requirements {Re}e∈ω
referring to an unspecified set X.

(b) Devise an ‘atomic’ strategy which takes a number e and a string τ as inputs
and satisfies Re for a certain proportion of extensions X of τ , where this
proportion depends on e and not on τ .

(c) Assemble a construction from the atomic strategies in a standard way.

Since steps (a) and (b) are specific to the degree-theoretic property that is stud-
ied, we are left to give the details of the procedure that produces the construction,
given the requirements and the corresponding atomic strategies. Step (c) involves
a construction that proceeds in stages and places ‘e-markers’ (for e ∈ ω) on various
strings in the full binary tree. Each e-marker is associated with a version of the
atomic strategy for Re from step (b), which looks to satisfy Re on a certain pro-
portion of the extensions of the string τ on which it is placed. Once an e-marker
is placed on τ , we shall say that the marker ‘sits on’ τ until such a point as it is
removed. So a marker may be ‘placed on’ τ at a specific point of the construction,
and then at this and all subsequent points of the construction, until such a point
as it is removed, the marker is said to ‘sit on’ τ . The basic rules according to which
markers are placed on strings and removed from them are as follows:

(i) At most one marker sits on any string at any given stage.
(ii) If τ ⊂ τ ′ and at some stage an e-marker sits on τ ′ and a d-marker sits on

τ , then d ≤ e.
(iii) If a marker is removed from τ at some stage then any marker that sits on

any extension of τ is also removed.

Note that (ii) and (iii) indicate an injury argument that is taking place along each
path X. A marker is called permanent if it is placed on some string and is never
subsequently removed. The basic rules above allow the possibility that, for some
e ∈ ω, many (perhaps permanent) e-markers are placed along a single path. This
corresponds to multiple attempts to satisfy Re along the path.

The construction will strive to address each requirement Re along the ‘vast ma-
jority’ of the paths X of the binary tree. In particular, it will work with an arbitrary
parameter k ∈ ω and will produce the required objects (like various reductions
that are mentioned in the requirements) along with a set of strings W such that
µ(W ) < 2−k. Every real that does not have a prefix in W will satisfy all Re, e ∈ ω.
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Considering all of the constructions as k ranges over ω, we conclude that P is sat-
isfied by every real except for those in a certain null Gδ set. Since this set may
be seen as a Martin-Löf test relative to some oracle, we can also establish a level
of randomness that is sufficient to guarantee satisfaction of the property. This is
directly related to the oracle that is needed for the enumeration of W . In all of our
examples an oracle for ∅′ suffices to enumerate W , and thus 2-randomness is suffi-
cient to ensure satisfaction of P . In most of our examples we will be able to show
that any standard weaker notion of randomness (in particular, weak 2-randomness)
fails to be sufficient.

The outcome of the construction with respect to a particular real X will be
reflected by the permanent markers that are placed on initial segments of X. In
particular, one of the following outcomes will occur:

(1) For every e ∈ ω there is a permanent e-marker placed on some initial
segment of X.

(2) There exists some e ∈ ω such that, for each d ≤ e, a permanent d-marker is
placed on an initial segment of X, and such that infinitely many permanent
e-markers are placed on initial segments of X.

(3) There are only finitely many permanent markers placed on initial segments
of X.

Note that by rule (ii), if outcome (2) occurs with respect to X then for j > e there
will be no permanent j-marker placed on any initial segment of X, and for each
d < e there will only be finitely many (permanent or non-permanent) d-markers
placed on initial segments of X.

The only successful outcome for X is (1). Failure of the construction with respect
to X therefore comes in two forms. Outcome (3) denotes a finitary failure. In this
case the construction gives up placing markers on initial segments of X, due to the
request of an individual marker that sits on an initial segment τ ofX. Such a marker
may forbid the placement of markers on certain extensions of τ (including a prefix
of X), while waiting for some Σ0

1 event. 6 At any stage during the construction,
requests to forbid the placement of markers will only be made for a small measure
of sets, and so we will be able define a set of strings V of small measure, such that
every real for which outcome (3) occurs has an initial segment in V .

Outcome (2) denotes an infinitary failure, in the sense that the construction
insists on trying to satisfy a certain requirement Re with respect to X by placing
infinitely many e-markers on initial segments of it, but the requirement remains
unsatisfied with respect to X. The possibility of outcome (2) is a direct consequence
of (b), which says that the atomic strategy only needs to satisfy the requirement
on a fixed (possibly small) proportion of the reals in its neighbourhood (leaving the
requirement unsatisfied on many other reals). Reals for which outcome (2) occurs,
are those which happen to always be in the unsatisfied part of the neighbourhood
that corresponds to each e-marker. The Lebesgue density theorem tells us, however,
that the reals for which outcome (2) occurs cannot form a class of positive measure.
In particular it tells us that, for almost all reals in this class, the limit density
must be 1. The existence of an element of the class for which the limit density
is 1 contradicts the fact that (b) insists the requirement be satisfied for a fixed

6As an example, this event might be the convergence of a computation which, should it be
found, would then allow the marker to effect a successful diagonalisation above all those strings

where it has previously paused the construction (in effect) by forbidding the placement of markers.
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proportion of strings extending that on which the marker is placed. This class
therefore has measure 0, and we can consider a set of strings S of arbitrarily small
measure which contains a prefix of every real in the class. Then we can simply let
W be the union of V and S.

Such constructions will typically be computable, thus constructing Turing reduc-
tions dynamically. Hence the reals for which outcome (2) occurs will typically form
a Σ0

3 class and V and S will usually require an oracle for ∅′ for their enumeration.
This is the reason that 2-randomness is required in all of the results that involve
this type of construction.

4.2. Measure theoretic tricks concerning Turing reductions. Given a Tur-
ing functional Ψ, if we are only interested in computations that Ψ performs relative
to a ‘sufficiently random’ (typically a 2-random) oracle, then we can expect certain
features from Ψ. This section discusses features which are particularly useful for
the arguments employed in this paper. Section 4.2.1 shows that we may assume all
infinite binary sequences in the range of Ψ are incomputable. In Section 4.2.2 we
describe a basic fact concerning the measure of the splittings which can be expected
to exist for such a functional Ψ (a tool that is essential in certain coding arguments,
including the one in Section 9). Finally, in Section 4.2.3 we give a Ψ-analogue of
the Lebesgue density theorem which will be an essential tool for extending results
to nonzero degrees below a 2-random degree.

4.2.1. Turing procedures on random input. We start with the following useful fact,
which says that each Turing functional Φ can be replaced with one which restricts
the domain to sequences X which Φ-map to sets relative to which X is not random.

Lemma 4.1 (Functionals and relative randomness). For each Turing functional Φ
there is a Turing functional Ψ which satisfies the following for all X:

(a) If ΨX is total then ΦX is total, ΨX = ΦX and X is not ΨX-random.7

(b) If ΦX is total and X is not ΦX-random then ΨX is total.

Moreover, an index for Ψ can be obtained effectively from an index for Φ.

Proof. We describe how to enumerate axioms for Ψ, given the functional Φ. Let
{Ui}i∈ω be a universal oracle test as described in Section 2. At stage s, for each
pair of strings τ , σ = ρ ∗ j of length < s, if i is the least number such that τ does
not extend any string in Uρi then do the following. If Φτ ⊇ σ and τ extends a string
in Uσi then enumerate the axiom 〈τ, σ〉 for Ψ (thus defining Ψτ ⊇ σ).

Clearly Ψ is obtained effectively from Φ. If ΨX is total for some oracle X and
ΨX = Y , then ΦX is also total and equal to Y . We also claim that in this case
X ∈ UYi for each i ∈ ω. Towards a contradiction suppose that i is the least number
such that X 6∈ UYi . If i > 0 then let τ ⊂ X and σ = ρ ∗ j be such that τ does
not extend any string in Uρi−1, but does extend a string in Uσi−1, and such that we
enumerate the axiom 〈τ, σ〉. Let s be the stage at which this axiom is enumerated.
If i = 0 then let s = 0. Then, subsequent to stage s we do not enumerate any
new axioms of the form 〈τ ′, σ′〉 such that τ ′ ⊂ X. This gives us the required
contradiction and concludes the verification of property (a). For (b) suppose that
ΦX = Y and that X ∈ UYi for all i ∈ ω. Then, since it cannot be the case for any
finite string σ that X ∈ Uσi for all i (according to the conventions established in
Section 2), it follows that ΨX is total. �

7By Y -random is meant Martin-Löf random relative to Y .
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In most measure arguments in this paper we will use Turing functionals which do
not map to computable reals. This will simplify the constructions.

Definition 4.2 (Special Turing functionals). A Turing functional Ψ is called special
if all infinite strings in the range are incomputable.

The following lemma (when combined with the fact that any non-empty Π0
1 class

containing only 1- randoms contains a member of every 1-random degree) will be
used throughout this paper in order to justify the use of special functionals in
various arguments which involve given reductions.

Lemma 4.3 (Obtaining special functionals). Given a Turing functional Φ and a
non-empty Π0

1 class P which contains only 1-random sequences we can effectively
obtain a special Turing functional Ψ which satisfies the following conditions for
every 2-random set X in P :

(i) If ΨX is total then ΦX is total and ΨX = ΦX .
(ii) If ΦX is total and incomputable then ΨX is total.

Proof. Let V be a c.e. set of finite strings such that a real is in P if and only if it
does not have a prefix in V . Given V and Φ we produce Ψ as in the proof of Lemma
4.1 with the additional clause that whenever a string τ appears in V at some stage
of the construction, we stop enumerating axioms for Ψ of the form 〈τ ′, σ′〉 such that
τ ′ extends τ .

Let X be a 2-random member of P . Clearly ΨX satisfies (a) and (b) of Lemma
4.1. This shows (i) above. For (ii), we need a notion from [Kuč93]: a set is called
a basis for 1-randomness if there is a set that computes it and is 1-random relative
to it. By [HNS07], bases for 1-randomness are ∆0

2. On the other hand no 2-
random set computes an incomputable ∆0

2 set. Hence 2-random sets do not bound
incomputable bases for 1-randomness and (ii) follows from (b) of Lemma 4.1.

Finally we show that Ψ is special. If ΨX is total then X must be a member of
P . Therefore it is 1-random. By (a) of Lemma 4.1, totality of ΨX means that X
is not ΨX -random. This shows that ΨX is incomputable. �

The use of special functionals in what follows is not necessary but it often simplifies
the proofs considerably. The simplification comes from the fact that the use of
special functionals will often reduce the number of outcomes that a strategy has.
The following fact is applicable in arguments where we show that some property
holds for all non-zero degrees below a sufficiently random degree.

Lemma 4.4 (Special functionals for downward density). Given Turing functionals
Θ,Φ and a non-empty Π0

1 class P which contains only 1-random reals we can effec-
tively produce a special Turing functional Ψ which satisfies the following conditions
for every 2-random set X in P :

(a) If ΨY is total for any Y , then it is equal to ΦY .
(b) If ΘX = Y and ΦY is total and incomputable then ΨY is total.

Proof. We describe how to enumerate the axioms for Ψ. Let V be an upward
closed computable set of strings which contains initial segments of precisely those
reals which are not in P . At stage s, for each triple τ, σ, η = ρ ∗ j such that all
strings in the triple are of length < s and such that τ 6∈ V , if i is the least number
such that τ does not extend a string in Uρi then do the following. If Θτ = σ, Φσ ⊇ η
and τ extends a string in Uηi then enumerate the axiom 〈σ, η〉 for Ψ.
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Clearly (a) holds. If ΨY is total then there is some X ∈ P such that ΘX = Y ,
ΦY = ΨY and X is not random relative to ΨY . Hence ΨY is incomputable, and
thus Ψ is special. For (b) suppose that ΘX = Y for some 2-random X which is
in P such that ΦY is total and incomputable. Then X is not random relative to
ΦY because 2-random reals do not compute incomputable bases for 1-randomness.
Therefore the construction will define ΨY = ΦY . �

4.2.2. Measure splittings for Turing functionals. Recall that a Ψ-splitting is a pair of
strings τ, τ ′ such that Ψτ and Ψτ ′ are incompatible. When we deal with functionals
that operate on a random oracle, a measure theoretic version of this notion is useful.

(4.1)
Given a set of reals X and a string τ , the τ -measure of X is the measure
of the reals in X with prefix τ , multiplied by 2|τ |.

Given a Turing functional Ψ, a string τ and a real number ε we say that a pair
(U, V ) of finite sets of strings is a Ψ-splitting above τ if:

• the strings in U ∪ V all have the same length and extend τ ;
• if τ0 ∈ U and τ1 ∈ V then τ0 and τ1 are Ψ-splitting.

Moreover, we say that (U, V ) has measure ε if µ(U) = µ(V ) = ε/2. A rational
number is dyadic if it has a finite binary expansion. We define:

(4.2) π(Ψ, σ) = µ({X | ΨX ⊇ σ}).
If U is a prefix-free set of strings and Ψ is a functional then we let π(Ψ, U) be the
sum of all π(Ψ, σ) for σ ∈ U .

Proposition 4.5. If Ψ is a special Turing functional then for each c ∈ ω and each
σ there exists ` ∈ ω such that π(Ψ, σ′)/π(Ψ, σ) ≤ 2−c for all σ′ ⊃ σ of length `.

Proof. For a contradiction, suppose that there exists some c ∈ ω such that for each
` ∈ ω we have π(Ψ, σ′)/π(Ψ, σ) > 2−c for some string σ′ ⊃ σ of length `. Then
by König’s lemma there exists an infinite binary sequence Y extending σ such that
π(Ψ, Y �n)/π(Ψ, σ) > 2−c for all n ∈ ω. This implies that Y is computable. For
each n there exists a clopen set Vn such that µ(Vn)/π(Ψ, σ) > 2−c−1, such that
all strings in Vn Ψ-map to extensions of Y �n and such that Vn+1 ⊆ Vn. By
compactness it follows that Y is in the range of Ψ, which contradicts the fact that
Ψ is special. �

A basic fact from classical computability theory is that if some oracleX computes
an incomputable set via a Turing reduction Ψ then Ψ-splittings are dense along X.
In other words, for every initial segment τ of X there exists a Ψ-splitting such that
all strings in the splitting extend τ . The measure theoretic version of this fact is
as follows.

Lemma 4.6 (Measure splittings for functionals). Suppose that Ψ is a special Turing
functional, ε is a dyadic rational and τ is a string. If there does not exist a Ψ-
splitting above τ of measure ε then there exists a c.e. set V of strings extending τ
such that µ(V ) ≤ 2ε and every set extending τ on which Ψ is total has a prefix in
V . Moreover, given τ,Ψ and ε, an oracle for ∅′ can find whether or not there exists
such a splitting and, if there does not then an index for V .

Proof. Let ` be the least number such that π(Ψ, σ) ≤ ε/2 for all strings σ of length
`. If the measure of all X ⊃ τ such that |ΨX | ≥ ` is greater than 2ε then there
exists a Ψ-splitting above τ of measure ε. Otherwise we can let V be the c.e. set
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of strings τ ′ ⊃ τ such that |Ψτ ′ | ≥ `. Finally note that the above procedure only
involves Σ0

1 questions, and so can be carried out using an oracle for ∅′. �

The following version of Lemma 4.6 is applicable in arguments where we show that
some property holds for all non-zero degrees below a sufficiently random degree.

Lemma 4.7 (Measure splittings for downward density). Suppose that Θ,Ψ are
special Turing functionals, ε is a rational number and σ is a string. If there does
not exist a Ψ-splitting (U, V ) above σ such that π(Θ, U) and π(Θ, V ) are at least
ε/2 then there exists a c.e. set V of strings such that µ(V ) ≤ 2ε and every set which
Θ-maps to an extension of σ on which Ψ is total has a prefix in V . Moreover given
σ,Θ,Ψ and ε, an oracle for ∅′ can find whether or not there exists such a splitting
and, if there does not then an index for V .

Proof. Let ` be the least number such that π(Ψ ◦ Θ, η) ≤ ε/2 for all η of length
`. If the measure of all reals which Θ-map to extensions of any ρ ⊃ σ such that
|Ψρ| ≥ ` is > 2ε then there exists a Ψ-splitting (U, V ) above σ such that π(Θ, U)
and π(Θ, V ) are at least ε/2. Otherwise we can let V be the c.e. set of strings τ
such that Θτ extends σ which Ψ-maps to a string of length ≥ `. Finally note that
we only ask Σ0

1 questions, so the above can be done computably in ∅′. �

4.2.3. Measure density for Turing reductions. The observations in this section are
mainly to be applied in the methodology that is described in Section 5.

Lemma 4.8 (Ψ-totality). Let Ψ be a Turing functional, c ∈ ω and let E be a set
of tuples (σ, `) such that the strings occurring in the tuples form a prefix-free set
and for each (σ, `) ∈ E:

(4.3) µ({X | σ ⊆ ΨX ∧ |ΨX | ≥ `}) < 2−c · π(Ψ, σ).

Then the class of reals X such that a prefix of ΨX occurs in some tuple (σ, `) ∈ E
and |ΨX | ≥ `, has measure < 2−c.

Proof. For each (σ, `) ∈ E consider the set Mσ of reals X such that ΨX ⊇ σ. The
sets Mσ are pairwise disjoint. Moreover, the proportion of the reals X in Mσ with
|ΨX | ≥ ` is < 2−c. Therefore the class of reals X such that a prefix of ΨX occurs
in some tuple (σ, `) ∈ E and |ΨX | ≥ `, has measure < 2−c. �

Finally we give an analogue of the Lebesgue density theorem which refers to a
Turing functional Θ and a set of strings V . It says that if F consists of the reals X
for which ΘX is total and does not have a prefix in V , then for almost all X ∈ F the
proportion of the reals that Θ-map to ΘX �n which are in F tends to 1 as n→∞.

Lemma 4.9 (Θ-density). Suppose Θ is a Turing functional, V is a set of finite
strings and let FV be the set of reals X such that ΘX is total and does not extend
any strings in V . Then:

(4.4) lim
n

µ{X1 ∈ FV | ΘX1 ⊇ ΘX0 �n}
π(ΘX0 �n)

= 1 for almost all X0 ∈ FV ,

where π(σ) = π(Θ, σ) and ‘almost all’ means ‘all but a set of measure zero’.

Proof. Without loss of generality we may assume that V is prefix-free. For each
ε ∈ (0, 1) define:

(4.5) Gε = {X0 ∈ FV | lim inf
n

µ{X1 ∈ FV | ΘX1 ⊇ ΘX0 �n}
π(ΘX0 �n)

< 1− ε}.
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It suffices to show that for each ε ∈ (0, 1) there exists a sequence Q0 ⊇ Q1 ⊇ . . . of
open sets such that Gε ⊆ Qi and µ(Qi+1) ≤ µ(Qi) · (1− ε) for all i ∈ ω. Indeed, in
that case we have limi µ(Qi) = 0 and so the reals X0 in FV that fail (4.4) form a
null set. For each i we will define a set of string/number tuples Ei and define:

Qi = {X | ΘX has a prefix in a tuple of Ei}.

Let E be the set of tuples (σ, `) such that ` > |σ|, π(σ) > 0 and the proportion of
the reals X with ΘX ⊇ σ, such that either ΘX � ` is undefined or has a prefix in
V , is ≥ ε. We order the strings first by length and then lexicographically. Also, we
order E lexicographically, i.e. (σ,m) < (σ′, n) when either σ < σ′, or σ = σ′ and
m < n.

At step i = 0 we define a sequence of tuples by recursion: let (σj , `j) be the least
tuple in E such that σj is incompatible with σk for k < j. Let E0 be the collection
of all these tuples. At step i+ 1 do the following for each string σ which does not
have a prefix in V and such that |σ| = ` and σ′ ⊆ σ for some (σ′, `) ∈ Ei. Define
a sequence of tuples by recursion, letting (σ′j , `

′
j) be the least tuple in E such that

σ′j extends σ and is incompatible with σ′k for k < j. Let Ei+1 be the set of all
tuples which occur in any sequence defined at step i+ 1 (i.e. take the union of all
the sequences produced for the various σ such that σ does not have a prefix in V ,
|σ| = ` and σ′ ⊆ σ for some (σ′, `) ∈ Ei).

It follows by induction on i that the set of all strings which are in any tuple in
Ei is prefix-free, and that Qi ⊇ Qi+1. By the definition of Q0 and the minimality
of the strings that are enumerated into E0 we have Gε ⊆ Q0. For the same reason,
at each step i + 1 we have Qi − Qi+1 ⊆ 2ω − Gε. Hence Gε ⊆ Qi for all i ∈ ω. It
remains to show that µ(Qi+1) ≤ µ(Qi) · (1 − ε) for all i ∈ ω. In order to see this
note that, at stage i+ 1, we consider in effect a partition of Qi into sets Qσ where
σ occurs in a tuple in Ei and Qσ = {X | ΘX ⊇ σ}. According to the definition of
E, we only enumerate into Qi+1 at most 1− ε of the measure in each Qσ. �

4.3. Example: bounding a 1-generic degree. In this section we demonstrate
how to apply the methodology that was discussed in Section 4 by giving a simple
proof of a result from [Kur81] and [Kau91] that says that every 2-random degree
bounds a 1-generic degree. This result is also discussed in [DH10, Section 8.21].
This is the only level of genericity and randomness where the two notions interact
in a non-trivial manner. In fact, it follows from the results in this paper that every
2-generic degree forms a minimal pair with every 2-random degree.

Theorem 4.10 (Kurtz [Kur81] and Kautz [Kau91]). Every 2-random degree bounds
a 1-generic degree.

Proof. Let {We}e∈ω be an effective enumeration of all c.e. sets of finite binary
strings. It suffices to define a computable procedure which takes k ∈ ω as input
and returns the index of a ∅′-c.e. set of strings W with µ(W ) < 2−k and a functional
Φ such that ΦX is total and the following condition is met for all e ∈ ω and each
X which does not have a prefix in W :

Re : ∃n
[
ΦX �n∈We ∨ ∀σ ∈We, ΦX �n 6⊆ σ

]
.

Construction. At stage s+ 1 ∈ 2ω[e] + 1, if e > k + 1 do the following.
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(1) For each e-marker that has not acted and sits on a string τ , if Φτ [s] = σ
and there is a proper extension ρ of σ in We[s] then enumerate the axiom
〈τ ∗ 0e, ρ〉 for Φ, and declare that the marker has acted.

(2) Let ` be large. For each string τ of length ` check to see whether there is
some τ ′ ⊂ τ such that either (a) an e-marker sits on τ ′ and has not acted,
(b) an e- marker sits on τ ′ that has acted and τ ′ ∗ 0e ⊆ τ , or (c) for some
i < e an i-marker sits on τ ′ that has not acted and τ ′ ∗ 0i ⊆ τ . If none of
these conditions hold then place an e-marker on τ and remove any j-marker
that sits on any initial segment of τ for j > e.

At stage s+1 ∈ 2ω let ` be large and for each τ of length ` enumerate the axiom
〈τ,Φτ [s] ∗ 0〉 for Φ unless there is some e ∈ ω and a string τ ′ with an e-marker
sitting on it which has not acted, such that τ ′ ∗ 0e ⊆ τ .

Verification. We start by noting that the axioms enumerated for Φ are consistent.
Indeed, the only point at which an inconsistency could possibly occur is during step
(1) of an odd stage s+1. During this step, when we enumerate an axiom 〈τ ∗0e, ρ〉,
ρ extends Φτ [s], and we have not enumerated any axioms with respect to proper
extensions of τ which are compatible with τ ∗ 0e.

We consider versions of the outcomes (1)–(3), as described in Section 4, which
are modified to consider only e > k + 1 in the obvious way. For each e > k + 1 let
Ve be the set of strings on which we place a permanent e-marker that never acts.
When such a marker is placed on τ the construction will cease placing e-markers on
extensions of τ , and Ve is therefore prefix-free. If we let V =

⋃
e>k+1{τ ∗0e | τ ∈ Ve}

then µ(V ) ≤ 2−k−1 and V is c.e. in ∅′. This deals with the reals for which outcome
(3) occurs.

Let Qe be the set of X such that we place infinitely many e-markers on initial
segments of X, but finitely many d-markers for each d < e. If X ∈ Qe then all but
finitely many of the e-markers placed on initial segments of X will be permanent
and will act at some stage. We claim that the measure of Qe is 0. If it was positive,
then by the Lebesgue density theorem there would be some X ∈ Qe such that the
relative measure of Qe above X �n tends to 1 as n → ∞. This contradicts the
fact that every time a permanent e-marker placed on X �n acts, a fixed proportion
(namely 1/2e) of the reals extending X �n will not receive an e-marker again, and
so will not be in Qe. Since ∪eQe is Σ0

3 and has measure 0, we can compute the
index of a ∅′-c.e. set of strings S such that µ(S) < 2−k−1 and every real in ∪eQe
has a prefix in S. If we set W = V ∪ S then µ(W ) < 2−k and, for every real that
does not have a prefix in W , outcome (1) occurs.

Now suppose that outcome (1) occurs for X. This means that, for each e > k+1
there is some longest τ ⊂ X on which a permanent emarker is placed. There are two
possibilities to consider. The first possibility is that τ ∗ 0e ⊂ X and the permanent
marker placed on τ acts. Then Re is satisfied with respect to X, and we Φ-map
τ ∗ 0e to a proper extension of Φτ . The second possibility is that the permanent
marker on τ does not act. Then there are no proper extensions of Φτ in We. At
the stage s+ 1 after placing the marker on τ we enumerate an axiom 〈τ ′,Φτ [s] ∗ 0〉
for some τ ′ ⊂ X. Thus, in either case Re is satisfied with respect to X, and we
may also conclude that ΦX is total. �

Theorem 4.10 says that 2-randomness is sufficient to guarantee bounding a 1-
generic. Throughout this paper we will be concerned in establishing optimal results,
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i.e. the ‘weakest’ level of randomness or genericity that is sufficient to guarantee
some property. In this case, it is not difficult to deal with weak 2-randomness.

Proposition 4.11. There is a weakly 2-random degree which does not bound any
1-generic degrees.

Proof. This is a consequence of the following facts: (i) hyperimmune-free 1-random
degrees are weakly 2-random, (ii) the hyperimmune-free degrees are downward
closed and (iii) 1-generic degrees are not hyperimmune-free. �

We do not know, however, whether every Demuth random bounds a 1- generic.

5. All non-zero degrees bounded by a sufficiently random degree

Many degree-theoretic properties P that hold for all sufficiently random degrees
also hold for any non-zero degree that is bounded by a sufficiently random degree.
In this section we show how the type of construction discussed in Section 4.1, which
proves that a property P holds for all sufficiently random degrees, can be modified
to show that P holds for all non-zero degrees which are bounded by a sufficiently
random degree. Typically, ‘sufficient randomness’ turns out to be 2-randomness.

5.1. Methodology. As in Section 4.1 we break P into a countable list {Re}e∈ω
of simpler requirements. Given a special functional Θ we look to show that P is
satisfied by all sets computed by a 2-random via Θ. We have an atomic strategy
which takes a number e and a string σ as inputs and satisfies Re for a certain pro-
portion of the reals that Θ-map to extensions of σ, where this proportion depends
on e and not on σ. Given k ∈ ω we describe how to assemble a construction (from
the atomic strategies) which produces a set of strings W with µ(W ) < 2−k and
ensures that all requirements are met for all reals that do not have a prefix in W .

So, to clarify, the construction is similar to the one discussed in Section 4.1,
only this time the e-markers are to be placed on initial segments of the images ΘX

rather than the arguments X (whose initial segments may possibly be members of
W ). As a result of this modification, an e-marker that is placed on some string σ
will strive to achieve the satisfaction of Re for a fixed proportion of the reals that
Θ-map to σ, rather than a proportion of the reals extending σ.

The outcomes of the construction refer to reals Y in the image space for Θ, and
are the same (1), (2), (3) as listed in Section 4.1. A density argument (based on
Lemma 4.9) suffices to show that the reals that Θ-map to reals Y with infinitary
outcome (2) form a null Σ0

3 class. A simple measure counting argument will show
that the reals X for which ΘX is total and has outcome (3), are contained in an
open set of measure at most 2−k−1. This way a set of strings W of measure < 2−k

can be produced such that for every real X without a prefix in W , if ΘX is total
then it has outcome (1) and therefore satisfies P .

We give some details concerning the standard features of such a construction
and its verification. Let us recall what took place in the proof of Theorem 4.10,
since this serves as useful example. When an e-marker was placed on a string τ ,
what we did in effect was to reserve a proportion 2−e of the total measure above
τ . For the strings extending τ ∗ 0e we stopped enumerating axioms for Φ, and we
waited for a chance to satisfy the genericity requirement directly for these strings.
This proportion 2−e then played two vital roles:



THE TYPICAL TURING DEGREE 17

(a) We were able to consider the prefix-free set of strings on which permanent
e-markers are placed but do not act, and were able to conclude that the
measure permanently reserved by these markers is at most 2−e.

(b) We were able to conclude that, when an e-marker placed on τ acts, it
permanently satisfies the corresponding requirement for a proportion 2−e

of the total measure above τ , so that the Lebesgue density theorem can
be applied to show that the set of reals for which outcome (2) occurs is of
measure 0.

Now we look to achieve something very similar. We want conditions very similar to
(a) and (b) to hold, but now, rather than considering proportions of the measure
above the string on which a marker is placed, we must consider proportions of the
measure that Θ-maps there. The first important point to note is that we do not
actually require the proportions involved in (a) and (b) to be the same. If we have
that some modified version of condition (a) applies, where the proportion involved
is 2−e, then we shall be happy if condition (b) applies for a smaller proportion—so
long as this proportion depends only on e and not on σ we shall be able to apply
Lemma 4.9 as desired.

We proceed as follows. Let us write π(σ) instead of π(Θ, σ), and let σ 7→ qσ be
a computable map from strings to numbers such that:

(5.1)
∑
σ

2−qσ < 2−k−3, where σ ranges over all strings.

When an e-marker is placed on σ, it is given a corresponding parameter mσ, which
is chosen to be large. It then places submarkers on all extensions of σ of length mσ.
The atomic strategy for the satisfaction of Re that we assume given, will be played
individually by these submarkers. Each e-marker works with an approximation
π∗(σ) to π(σ) which is initially the current value π(σ) at the stage when the marker
is placed, and is updated when necessary, so as to maintain the condition that (5.2)
holds at stages s where the value of π∗(σ) is used by the construction:

(5.2) π(σ)[s] < 2π∗(σ)[s].

Each update causes an injury of the e-marker and causes it to remove its previous
submarkers (and all other markers and submarkers placed on proper extensions of
σ) and redefine mσ. Clearly each marker can only be injured finitely many times
in this way. This injury is the reason that the atomic strategy is implemented by
the submarkers, rather than by the marker itself.

An e-marker that sits on a string σ is initially inactive. An inactive marker may
only be activated by the construction at a stage s0 if it has found a suitable set of
strings Pσ(σ′) above each string σ′ on which it has placed a submarker. We then
let Pσ be the union of all the various Pσ(σ′), as σ′ ranges over the strings on which
it has placed submarkers. Here suitable means that the strings in Pσ(σ′) are all
those extending σ′ of some length `σ > mσ and furthermore, for s = s0:

(5.3) π(Pσ)[s] ≥ 2−k−2 · π∗(σ)[s] and ∀ρ ∈ Pσ(σ′)[π(ρ)[s] < 2−qσ′ ].

Once a marker becomes active it remains so until injured or removed.
Let us consider first what it means if a permanent marker never becomes active.

Proposition 4.5 ensures that for all sufficiently large potential values of `σ the second
inequality of (5.3) will eventually always hold. Since the set of strings on which
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submarker σ′
marker σ

length mσ

length `σ

Pσ(σ′)

Fσ(σ′)

Figure 1. A marker and its submarkers

we place permanent markers which do not become active will be a prefix-free set,
Lemma 4.8 then tells us that we can cover the set of all X such that ΘX is total
and extends a string in this prefix-free set, with an open set of measure < 2−k−2.

So now suppose that the marker becomes active at some stage s0. The second
condition of (5.3) allows us to consider a subset Fσ(σ′) of each Pσ(σ′) such that for
s = s0:

(5.4) 0 ≤ π(Fσ(σ′))[s]− 2−e · π(Pσ(σ′))[s] < 2−qσ′ .

In other words, the measure mapping to Fσ(σ′) is a good approximation to a 2−e

slice of the measure mapping to Pσ(σ′). This immediately gives us, for s = s0:

(5.5) π(Fσ(σ′))[s] < 2−e · π(σ′)[s] + 2−qσ′ .

So (5.5) gives us a modified version of condition (a) which holds at stage s0,
since the submarker on σ′ will try to satisfy its requirement directly on the reals
that Θ-map to extensions of the strings in Fσ(σ′) by reserving this measure. In
fact, it does just a little bit better than this, since the requirement only requires
any conditions to be satisfied in the case that ΘX is total. Take the union of all the
Fσ(σ′) as σ′ ranges over the strings on which submarkers are placed by the marker
on σ, and then replace each string in Fσ(σ′) with the shortest initial segment of it
which is long enough to be incompatible with all strings in Pσ(σ′) − Fσ(σ′). Call
this set Dσ. If the marker placed on σ is permanent, then for any X such that
ΘX extends a string in Dσ, we shall not have to place further e-markers on initial
segments of ΘX . It is therefore the strings which Θ-map to extensions of strings
in this set Dσ with which we have to work to get our modified version of condition
(b). By the first inequality of (5.3) and the first inequality of (5.4), we get that for
s = s0:

(5.6) 2−k−2−e · π∗(σ)[s] ≤ π(Dσ)[s].

It follows from 5.2 in other words, that the measure of the reals which Θ-map to
extensions of strings in Dσ is more than a certain fixed proportion of π(σ). For
s = s0 we have our modified version of condition (b):

(5.7) 2−k−3−e · π(σ)[s] ≤ π(Dσ)[s].

Now what we have to do is to maintain (5.5) and (5.7) at stages s > s0. Ac-
tually, maintaining (5.7) does not initially seem very problematic. While π(Dσ)[s]
may increase as s increases, (5.2) guarantees that π(σ)[s] will not increase by any
problematic amount—or rather that if it does, then this will constitute one of only
finitely many injuries to the marker on σ. Maintaining (5.5), however, requires us
to do a little bit of work. It may be the case that as s increases, π(Fσ(σ′)) increases
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for some σ′ on which a submarker has been placed, so that (5.5) no longer holds.
In this case, we wish to remove some strings from Fσ(σ′). We can immediately do
this if the second condition of (5.3) still holds for all ρ ∈ Fσ(σ′). In this case we
can remove strings from Fσ(σ′) so that:

(5.8) 2−e · π(σ′)[s] ≤ π(Fσ(σ′))[s] < 2−e · π(σ′)[s] + 2−qσ′ .

This action may remove strings from Dσ but it does not threaten satisfaction
of (5.7), since we still have that π(Fσ(σ′))[s] ≥ 2−e · π(σ′)[s] ≥ 2−e · π(σ′)[s0].
We still have to deal, however, with the case that the second condition of (5.3) no
longer holds for all ρ ∈ Fσ(σ′). In this case, we simply choose ` to be large, and
replace each string ρ ∈ Fσ(σ′) with all extensions of ρ of length `, to form a new
Fσ(σ′). This does not threaten satisfaction of (5.7) because it does not change Dσ.
Moreover, Proposition 4.5 ensures that we will only have to redefine Fσ(σ′) in this
way finitely many times.

These considerations allow for an argument along the lines of Section 4.1. The
basic features of the methodology, such as the measure counting which deals with
outcome (3) and the density argument which deals with outcome (2), remain es-
sentially the same. In constructions of this form, the submarkers are primarily
responsible for ensuring that the requirements are met. It is the submarkers that
can act. The markers themselves can only change between being inactive and active.

5.2. Example: downward density for 1-generic degrees. In this section we
prove Theorem 5.1 which says that every non-zero degree that is bounded by a 2-
random degree a bounds a 1-generic degree. This is a strengthening of a result from
[Kur81] (also discussed in [DH10, Section 8.21]), which asserted that the 1-generic
degrees are downward dense in almost all degrees (i.e. the class of degrees a with
the above property has measure 1).

Theorem 5.1. Every non-zero degree that is bounded by a 2-random degree bounds
a 1- generic degree.

Proof. Let {We}e∈ω be an effective enumeration of all c.e. sets of strings and
suppose that B is 2-random and computes an incomputable set A via the Turing
reduction Θ. By Lemma 4.3 we may assume that Θ is special. It suffices to define a
computable procedure which takes as input k ∈ ω and returns the index of a ∅′-c.e.
set of strings W with µ(W ) < 2−k and a functional Φ such that, if ΘX = Y and X
does not have a prefix in W , then ΦY is total and for all e:

Re : ∃n
[
ΦY �n∈We ∨ ∀η ∈We, ΦY �n 6⊆ η

]
.

We follow the methodology and notation of Section 5.

Construction. At Stage 0 place a k+4-marker on the empty string.
At stage s + 1 ∈ 2ω[e], if e > k + 3 then for each e-marker that sits on a string

σ, proceed according to the first case below that applies.

(1) If (5.2) does not hold, let π∗(σ) = π(σ)[s], declare that the e-marker on σ
is injured and is inactive. Remove any markers and submarkers that sit on
proper extensions of σ. Let mσ be large and place a submarker on each
extension of σ of length mσ.
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(2) Otherwise, if the marker is inactive and (5.3) holds for some set of strings
Pσ(σ′) for each submarker σ′, declare that the marker is active, and define
Fσ(σ′) for each submarker σ′ to be a subset of Pσ(σ′) such that (5.4)
holds. Moreover for each submarker σ′ and for each extension ρ of σ′ in
Pσ(σ′)− Fσ(σ′), define Φρ to be ∪ρ′⊂ρΦρ

′
concatenated with 0.

(3) Otherwise, for each submarker σ′ which has not acted, such that there is

an extension η of Φσ
′
[s] in We[s], define Φρ to be the least such η for all

ρ ∈ Fσ(σ′). In this case, remove all markers and submarkers that sit on
proper extensions of σ′ and declare that the submarker has acted. For each
submarker σ′ which has not acted, such that there is no extension η of Φσ

′
[s]

in We[s] and such that (5.5) no longer holds, there are two possibilities to
consider. If the second condition of (5.3) still holds for all ρ ∈ Fσ(σ′), then
remove strings from Fσ(σ′) so that (5.8) holds. If ρ is removed from Fσ(σ′)

then define Φρ to be ∪ρ′⊂ρΦρ
′

concatenated with 0. If the second condition
of (5.3) does not hold then choose ` to be large, and replace each string
ρ ∈ Fσ(σ′) with all extensions of ρ of length `, to form a new Fσ(σ′).

At stage s + 1 ∈ 2ω + 1 let ` be large and do the following for each string ρ of
length `, provided that if σ is the longest prefix of it on which a marker is placed,
then this marker is active. Let σ′ be the string of length mσ which is an initial
segment of ρ, and let e be the index of the marker placed on σ. If the submarker
on σ′ has not acted then put an (e + 1)-marker on ρ, unless ρ extends a string
in Fσ(σ′). If the submarker on σ′ has acted, then put an e + 1 or e marker on ρ
depending on whether it has a prefix in Fσ(σ′) or not (respectively).

Verification. First we show that the axioms enumerated for Φ are consistent. The
only steps of the construction at which we enumerate axioms for Φ are in clauses
(2) and (3) of the even stages. Consider first the case that (2) applies at stage s.
Then, prior to this stage, we have not enumerated any axioms for Φ with respect
to strings extending the submarkers (since whenever the marker is injured because
clause (1) applies we redefine mσ to be large). The axioms enumerated at this
point are therefore unproblematic. Consider next the case that (3) applies at stage
s. For each ρ ∈ Fσ(σ′) for which we enumerate an axiom, this string is mapped to

an extension of Φσ
′
[s], and we have not previously enumerated axioms with respect

to proper extensions of σ′ which are compatible with ρ.
Let T0 be the set of strings σ on which we place a permanent marker that is

always inactive after its last injury. No markers are placed above inactive markers,
and upon every injury through clause (1) a marker removes all markers placed on
proper extensions. The set T0 is therefore prefix-free. Moreover, for each σ ∈ T0
we have that (4.3) holds for c = k + 2 and for all sufficiently large `. By Lemma
4.8 we can find an index of a ∅′-c.e. set of strings V0 such that µ(V0) < 2−k−2 and,
if ΘX is total and has a prefix in T0, then X has a prefix in V0.

For each e > k + 3 let Te be the set of strings on which we place permanent
submarkers which do not act, which are placed by permanent e-markers which are
eventually always active. If a permanent e-marker is placed on σ, which places
a permanent submarker on σ′ which does not act, then the construction will not
place e-markers on extensions of σ′. Therefore each Te is a prefix-free set. Let Je
be the union of all Fσ(σ′) such that σ′ ∈ Te and the submarker on σ′ is placed by
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a marker on σ. Since we maintain (5.5) it follows that:

π(Je) <
∑
σ′∈Te

2−qσ′ +
∑
σ′∈Te

2−e · π(σ′).

Summing over all e it follows that we can find an index for a ∅′-c.e. set of strings
V1, such that µ(V1) < 2−k−2 and any X such that ΘX extends a string in some Je
has an extension in V1.

So far we have dealt with the reals for which outcome (3) occurs. Next we wish
to show:

(5.9)
The class of reals X such that ΘX = Y and for some e there are
infinitely many permanent e-markers that are placed on initial
segments of Y , has measure zero.

For a contradiction, assume that e > k + 3 and that the class of reals X such that
ΘX = Y and there are infinitely many permanent e-markers that are placed on
initial segments of Y , is of positive measure. Let De be the union of all the final
values Dσ such that a permanent e-marker is placed on σ. Now consider the set of
X such that ΘX is total and does not extend any string in De. This is a superset
of the set of reals X such that ΘX = Y and there are infinitely many permanent
e-markers that are placed on initial segments of Y . Applying Lemma 4.9 to Θ
and De we conclude that there exists X such that for any ε > 0, there exists a
permanent e-marker placed on σ ⊂ ΘX which is eventually active, for which the
proportion of reals Θ-mapped to extensions of σ which do not map to extensions
of any string in Dσ, is < ε. This contradicts (5.7). Since the class of (5.9) is a null
Σ0

3 class, there is a ∅′-c.e. set of strings S such that µ(S) < 2−k−1 and every real
in the class has a prefix in S. Moreover, an index for S can be computed from an
index for the given Σ0

3 class. We let W = V0 ∪ V1 ∪ S.
Finally then, suppose that ΘX = Y is total, and that for every e > k + 3 there

is a permanent e marker placed on some initial segment of Y . Let σ be the longest
initial segment of Y on which a permanent e-marker is placed. This e-marker will
become active. Let σ′ be the initial segment of Y on which the marker on σ places
a permanent submarker. If Y extends a string in Fσ(σ′) then the submarker acts,
and in doing so properly extends ΦY and ensures that Re is satisfied with respect to
Y . Otherwise Y does not extend a string in Fσ(σ′). In this case Re is automatically

satisfied with respect to Y because there do not exist any extensions of Φσ
′

in We.
The length of ΦY is increased the last time that σ is declared active. �

6. Bounding a minimal degree

First of all let us consider some background. Cooper showed that all high degrees
below 0′ bound minimal degrees, and this was extended by Jockusch [Joc77] who
used the recursion theorem in order to show that, in fact, all degrees which are
GH1 bound minimal degrees. This was shown to be sharp by Lerman [Ler86], who
constructed a high2 degree which does not bound any minimal degrees. Next let
us consider what happens when we consider Baire category.

6.1. Category. As discussed in the introduction, the degrees which do not bound
minimals form a comeager class [Mar67], and the level of genericity that guarantees
this property turns out to be 2-genericity [Yat76, Joc80]. On the other hand Chong
and Downey [CD90] and (independently) Kumabe [Kum90] constructed a 1-generic
degree which bounds a minimal degree. As a point of interest, one can also show
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that there are non-zero hyperimmune-free degrees bounded by 1-generics [Lew07,
DY06], (as well as hyperimmune-free degrees that are not bounded by any 1-generic
degree).

6.2. Measure. A sufficiently random degree does not bound minimal degrees. This
follows from a paper by Paris [Par77], where it is shown that the degrees with
minimal predecessors form a class of measure 0. A substantial refinement of this
result was given by Kurtz [Kur81] (also see [DH10, Section 7.21.4]), who showed
that for almost all degrees a (i.e. all but a set of measure 0) if 0 < b ≤ a then
b bounds a 1-generic degree. In other words, for almost all degrees a the class
of 1-generic degrees is downward dense below a. Since 1-generic degrees are not
minimal (by [Joc80]) this implies Paris’ result. Both of these arguments, however,
were achieved by way of contradiction and do not allow a clear view of the level of
randomness that is required. In [DH10, Section 7.21.4, Footnote 15], for example,
the authors note that the precise level of randomness which guarantees Kurtz’s
result was not known. In Section 4.3 we answered this question by proving that
every non-zero degree bounded by a 2-random computes a 1-generic.

Corollary 6.1. If a degree is 2-random then it does not have minimal predecessors.

Proof. This is a consequence of Theorem 5.1, since 1-generic degrees cannot be
minimal. �

In the remainder of this section we show that these results are optimal. In other
words, 2-randomness cannot be replaced with any of the standard weaker forms of
randomness. It is not hard to show that there is a Demuth random degree which
bounds a minimal degree. By [Nie09, Theorem 3.6.25] there is a Demuth random
real which is ∆0

2. All 1-random degrees, and so all Demuth random degrees, are
fixed point free. Kučera’s technique of fixed point free permitting shows that all
fixed point free ∆0

2 degrees bound non-zero c.e. degrees. By [Yat70] every non-zero
c.e. degree bounds a minimal degree.

In order to show that there is a weakly 2-random degree which bounds a minimal
degree we will use the following characterization of weak 2-randomness.

(6.1) A 1-random real is weakly 2-random iff it forms a minimal pair with 0′.

This characterization was proved in [DNWY06] and was essentially based on a
theorem by Hirschfeldt and Miller on Σ0

3 null classes (see [DH10, Theorem 6.2.11]
or [Nie09, Theorem 5.3.16] for more details). As mentioned previously, in [Joc77]
it was shown that every generalized high degree bounds a minimal degree. Hence
to exhibit a weakly 2-random degree which bounds a minimal degree it suffices to
exhibit a generalized high weakly 2-random degree. Given (6.1) it suffices to show
that every Π0

1 class of positive measure has a member of generalized high degree
which forms a minimal pair with 0′. For more basis theorems of this type (involving
Π0

1 classes and degrees which form a minimal pair with 0′) we refer the reader to
[BDN11, Sections 2,3]. Note that this statement, which will be proved as Theorem
6.2, is not true for all Π0

1 classes with no computable paths. Indeed, it is well known
that there is such a class for which all members are generalized low ([Cen99]).

The proof of Theorem 6.2 uses a basic strategy for dealing with the minimal
pair requirements in Π0

1 classes (as in [BDN11, Section 2.1]) combined with the
method of Kučera [Kuč85] for coding information into the jump of a random set. A
detailed presentation of the latter can be found in [BDN11, Section 1.2]. Coding into
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random sets (or their jumps) is based on the following fact from Kučera [Kuč85].
Let {Pe}e∈ω be an effective enumeration of all Π0

1 classes. We say τ is Pe-extendible
if it has an infinite extension in Pe.

(6.2)

There exists a Π0
1 class P of positive measure and a computable function

g of two arguments such that, for all P -extendible strings τ and all e ∈ N,
if P ∩ Pe ∩ [τ ] 6= ∅ there exist at least two P ∩ Pe-extendible strings of
length g(|τ |, e) with common prefix τ .

Note that (6.2) also holds for every Π0
1 subclass of P in place of P . Moreover,

according to [Kuč85] the class P can be assumed to contain only 1-random reals
and may be chosen to have measure that is arbitrarily close to 1. As a consequence,
for each string τ , if P ∩ [τ ] is nonempty then it has positive measure.

Roughly speaking, constructing a random set A whose jump A′ has a certain
computational power, involves an oracle construction that looks like forcing with
Π0

1 classes, but typically involves injury amongst the Π0
1 conditions. In particular, a

sequence {Qs}s∈ω of Π0
1 classes of 1-random reals is defined in stages, along with a

monotone sequence {τs}s∈ω of strings (so that ultimately we can define A = ∪sτs)
but we do not always have Qs ⊇ Qs+1. The coding of a certain event (which is
Σ0

1 relative to the oracle used to run the construction) into A′ is associated with
a certain class Qs. Then the Qs′ for s′ > s are defined as subclasses of Qs and
the τs′ for s′ > s are extendible in Qs. If and when the aforementioned Σ0

1 event
occurs, however, the construction defines an initial segment of A in such a way as
to ensure A 6∈ Qs. This action codes the event into A′ and may cause injury to
lower priority requirements (whose satisfaction relied on a Π0

1 condition that may
no longer be valid). This intuitive description may be helpful in visualising the
proof of Theorem 6.2.

Theorem 6.2. Given a Π0
1 class P of positive measure there is A ∈ P which is

generalized high and forms a minimal pair with ∅′. Moreover A ≤T ∅′′.

Proof. The construction is a forcing argument with Π0
1 classes of positive measure,

in which we allow finite injury amongst the Π0
1 conditions (and the requirements

that these represent). The construction will proceed in stages, computably in ∅′′,
defining a Π0

1 class Qs and a string τs at stage s ∈ ω. We will have τs ⊂ τs+1 for
each s and will eventually define A = ∪sτs. However, we may have Qs 6⊇ Qs+1,
which indicates an injury that is caused by the coding of (A ⊕ ∅′)′ into A′. The
minimal pair requirements may be expressed as follows:

Re : If Ψ∅
′

e is total and incomputable then Ψ∅
′

e 6= ΨA
e .

Stages in 2ω[e] will be devoted to the satisfaction of Re. We may need to act
(finitely) many times for each Re due to the injuries to requirements that may
occur. Stages in 2ω + 1 will be devoted to coding (A⊕ ∅′)′ into A′. In particular,
stages in 2ω[e] + 1 are devoted to satisfying the requirement Ne that we code into
A′ whether or not e belongs to (A⊕∅′)′. By [Kuč85] we may assume that the given
class P is the same as the class of (6.2), with the additional properties mentioned
in the paragraph below it. Let τ0 = ∅, Q0 = P and consider the function g of (6.2).
For the purposes of this proof we assume that if n ∈ ω[e] then either n+ 1 ∈ ω[e+1]

or n+ 1 ∈ ω[0].
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Construction. At stage s + 1 ∈ 2ω[e] let js be an index for Qs. Let ρ0 and ρ1
be, respectively, the leftmost and rightmost extensions of τs which are extendible
in Qs and are of length g(|τs|, js). Check to see whether there exists n such that

Ψ∅
′

e (n) ↓= m and:

(6.3) Qs ∩ [ρ1] ∩ {X | ΨX
e (n) ↓6= m ∨ ΨX

e (n) ↑} 6= ∅.

If there is such n then consider the least one, set Qs+1 equal to the Π0
1 class of (6.3)

and define τs+1 = ρ1. Otherwise, let Qs+1 := Qs ∩ [ρ0] and define τs+1 = ρ0.
At stage s+ 1 ∈ 2ω[e] + 1 let js be an index for Qs.
We consider first the case that Q∗e and fe are undefined. In this case proceed

as follows. Let Q∗e = Qs and define fe by recursion: fe(0) = |τs| and fe(k + 1) =
g(fe(k), js). Also, let Qs+1 consist of all elements of Qs except those that extend
any string ρ which satisfies the following: there exists k ∈ ω and τ of length fe(k),
such that ρ is the leftmost extension of τ of length fe(k+ 1) which is extendible in
Qs. By the choice of g it follows that Qs+1 is a non-empty Π0

1 class. Also let τs+1

be the leftmost one-bit extension of τs which is extendible in Qs+1.
If Q∗e, fe are defined at stage s + 1, let t be the stage at which they were last

defined (i.e. the greatest stage ≤ s such that these values were undefined at the
beginning of the stage and were made defined according to the instructions for that
stage). If Ne acted after stage t or Ψτs⊕∅′

e [s] ↑, then let Qs+1 = Qs and let τs+1

be the leftmost one-bit extension of τs which is extendible in Qs. On the other
hand, if Ψτs⊕∅′

e [s] ↓, then let ρ be the least Qs-extendible extension of τs of length
in fe(ω) and define τs+1 to be the leftmost extension of ρ of length fe(|ρ|) which
is extendible in Q∗e. In the latter case define Qs+1 = Q∗e, declare that Ne has acted
at this stage and make Q∗j , fj undefined for all j > e. Note that when determining

the value of Ψτs⊕∅′
e [s], the construction uses the true initial segment of ∅′ of length

s, and not the result of enumerating ∅′ for s steps.

Verification. Let A = ∪sτs and note that A ∈ P . First, we show by induction on
e that each Ne acts finitely often (with Q∗e and fe eventually being permanently
defined). Suppose that this holds for all Nj , j < e. At the first stage s0 in 2ω[e] + 1
after the last action of some Nj , j < e the construction will define Q∗e and fe.
By the choice of s0 it follows that these values will never subsequently be made
undefined. Therefore after stage s0 requirement Ne can act at most once. This
concludes the induction step.

We show next that A satisfies all Re, e ∈ ω. Pick e ∈ ω and consider the least
stage s + 1 in 2ω[e] which is greater than all the stages at which some Nj acts for
j < e. Then A ∈ Qs+1 because we have Q∗j ⊆ Qs+1 for all j such that Nj acts in

later stages. If Qs+1 is defined according to (6.3) then clearly Ψ∅
′

e (n) 6= ΨA
e (n). If,

on the other hand, we define Qs+1 := Qs∩ [ρ0], this means that either Ψ∅
′

e is partial

or ΨX
e is total for all X ∈ Qs ∩ [ρ1] and agrees with Ψ∅

′

e . The latter condition

implies that Ψ∅
′

e is computable. In either case A satisfies Re.
It remains to show that (A⊕∅′)′ ≤T A′. First of all note that the construction is

not only computable in ∅′′ (so that A ≤T ∅′′) but also A⊕∅′. Indeed, the only place
where we used more than ∅′ in order to define τs+1 and Qs+1 was in stages 2ωe. In
these stages, in order to decide which clause we follow it suffices to calculate ρ0 and
ρ1 (using ∅′) and check which of these strings the set A extends. If it extends ρ1
then we defined Qs+1 according to (6.3); otherwise we followed the second clause.
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The algorithm which calculates (A ⊕ ∅′)′ from A′ is as follows. Given e ∈ ω
suppose that we have used the oracle for A′ to calculate (A⊕ ∅′)′ �e and the least
stage se after which no Nj , j < e acts. Let te > se be the least in 2ωe + 1. Then by
stage te the parameters Q∗e, fe have reached their eventual values. Moreover, using
A, ∅′, we may play back the construction up to this stage and calculate the final
values of Q∗e and fe. Then e ∈ (A ⊕ ∅′)′ if and only if Ne acts, and this happens
if and only if there exists k ∈ ω such that A �fe(k+1) is the leftmost extension of
A �fe(k) of length fe(k + 1) which is extendible in Q∗e. Once we have determined
whether Ne acts subsequent to stage te, this suffices to specify se+1. �

We can now obtain the desired result.

Corollary 6.3. There is a weakly 2-random degree which bounds a minimal degree.

Proof. This is a consequence of (6.1), combining the fact from Jockusch [Joc77]
that every GH1 degree bounds a minimal degree, and the application of Theorem
6.2 to a nonempty Π0

1 class which consists entirely of Martin-Löf random paths. �

Note that by Theorem 6.2, the degree of Corollary 6.3 may be chosen below 0′′.
Theorem 6.2 may be seen as a dramatic strengthening of the result proved in

[LMN07], that there exists a weakly 2-random set which is not generalized low.
It also gives a rather simple positive answer to [Nie09, Problem 3.6.9] which asks
whether all weakly 2-random sets are array computable, since array computable
sets A are generalized low2. This problem was first solved in [BDN11, Section 5]
where a much stronger result was shown using a different but more complicated
argument. It was shown there that for every function f there exists a function g
which is computable in a weakly 2-random set and which is not dominated by f .

7. Minimal covers

First of all we consider some background. The most well known theorem here
is the result of Jockusch that there exists a cone of minimal covers [Joc73]. This
follows from the fact that the corresponding Gale- Stewart game is determined. By
considering a pointed tree such that every path through the tree is a play of the
game according to the winning strategy, we conclude that either there is a cone of
minimal covers, or else a cone of degrees which are not minimal covers. Clearly
the latter is impossible. Next let us consider what happens when we consider Baire
category.

7.1. Category. The degrees that are minimal covers form a comeager set, so a
sufficiently generic degree is a minimal cover of some other degree. In fact, Kumabe
[Kum93a] showed that for each n > 1, every n-generic is a minimal cover of an n-
generic. The question left open here, is as to whether or not this result is sharp:

Question 1. Is every 1-generic degree a minimal cover?

At the time of writing it seems likely that Durrant and Lewis are able to answer
this question in the negative.

7.2. Measure. Not very much is known as regards the measure theoretic case here.
The basic question remains:

Question 2. What is the measure of the degrees which are a minimal cover?
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By [Kur81, Kau91] (also see [DH10, Section 8.21.3]) every 2-random degree is c.e.
relative to some degree strictly below it. Hence we may deduce that every 2-random
degree bounds a minimal cover. This follows by relativizing the proof from [Yat70]
that every non-zero c.e. degree bounds a minimal degree. Thus, if we are to believe
the heuristic principle, that properties satisfied by all highly random degrees are
likely to hold for all non-zero degrees below a highly random, then we would expect
the answer to Question 2 to be 1.

8. Strong minimal covers and the cupping property

A degree a is a strong minimal cover of another degree b < a if for all degrees
x < a we have x ≤ b. Notice that a strong minimal cover is not the join of two
lesser degrees. All the known examples of degrees that fail to have a strong minimal
cover satisfy the cupping property. A degree a is said to have this property if for all
c > a there exists b < c such that a ∨ b = c. Clearly, a degree which has a strong
minimal cover fails to satisfy the cupping property. However it is not known if the
converse holds.

8.1. Category. It is important to distinguish between the degrees that are a strong
minimal cover and the degrees which have a strong minimal cover. The strong
minimal covers form a meager class: if A⊕B is 1-generic then the Turing degrees
of A and B are strictly less than the degree of A ⊕ B . Hence strong minimal
covers are not 1-generic. On the other hand, the degrees which satisfy the cupping
property form a comeager class, and so the degrees which have a strong minimal
cover also form a meager class. In fact, Jockusch [Joc80, Section 6] showed that
every 2-generic degree has the cupping property and thus fails to have a strong
minimal cover. This can easily be extended to the weakly 2- generics, by showing
that all weakly 2-generics are a.n.r.8, since it was shown in [DJS96] that all a.n.r.
degrees satisfy the cupping property. In order to show that every weakly 2-generic
set A is a.n.r., consider the function gA which specifies the number of consecutive
0s in the obvious way, so that if

A = 11001111000011 · · ·
then gA(0) = 2 and gA(1) = 4, for example. Given f ≤T ∅′ (we do not require
f ≤wtt ∅′), let h ≤T ∅′ be a function which on input σ outputs τ ⊃ σ with
gB(|σ|) > f(|σ|) for all B ⊃ τ . For every l, let Vl = {h(σ) : |σ| > l}. Each Vl is
dense, so A must have an initial segment in each Vl. Thus gA is not dominated by
f .

On the other hand, Kumabe [Kum00] constructed a 1-generic degree with a
strong minimal cover.

8.2. Measure. The strong minimal covers form a null class. Indeed, if A ⊕ B is
1-random then the Turing degrees of A and B are strictly less than the degree of
A⊕B . Hence strong minimal covers are not 1-random. We shall show in Section
9 that, in fact, every non-zero degree bounded by a 2-random satisfies the join
property, and this suffices to show that no degree bounded by a 2-random is a
strong minimal cover. On the other hand, the measure of the degrees which have
a strong minimal cover is 1. Barmpalias and Lewis showed in [BL11] that every

8Recall that A is array non-recursive (a.n.r.) if, for every f ≤wtt ∅′ there exists g ≤T A which
is not dominated by f .
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2-random degree has a strong minimal cover, and so fails to satisfy the cupping
property. In the same paper we pointed out that this result fails if 2-randomness
is replaced with weak 2-randomness.

Theorem 8.1. Every degree that is bounded by a 2-random degree has a strong
minimal cover. Hence no such degree has the cupping property.

Proof. We assume that the reader is familiar with the proof described in [BL11]
and describe only the modifications required to give the stronger result. Recall that
T ⊆ 2<ω is perfect if it is non-empty and, for all τ ∈ T , there exist incompatible
strings τ0, τ1 which extend τ and belong to T . Our main task in the proof of [BL11]
is to show that there exists f ≤T ∅′ such that, for any j, n ∈ ω, f(j, n) = e which
satisfies:

• µ(W ∅
′

e ) < 2−n;

• if X /∈ JW ∅
′

e K and X computes T which is perfect via Ψj , then it computes
a perfect pointed T ′ ⊆ T .

Here W ∅
′

e is the eth set of strings which is c.e. relative to ∅′. In order to specify W ∅
′

e

we consider a computable construction which enumerates axioms for two functionals
Φ and Ξ. The idea is that, if X /∈ JW ∅

′

e K and X computes T which is perfect via
Ψj , then ΞX will be some perfect T ′ ⊆ T and, for all Y which are paths through
T ′, ΦY = X. During the course of constructing Φ and Ξ, we consider various sets
S of finite strings τ for which Ψτ

j is of at least a certain length. Then we enumerate
axioms for Φ and Ξ in such a way that, for a high proportion of the strings in S,
Ξτ is an appropriate subtree T ′ ⊆ Ψτ

j and, for all σ ∈ Ξτ , Φσ is an initial segment
of τ of appropriate length. During this process it may be that τ, τ ′ ∈ S and τ
is incompatible with τ ′ but Ψτ

j = Ψτ ′

j . In this case we might define Ξτ and Ξτ
′

differently. The small modification required in order to give the stronger result
is simply to remove this possibility. Now the idea is that if X /∈ JW ∅

′

e K and X
computes T which is perfect via Ψj , then ΞT will be some perfect T ′ ⊆ T and, for

all Y which are paths through T ′, ΦY = T . Now when Ψτ
j = Ψτ ′

j , it is this single
value which we must consider as the oracle input for Ξ, rather than the two values
τ and τ ′ as previously. There is no longer the possibility of mapping to two distinct
values. This does not cause any problems, because now we are only required to
ensure that, if X doesn’t have any initial segment in W ∅

′

e and ΨX
j = T is perfect,

then for all Y which are paths through ΞT , ΦY = T , i.e. it only the value T that
Y must compute rather than the various X such that ΨX

j = T , so there is no need
to map to two distinct values anyway. �

The following fact was first obtained in [NST05, Theorem 3.14 and Remark 3.15]
via a direct argument.

Corollary 8.2 (Nies, Stephan and Terwijn [NST05]). Every 2-random degree forms
a minimal pair with every 2-generic degree.

Proof. As mentioned previously, Jockusch showed that all 2-generics satisfy the
cupping property. Martin [Mar67] showed that, if a is n-generic and 0 < b < a
then b bounds an n-generic. Since the degrees which satisfy the cupping property
are upward closed, it follows that all non-zero degrees below a 2-generic satisfy the
cupping property and are therefore not bounded by a 2-random. �
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9. The join property

A degree a satisfies the join property if for every non-zero degree b < a there
exists c < a such that b ∨ c = a. The strongest positive result here [DGLM11] is
that all non-GL2 degrees satisfy the join property. The degrees which satisfy the
join property, however, are not upward closed, and it remains open as to whether
0′ can be defined as the least degree such that all degrees above satisfy the join
property.

9.1. Category. The degrees which satisfy the join property form a comeager class.
Indeed, Jockusch [Joc80, Section 6] showed that every 2-generic degree satisfies the
join property. He also showed that every degree that is bounded by a 2-generic
degree satisfies the join property. In this section we show that every 1-generic
degree has the join property. The coding that we employ is based on the classic
and elegant method that was used in [PR81] for the proof that 0′ has the join
property.

Theorem 9.1. Every 1-generic degree satisfies the join property.

Proof. We suppose we are given A which is 1-generic and also an incomputable
set B <T A. We may suppose that B is not c.e., since anyway B ⊕ B̄ is not c.e.
when B is incomputable, and is of the same degree as B. We wish to construct
C <T A such that A ≤T B ⊕C. In order to do this we suppose given an arbitrary
set X and we build CX . For some X we will have that CX is a partial function,
but CA will be total and will be the required joining partner for B.

Let Ψ be such that ΨA = B, and assume that this functional satisfies all of the
conventions satisfied by any Ψj as specified in Section 2. We also assume that, for
any ρ and any n, if Ψρ(n) ↓ then Ψρ(n) ∈ {0, 1}. Let σm = 0m1. Let ψ(X;n) be
the use of the computation ΨX(n) (so that if ΨX(n) ↑ then ψ(X;n) ↑). We define
a function fX , which may be partial. For any n, if ψ(X;n) ↑ then let fX(n) be
undefined, and otherwise let ρ be the initial segment of X of length ψ(X;n). If
there exists m such that ρ ∗ σm ⊂ X then let fX(n) = |ρ ∗ σm|.

We consider given some fixed effective splitting search procedure which enumer-
ates all unordered pairs {ρ0, ρ1} such that ρ0 and ρ1 are Ψ-splitting but there does
not exist any ρ2 such that either ρ2 ⊂ ρ0 and ρ2 and ρ1 are Ψ-splitting, or ρ2 ⊂ ρ1
and ρ2 and ρ0 are Ψ-splitting. So the procedure enumerates all pairs of strings
which are Ψ-splitting and such that neither string can be replaced by a proper
initial segment to form a new splitting. In order to define CX , we define a sequence
of strings {τX,s}s≥0 so that CX =

⋃
s τX,s. As we define the sequence {τX,s}s≥0

we also define sequences {nX,s}s≥1 and {ρX,s}s≥0. The sequence {nX,s}s≥1 just
keeps track of which bit of ΨX we make use of at each stage of the construction.
The sequence {ρX,s}s≥0 records the initial segment of X used by the end of stage
s. This means that for all Y ⊃ ρX,s the construction will run in an identical way
up to the end of stage s.

The construction is required to be a little more subtle than it might initially
seem.

Construction. Stage 0. Define τX,0 = ρX,0 = ∅.
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Stage s + 1 ∈ ω[i]. Search until a first pair {ρ0, ρ1} is enumerated by the splitting
search procedure such that both of ρ0 and ρ1 extend ρX,s and one of these strings,
ρ0 say, is an initial segment of X. 9

For use in the verification it is also useful to enumerate a certain set VX,i. Let
{ρ2, ρ3} be the first pair enumerated by the splitting search procedure such that
both of ρ2 and ρ3 extend ρX,s. Let n0 be the least such that Ψρ2(n0) ↓6= Ψρ3(n0) ↓,
let d ∈ {2, 3} be such that Ψρd(n0) = 1 and enumerate ρd into VX,i.

Now we pay attention again to the pair {ρ0, ρ1}. Let n1 be the least such that
Ψρ0(n1) ↓6= Ψρ1(n1) ↓. The remaining instructions for the stage are divided into
steps t ≥ 0.

Step t. Check to see whether there exists a least n with n1 ≤ n ≤ n1 + t such
that either: 10

(a) ΨX(n) = 1 and there does not exist any Ψi-splitting above τX,s ∗ σn with
the strings of length ≤ fX(n), or;

(b) ΨX(n) = 0 and there does exist a Ψi-splitting above τX,s ∗ σn with the
strings of length ≤ fX(n).

If there exists no such n, then proceed to step t + 1, otherwise let n be the least
such and define nX,s+1 = n. If case (a) applies for n, then define ρX,s+1 to be the
initial segment of X of length fX(n1 + t) and define τX,s+1 = τX,s ∗ σn ∗X(s). If
case (b) applies for n, then let τ and τ ′ be the first Ψi-splitting above τX,s ∗ σn
found by some fixed computable search procedure. Let n2 be the least such that
Ψτ
i (n2) ↓6= Ψτ ′

i (n2) ↓ and let τ ′′ ∈ {τ, τ ′} be such that Ψτ ′′

i (n2) 6= X(n2). Let
m = fX(n1 + t) and define ρX,s+1 to be the initial segment of X of length m (note
that m ≥ n2). Define τX,s+1 = τ ′′∗X(s). For future reference, when case (b) occurs
we also enumerate ρX,s+1 into the set SX,i. This records that we have managed
to directly diagonalize for Ψi at this stage. Whether case (a) or case (b) applies,
proceed to stage s+ 2.

Verification. Since ΨA is total and there exist infinitely many n such that A(n) =
1, it follows that fA is total. Also, since ΨA is total and incomputable, for every
initial segment ρ of A there exists a pair {ρ0, ρ1} enumerated by the splitting search
procedure such that both of these strings extend ρ and one of them is an initial
segment of A. In order to show that CA is total, it therefore suffices to show that
when the construction is run for X = A there are only finitely many steps t run at
each stage of the construction. So suppose otherwise, and let s be the least such
that are an infinite number of steps run at stage s + 1 of the construction. Let
n1 be as defined in the instructions for that stage. Then, for all n ≥ n1, if n ∈ B
then there does exist a Ψi-splitting above τX,s ∗ σn, and if n /∈ B then there does
not exist a Ψi-splitting above τX,s ∗ σn. This means that B is c.e., contrary to
assumption.

Having established that C = CA is total, we wish to show next that B ⊕ C
can compute the sequence {τA,s}s≥0, and that therefore A ≤T B ⊕ C. Suppose
inductively that B ⊕ C has already been able to decide τA,s. Then there exists a

9It may be the case that no such pair is enumerated, in which case the construction simply
continues this search for ever and τX,s+1 remains undefined.

10Note that when we write “ΨX(n)” in case (a) and case (b) this denotes its final value; if
ΨX(n) ↑ or fX(n) ↑ for any n with n1 ≤ n ≤ n1 + t then the construction with respect to X does
not terminate at stage s+ 1 and we perform no further instructions.
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unique n such that τA,s ∗ σn ⊂ C. This value of n is nA,s+1. By checking whether
n ∈ B or not, B ⊕ C can now decide whether case (a) or case (b) applied for n at
the step when τA,s+1 was defined, and this is sufficient information to be able to
determine τA,s+1.

We are therefore left to prove that C <T A. Fix i ∈ ω. Let S =
⋃
X SX,i. If

there is some initial segment of A in S then it is clear that A 6= ΨC
i , so suppose

otherwise. Next suppose there exists a stage s+ 1 such that:

(1) s+ 1 ∈ ω[i];
(2) For the step t at which stage s+ 1 terminates, case (a) applies for nA,s+1.
(3) Putting n = nA,s+1, there does not exist any Ψi-splitting above τA,s ∗ σn.

In this case it is clear that ΨC
i is either partial or computable, so A 6= ΨC

i .
Finally, suppose that neither of these two cases occur. This means that as we

run the construction for X = A, for every s+ 1 ∈ ω[i] and for n = nA,s+1, case (a)
applies for n at the step of stage s+ 1 at which we define τA,s+1, but actually there
does exist some Ψi-splitting above τA,s ∗σn. Now we look to derive a contradiction,
by showing that for each ρ ⊂ A there are strings in S extending ρ.

Let V =
⋃
X VX,i. Since A is 1-generic and V is c.e. and all initial segments of A

have extensions in V , it follows that there are infinitely many strings in V which are
initial segments of A. Now we have to establish exactly what this means. Suppose
ρ ∈ V and ρ ⊂ A. Then there exists some X such that ρ is enumerated into VX,i
during stage s+ 1 of the construction for X. Since ρ ⊂ A it must be the case that
ρX,s ⊂ A. This means that, up until the end of stage s the constructions for X and
A are identical and ρX,s = ρA,s. Therefore ρ is also enumerated into VA,i at stage
s+1 of the construction for A and the pairs {ρ0, ρ1} and {ρ2, ρ3} as specified in the
instructions for that stage are identical. Without loss of generality, suppose that
ρ0 = ρ2 ⊂ A and let n0 = n1 be as defined in the instructions of the construction
for A at that stage. Then Ψρ0(n0) = 1. There are now two possibilities to consider.

First, suppose that nA,s+1 = n0. Then case (a) applies for n0 at step 0 when
we define τA,s+1 but actually there does exist a Ψi-splitting above τA,s ∗σn0 . Let r
be greater than the length of the strings in the first such splitting. Then ρ1 ∗ σr is
a string in S extending ρA,s. This follows because, when we run the construction
for any Y ⊃ ρ1 ∗ σr, it will be identical to the construction for A up until the end
of stage s. Then {ρ0, ρ1} will be the first pair enumerated by the splitting search
procedure such that both of ρ0 and ρ1 extend ρY,s and one of these strings is an
initial segment of Y . Now here is the crucial point: at step t = 0 in stage s + 1
of the construction for Y we find that ΨY (n0) ↓= 0 and that there does exist a
Ψi-splitting above τY,s ∗ σn0

with the strings of length less than fY (n0).
Next suppose that nA,s+1 6= n0. Since ΨA(n0) = 1 this means that there does

exist a Ψi-splitting above τA,s ∗ σn0
. Once again, choosing r sufficiently large it

follows that ρ1 ∗ σr is a string in S extending ρA,s.
We have shown that every initial segment of A has extensions in S. Since S is

a c.e. set, and A is 1-generic but does not have any initial segment in S, this gives
the required contradiction. �

9.2. Measure. The degrees which satisfy the join property form a class of measure
1. Indeed, we show the following.

Theorem 9.2. Every 2-random degree satisfies the join property.
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Proof. Suppose that A is 2-random and ΨA = B for some incomputable set B and
a Turing functional Ψ. We will exhibit a set C <T A such that C ⊕ B ≡T A. By
Lemma 4.3, we may assume that Ψ is special. In order to establish the existence
of such a set C it suffices to define a computable procedure which takes a number
k ∈ ω as input and returns (indices of) a ∅′-c.e. set of strings W with µ(W ) < 2−k

and a Turing functional Φ such that the following is satisfied for all sets X which
do not have a prefix in W :

(9.1) ΨX is total⇒ (ΦX is total ∧ X ≤T ΨX ⊕ ΦX ∧ X 6≤T ΦX).

Since A is 2-random there will be some k ∈ ω such that A does not have a prefix in
the set W produced by the computable procedure with input k. If we let C = ΦA

for the functional Φ that is produced by the procedure with input k, then C has
the desired properties.

Let us fix k ∈ ω. The procedure on input k will also produce the reduction Ξ
which establishes X ≤T ΨX ⊕ ΦX in (9.1). For ease of notation we let the oracle
inputs for Ξ appear as arguments and not as superscripts.

Since 1-generic degrees do not bound 1-random degrees, in order to ensure that
A 6≤T ΦA it suffices to ensure that ΦA is 1-generic. We therefore look to satisfy the
following requirements for all X that do not have a prefix in W , where {We}e∈ω is
an effective enumeration of all upward closed c.e. sets of strings:

Re : ΨX is total ⇒ ∃n[(ΦX �n∈We) ∨ ∀σ ∈We(Φ
X �n 6⊆ σ)].

The construction fits the general description of Section 4.1. The purpose of an
e-marker that is placed on a string τ is to enumerate axioms for Φ and Ξ, and
to ensure that Re is satisfied for a fixed proportion of the extensions X of τ . We
describe only roughly how the marker operates now, the precise instructions will
deviate just slightly from this rough description.

The marker begins by searching for a Ψ-splitting (V, V ′) above τ , of τ -measure
2−e. Until such a splitting is found the marker is inactive. If and when the splitting
is found, the marker becomes active. Upon finding the splitting the marker discards
some strings from V and V ′, so that V ′ is still of τ -measure at least 2−(e+2) and so
that µ(V )/µ(V ∪ V ′) = 2−e (this may involve extending the length of the strings
as necessary). Once active, the marker enumerates axioms for Φ and Ξ on the
strings in V ′ and restrains the placement of markers on extensions of the strings in
V . Finally, if and when an extension σ of Φτ appears in We, it defines Φρ to be
an extension of σ for all strings ρ ∈ V and lifts the restraint on the placement of
markers on strings extending those in V . In this event we say that the marker has
acted.

According to Lemma 4.6, if the marker remains inactive then its actions may
cause ΦX to be partial although ΨX is not partial, for τ -measure at most 2−(e−1).
Once the marker becomes active, it may cause ΦX to be partial for those X extend-
ing strings in V , but this is only 2−e of the total proportion of strings in V ∪ V ′.
Once active, the marker ensures Re is satisfied for at least a fixed proportion of the
reals extending τ , where this proportion depends solely on e.

Construction of Φ and Ξ. At stage 0 place a k + 4-marker on the empty string.
At stage s+ 1 ∈ 2ω[e] + 1, if e > k + 3 then perform the following instructions,

otherwise go to the next stage. Order the strings on which e-markers sit, first
by length and then from left to right. For each such τ and its marker in turn,
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perform the following instructions for the first of cases (a) and (b) which applies
(or if neither case applies then do nothing).

(a) If the marker is inactive and there is a Ψ-splitting (V, V ′) of τ -measure 2−e

above τ in which the strings are of length ≤ s then proceed as follows.
Discard some strings from V and V ′, so that V ′ is still of τ -measure at
least 2−(e+2) and so that µ(V )/µ(V ∪V ′) = 2−e (we can assume the strings
are long enough to do this). Take each ρ ∈ V ′ in turn and enumerate the
axioms Φρ = Φτ ∗ 0nρ1 and Ξ(Ψρ,Φρ) = ρ, where nρ is chosen to be large
at the time of the enumeration (and so increases as we proceed through the
various ρ). Declare the marker to be active.

(b) If the marker is active with splitting (V, V ′) but has not acted and there is
some ρ ∈ V ′ and some extension σ of Φρ in We[s] then proceed as follows.
Choose the least such extension σ and, taking each ρ′ ∈ V in turn, define
Φρ
′

= σ ∗ 0nρ′1 and Ξ(Ψρ′ ,Φρ
′
) = ρ′, where nρ′ is chosen to be large at the

time of the enumeration. Remove any markers that sit on extensions of the
strings in V ∪ V ′ and declare that the marker has acted.

At stage s+ 1 ∈ 2ω+ 2 let ` be large and proceed as follows for each string τ of
length ` (starting from the leftmost string and moving right). Let ρ be the longest
initial segment of τ on which a marker sits and let e be the index of the marker. If
the e-marker is active with splitting (V, V ′) but has not acted and τ has a prefix in
V ′ then place an (e+1)-marker on τ . If the e-marker is active with splitting (V, V ′)
but has not acted and τ does not have a prefix in V ∪ V ′ then place an e-marker
on τ . If the e-marker has acted place an e-marker on τ , unless τ has a prefix in V
in which case place an (e+ 1)-marker on τ . If a marker was placed on τ , define Φτ

to be ∪ρ⊂τΦρ concatenated with 0nτ 1, where nτ is chosen to be large at the time
of the enumeration.

Verification. It is clear that the axioms enumerated for Φ and Ξ are consistent.
The only point at which this condition could possibly be violated is when a marker
on τ with splitting (V, V ′) acts and defines Φρ

′
= σ ∗ 0nρ′1 and Ξ(Ψρ′ ,Φρ

′
) = ρ′

for each ρ′ ∈ V . Here σ extends Φρ for some ρ ∈ V ′ which is incompatible with
each ρ′ ∈ V . These axioms remain consistent with those previously enumerated,
however, precisely because (V, V ′) is a Ψ-splitting.

It is also clear that for each real X, one of the outcomes (1), (2) or (3) as
described in Section 4.1 must occur. Once an e-marker placed on τ becomes active,
it ensures that at least a certain proportion of the reals extending τ do not have
infinitely many e-markers placed on their initial segments, and so, as previously
observed, it follows by the Lebesgue density theorem that the set of reals for which
outcome (2) occurs is a Σ0

3 set of measure 0. We may compute the index of a set
of strings S which is c.e. in ∅′, which is of measure < 2−k−1 and such that all reals
for which outcome (2) occurs have a prefix in S.

Now suppose that outcome (1) occurs for X. For any e > k + 3 let τ be the
longest initial segment of X on which a permanent e-marker is placed. Let (V, V ′)
be the splitting for the marker placed on τ . Suppose the marker on τ does not act
and X extends a string in V ′. In this case Re is satisfied and the lengths of ΦX

and Ξ(ΨX ,ΦX) are properly increased by the marker on τ . Otherwise the marker
acts and X extends a string in V , but this allows us to draw the same conclusion.



THE TYPICAL TURING DEGREE 33

It remains to show that we can find the index of a set of strings V which is
c.e. in ∅′, such that µ(V ) ≤ 2−k−1, and such that any X for which outcome (3)
occurs either has ΨX partial, or else has an initial segment in V . We can then put
W = V ∪ S. So consider the set of strings τ that hold a permanent marker which
remains inactive. This is a prefix-free set. For each τ in the set, if e is the index of
the marker that sits on τ then we can (uniformly) find the index of a set of strings
of τ -measure ≤ 2−e+1 which contains an initial segment of any extension of τ on
which Ψ is total. Since we only consider e > k + 3, taking the union over all such
τ gives a set of measure ≤ 2−(k+2).

Next, fix e > k + 3 and consider all those τ on which a permanent e-marker
is placed, which is eventually active but does not act. If (V0, V

′
0) is the splitting

corresponding to one such τ and (V1, V
′
1) is the splitting corresponding to a different

one, then any string in V0∪V ′0 is incompatible with any string in V1∪V ′1 . Since the
measure of V is always 2−e of the total measure of V ∪V ′, the measure of the union
of all corresponding sets V is at most 2−e. Taking the union over all e > k+ 3, we
obtain a set of measure < 2−(k+3) as required. �

To what extent is Theorem 9.2 optimal? It is not too difficult to show that there
exist Demuth randoms that do not satisfy the join property. This follows from the
result of [Lew11] that all low fixed point free degrees fail to satisfy the join property,
and the fact [Nie09, Theorem 3.6.25] that there exist low Demuth random reals.
The following question remains open:

Question 3. Does there exist a weakly 2-random degree which does not satisfy the
join property?

Next we use a very slightly modified version of the machinery developed in
Section 5 in order to prove another instance of our heuristic principle. The original
machinery could certainly have been specified in such a way that no modification
would be required for this application, but this would have made the proof of
Theorem 5.1 seem more complicated.

Theorem 9.3. Every degree that is bounded by a 2-random degree satisfies the join
property.

Proof. Suppose that A is a 2-random set that computes an incomputable set B
via Θ. We need to show that B has the join property. If B is of 1-generic degree
then the theorem holds by Theorem 9.1, so suppose otherwise. By Lemma 4.3 we
may assume that Θ is special. Suppose that B computes an incomputable set C via
a Turing functional Ψ. By Lemma 4.4 we may assume that Ψ is special. In order
to show that there is some D <T B such that D ⊕ C ≡T B, it suffices to define a
computable procedure which takes a number k and returns (indices of) a ∅′-c.e. set
of strings W with µ(W ) < 2−k, and a Turing functional Φ such that the following
holds for all sets X which do not have a prefix in W :

(9.2) ΘX = Y and ΨY is total⇒ ΦY is total ∧ Y ≤T ΨY ⊕ ΦY ∧ Y 6≤T ΦY .

In order to see that this suffices, consider the sequence of procedures with input
k ∈ ω. Since A is 2-random, for some k ∈ ω the corresponding procedure will
produce Φ such that the right hand side of the implication in (9.2) holds with
Y = B. In other words, D⊕C ≡T B and D <T B where D = ΦB . Actually, since
we assumed that ΘA is not of 1-generic degree, it suffices to replace Y 6≤T ΦY in
(9.2) with the requirement that ΦY is 1-generic.
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It remains to define and verify this procedure with input Θ,Ψ and k ∈ ω. The
procedure will also produce a Turing functional Ξ for the reduction Y ≤T ΨY ⊕ΦY

in (9.2). We look to satisfy the following requirements for all X which do not have
a prefix in W :

Re : ΘX = Y and ΨY is total⇒
{

ΦY is total and Ξ(ΨY ,ΦY ) = Y and
∃n
[
ΦY �n∈We ∨ ∀η ∈We, ΦY �n 6⊆ η

]
where {We} is an effective enumeration of all upward closed c.e. sets of strings.
Note that for ease of notation we let the oracles in Ξ appear as arguments and
not as superscripts. We define a construction which deviates only slightly from the
framework described in Section 5. Just as described there, markers are initially
inactive, but now submarkers are also initially inactive and must wait to be made
active. In defining the construction we make use of the following inequalities:

π(Tσ)[s] ≥ 2−k−2 · π∗(σ)[s].(9.3)

π(ρ)[s] < 2−qσ′ .(9.4)

0 ≤ π(Fσ(σ′))[s]− 2−e · π(Pσ(σ′))[s] < 2−qσ′ .(9.5)

Construction of Φ,Ξ. At Stage 0 place a k+4-marker on the empty string.
At stage s + 1 ∈ 2ω[e], if e > k + 3 then consider each string σ on which an e-

marker sits in turn (ordered first by length and then from left to right), and proceed
according to the first case below that applies.

(1) If (5.2) does not hold, let π∗(σ) = π(σ)[s], declare that the e-marker on σ
is injured and is inactive. Remove any markers and submarkers that sit on
proper extensions of σ. Let mσ be large and place a submarker on each
extension of σ of length mσ.

(2) Otherwise, if the marker is inactive and (9.3) holds, where Tσ is the set of
all strings extending σ of length mσ, then declare the marker to be active
and define sσ = s.

(3) If the marker is already active, then proceed as follows for each submarker
placed on a string σ′ by σ, according to the first case below which applies.
(a) If the submarker is inactive and there exists a Ψ-splitting (U, V ) above

σ′ such that π(U)[s] ≥ π(V )[s] ≥ 2−eπ(σ′)[sσ] and such that (9.4)
holds for all ρ ∈ U ∪ V , then declare the submarker to be active. In
this case let Fσ(σ′) be a subset of U such that (9.5) holds, defining
Pσ(σ′) = Fσ(σ′) ∪ V . Take each ρ ∈ V in turn and enumerate the

axioms Φρ = Φσ
′ ∗ 0nρ1 and Ξ(Ψρ,Φρ) = ρ, where nρ is chosen to be

large at the time of the enumeration (and so increases as we proceed
through the various ρ).

(b) If the submarker is active but has not acted and there is some ρ ∈
Pσ(σ′)− Fσ(σ′) and some extension η of Φρ in We[s] then proceed as
follows. Choose the least such extension η and, taking each ρ′ ∈ Fσ(σ′)

in turn, define Φρ
′

= η∗0nρ′1 and Ξ(Ψρ′ ,Φρ
′
) = ρ′, where nρ′ is chosen

to be large at the time of the enumeration. Remove any markers
that sit on extensions of the strings in Pσ(σ′) and declare that the
submarker has acted.
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(c) If the previous cases do not apply and the second inequality of (9.5)
no longer holds then there are two possibilities to consider. If (9.4)
still holds for all ρ ∈ Fσ(σ′), then remove strings from Fσ(σ′) so that
(9.5) holds. If not then choose ` to be large, and replace each string
ρ ∈ Fσ(σ′) with all extensions of ρ of length `, to form a new Fσ(σ′)
(whenever we redefine Fσ(σ′) we also consider Pσ(σ′) to be redefined
accordingly, Pσ(σ′) = Fσ(σ′) ∪ V ).

At stage s + 1 ∈ 2ω + 1 let ` be large and do the following for each string ρ of
length `. Let σ be the longest initial segment of ρ on which a marker sits. Let σ′

be the string of length mσ which is an initial segment of ρ, and let e be the index
of the marker placed on σ. If the submarker placed on σ′ is not active, then we
do not place any marker on ρ, so suppose otherwise. If the submarker on σ′ has
not acted and ρ has a prefix in Pσ(σ′)− Fσ(σ′) then place an (e+ 1)-marker on ρ.
If the submarker on σ′ has not acted and ρ does not have a prefix in Pσ(σ′) then
place an e-marker on ρ. If the submarker has acted place an e-marker on ρ, unless
ρ has a prefix in Fσ(σ′), in which case place an (e+1)-marker on ρ. If a marker was

placed on ρ, define Φρ to be ∪ρ′⊂ρΦρ
′

concatenated with 0nρ1, where nρ is chosen
to be large at the time of the enumeration.

Verification. The question of consistency for Φ and Ξ is only trivially different than
the case for Theorem 9.2. We are therefore left to specify W such that µ(W ) < 2−k

and W has an initial segment of every X such that ΘX = Y , ΨY is total and
either outcome (2) or (3) holds for Y . First of all consider those ΘX = Y for which
outcome (3) applies. There are three possibilities. First, it may be the case that a
permanent marker is placed on σ ⊂ Y , which never becomes active. By Lemma 4.8
we can find the index for a ∅′-c.e. set of strings V0 such that µ(V0) < 2−k−2 and V0
contains an initial segment of every X for which ΘX is total and has such a marker
placed on an initial segment. The second possibility is that the first case does
not apply but a permanent submarker is placed on an initial segment of ΘX which
never becomes active. Since the strings on which such submarkers are placed form a
prefix-free set and we only work with e > k+3, Lemma 4.7 directly provides us with
a set V1 such that µ(V1) ≤ 2−k−3 and which contains an initial segment of every X
such that ΘX = Y is total, ΨY is total, and such that such a submarker is placed
on an initial segment of Y . The last possibility is that ΘX extends a string in (the
final value) Fσ(σ′) for some permanent submarker which does not act and which is
placed by an e-marker on σ. Since, for fixed e, the union of all the various Pσ(σ′)
corresponding to such submarkers forms a prefix-free set, and since we maintain the
second inequality of (9.5) it follows that, summing over all e > k + 3, we can find
the index for an ∅′-c.e. set of strings V2 such that µ(V2) < 2−k−2 and V2 contains
an initial segment of every X for which ΘX extends a string in one of these Fσ(σ′).

Finally, we must show that the set of X such that ΘX is total and has outcome
(2) is a Σ0

3 set of measure 0. Now suppose that a permanent marker is placed on
σ which becomes active at stage sσ. We wish to find a prefix-free set of strings
Vσ extending σ such that π(Vσ) is at least a fixed proportion of π(σ) and no e-
markers are placed on strings extending those in Vσ. Then the result will follow by
Lemma 4.9. Subsequent to the last injury of the marker on σ we maintain (5.2), and
activation of the marker requires that (9.3) holds. If the marker places a permanent
submarker on σ′ which does not become active, then no markers will be placed on
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extensions of σ′, so we can immediately enumerate all such σ′ into Vσ. Now we
consider each of the σ′ on which the marker places a permanent submarker which
becomes active, and we look to enumerate a set of strings Dσ(σ′) into Vσ, such that
all these strings extend σ′ and π(Dσ(σ′)) is at least a fixed proportion of π(σ′)[sσ].
We consider approximations to Dσ(σ′) and then take the final value. At each stage
define Dσ(σ′) by replacing each string in Fσ(σ′) with the shortest initial segment
which is incompatible with all strings that are not in Fσ(σ′) (so this set changes
as Fσ(σ′) does). Now at stage s0 at which the submarker is activated, we have
that π(Pσ(σ′)−Fσ(σ′))[s0] ≥ 2−e−1 ·π(σ′)[sσ], and by (9.5) we therefore have that
π(Dσ(σ′))[s0] ≥ 2−2e−1·π(σ′)[sσ]. We wish to show by induction that this condition
is maintained at subsequent stages. First note that the strings in Pσ(σ′) − Fσ(σ′)
do not subsequently change. When we redefine Fσ(σ′) by extending the length
of the strings, this does not change Dσ. When we remove strings from Fσ(σ′)
at a stage s we maintain satisfaction of the first inequality in (9.5) so that, since
π(Pσ(σ′) − Fσ(σ′))[s] ≥ π(Pσ(σ′) − Fσ(σ′))[s0], π(Dσ(σ′))[s0] ≥ 2−2e−1 · π(σ′)[sσ]
still holds. �

Corollary 9.4. Every non-zero degree below a 2-random degree is the supremum
of two lesser degrees. Hence 2-random degrees do not bound strong minimal covers.

Proof. This is a consequence of Theorem 4.10 and Theorem 9.3. �

10. Being the top of a diamond

We say that a Turing degree c is the top of a diamond if there exist a,b < c
such that a∨b = c and a∧b = 0. As will be discussed in the following sections, all
sufficiently generic degrees satisfy the complementation property, which is a strictly
stronger condition than being the top of a diamond so long as the degree concerned
is not 0 or minimal. Since we do not know the measure of the degrees which satisfy
the complementation property or even the meet property, however, it is interesting
to consider the property of being the top of a diamond for the measure-theoretic
case.

It is well known that every 2-random degree is the top of a diamond. This is a
simple consequence of van Lambalgen’s theorem that we mentioned in Section 1.1
and the result in [HNS07] that was discussed in the proof of Lemma 4.3. We show
that, in fact, the same property is shared by all nontrivial degrees with a 2-random
upper bound.

Theorem 10.1. Every non-zero degree that is bounded by a 2-random degree is the
join of a minimal pair of 1-generic degrees.

Proof. Assume that C = ΘD where D is 2-random and C is incomputable. It
follows from Theorem 5.1 and (the proof of) Theorem 9.3 that C is the join of two
1-generic sets. Here we will show that C is the join of two 1-generic sets which
form a minimal pair. We will construct the 1-generic sets via two functionals Φ
and Ψ. As before we may assume that Θ is special. Given k ∈ ω we define a
construction which suffices to specify the index for a ∅′-c.e. set of strings W , such
that µ(W ) < 2−k, and such that for all X which do not have a prefix in W and
such that ΘX = Y is total the following requirements are satisfied:

For all e ∈ 3ω + 1, Re : ∃n
[
ΦY �n∈W e−1

3
∨ ∀σ ∈W e−1

3
, ΦY �n 6⊆ σ

]
;
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For all e ∈ 3ω + 2, Re : ∃n
[
ΨY �n∈W e−2

3
∨ ∀σ ∈W e−2

3
, ΨY �n 6⊆ σ

]
.

We also need to make ΦC and ΨC a minimal pair. A standard approach to
building a minimal pair of sets is to use an approximation via finite strings {αs}
and {βs} with A = lims αs and B = lims βs. In order to ensure that ΨA

d and ΨB
e do

not both compute the same incomputable set, at some stage s, we look for α′ ⊇ αs,
β′ ⊇ βs and m ∈ ω such that

(10.1) Ψα′

d (m) ↓6= Ψβ′

e (m) ↓ .

If such a pair of extensions are found we set αs+1 = α′ and βs+1 = β′. Failure to
find such extensions implies that if ΨA

d = ΨB
e is total, then it is computable. By

using Posner’s trick it suffices to meet the following requirements for all e ∈ 3ω and
for all X which do not have a prefix in W and such that ΘX = Y is total:

Re : Ψ e
3
(ΦY ) is not total, or Ψ e

3
(ΦY ) 6= Ψ e

3
(ΨY ), or Ψ e

3
(ΦY ) is computable.

Note that here, for ease of notation, we sometimes let oracle inputs appear as
arguments rather than suffixes. We say that a string ρ is an e-failure at stage s, if
there exist ρ1, ρ2 extending ρ, such that for some n:

Ψ e
3
(Φρ1)[s] �n= Ψ e

3
(Ψρ1)[s] �n 6= Ψ e

3
(Φρ2)[s] �n= Ψ e

3
(Ψρ2)[s] �n .

Note that if e ∈ 3ω and ρ is not an e-failure at any stage, then requirement Re is
achieved on all extensions of ρ.

If, for e ∈ 3ω, we place an e-marker on a string σ, and a submarker on σ′ then
Fσ(σ′) is the set of strings extending σ′ which we may think of as guessing that a
pair of extensions can be found as per (10.1). However, we also need to ensure that
Y is computable in the join of ΨY and ΦY . Assume that at some stage s, we have
ρ ∈ Fσ(σ′) and Ψρ = α and Φρ = β. We look for extensions of α and β on which
we can achieve our requirement but also on which we can encode ρ. For any two
strings ρ0, ρ1 ∈ Pσ(σ′)−Fσ(σ′), we will ensure that ρ0 and ρ1 are both Φ-splitting
and Ψ-splitting (this is easily achieved since we control these functionals). If ρ0
and ρ1 are both e-failures, then let α′ = Φρ0 and β′ = Ψρ1 . We can ensure that
when the submarker on σ′ goes to act we have α ⊆ α′ and β ⊆ β′. Up until this
point, there has been no need to encode anything into the join of α′ and β′. Hence,
at this point, we could define Φρ ⊇ α′ and Ψρ ⊇ β′ and then set some extension of
the join of α′ and β′ to compute ρ. Now by the e-failure condition there is an n,
and α0 and α1 extending α′ such that Ψ e

3
(α0) �n 6= Ψ e

3
(α1) �n. Additionally there

is an m, and β0 and β1 extending β′ such that Ψ e
3
(β0) �m 6= Ψ e

3
(β1) �m. Hence we

can find i, j ∈ {0, 1} such that Ψ e
3
(αi) �min(n,m) 6= Ψ e

3
(βj) �min(n,m). Thus we can

achieve success on all strings ρ ∈ Fσ(σ′) by defining Φ and Ψ on these strings to
extend αi ∗ ρ and βj ∗ ρ respectively.

We make use of the following inequalities:

π(σ)[s] < 2π∗(σ)[s].(10.2)

π(Pσ)[s] ≥ 2−k−2 · π∗(σ)[s] and ∀ρ ∈ Pσ(σ′)[π(ρ)[s] < 2−qσ′ ].(10.3)

0 ≤ π(Fσ(σ′))[s]− 2−e · π(Pσ(σ′))[sσ] < 2−qσ′ .(10.4)
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Construction of Φ and Ψ. At Stage 0 place a k+ 4-marker on the empty string.
At stage s+ 1 ∈ 2ω[e], if e > k + 3, then for each e-marker that sits on a string σ,
proceed according to the first case below that applies:

(1) If (10.2) does not hold then redefine π∗(σ) = π(σ)[s]. If the e-marker on σ
is currently active, then declare the marker to be inactive. For all strings
ρ ∈ Fσ(σ′), define Φρ to be ∪ρ′⊂ρΦρ

′
concatenated with ρ, and define Ψρ

to be ∪ρ′⊂ρΨρ′ concatenated with ρ. Remove any markers and submarkers
that sit on proper extensions of σ. Let mσ be large and place a submarker
on each extension of σ of length mσ.

(2) Otherwise, if the marker is inactive and (10.3) holds for some set of strings
Pσ(σ′) for each submarker σ′, where the strings in Pσ(σ′) are all those
extending σ′ of a certain length, declare that the marker is active and
define sσ = s. For each submarker σ′, define Fσ(σ′) to be the least initial
segment of Pσ(σ′) under the lexicographical ordering such that (10.4) holds.

(3) If the marker is active then for each submarker σ′ of σ which has not acted
perform the following tasks:
(a) If (10.4) does not hold there are two possibilities. If the second in-

equality of (10.3) holds when we only allow the quantifier to range
over strings in Fσ(σ′), then remove strings from Fσ(σ′) so that (10.4)
does hold. Otherwise let ` be large and replace each string in Fσ(σ′)
with all extensions of length `.

(b) For each extension ρ of σ′ in Pσ(σ′)−Fσ(σ′), define Φρ to be ∪ρ′⊂ρΦρ
′

concatenated with ρ.
(c) For each extension ρ of σ′ in Pσ(σ′)−Fσ(σ′), define Ψρ to be ∪ρ′⊂ρΨρ′

concatenated with ρ.
(d) If e ∈ 3ω and ρ ∈ Pσ(σ′) is an e-failure at the current stage, but has

not been so at any previous stage in 2ω[e] since the marker on σ was
last made active, then remove all markers from ρ and any extensions.

(e) If e ∈ 3ω and there exist two distinct strings ρ1, ρ2 ∈ Pσ(σ′)− Fσ(σ′)
such that ρ1 and ρ2 are both e-failures then there must exist strings
ρ′1 ⊇ ρ1 and ρ′2 ⊇ ρ2 such that Ψ e

3
(Φρ

′
1)[s] and Ψ e

3
(Ψρ′2)[s] are incom-

parable. For all ρ ∈ Fσ(σ′) define:

Φρ[s+ 1] = Φρ
′
1 [s] ∗ ρ and Ψρ[s+ 1] = Ψρ′2 ∗ ρ.

Declare that the submarker on σ′ has acted and remove all markers
and submarkers that sit on proper extensions of σ′.

(f) If e ∈ 3ω + 1, and σ′ can act because there exists a string in W e−1
3

extending Φσ
′
, then for all ρ ∈ Fσ(σ′) define Φρ as per Theorem 5.1

but define Ψρ to be ∪ρ′⊂ρΨρ′ concatenated with ρ. Similarly for the
case e ∈ 3ω + 2.

At stage s+ 1 ∈ 2ω+ 1 let ` be large. For each string ρ of length ` find the longest
initial segment σ with a marker. Let e be such that marker on σ is an e-marker. If
the marker is inactive, then do not place a marker on ρ. If the marker is active let
σ′ ⊆ ρ be the unique string on which there sits a submarker of the e-marker on σ. If
the submarker has acted then if ρ extends a string in Fσ(σ′) place an (e+1)-marker
on ρ, otherwise place an e-marker. If the marker has not acted then let σ′′ be the
unique initial segment of ρ in Pσ(σ′). If σ′′ ∈ Fσ(σ′) then do not place a marker
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on ρ. If σ′′ ∈ Pσ(σ′)−Fσ(σ′) is an e-failure then place an e-marker on ρ, otherwise
place an (e+ 1)-marker.

Verification. The analysis of outcomes (2) and (3) occurs exactly as in the proof
of Theorem 5.1 with one small adjustment. Suppose e ∈ 3ω and let T be the set
of strings on which we place permanent submarkers which do not act, which are
placed by permanent e-markers which are eventually always active. Let J be the
union of all (the final values) Fσ(σ′) such that σ′ ∈ T and the submarker on σ′ is
placed by a marker on σ. For any σ′ ∈ T , let S(σ′) = {ρ : ρ ∈ Pσ(σ′)− Fσ(σ′) and
ρ is not an e-failure}. No extension of any string in S(σ′) has an e-marker placed
on it. Since the submarker never acts, there is at most one string in Pσ(σ′) which
is an e-failure, and so S(σ′) contains all the initial elements of Pσ(σ′)−Fσ(σ′) with
the possible exception of one string that is an e-failure. The fact that we maintain
(10.4) therefore means that π(Fσ(σ′)) − 2−e · π(Sσ(σ′) ∪ Fσ(σ′)) < 2 · 2−qσ′ . The
union of all Fσ(σ′) ∪ Sσ(σ′) as σ′ ranges over the elements of T forms a prefix-free
set. This suffices to show that π(J) is sufficiently small.

We now consider those Y for which outcome (1) occurs. In order to show that
all genericity and minimal pair requirements are satisfied with respect to Y , for
each e > k + 3 consider the longest initial segment of Y on which a permanent
submarker is placed by a permanent e-marker. Either the submarker does not act
and Y extends a string in Pσ(σ′) − Fσ(σ′), which is not an e-failure if e ∈ 3ω,
or else the submarker acts and Y extends a string in Fσ(σ′). In either case the
requirement is satisfied. Finally we need to show that Y is computable in the join
of ΦY and ΨY . Recall that if a marker is placed on σ, then at any stage Pσ is the
union of all the various Pσ(σ′) for submarkers σ′. First note that if ρ is in some
Pσ, then the construction will enumerate at most one Φρ axiom and at most one
Ψρ axiom. Secondly, this is the only way in which the construction enumerates Φ
and Ψ axioms.

Lemma 10.2. At any stage, if ρ0 and ρ1 are distinct elements of Pσ on which both
Φ and Ψ are defined, then either Φρ0 is incompatible with Φρ1 or Ψρ0 is incompatible
with Ψρ1 .

Proof. First assume that this is the first Pσ defined for the e-marker on σ. Let
α =

⋃
σ′⊂σ Φσ

′
and β =

⋃
σ′⊂σ Ψσ′ . In this case we have that no axioms have been

enumerated for any ρ′ with σ ⊆ ρ′ ⊂ ρ0 or σ ⊆ ρ′ ⊂ ρ1. If e ∈ 3ω + 1, then this
implies that Ψρ0 = β ∗ ρ0 and Ψρ1 = β ∗ ρ1. The case for e ∈ 3ω+ 2 is similar with
Φ in place of Ψ. If e ∈ 3ω, then we have Φρi = α ∗ ρi unless ρi ∈ Fσ(σ′) at some
stage when the submarker on σ′ acts. Hence we only need to consider the case
when at least one string has this property. Assume ρ0 has this property. We have
that: Φρ0 = α∗ρ2 ∗ρ∗ρ0 and Ψρ0 = β ∗ρ3 ∗ρ′ ∗ρ0 for some strings ρ2 and ρ3 which
are e-failures in Pσ(σ′), and some finite strings ρ and ρ′. Note that Φρ0 ⊇ α ∗ σ′ so
if Φρ0 is comparable with Φρ1 , then this implies that ρ1 ∈ Pσ(σ′) and ρ1 = ρ2. In
this case, Ψρ1 ⊇ β ∗ ρ1. Now because ρ1 is incomparable with ρ3 we have that Ψρ0

is incomparable with Ψρ1 .
The lemma follows from an induction on the number of times the marker is made

inactive because (10.2) does not hold. The strings ρ0 and ρ1 must extend different
elements in some least Pσ, at which point the above argument holds. �
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Given the above lemma we can define a Turing functional Γ such that if ΦY

and ΨY are total, then Γ(ΦY ⊕ ΨY ) = Y as follows. If for any string ρ, the main
construction enumerates a Φ-axiom 〈ρ, α〉 and a Ψ-axiom 〈ρ, β〉 then enumerate a
Γ-axiom 〈α⊕ β, ρ〉. �

11. The meet and complementation properties

We say that a degree c satisfies the meet property if, for all b < c there exists a
non-zero a ≤ c with b∧a = 0. We say that a degree c satisfies the complementation
property if, for all non-zero b < c there exists a non-zero a < c with b∧a = 0 and
b ∨ a = c.

In [GMS04] it was shown that all generalized high degrees have the complemen-
tation property. It remains open, however, as to whether this result is sharp. In
particular we do not know if all GH2 degrees satisfy the complementation property.
It is also unknown if all GH2 degrees satisfy the meet property. In fact, we do not
even know if all non-GL2 degrees satisfy the complementation property.

11.1. Category. Kumabe [Kum93b] showed that every 2-generic satisfies the com-
plementation property, and so also satisfies the meet property. The remaining
questions are as to the extent to which this result is sharp:

Question 4. Do all 1-generics satisfy the complementation property?

Again, the case for the meet property is also unknown:

Question 5. Do all 1-generics satisfy the meet property?

We would expect a negative answer to Question 5.

11.2. Measure. For the case of measure, nothing is known.

Question 6. What is the measure of the degrees which satisfy the complementation
property? How about the meet property?

We would expect the answer to both parts of Question 6 to be 0.

12. The typical lower cone

We close by considering some questions which concern what happens to the
theory of the lower cone in the limit. For any degree a let D[≤ a] denote the set of
degrees below a with the inherited ordering relation, and let Th[≤ a] be the (first
order) theory of this structure. If φ is any sentence in the first order language of
partial orders, then the set of all A such that, for a = deg(A), φ ∈ Th[≤ a], is
arithmetical and is therefore either meager or comeager and either of measure 0 or
measure 1. Thus there exist Cφ and Dφ such that either all Cφ-generic sets A have
φ ∈ Th[≤ a] or else all Cφ-generic sets A have the negation of φ in Th[≤ a], and
either all Dφ-random sets A have φ ∈ Th[≤ a] or else all Dφ-random sets A have the
negation of φ in Th[≤ a]. Taking C Turing above all Cφ and D Turing above all Dφ,
we conclude that for all sufficiently generic degrees a and b, Th[≤ a] = Th[≤ b],
and for all sufficiently random degrees a and b, Th[≤ a] = Th[≤ b]. Let us call
these theories Th[≤ Gen] and Th[≤ Ran] respectively. We discussed earlier, that
all sufficiently random degrees have a strong minimal cover, while all sufficiently
generic degrees satisfy the cupping property. These are not properties which pertain
to the lower cone, however, so the following question remains open:
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Question 7. Is there a natural order theoretic property which distinguishes Th[≤
Gen] and Th[≤ Ran]?

While it is clear that arithmetical randomness and genericity suffices, one might
also ask for proof that this is the exact level required:

Question 8. Does there exist k ∈ ω, such that for all a and b which are k-
random/generic, Th[≤ a] = Th[≤ b]?

Finally, we give some remarks on the complexity of Th[≤ a] for a sufficiently
generic or random a. Greenberg and Montalbán [GM03] showed that if the 1-
generic degrees are downward dense in an ideal J (that is, every nonzero a ∈ J
bounds a 1-generic) then the first order true arithmetic is many-one reducible to
the theory of (J ,≤). Theorem 5.1 says that the 1-generic degrees are downward
dense in the degrees below a 2-random degree. Therefore if a is 2-random then
Th[≤ a] interpretes true arithmetic. The case for 2-generics is also true and was
explicitly stated in [GM03].

Thanks. The authors thank Richard Shore and Yu Liang for helpful discussions
regarding Section 3.
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