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Abstract. We show that the first order theories of the s-degrees, and of the
Q-degrees, are computably isomorphic to true second order arithmetic.

1. Introduction

When studying a computability theoretic reducibility, a natural goal is to inves-
tigate the first order theory of its degree structure: Typical questions concern the
complexity of the theory, and the elementary differences with respect to other degree
structures. A pioneering result along this line of research was Simpson’s theorem, [19],
stating that the first order theory of the poset of the Turing degrees is computably
isomorphic to the set of true sentences of second order arithmetic. For an updated
survey on first order theories of degree structures relative to models of computation
based on Turing reducibility, see [18]. As regards degree structures arising from enu-
meration reducibility, or restricted versions of it, Slaman and Woodin [21] showed
that the first order theory of the poset of the enumeration degrees is computably
isomorphic to true second order arithmetic; more recently, by adapting Slaman and
Woodin’s proof, Marsibilio and Sorbi [12] have shown that this is true also of the
bounded enumeration degrees. This paper is dedicated to an important restricted
version of enumeration reducibility, known as s-reducibility. We show in Theorem 3.1
that the first order theory of the poset of s-degrees is as complicated as possible,
namely it is computably isomorphic to true second order arithmetic. (This result was
announced in [23].) Our proof is different from the proofs for the enumeration degrees
and for the bounded enumeration degrees, for reasons that will be explained in the
next section.

Via isomorphism of the s-degrees with the Q-degrees, this shows also that the
first order theory of the Q-degrees is computably isomorphic to true second order
arithmetic.

Our basic references for computability theory are the textbooks [6], [17], andv[22].
If ≤r is a reducibility on sets of numbers, then by degr(A) we denote the r-degree
of A, i.e. the equivalence class of A under the equivalence relation ≡r generated by
≤r; the collection of r-degrees is a poset, denoted by 〈Dr,≤r〉; its least element, if
existing, is denoted by 0r. We recall that a set A is enumeration reducible (or, simply,
e-reducible) to a set B (notation: A ≤e B), if there exists a computably enumerable
(or simply, c.e.) set W such that

A = {x : (∃ finite D)[〈x,D〉 ∈W & D ⊆ B]},
where finite sets are identified with their canonical indices: It is common to write
in this case, A = W (B), thus viewing the c.e. set W as an operator, called an
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enumeration operator (or, simply, an e-operator) mapping sets of numbers to sets
of numbers. A particular but important restriction of e-reducibility is provided by
s-reducibility: We say that A is s-reducible to B (notation: A ≤s B), if A = W (B)
for some e-operator W such that

(∀x,D)[〈x,D〉 ∈W ⇒ |D| ≤ 1],

where |D| denotes the cardinality of D: An e-operator with this property is called an
s-operator. The s-degrees form an upper semilattice with least element 0s consisting
of the c.e. sets, and with supremum given by the usual operation ⊕ of disjoint union
of sets. If {Ai : i ∈ I}, with I ⊆ ω is a family of set, then we let

⊕
i∈I Ai =⋃

i∈I({i} × Ai). If, for every i ∈ I, Ai ⊆ ω[i](= {x : (∃y)[x = 〈i, y〉])}), then⊕
i∈I Ai ≡s

⋃
i∈I Ai: This feature will be used in the proof of Theorem 3.1. If

ai = degs(Ai) then we let
⋃
i∈I ai = degs(

⊕
i∈I(Ai)). Moreover, if I is finite, then⋃

i∈I ai gives the supremum of the degrees.
We also recall that a set A is Q-reducible to a set B (denoted by A ≤Q B) if there

exists a computable function f such that, for every x,

x ∈ A⇔Wf(x) ⊆ B.

It is easy to see, [7] that, if B 6= ω then A ≤s B if and only if A ≤Q B: Thus that the
poset of the Q-degrees is isomorphic to the poset of the s-degrees.

Among the so-called strong enumeration reducibilities (i.e. subreducibilities ≤r

of ≤e such that 0r consists of all c.e. sets: See [4] and [5] for exhaustive and well
written surveys on strong enumeration reducibilities) s-reducibility is perhaps the
most important and useful one. In most practical instances of A ≤e B, it often
happens that one can in fact show that A ≤s B: as argued in [16] this is perhaps due
to the fact that ≤e naturally embeds into ≤s, via A ≤e B if and only if A∗ ≤s B

∗,
where for a given set X, X∗ is the set of all finite strings of elements of X. (In fact, see
e.g. [13], or [9], the s-degree of X∗ is the greatest s-degree inside the e-degree of X.)
Interest in s-reducibility (often through its isomorphic presentation as Q-reducibility,
see [15]), relies also in its many applications to computability theory and general
mathematics. For instance Q-reducibility plays a key role in Marchenkov’s solution
of Post’s Problem using Post’s methods ([11]); and has applications to word problems
(for instance, see [2], [10]) and to abstract computational complexity (for instance,
see [3], [7]). Throughout the rest of the paper, we assume to have fixed some effective
listing {Ψe : e ∈ ω} (henceforth called the standard listing) of the s-operators.

Our approach to second order arithmetic follows closely [17, Section 16.2]. The lan-
guage, with identity, consists of: first order variables v0, v1, . . .; second order variables
U0, U1, . . .; the function symbols 0, s, +, and ×, interpreted in the standard model N
of arithmetic with the number 0, successor , sum, and multiplication, respectively; a
binary predicate symbol <, interpreted inN as the strict natural ordering on numbers;
formulas are built up in the obvious way from first order atomic formulas, and second
order atomic formulas (these latter ones having the form t ∈ U , where t is a first order
term, and U is a second order variable), allowing also second order quantification, i.e.
quantification over second order variables. Second order formulas and sentences will
be interpreted in the structure (N,P(ω)), via interpretation in N of the first order
part of the language, and evaluation of second order variables with subsets of ω, with

∈ interpreted as the usual set theoretic membership. If ψ(−→x ,
−→
U ) is a second order

arithmetical formula, (with free first order variables occurring among −→x , and second

order variables occurring among
−→
U ), and −→n ,

−→
X are a vector of natural numbers, and

a vector of sets of numbers, respectively (with −→n and
−→
X having the same lengths as

−→x , and
−→
U , respectively) then (N,P(ω)) |= ψ(−→n ,

−→
X ) denotes that evaluation of the

variables in −→x with the corresponding elements of −→n , and evaluation of the second
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order variables in
−→
U with the corresponding elements of

−→
X , yield a property that

holds in (N,P(ω)) through the above described interpretation of ψ in the structure.
Similarly, if ψ(−→x ) is a first order formula in the language with identity of posets (thus
having a binary predicate symbol < as the only non-logical constant, in addition to
the symbol = for identity), with free variables occurring among −→x , and −→a is a list of
elements of Ds, having the same length as −→x , then Ds |= ψ(−→a ) denotes that evalu-
ation of the variables in −→x with the corresponding elements of −→a yields a statement
that holds in Ds.

2. The first order theory of the s-degrees

Let Th(Ds) be the set of first order sentences, in the language with identity of
posets, that are true in Ds; and let Th(N,P(ω)) be the set of second order arithmetical
sentences that are true in (N,P(ω)). We want to show that Th(Ds) ≡ Th(N,P(ω)),
where the symbol ≡ denotes computable isomorphism. By the Myhill Isomorphism
Theorem [14], it suffices to show that Th(Ds) ≡1 Th(N,P(ω)), i.e. the two theories
are 1-reducible to each other, and finally, since theories are cylinders (see [17]), it is
enough to show that Th(Ds) ≤m Th(N,P(ω)) and Th(N,P(ω)) ≤m Th(Ds).

One direction is easy and standard:

Lemma 2.1. Th(Ds) ≤m Th(N,P(ω)).

Proof. A simple calculation shows that s-reducibility is a Σ0
3 relation in the arith-

metical hierarchy, hence there exists a Σ0
3 formula of second order arithmetic ψ(U, V ),

having U, V as free set variables , such that, for all pairs of sets X,Y ,

X ≤s Y ⇔ (N,P(ω)) |= ψ(X,Y ).

This gives a way of effectively translating sentences in the language of posets, into
second order arithmetical sentences, upon translation of x ≤ y with the Σ0

3 definition
of the reducibility, so that Th(Ds) ≤m Th(N,P(ω)). �

The rest of the paper is devoted to showing that Th(N, 2N) ≤m Th(Ds). Since s-
reducibility is a subreducibility of enumeration reducibility, a first reasonable attempt
towards this goal would be to try and adapt to the s-degrees, Slaman and Woodin’s
proof in [21] for the enumeration degrees. (This was indeed possible for bounded
enumeration reducibility, [12].) We give some intuitive motivations as to why this
approach presents intrinsic difficulties. Recall,

Definition 2.2. In a poset, a set is an antichain if its elements are pairwise incom-
parable.

Slaman and Woodin’s machinery for the enumeration degrees, as well as its adap-
tation to the bounded enumeration degrees in [12], relies on the fact that in the given
degree structure every countable antichain is uniformly definable from finitely many
parameters. Namely, for every countable antichain C, there exist three parameters
a, b, c such that C consists exactly of the degrees that are minimal solutions of the
property (in x)

x ≤ c & (x] 6= (x ∪ a] ∩ (x ∪ b].

(The symbol (u] denotes the principal ideal generated by u.) For the proof of this
basic result, given an antichain C = {cn : n ∈ ω} (where, say cn is the degree of
the set Cn), one builds three sets A, B, C (with corresponding degrees a, b, c) with
C =

⊕
n∈ω Cn. As to show that (cn] 6= (cn ∪ a] ∩ (cn ∪ b], one defines a witness Dn

by:

x ∈ Dn ⇔ (∃ finite E)[〈x,E〉 ∈ A[n] & E ⊆ Cn],
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where A[n] = A ∩ ω[n] denotes the nth column of A. Clearly Dn is enumeration
reducible to Cn ⊕ A (and also bounded enumeration reducible if we restrict to those
finite sets E that are either singletons or the empty set). The construction guarantees
also that Dn is reducible to Cn⊕B by the same reduction. Finally, by diagonalization
one ensures that Dn is not reducible to Cn.

When trying to adapt this proof to the s-degrees, one encounters the following
obstacle: The definition

Dn = {x : (∃u)[〈x,E〉 ∈ A[n] & E ⊆ Cn]},

does not allow for an s-reduction of Dn to Cn⊕A and to Cn⊕B, as the enumeration
reduction of Dn to these sets, coming from the definition of Dn requires axioms of the
form 〈x, {〈n, 〈x,E〉〉} ⊕E〉 which may not be consistent with s-operators, in that the
oracle set may have more than one element. This obstacle has shown up in all our
other attempts at uniformly defining in Ds the countable antichains and relations.
Although not able to show that the countable antichains and relations are uniformly
definable from parameters, we can however code the standard model of arithmetic
through the construction of a particular copy within the degree structure

To carry out the reduction of second order arithmetic into the s-degrees, it is con-
venient to see arithmetic as presented through a language involving only predicate
symbols: in other words it is convenient to express 0, successor, sum, and multipli-
cation, by predicate symbols rather than by function symbols: The details of this
translation of the language into a purely relational form are standard, and can be
worked out for instance from [8]. In the following we freely use logical abbreviations
and conventions that are standard and of common use: for instance, we write x 6= y
for ¬x = y, and x ≤ y for x = y ∨ x < y.

Let us start with the following definitions:

Definition 2.3. Let A = {ai}i∈ω be a set of s-degrees.

(i) A is independent if ai �
⋃
j∈F aj , for every finite set F and i /∈ F ;

(ii) A is computably independent if ai �
⋃
j∈I aj , for every computable set I and

i /∈ I.

Note that an independent set is in fact an antichain, and a computably indepen-
dent set is an independent set too; moreover it is easy to see that A = {ai}i∈ω is
computably independent if and only if ai �

⋃
j 6=i aj , for every i ∈ ω.

Definition 2.4. Let A = {ai}i∈ω ⊆ Ds, and let a ∈ Ds be a degree. We say that:

(1) a codes a subset X ⊆ A, if

X = {x ∈ A : x ≤ a};

(2) a codes a set X ⊆ ω in A if a codes {ai : i ∈ X}.

It is clear that every a ∈ Ds codes a set of numbers X in A. A more delicate
problem is to show that for every X ⊆ ω there exists a degree aX ∈ Ds such that aX
codes X in A. As shown by the following theorem, this is true if A is independent.

Theorem 2.5. For every independent set A = {ai}i∈ω in Ds, and for every X ⊆ ω,
there exists aX ∈ Ds such that aX codes X in A.

Proof. Let A = {ai}i∈ω be independent in Ds, with ai = degs(Ai), for every i ∈ ω.
Given X ⊆ ω, we build a set AX such that

i ∈ X ⇔ Ai ≤s AX .

Thus aX = degs(AX) is the desired degree coding the set X in A.
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Suitable requirements to be satisfied for a successful set AX are, for every pair of
numbers i, e:

R2i : i ∈ X ⇒ A
{i}
X =∗ Ai,

R2〈i,e〉+1 : i /∈ X ⇒ Ai 6= Ψe(AX),

where {Ψe}e∈ω is the standard enumeration of the s-operators, =∗ denotes equality

modulo finite sets, and A
{i}
X = {x : 〈i, x〉 ∈ AX} is the ith projection of AX throgh

the Cantor pairing function.

Construction . The construction is by stages. At stage s, we define an approximation
αX,s to the characteristic function of AX . In the rest of the proof, Ai is often identified
with its characteristic function.

Stage 0: αX,0 = ∅.

Stage s+ 1: We distinguish two cases:

• s = 2i. If i ∈ X then fill up A
{i}
X with Ai, i.e. define

αX,s+1 = αX,s ∪ {〈〈i, x〉, Ai(x)〉 : 〈i, x〉 /∈ domain(αX,s)}.

Otherwise, if i /∈ X then fill up A
{i}
X with zeros, i.e. let

αX,s+1 = αX,s ∪ {〈〈i, x〉, 0〉 : 〈i, x〉 /∈ domain(αX,s)}.

• s = 2〈i, e〉+ 1. If i /∈ X then look for a finite set F (with |F | ≤ 1) compatible
with αX,s (i.e. if x ∈ F and αX,s(x) ↓, then αX,s(x) = 1) and an element y
such that y ∈ Ψe(F ) \Ai. If F and y exist, then choose the least such F , and
set

αX,s+1 = αX,s ∪ {〈x, 1〉 : x ∈ F}.
Otherwise, set αX,s+1 = αX,s.

If i ∈ X then αX,s+1 = αX,s.

Verification . Each requirement R2i is clearly satisfied by construction at stage 2i+1,

since at the beginning of this stage the “column” A
{i}
X is finite. Now suppose that

some requirement R2〈i,e〉+1 is not satisfied, i.e. i /∈ X and Ai = Ψe(AX). This means
that at stage s + 1 with s = 2〈i, e〉 + 1 we can not diagonalize. Then, for every y,
y ∈ Ai if and only if there exists a finite set F (with |F | ≤ 1) such that 〈y, F 〉 ∈ Ψe

and F compatible with αX,s. Now, at the beginning of stage s + 1 the “columns”

completely filled up are A
{0}
X , . . . , A

{〈i,e〉}
X ; on the other hand αX,s is defined only on

finitely many numbers x ∈
⋃
j>〈i,e〉 ω

[j] and on these numbers αX,s(x) = 1. Thus,

F compatible with αX,s is equivalent to saying that if x ∈ F ∩
⋃
j≤〈i,e〉 ω

[j] then

αX(x) = 1. Hence Ai ≤s

⊕
j≤〈i,e〉A

{j}
X ; on the other hand, A

{j}
X =∗ Aj , for every

j ≤ 〈i, e〉, so
⊕

j≤〈i,e〉A
{j}
X ≤m

⊕
j≤〈i,e〉Aj , where ≤m denotes many-one reducibility;

since ≤m ⊆ ≤s, we conclude that Ai ≤s A0 ⊕ · · · ⊕A〈i,e〉. But this is a contradiction,
since {degs(Ai)}i∈ω is an independent set. �

Definition 2.6. An n-ary relation R on Ds, with n ≥ 1, is definable in Ds with
parameters, if there exists a first order formula of posets ϕ(−→x ;−→w ), (where −→x =
〈x1, . . . , xn〉 and −→w = 〈w1, . . . , wm〉, for some m ≥ 0: Here and throughout the
paper, we adopt the convention of using a semicolon to separate in a first order
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formula, variables used for parameters, from the other variables), and degrees −→w =
〈w1, . . . ,wm〉 such that, for every −→x ∈ (Ds)

n,

R(−→x )⇔ Ds |= ϕ(−→x ;−→w).

We say in this case that R is defined by ϕ from the parameters −→w . A class X of n-ary
relations (with n ≥ 1) is uniformly definable with parameters in Ds, if there exists a
first order formula of posets ϕ(−→x ;−→w ), such that X coincides with the class of relations
that are defined by ϕ from all possible choices of parameters −→w . We say in this case
that ϕ uniformly defines X in Ds.

We now introduce a special class of uniformly definable countable antichains due
to Slaman and Woodin [20].

Definition 2.7. A set G ⊆ Ds is called a Slaman-Woodin set (or, simply, SW-set) if
for some degrees a, b, g, we have that G is the set of degrees x, that are minimal with
respect to the property:

x ≤ g & a ≤ x ∪ b.

Thus the class of SW-sets is uniformly defined in Ds by the formula:

ϕSW (x; a, b, g) := x ≤ g & a ≤ x ∪ b & ¬(∃y)(y ≤ g & a ≤ y ∪ b & y < x),

where ∪ is of course definable in the language with identity of posets.

2.1. Plan of the proof. We outline the plan to show that Th(N,P(ω)) ≤m Th(Ds).

(1) We exhibit first order formulas, in the language with identity of posets,
ϕN (x;−→w ), ϕs(x, y;−→w ), ϕ+(x, y, z;−→w ), ϕ×(x, y, z;−→w ), ϕ<(x, y;−→w ). Starting
from these formulas, for every list −→w of parameters interpreting the variables
in the list −→w , one can consider the structure for arithmetic

N−→w = 〈GN,−→w , s−→w ,+−→w ,×−→w , <−→w 〉,

where GN,−→w = {x : Ds |= ϕN (x;−→w)} is the universe, and s−→w , +−→w , ×−→w ,
<−→w , are the relations (interpreting in order, s,+,×, <) on GN,−→w , obtained by
restricting to the universe the relations defined by the formulas ϕs, ϕ+, ϕ×,
ϕ<, respectively, from the parameters −→w .

(2) We show that there is a first order formula αst(
−→w ) (called a correctness condi-

tion), such that and for every list of degrees −→w as above, if Ds |= αst(
−→w) then

N−→w is isomorphic to N, the standard model of arithmetic. In other words,
among the structures N−→w , uniformly individuated as above, the correctness
condition picks only ones that are copies of the standard model of arithmetic.

(3) Satisfaction of the correctness condition will guarantee that GN,−→w is an infinite

computably independent set of degrees, so if Ds |= αst(
−→w) then we may use

Theorem 2.5 (enabling us to interpret second order quantification on subsets
of any countably infinite independent set of degrees with first order quantifi-
cation in Ds), to show that there is a computable mapping σ 7→ σ∗(−→w ) taking
second order arithmetical sentences to first order formulas in the language of
posets such that, if Ds |= αst(

−→w) then

(N,P(ω)) |= σ ⇔ Ds |= σ∗(−→w),

so that the mapping σ 7→ (∃−→w )(αst(
−→w ) &σ∗(−→w )) gives the desired reduction

of Th(N,P(ω)) to Th(Ds).
(4) Finally, we show the existence of suitable parameters −→w which satisfy the

correctness condition.
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2.2. How to build suitable parameters. In Theorem 3.1, we build a list of s-
degrees

−→v = 〈a, b, g,p0,p1,p2,p3〉
obeying some simple properties. Before proving the theorem in next section, we
summarize these properties here, and show how to use them to augment −→v to a
larger list of parameters

−→w = 〈a, b, g,n,p,p0,p1,p2,p3〉,
such that N−→w is isomorphic to N. To do so, we contextually exhibit suitable order
formulas ϕN (x;−→w ), ϕs(x, y;−→w ), ϕ+(x, y, z;−→w ), ϕ×(x, y, z;−→w ), ϕ<(x, y, z;−→w ); the de-
sired effective translation σ 7→ σ∗(−→w ) of second order arithmetical sentences into first
order formulas in the language of posets; and the existence of a suitable correctness
condition αst(

−→w ).

The universe. We build a computably independent SW-set

G−→w = {gn : n ∈ ω},
defined by ϕSW from the triple 〈a, b, g〉. For every n, let an = g2n, bn = g2n+1, and
GN,−→w = {an : n ∈ ω}, GP,−→w = {bn : n ∈ ω}. The parameters n and p are such that

GN,−→w = {g ∈ G : g ≤ n}
GP,−→w = {g ∈ G : g ≤ p} :

Notice that given a, b, g, the existence of n and p is guaranteed by Theorem 2.5.
Clearly GN,−→w and GP,−→w are definable with parameters by first order formulas of posets
ϕN (x; a, b, g, n) (from the parameters 〈a, b, g,n〉), and ϕP (x; a, b, g, n) (from the pa-
rameters 〈a, b, g,p〉), respectively. The set GN,−→w will be the universe of our copy of
the standard model.

Successor, 0, and <. To define the successor function, we use the two parameters
p0,p1, guaranteeing that for every ai ∈ GN,−→w , there exists a unique element aj ∈
GN,−→w (with ai 6= aj) such that aj ≤ ai ∪ p0 or aj ≤ ai ∪ p1. Given ai, this unique
element is actually ai+1. Furthermore, we ensure that a0 is not the “successor” of
any element in GN,−→w . As specified, we need two parameters: p0 is used to define
the “successor” for the elements a2i, and p1 is used to define the “successor” for the
elements a2i+1, with i ∈ ω. Formally, the successor function in GN,−→w is then coded
by the binary relation s−→w on GN,−→w ,

s−→w (x,y) := x 6= y & [y ≤ x ∪ p0 ∨ y ≤ x ∪ p1],

which is clearly definable by a first order formula ϕs(x, y; a, b, g, n, p0, p1) from the
parameters −→w .

It is interesting to see that it is already possible to define at this point the natural
order on numbers.

Corollary 2.8. The relation <−→w on GN,−→w ,

x <−→w y := (∃m,n ∈ ω)[m < n & x = am & y = an]

is definable from −→w by a first order formula ϕ<(x, y; a, b, g, n, p0, p1).

Proof. It is easy to see, using Theorem 2.5, that for every x,y ∈ GN,−→w , we have that
x <−→w y holds if and only if

(∃g)(∀c ∈ GN,−→w )[(s−→w (c) ≤ g ⇒ c ≤ g] & x ≤ g & y � g],

where for simplicity, we use the unary function symbol s−→w for successor, translating
into functional form its relational definition given above: If c ∈ GN,−→w , then s−→w (c) is
meant to be the unique y ∈ GN,−→w such that s−→w (x,y). �
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Notice also that a0 is first order definable too, from the parameters −→w . In view
of the previous results, it is appropriate to identify GN,−→w with ω, via the mapping
i 7→ ai.

Second order quantification. Next, we show how to code second order quantifi-
cation. The set G−→w is computably independent in Ds and so it is independent too.
Thus, both GN,−→w and GP,−→w are independent. By Theorem 2.5, it follows that for
every X ⊆ ω there exist elements nX ,pX ∈ Ds such that nX codes X in GN,−→w , and
pX codes X in GP,−→w , i.e., i ∈ X if and only if ai ≤ nX ; and, i ∈ X if and only if
bi ≤ pX .

Ordered pairs. We now show how to talk in a first order way about ordered pairs
of elements of GN,−→w . To do this, we use the two parameters p2,p3. These parameters
allow us to pick ordered pairs of elements of the universe. More precisely, p2,p3 are
built so that for every (ak,an) ∈ GN,−→w×GN,−→w , there exists a unique element b ∈ GP,−→w
such that ak is the unique solution in GN,−→w of the equation in x,

x ≤ b ∪ p2,

and an is the unique solution in GN,−→w of the equation in x

x ≤ b ∪ p3,

and viceversa every b ∈ GP,−→w bounds via p2,p3 a unique pair of elements in GN,−→w ×
GN,−→w . In our construction, the element b ∈ GP,−→w corresponding to (ak,an) will be
b〈k,n〉 = g2〈k,n〉+1. Thus, we can see ordered pairs of elements of GN,−→w as elements of

GP,−→w , via identification of (x,y) ∈ GN,−→w ×GN,−→w with the unique b ∈ GP,−→w such that

x ≤ b ∪ p2 & y ≤ b ∪ p3.

The needed properties of p2, and p3 (which work as projections for the pairing function
(x,y) 7→ b) can be summarized by the first order condition:

(∀x,y ∈ GN,−→w )(∃b ∈ GP,−→w )[x ≤ b ∪ p2 & y ≤ b ∪ p3] &

(∀b ∈ GP,−→w )(∃x,y ∈ GN,−→w )[x ≤ b ∪ p2 & y ≤ b ∪ p3] &

(∀x,y,u,v ∈ GN,−→w )(∀b ∈ GP,−→w )

[x,u ≤ b ∪ p2 & y,v ≤ b ∪ p3 ⇒ x = u & y = v].

Sum. Let y ∈ GN,−→w : we say that a subset P ⊆ GP,−→w has the (+,y)-closure property
if

(1) (a0,y) ∈ P ;
(2) (∀x, z ∈ GN,−→w ))[(x, z) ∈ P ⇒ (s−→w (x), s−→w (z)) ∈ P ].

(Notice our identification of subsets of GP,−→w , with sets of pairs of elements of GN,−→w .
We use also the already observed definability of a0.) The idea here is that P contains
the pairs of s-degrees in GN,−→w corresponding to the pairs of natural numbers (x, x+y),
where y is the natural number corresponding to y.

Lemma 2.9. The property P+(q,y) of s-degrees q, y,

q codes a set P ⊆ GP,−→w having the (+,y)-closure property

(where “q codes P” is as in Definition 2.4(1)) is definable from the parameters −→w .

Proof. The first order formula defining the property is obtained by combining ϕN ,
ϕP , ϕs; the parameters are those needed for these formulas, plus p2, p3. �
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It follows that + on GN,−→w is coded by the relation +−→w (x,y, z):

(∀P ⊆ GP,−→w )[P has the (+,y)-closure property⇒ (x, z) ∈ P ]

which by Lemma 2.9, is first order definable from the parameters −→w by a formula
ϕ+(x, y, z;−→w ).

Multiplication. We say that a subset P ⊆ GP has the (×,y)-closure property if

(i) (a0,a0) ∈ P ;
(ii) (∀x, z ∈ GN,−→w ))[(x, z) ∈ P ⇒ (s−→w (x), z +−→w y)) ∈ P ],

(where for simplicity we translate into functional form the relational definition +−→w
given above). Then multiplication on GN,−→w is coded by the relation ×−→w (x,y, z):

(∀P ⊆ GP,−→w )[P has the (×,y)-closure property⇒ (x, z) ∈ P ],

which is clearly first order definable from the parameters −→w by, say, a formula
ϕ×(x, y, z;−→w ).

Lemma 2.10. If −→w is as above, then the structure N−→w is isomorphic to the standard
model of arithmetic, and there is a computable mapping σ 7→ σ∗(−→w ) taking second
order arithmetical sentences to first order formulas (with free variables among −→w ) in
the language of posets such that

(N,P(ω)) |= σ ⇔ Ds |= σ∗(−→w)

Proof. The isomorphism of N with N−→w is given by the mapping i 7→ ai. As to the
mapping σ 7→ σ∗(−→w ), define σ∗(−→w ), for a given unnested second order arithmetical
sentence σ, by induction on the complexity of the subformulas α of σ as follows
(assume that distinct occurrences of quantifiers are relative to distinct variables, and
for every set variable U , choose a first order variable pU which is uniquely targeted
for U):

(1) α is first order atomic: obtain α∗ by replacing s,+,×, < with ϕs, ϕ+, ϕ×,
ϕ<, respectively;

(2) (u ∈ U)∗ := ϕN (u,−→w ) & u ≤ pU ;
(3) ∗ commutes with the propositional connectives;
(4) ((∃v)β)∗ := (∃v)(ϕN (v,−→w ) & β∗); ((∀v)β)∗ := (∀v)(ϕN (v,−→w )→ β∗);
(5) ((∃U)β)∗ := (∃pU )β∗; similarly, ((∀U)β)∗ := (∀pU )β∗.

�

Finally, we exhibit the desired correctness condition αst(
−→w ), such that every list

of parameters −→w ′ = 〈a′, b′, g′,n′,p′,p′0,p′1,p′2,p′3〉 in Ds, satisfying the condition
(i.e. Ds |= αst(

−→w ′)) codes a copy of N in Ds. The condition αst(
−→w ) states that

Ds |= αst(
−→w ′) if and only if:

(1) the triple 〈a′, b′, g′〉 provides, via ϕSW (x; a, b, g), a computably independent
set G−→w ′ of degrees: this is a first order condition on degrees, since a set A of
degrees is computably independent if and only if

(∀x ∈ A)(∃h)(∀y ∈ A)[x 6= y ⇒ y ≤ h & x � h];

(2) the additional parameters n′,p′ partition G into two halves GN,−→w ′ and GP,−→w ′

which are still computably independent (hence quantification on subsets of
these two sets correspond via Theorem 2.5 to quantification on degrees);

(3) p′0,p
′
1 code the successor function on GN,−→w ′ via s−→w ′ , in the same first order

way as in our previous discussion for −→w ;
(4) p′2,p

′
3 codes the set of ordered pairs of GN,−→w ′ in the same first order way as in

our previous discussion, satisfying the first order condition with parameters
therein exhibited;
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(5) the relations s−→w ′ , +−→w ′ , ×−→w ′ , introduced by uniform definitions from the pa-
rameters −→w ′, satisfy the (finitely many) axioms of Robinson’s Arithmetic (in
the appropriate relational language); notice that this allows to define “zero”,
0−→w ′ , in N−→w ′ ;

(6) the first order translation (via Theorem 2.5) of second order induction is
satisfied, i.e. the following holds in Ds:

(∀U ⊆ GN,−→w ′)
[
0−→w ′ ∈ U & (∀u ∈ GN,−→w ′) [u ∈ U → s−→w ′(u) ∈ U ]→ U = GN,−→w ′

]
.

Clearly, the correctness condition αst(
−→w ) can be expressed in a first order way, and

the following holds:

Lemma 2.11. If Ds |= αst(
−→w ′) holds, then N−→w ′ is isomorphic to N, and

(N,P(ω)) |= σ ⇔ Ds |= σ∗(−→w ′).

Proof. Obvious by the previous remarks. Clearly N−→w ′ has no nonstandard elements,
as follows from satisfaction of second order induction. �

Corollary 2.12. Th(N,P(ω)) ≤m Th(Ds).

Proof. By Theorem 3.1 there exists −→w such that Ds |= αst(
−→w). Then, by the previous

lemma, for every second order arithmetical sentence σ,

(N,P(ω)) |= σ ⇔ Ds |= (∃−→w )(αst(
−→w ) & σ∗(−→w )).

�

3. A copy of the standard model of arithmetic within Ds

It remains to show that there exists a list of parameters −→w in Ds, such that
Ds |= αst(

−→w). The following theorem is a strengthening of a result in [1], where
it is shown that there exists a computable independent SW-set consisting of Σ0

2 s-
degrees: This result was used to show that the first order theory of the Σ0

2 s-degrees
is undecidable. The proof of Theorem3.1 is based on [1]: One of the reasons to
reproduce here in full detail even the parts of the proof inherited from [1] is to make
up for a few typos and inaccuracies therein appearing.

Theorem 3.1. In Ds there exist degrees a, b, g, p0, p1, p2, p3 and a computably
independent SW-set G = {gi}i∈ω such that letting ai = g2i, bi = g2i+1, GN = {ai :
i ∈ ω}, we have:

• G is defined by ϕSW (x; a, b, g) from the parameters a, b, g;
• for every i, a2i+1 is the unique element a of GN such that a 6= a2i and
a ≤ a2i ∪ p0; for every i, a2i+2 is the unique element a of GN such that
a 6= a2i+1 and a ≤ a2i+1 ∪ p1;

• for every k, n, the pair (ak,an) is the unique pair (a,a′) ∈ G2
N such that

a ≤ b〈k,n〉 ∪ p2, and a′ ≤ b〈k,n〉 ∪ p3.

Proof. We build a set G =
⋃
i∈ω Gi (with Gi ⊆ ω[i], for every i, so, up to ≡s, we may

identify
⊕

i∈I Gi with
⋃
i∈I Gi, for every I ⊆ ω) so that the requirements displayed

below are satisfied, for every i, k, n and for every pair Φ,Ψ of s-operators, where we
let Ai = G2i, Bi = G2i+1, and ∆i, Ξi, Ωi, Λk,n, Πk,n and ΓΦ,Ψ,i are s-operators built
by us; x−̇1 denotes x− 1 if x ≥ 0, and x−̇1 = 0 otherwise.
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Di : A = ∆i(Gi ⊕B)

MΦ,Ψ : A = Φ(Ψ(G)⊕B)⇒ (∃i,ΓΦ,Ψ,i)[Gi = ΓΦ,Ψ,i(Ψ(G))]

Codi : A2i+1 = Ξi(A2i ⊕ P0)

Cevi : A2i+2 = Ωi(A2i+1 ⊕ P1)

Ck,n,2 : Ak = Λk,n(B〈k,n〉 ⊕ P2)

Ck,n,3 : An = Πk,n(B〈k,n〉 ⊕ P3)

Ii,Ψ : Gi 6= Ψ(
⊕
j 6=i

Gj)

Iodi,0,Ψ : A2i+1 6= Ψ(
⊕
j 6=i

A2j ⊕ P0)

Iodi,1,Ψ : A2i+1 6= Ψ(
⊕
j 6=i

A2j+1 ⊕ P1)

Ievi,0,Ψ : A2i 6= Ψ(
⊕
j 6=i

A2j ⊕ P0)

Ievi,1,Ψ : A2i 6= Ψ(
⊕

2j+16=2i−̇1

A2j+1 ⊕ P1)

Ik,2,Ψ : Ak 6= Ψ(
⊕
n
i6=k

B〈i,n〉 ⊕ P2)

In,3,Ψ : An 6= Ψ(
⊕
k
j 6=n

B〈k,j〉 ⊕ P3).

We distinguish the following groups of requirements (where i, k, n ∈ ω, and Φ, Ψ are
s-operators): the D-requirements, of the form Di, for some i; the M-requirements, of
the form MΦ,Ψ; the Cod-requirements, of the form Codi ; the Cev-requirements, of the
form Cevi ; the C2-requirements, of the form Ck,n,2; the C3-requirements, of the form
Ck,n,3; the I-requirements, of the form Ii,Ψ; the Iod0 -requirements, of the form Iodi,0,Ψ;

the Iod1 -requirements, of the form Iodi,1,Ψ; the Iev0 -requirements, of the form Ievi,0,Ψ;
the Iev1 -requirements, of the form Ievi,1,Ψ; the I2-requirements, of the form Ik,2,Ψ; the
I3-requirements, of the form Ik,3,Ψ.

We then talk about the minimality requirements, i.e., the M-requirements; the
comparability requirements, which include the Cod-requirements, the Cev-requirements,
the C2-requirements, and the C3-requirements; and finally, the incomparability require-
ments, which include the I-requirements, the Iod0 -requirements, the Iod1 -requirements,
the Iev0 -requirements, the Iev1 -requirements, the I2-requirements, and lastly the I3-
requirements.

If the sets A,B,G, {Gi}i∈ω, P0, P1, P2, P3 satisfy all the above requirements, then
the corresponding s-degrees a, b, g, {g}i∈ω, p0, p1, p2, p3 have the desired properties.
Indeed:

(1) satisfaction of the D-requirements and the fact that g =
⋃
i∈ω gi guarantee

that each gi’s is a solution of

a ≤ x ∪ b & x ≤ g;

(2) satisfaction of all M-requirements guarantees that the gi are minimal solu-
tions of the above system of two inequalities: If y = degs(Y ) is a solution,
then Y = Ψ(G) for some s-operator Ψ, and there exists an s-operator Φ such
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that A = Φ(Ψ(G)⊕B). But then there exists an i such that Gi ≤s Y via the
s-operator ΓΦ,Ψ,i;

(3) satisfaction of the I-requirements guarantees that {gi}i∈ω is a computably
independent set of s-degrees;

(4) requirement Codi implies that a2i+1 ≤ a2i ∪ p0. On the other hand a2i+1 is
the unique element x of GN that satisfies

x 6= a2i & x ≤ a2i ∪ p0.

In fact, if i′ 6= i then by satisfaction of every Iodi′,0,Ψ we have that a2i′+1 6≤⋃
j 6=i′ a2j ∪ p0. But then a2i′+1 6≤ a2i ∪ p0, as a2i is one of the addenda in⋃
j 6=i′ a2j . Furthermore, if i′ 6= i then by satisfaction of every Ievi′,0,Ψ we have

that a2i′ 6≤
⋃
j 6=i′ a2j ∪p0; hence a2i′ 6≤ a2i ∪p0, as a2i is one of the addenda

in
⋃
j 6=i′ a2j ;

(5) a similar argument, involving the requirements of the form Iodi′,1,Ψ and Ievi′,1,Ψ,
shows that a2i+2 is the unique element x of GN that satisfies system of in-
equalities

x 6= a2i+1 & x ≤ a2i+1 ∪ p1;

on the other hand, for no ai, i 6= 0, can we have a0 ≤ a2i ∪ p0, and for no i
can we have a0 ≤ a2i+1 ∪ p1;

(6) for fixed k, satisfaction of all requirements Ck,n,2 gives that ak ≤ b〈k,n〉 ∪ p2;
on the other hand, satisfaction of all requirements of the form Ik,2,Ψ gives
that ak is the unique degree a ∈ GN such that a ≤ b〈k,n〉 ∪ p2, for some n;

(7) finally, for fixed n, satisfaction of all requirements Ck,n,3 gives that an ≤
b〈k,n〉 ∪ p3; on the other hand, satisfaction of all requirements of the form
Ik,3,Ψ gives that an is the unique degree a ∈ GN such that a ≤ b〈k,n〉 ∪ p3,
for some n;

It follows from the previous two items that for fixed k, n, the pair (ak,an) is the unique
ordered pair of elements of GN which is “coded” by b〈k,n〉 through the “projections”
p2 and p3.

3.1. Strategies to meet the requirements. We now describe the strategies that
will be used to meet each requirement in isolation. Strategies will be usually classi-
fied following the classification of the requirements that they are intended to meet:
Thus for instance we talk in general of incomparability strategies, or of comparability
strategies, if the strategies refer to incomparability requirements, or comparability re-
quirements, respectively; similarly, according to the particular requirements addressed
by the strategies, we may talk about D-strategies, M-strategies, Cod-strategies, Cev-
strategies, C2-strategies, C3-strategies, I-strategies, Iod0 -strategies, Iod1 -strategies, Iev0 -
strategies, Iev1 -strategies, I2-strategies, or I3-strategies.

For the sake of notational simplicity we use lower case Greek letters to denote
strategies, and, for a given strategy α, we will often use the same symbol α also to
index (some of) the relevant ingredients of the addressed requirement: For instance, if
α addresses the requirement Codi : A2i+1 = Ξi(A2i⊕P0) then, with obvious suggestion,
the requirement will be often written as Aα = Θα(Aα−1 ⊕ Pα), where Aα = A2i+1,
Θα = Ξi, Aα−1 = A2i, Pα = P0; similarly, if α is an I-strategy, then the corresponding
requirement may be written as Gβ 6= Ψβ(

⊕
j 6=β Gj), and so on.

3.1.1. Incomparability strategies. To address incomparability requirements, we
use strategies that are appropriate variations of the classical Friedberg-Muchnick
strategy.

We observe that an incomparability requirement has the form X 6= Ψ(Y ), where
Ψ is an s-operator, and X and Y are sets (built by us): We have that X = Gi, for
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some i, and Y has two possible forms: There is set T of indices such that either
Y =

⊕
j∈T Gj if we are dealing with an I-requirement; or Y =

⊕
j∈T Gj ⊕ P (with

P also built by us), if we are dealing with an incomparability requirement that is not
an I-requirement. In any case, X 6= Gj for every j ∈ T , and X 6= P .

To achieve X 6= Ψ(Y ):

(1) appoint a new witness g ∈ X;
(2) await g ∈ Ψ(Y );
(3) extract g from X, and restrain g ∈ Ψ(Y ); (this can be done since X is none

of the addenda appearing in
⊕

j∈T Gj , or in
⊕

j∈T Gj ⊕ P .)

3.1.2. Comparability strategies. Next we treat the comparability strategies. A
comparability strategy has the form X = Θ(C ⊕ P ), where X, C (both lying in
{Gi : i ∈ ω}), and P are sets built by us, and Θ is an s-operator built by us.

To achieve X = Θ(C ⊕ P ), the strategy aims to maintain a correct s-operator Θ:
Whenever we have g ∈ X (due to the action of some lower priority incomparability
strategy), we add (if no such axiom is active, i.e. already defined and valid at the
current stage) an axiom of the form 〈g, {g′} ⊕ ∅〉 ∈ Θ, with g′ ∈ C, or of the form
〈g, ∅⊕{p}〉 ∈ Θ, with p ∈ P . We choose either form depending on which lower priority
I-strategy demands g ∈ X as a witness. We will come back later to this point, when
discussing in more detail the interactions between strategies. Of course, if later g is
extracted from X (by the same incomparability strategy), then we must accordingly
correct Θ(C ⊕ P ) by extracting g′ from X, or p from P , as appropriate.

Although we are discussing here comparability strategies, it is clear by the above
remarks that for a given comparability strategy a great deal of the task of maintaining
a correct Θ is performed by the lower priority incomparability strategies that are
enumerating numbers into X, rather than by the comparability strategy itself, which
limits itself to some routine updating: In particular, if the strategy sees that some
g ∈ X will never be used again by the construction, then it permanently restrains
g ∈ X, and in Θ(C ⊕ P ) by adding the axiom 〈g, ∅ ⊕ ∅〉 ∈ Θ.

3.1.3. Minimality strategies. The strategy in isolation to achieve MΦ,Ψ is the
following:

(1) appoint a new witness x ∈ A;
(2) await x ∈ Φ(Ψ(G)⊕B);
(3) extract x from A and restrain x ∈ Φ(Ψ(G) ⊕ B). (In isolation, this is not a

problem, since A is neither Ψ(G), nor B.)

As we will see later, implementation of this simple strategy may be prevented by its
interactions with higher priority D-strategies. In this case, we switch to a backup
strategy, which consists in constructing an s-operator Γi, for some i, such that, Gi =
Γ(Ψ(G)): Details about this will be given later.

3.1.4. D-strategies. These are comparability strategies of a different type. A D-
strategy α, addressing the requirement A = ∆α(Gα ⊕ B) (recall that A, B, and
Gα are sets built by us, and ∆α is an s-operator built by us) consists in maintaining
correctness of the s-operator ∆α. When we see some x ∈ A (due to the action of some
lower priority M-strategy, which shares therefore the responsibility of maintaining
a correct ∆α), we add (if no such axiom is already active) an axiom of the form
〈x, {g} ⊕ ∅〉 ∈ ∆α, with g ∈ Gα, or of the form 〈x, ∅ ⊕ {b}〉 ∈ ∆α, with b ∈ B.
We choose either form depending on the particular action taken by the M-strategy
demanding x ∈ A as a witness: We will come back later to this when discussing in
more detail the interactions between strategies. If, later, x is extracted from A (by
the same M-strategy, that has appointed it as a witness), then we must accordingly
correct ∆α(Gα ⊕B) by extracting g from Gα, or b from B, as appropriate. When α
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sees that some number x will never be used again by the construction, it then takes
care of making A(x) = ∆α(Gα ⊕ B)(x): In particular, if this happens when x ∈ A,
then it permanently restrains x ∈ A, and also x ∈ ∆α(Gα ⊕B) by adding the axiom
〈x, ∅ ⊕ ∅〉 ∈ ∆α.

3.2. Interactions between strategies. We begin by analyzing how the incompa-
rability strategies interact with higher priority comparability strategies. Throughout
this section we write α ⊂ β to mean that α has higher priority than β. (On the other
hand, this reflects what happens in the later actual construction, where we place
strategies on a tree of strategies (thus strategies correspond to strings), and the only
delicate interactions between strategies α, β with α having higher priority than β will
happen when α is an initial segment of β: The case of α “to the left of” β will be
taken care of by initialization.)

3.2.1. β is an I-strategy, and α ⊂ β is a comparability strategy. We need only
consider the case when β is a strategy addressing a requirement Gβ 6= Ψβ(

⊕
j 6=β Gj),

and α is relative to Aα = Θα(Aα−1 ⊕ Pα), or to Aα = Θα(Bα ⊕ Pα), and the two
strategies do interact, i.e. Gβ = Aα:

When β appoints a witness g ∈ Gβ , then it also adds an axiom 〈g, ∅ ⊕ {p}〉 ∈ Θα,
with p ∈ Pα. Notice that if later β needs to extract g from Gβ , then this can be done
without injuring α by extracting p from Pα.

3.2.2. β is an incomparability strategy other than an I-strategy, and α, γ ⊂ β
are comparability strategies. We begin with some definitions.

We say that β is Pr-related (r = 0, 1, 2, 3) if β addresses an incomparability re-
quirement of the form

Aβ 6= Ψβ(Cβ ⊕ Pr),
(i.e. Pβ = Pr) where Cβ is of the form Cβ =

⊕
j∈Tβ Cj . (Hence Iod0 - and Iev0 -

strategies are P0-related; Iod1 - and Iev1 -strategies are P1-related; I2-strategies are
P2-related; and I3-strategies are P3-related.)

Similarly, a comparability strategy α is Pr-related (r = 0, 1, 2, 3) if α addresses a
comparability requirement of the form Aα = Θα(Aα−1 ⊕ Pr) (in this case r ∈ {0, 1}:
Namely, r = 0 if α − 1 is an even index, and r = 1 if α − 1 is odd), or of the form
Aα = Θα(Bα ⊕ Pr) (in this case r ∈ {2, 3}: Namely, r = 2 if α is a C2-strategy, and
r = 3 if α is a C3-strategy).

Next, we give the definition of interacting strategies:

Definition 3.2. Let β be an incomparability strategy, and let α, γ ⊂ β be compara-
bility strategies:

(1) We say that β interacts with α if Aβ = Aα;
(2) We say that β indirectly interact with γ via α, if β and α interact, β and α

are Pr-related with the same r ∈ {0, 1}, and Aγ = Aα−1. (The intuition here
is that if β needs to correct Θα by extracting some element from Aα−1, then
it also needs to correct Θγ .)

In order to describe the relevant interactions, we distinguish the following cases:
In the first two cases, the action taken by β towards Θα does not instigate any γ to
indirectly interact with β.

β Pr-related, α Ps-related, r 6= s. When β appoints a witness g ∈ Aβ , then it also
adds an axiom 〈g, ∅⊕ {p}〉 ∈ Θα, with p ∈ Pα. Notice that if later β needs to extract
g from Aβ , while restraining g ∈ Ψβ(Cβ⊕Pβ), then this can be done without injuring
α, by extracting p from Pα, which is not an addendum in Cβ , nor does Pα = Pβ .
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β and α Pr-related, and r ∈ {2, 3}. When β appoints a witness g ∈ Aβ , then it
also adds an axiom 〈g, {g′} ⊕ ∅〉 ∈ Θα, with g′ ∈ Bα. Notice that if later β needs
to extract g from Aβ , while restraining g ∈ Ψβ(Cβ ⊕ Pβ), then this can be done
without injuring α by extracting g′ from Bα, which is not an addendum in Cβ (since
Cβ ⊆ {Ai : i ∈ ω}), nor does Bα = Pβ . Notice also that extraction of g′ from Bα
does not require correction of any other s-operator, since Bα does not appear in the
left-hand side of any comparability requirement.

β and α Pr-related, and r ∈ {0, 1}. When β appoints a witness g ∈ Aβ , then it
also adds an axiom 〈g, {g′} ⊕ ∅〉 ∈ Θα, with g′ ∈ Aα−1. We must noe consider the
case of γ ⊂ β such that β indirectly interacts with γ via α, hence Aγ = Aα−1. Since
β and γ indirectly interact, we have that β is responsible for keeping Θγ correct, too.
But notice that γ is Ps-related, with r 6= s. (Consider for instance the case r = 0: If
β addresses the requirement Iodi,0,Ψ, then g′ ∈ A2i, and γ addresses either a Cev-, or
a C2-, or a C3-requirement, but in any case γ is not P0-related. The other cases are
similar.) But if γ is not Pr-related, then β can comply with the task of maintaining
Θγ correct, exactly as in the first item, since β is Pr-related and γ is Ps-related, with
r 6= s: Thus β adds an axiom 〈g′, ∅ ⊕ {p}〉 ∈ Θγ , with p ∈ Pγ . Notice that if later
β needs to extract g from Aβ , while restraining g ∈ Ψβ(Cβ ⊕ Pβ), then this can be
done without injuring either α or γ by extracting g′ from Aα−1 (this can be done
since Aα−1 not an addendum in Cβ , nor does Aα−1 = Pβ); and by extracting p from
Pγ (this can be done since Pγ is not an addendumnin Cβ , nor does Pγ = Pβ).

3.2.3. β is a minimality strategy and α ⊂ β is a D-strategy. Let β be a min-
imality strategy, and α a D-strategy, with α ⊂ β. Suppose that β wants to extract
x from A, and restrain x ∈ Φβ(Ψβ(G) ⊕ B), but currently x ∈ Φβ(Ψβ(G) ⊕ B) via
an axiom 〈x, {y} ⊕ ∅〉 ∈ Φβ , and y ∈ Ψβ(G) via an axiom 〈y, {g}〉 ∈ Ψβ , with g ∈ G;
on the other hand, β, when appointing x as a witness, has already defined an axiom
〈x, {g}⊕∅〉 ∈ ∆α, with g ∈ Gα, so it is not possible to extract x from A, and restrain
x ∈ Φβ(Ψβ(G)⊕B), without injuring α. This conflict may be resolved as in [1] (which
we closely follows in our presentation), using the following device:

We wait for axioms of a different form to appear for y in Ψβ(G): For instance
〈y, ∅〉 ∈ Ψβ or 〈y, {g′}〉 ∈ Ψβ , with g′ ∈ G, g′ 6= g, such that g′ can be restrained
without preventing β from extracting x from A, and rectifying ∆α; or for axioms of
the form 〈x, ∅⊕∅〉 ∈ Φβ , or 〈x, ∅⊕{b}〉 ∈ Φβ , b ∈ B, such that we can restrain b ∈ B,
without preventing β from extracting x from A and rectifying ∆α. If and when such
an axiom appears, then we go ahead with the extraction of x from A, and at the same
time we are able to keep x ∈ Φβ(Ψβ(G)⊕B).

While waiting, we continue building an s-operator Γα (in fact, this operator is
built by β, so it would be more appropriate to call it Γβ,α) , by enumerating the
axiom 〈g, {y}〉 ∈ Γα; we extract from G all those numbers ĝ such that there are
axioms 〈x, {ĝ} ⊕ ∅〉 ∈ ∆γ , for all D-strategies γ 6= α and γ ⊂ β. If a new axiom
〈y, {g′}〉 ∈ Ψβ , with g′ ∈ G, as in the previous bullet, appears, then g′ is different
from g and all these ĝ’s. Therefore we are free to diagonalize A against Φβ(Ψβ(G)⊕B),
by restraining g′ ∈ G, extracting x from A, and maintaining each ∆γ correct, for each
D-strategy γ ⊂ β. On the other hand, if no new such axiom appears, then we have
that g ∈ Gα if and only if y ∈ Ψβ(G), and thus g ∈ Gα if and only if g ∈ Γα(Ψβ(G)).
The idea is then to “pass on” g to lower priority strategies for their own use, as they
can freely use g without destroying the correctness of Γα at g. Notice, however, that
our extraction of the relevant ĝ from Gγ has made x /∈ ∆γ(Gγ⊕B), even if x ∈ A. To
set back A(x) = ∆γ(Gγ ⊕ B)(x), we select a new element b, with b ∈ B, and define
the axiom 〈x, ∅ ⊕ {b}〉 ∈ ∆γ . If later we are able to diagonalize by extracting x from
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A, then we must extract b from B (in addition to the already extracted ĝ) to preserve
A(x) = ∆γ(Gγ ⊕B)(x).

The above strategy makes us lose x as a diagonalization witness for β, so we must
appoint a new witness x′ in a new attempt at diagonalization. If all our attempts at
diagonalization fail, then since there are only finitely many strategies having higher
priority than β, the conclusion must be that there is a least a strategy α such that
we define infinitely many axioms of the form 〈g, {y}〉 ∈ Γα, and the elements of the
infinite set (called stream) of these g’s can be used as witnesses by lower priority
strategies. Thus Γα is correct at least on the numbers belonging to the stream. To
make Γα correct on numbers used by other lower priority strategies, whenever we
define Γα, we permanently restrain in Gα all numbers g′ (not in the stream) currently
in Gα, used by these lower priority strategies, and we consequently permanently
restrain each such g′ into Γα(Ψβ(G)), by defining the axiom 〈g′, ∅〉 ∈ Γα.

3.2.4. Interaction of an M-strategy β with a higher priority comparability
C-strategy γ. Here the interaction consists in the fact that when β defines an axiom
〈x, {g} ⊕ ∅〉 ∈ ∆α with g ∈ Gα, on behalf of some higher priority D-strategy α, then
it has also to update the s-operators Θγ relative to the comparability requirements
Aγ = Θγ(Aγ−1 ⊕ Pγ) or Aγ = Θγ(Bα ⊕ Pγ), with γ ⊂ β, such that Gα = Aγ (we
say in this case that β interacts with γ): This can be done by adding an axiom
〈g, ∅ ⊕ {p}〉 ∈ Θγ with p ∈ Pγ , so that extraction of p from Pγ can later correct
extraction of g from Gα = Aγ .

3.3. The tree of strategies. We place strategies on a tree of strategies, defined as
follows. On the set ω ∪ {w, d} we define the strict linear order <,

d < 0 < 1 < · · · < w,

and we use < to order lexicographically the set of strings (ω ∪ {w, d})<ω. We use
standard terminology and notations for strings: In particular, λ denotes the empty
string, if α and β are strings then |α| denotes the length of α, and α ⊆ β means that
α is an initial segment of β; α ⊂ β means that α ⊆ β and α 6= β; we write α ≤ β to
denote that α ⊆ β or α lexicographically precedes β; finally we write α < β to denote
that α ≤ β but α 6= β. We write α <L β if α ≤ β but α * β.

In the following, we refer to some computable linear ordering of all requirements,
in which Di precedes Dj if and only if i < j. We define the tree T , a subtree of
(ω ∪ {w, d})<ω, and a requirement assignment function R to nodes of T , recursively
as follows. (In the following, if R has been already defined on α, we write R(α) = Rα.)

• λ ∈ T ; Rλ is the least requirement;
• Suppose that we have defined Tn = T ∩ {α : α ∈ (ω ∪ {w, d})<ω &, |α| = n},

and R on all α ∈ Tn. Define the strings of length n+ 1 that belong to T , and
the function R on these strings as follows: For every α ∈ Tn:

– if Rα is a D-requirement, then α_〈0〉 ∈ T ;
– if Rα is a comparability requirement, then α_〈0〉 ∈ T ;
– if Rα is an incomparability strategy, then β ∈ T where β ∈ {α_〈o〉 : o ∈
{w, d}};

– If Rα is an M-strategy then β ∈ T where β ∈ {α_o : o ∈ ω ∪ {w, d}};
– if β is any of the strings of length n+1 that belong to T and β = α_〈o〉,

for some α ∈ T , then Rβ is the least requirement such that Rβ /∈ {Rγ :
γ ⊆ β}.

In view of the above requirement assignment, strings (or, nodes) in T will be also
called strategies: moreover we say that α is an Rα-strategy as α can be viewed as the
strategy to meet Rα. Notice that for every infinite branch of T , there is a bijective
correspondence between the set of requirements and the set of nodes along the branch.
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3.3.1. The parameters. During the construction we define approximations As, Bs,
Gi,s, P0,s, P1,s, P2,s P3,s to the sets A, B, Gi, P0, P1, P2, P3: The final values of
these sets will be, for X ∈ {A,B,Gi, P0, P1, P2, P3}, respectively:

X = {y : (∃t)(∀s ≥ t)[y ∈ Xs]} .

Moreover, we will guarantee that at each stage s, Gi,s ⊆ ω[i], so that, for every I ⊆ ω,
we may take

⊕
i∈I Gi,s =

⋃
i∈I Gi,s, and eventually

⊕
i∈I Gi =

⋃
i∈I Gi.

The main parameters defined in the construction are:

• For every D-node α we define an s-operator ∆α; for every Cod-strategy α we
define an s-operator Ξα; for every Cev-strategy α we define an s-operator Ωα;
for every C2-strategy α we define an s-operator Λα; for every C3-strategy α
we define an s-operator Πα;
• If β is an M-strategy, we define: witnesses xβ(0), xβ(1), . . .; for each D-

strategy α ⊂ β, traces gβ,α(0), gβ,α(1), . . .; and traces bβ(0), bβ(1), . . .; (the
traces gβ,α(t) and bβ(t) will be used to define suitable ∆α-axioms for xβ(t));
finally, for every D-strategy α ⊂ β, with Rα = Di, an s-operator Γβ_〈i〉
(which has been called Γβ,α in the previous informal discussion);
• For every incomparability strategy β we define a witness gβ , and traces gβ,α
pβ,α that will be used to axiomatize higher priority comparability strategies
α ⊂ β (as described in the upcoming paragraph on the axiomatization proce-
dure), with which β interacts or indirectly interacts. Of course we may choose
pβ,α = pβ,α′ , and similarly gβ,α = gβ,α′ , when the axiomatization procedure
requires the traces to be enumerated into the same set, although α 6= α′;
• for every α we define a set (called stream) Sα, which is given, stage by stage,

by specifying its elements. The approximation Sα,s of this stream at stage

s will be defined by specifying each column S
[i]
α,s = Sα,s ∩ ω[i], for every j:

Strategies β ⊇ α may use only elements chosen from S
[i]
α in order to define

Gi.

3.3.2. The initialization procedure. The initialization procedure for strategy α at
stage s consists in the following: We set ∆α,s = Ξα,s = Ωα,s = Λα,s = Πα,s = Γα,s =
Sα,s = ∅; gα,s =↑ (undefined), gα,β,s =↑, pα,β,s =↑, xα,s(t) = bα,s(t) = gα,β(t) =↑ for
any t.
Dumping. Upon discarding the value of a parameter, which is a witness or a trace,
the construction will not change its current membership state, so if the discarded
value, say, yα is currently in the corresponding set Xα, then yα is dumped, i.e. perma-
nently restrained, in the set, and thus if we want to make Xα = Θα(Yα) (where Θα

is built by the construction), we also dump yα into Θα, i.e., we permanently restrain
yα in Θα(Yα) by adding at the given stage the axiom 〈yα, ∅〉 ∈ Θα.

3.3.3. Choosing new numbers, and about the stream. Only numbers g ∈ ω[i]

are chosen to go into Gi.
At stage s+ 1 a number y is new for strategy α if either

(1) y needs to be chosen to be enumerated into one of the sets A, B, P0, P1,
P2, P3, and y is bigger than any number that has been used so far by any
strategy; or

(2) y needs to be chosen for enumeration into Gi, for some i, and y ∈ S[i]
α,s+1\S

[i]
α,s.

It will follow from the construction that S
[i]
α,s+1\S

[i]
α,s has at most one element,

so when a strategy β picks some new g for enumeration into Gi, then no other
new g′ will be available at that stage to lower strategies for enumeration in
Gi, so when β acts in this way we end the stage at s+ 1.
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At stage s + 1, if o is the current outcome of α, any new element entering S
[i]
α,s+1

will also be enumerated into S
[i]
α_〈o〉,s+1 unless otherwise specified.

3.3.4. The axiomatization procedure. Some strategies are requested to define ax-
ioms for certain s-operators: This action will be called axiomatization procedure. It is
prescribed only for incomparability and minimality strategies, and it is performed by
these strategies vs. comparability strategies as described in the section on interactions
between strategies. Notice that the M-strategies are also requested to define axioms
for the operators appearing in the D-strategies: We do not include this action in the
axiomatization procedure described here, since we prefer to explain it in full detail in
the course of the construction.

Let β be an incomparability strategy: In the following α, γ are comparability
strategies, with α, γ ⊂ β: We suppose that α addresses the requirement Aα =
Θα(Aα−1 ⊕ Pα), or the requirement Aα = Θα(Bα ⊕ Pα), and γ addresses the re-
quirement Aγ = Θγ(Aγ−1 ⊕ Pγ), or requirement Aγ = Θγ(Bγ ⊕ Pγ). The following
actions are taken by β for every α and γ such that β and α interact, and β and γ
indirectly interact.

β is an I-strategy. Action: β chooses a new p = pβ,α, defines p ∈ Pα, and adds the
axiom 〈g, ∅ ⊕ {p}〉 ∈ Θα.

β Pr-related, α Ps-related, r 6= s. Action: β chooses a new p = pβ,α, defines
p ∈ Pα, and adds the axiom 〈g, ∅ ⊕ {p}〉 ∈ Θα.

β and α Pr-related, and r ∈ {2, 3}. Action: β chooses a new g′ = gβ,α, defines
g′ ∈ Bα, and adds the axiom 〈g, {g′} ⊕ ∅〉 ∈ Θα.

β and α Pr-related, and r ∈ {0, 1}. Action: β chooses a new g′ = gβ,α, defines
g′ ∈ Aα−1, and adds the axiom 〈g, {g′} ⊕ ∅〉 ∈ Θα, with g′ ∈ Aα−1. In this case we
may have that the interaction of β with α instigates indirect interaction of β with
some γ: If β and γ indirectly interact via α, then β chooses a new p = pβ,γ , defines
p ∈ Pγ , and adds an axiom 〈g′, ∅ ⊕ {p}〉 ∈ Θγ .

β is an M-strategy. Action: β chooses a new p = pβ,α, defines p ∈ Pα, adds the
axiom 〈g, ∅ ⊕ {p}〉 ∈ Θα.

How to choose the witness gβ and the trace gβ,α. Notice that there is no problem
to choose the traces pβ,α since almost all numbers p are new, and thus available, for
this purpose. There are on the other hand restrictions on how to choose the witness
gβ and the traces gβ,α since, for every i, there is at most one new element which
is a candidate for a new element to be enumerated in Gi: See the remark made on
choosing new numbers and about the stream.

On the other hand, we have observed that at each stage we choose at most one
g ∈ Gi, for every i. Now, our definition of Sα and the construction will guarantee
that if β is allowed to act and needs to choose witness and corresponding traces, then
it will be able to pick up all needed numbers at once.

In all above cases we say that β axiomatizes α (on behalf of a number g), or β
indirectly axiomatizes γ via α .
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3.3.5. The rectification procedure. Together with the axiomatization procedure,
one has to cope with the rectification procedure, aiming at rectifying the various s-
operators, following extractions of elements from the sets built in the construction.
Once again, the description below is short of the rectification action performed by
theM-strategies on behalf of the D-strategies: The details of this action will be fully
given in the construction.

If β, α, and γ are related to each other as in the previous section regarding the
axiomatization procedure, then we say that β rectifies α, and β indirectly rectifies γ
via α, if β performs the following actions: It extracts all traces gβ,α, pβ,α and pβ,γ
enumerated by β to interact with α or directly interact with γ, when appointing the
a witness gβ .

3.4. Construction. The construction is by stages. At stage s we define a string
δs such that |δs| ≤ s. We follow standard notations and terminology about tree
constructions as can be found in most textbooks on computability theory, see e.g. [22].
In particular at stage s+ 1, when dealing with a parameter p, or an expression A (for
instance A is of the form “X = Θ(Y )”, where X,Y are sets, and Θ is an s-operator,
of which we consider stage by stage approximations Xt, Yt,Θt), we work with the
current value of the parameter, or of the expression, meaning that we work with their
values p(s), or A(s) (given by the values of their ingredients), respectively, as coming
from the previous stage s; or we work with their new values p(s + 1), or A(s + 1),
respectively, if already redefined in the course of stage s + 1. To simplify notation
(hopefully things will always be clear from the context), we usually drop any mention
of the stage, thus simply writing only p, or A.

Given a string α, let us say that a stage s is α-true, or s is an α-stage, if α ⊆ δs.

Stage 0. Define δ0 = λ; initialize all strategies.

Stage s + 1. Suppose we have defined α = δs+1 � n and S
[j]
α , for every j. Assume

also that we have defined Sλ,s+1 = {〈x, y〉 : y ≤ s, x ∈ ω} (note that at stage s+ 1 a

new element is added to each column of Sλ,s, i.e. for every j, S
[j]
λ,s+1 \ S

[j]
λ,s = {s}).

If n = s + 1, or we end the stage, then go to stage s + 2, and initialize all strategies
α ≥ δs+1. Otherwise, proceed as follows (we distinguish the various possibilities for
Rα, and we act accordingly):

Rα = Di. Consider all x ∈ A such that either x has been enumerated into A by some
strategy β + α, or x has been enumerated into A by some strategy β ⊇ α which has
been later initialized.

For every such number, dump x into A and into ∆α(Gi ⊕B). Let α_〈0〉 ⊆ δs+1.

Rα = MΦ,Ψ. In the following we say that a witness x = xα(t) is eligible to act if
x ∈ A∩Φ(Ψ(G)⊕B), and we can still restrain x ∈ Φ(Ψ(G)⊕B), and extract x from
∆β(Gβ ⊕ B) for every D-strategy β ⊂ α (by extracting g from Gβ , or b from B, if
〈x, {g} ⊕ ∅〉 ∈ ∆β or 〈x, ∅ ⊕ {b}〉 ∈ ∆β are currently active axioms) . (The idea is: x
is eligible to act, if we can use x to have x ∈ Φ(Ψ(G) ⊕ B) \ A by simply extracting
x from A, maintaining A(x) = ∆β(Gβ ⊕B)(x) for every D-strategy β ⊂ α.)

Let s− be the previous α-stage after last initialization of α, with the understanding
that s− is undefined if there is no such stage. We distinguish the following cases:

(1) s− is undefined, or we ended s− at α, or s− was an α_〈i〉-stage, for some
i ∈ ω: Then (assuming that n is the least number such that xα(n) is still
undefined), choose a new x = xα(n); define x ∈ A; for every D-strategy

β ⊂ α (with, say, Dβ = Dj), appoint a new number g′ = gα,β(n) ∈ S
[j]
α ,

define g′ ∈ Gj , add the axiom 〈x, {g′}⊕∅〉 ∈ ∆β and let α_〈w〉 ⊆ δs+1 (since
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x is new, we have x /∈ Φ(Ψ(G) ⊕ B)); end the stage. (We have exhausted
the only available new numbers in the relevant streams, so we wait for new
numbers to become available for lower priority strategies.)

(2) s− was an α_〈w〉-stage, at which we have defined xα(n) for the largest n
(notice that bα(n) is still undefined): We further distinguish the following
cases:
(a) xα(n) /∈ Φ(Ψ(G)⊕B): Then let α_〈w〉 ⊆ δs+1.
(b) Some x = xα(t), t ≤ n, is eligible to act: Then extract x from A

(i.e. define x /∈ A) and rectify every D-strategy β ⊂ α, i.e. extract
g = gα,β(t) from Gβ and b = bα(t) from B (where 〈x, {g} ⊕ ∅〉 ∈ ∆β

or 〈x, ∅ ⊕ {b}〉 ∈ ∆β are the axioms previously enumerated by α to put
x ∈ ∆β(Gβ ⊕B)); let α_〈d〉 ⊆ δs+1 and end the stage.

(c) Otherwise: Since x = xα(n) is not eligible, then membership x ∈ Φ(ΨG⊕
B) is achieved only by Φ-axioms for x of the form 〈x, {y}⊕ ∅〉 ∈ Φ, with
corresponding Ψ-axioms for y of the form 〈y, {g}〉 ∈ Ψ, where g = gα,β(n)
for some D-strategy β ⊂ α (thus, 〈x, {g} ⊕ ∅〉 ∈ ∆β), and g ∈ Gβ , so
that we can not restrain g ∈ Gβ and extract x from A without making
it impossible to achieve A(x) = ∆β(Gβ ⊕B)(x). Pick the least such β,
and suppose, say, that Rβ = Di. (Notice that i is the least such number,
due to the way requirements are ordered.) For every D-strategies γ 6= β
such that γ ⊂ α, extract gα,γ(n) /∈ Gγ . Pick a new b = bα(n), define
b ∈ B and add the axiom 〈x, ∅ ⊕ {b}〉 ∈ ∆γ , for any D-node γ ⊂ α.
Add the axiom 〈g, {y}〉 ∈ Γα_〈i〉. For each ĝ such that ĝ ∈ Gi and
ĝ has been enumerated by some strategy β 6⊇ α_〈i〉, dump ĝ into Gi
and into Γα_〈i〉(Ψ(G)) by defining the axiom 〈ĝ, ∅〉 ∈ Γα_〈i〉. Define

S
[i]
α_〈i〉,s+1 = S

[i]
α_〈i〉,s ∪ {g}, and let α_〈i〉 ⊆ δs+1.

(3) s− was an α_〈d〉-stage: Then let α_〈d〉 ⊆ δs+1.

Rα = Di. Say α addresses the requirement Rα : A = ∆α(Gi ⊕ B): Then consider all
x ∈ A such that either

(1) x has been enumerated into A by some strategy β + α, or
(2) x has been enumerated into A by some strategy β ⊃ α which has been later

initialized.

Dump every such x into A and into ∆α. Let α_〈0〉 ⊆ δs+1.

Rα ∈ {Codi , Cevi , Ck,2,n, Ck,3,n}. Say α addresses the requirement Rα : Aα = Θα(Cα ⊕
Pα): Then consider all g ∈ Aα such that either

(1) g has been enumerated into Aα by some strategy β + α (meaning, here and
below, that β has put the number in the set either by appointing it as a
witness, or a trace), or

(2) g has been enumerated into Aα by some strategy β ⊃ α which has been later
initialized.

Dump every such g into Aα and into Θα. Let α_〈0〉 ⊆ δs+1.

Rα = Ii,Ψ. We distinguish the following possible cases, indicating the corresponding
actions:

(1) there is no appointed witness (i.e. gα is undefined): appoint a new witness
g, i.e. let gα = g, define g ∈ Gi; axiomatize higher priority strategies β ⊂ α
which interact with α; let α_〈w〉 ⊆ δs+1; end the stage. (Here and below
in similar cases, we have exhausted the only available new numbers in the
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respective streams, so we wait for new numbers to become available for lower
priority strategies.)

(2) g = gα is defined and g ∈ Gi \Ψ(
⊕

j 6=iGj): Let α_〈w〉 ⊆ δs+1.

(3) g ∈ Ψ(
⊕

j 6=iGj): Extract g from Gi (i.e. let g /∈ Gi); rectify higher priority

strategies β ⊂ α, which interact with α; let α_〈d〉 ⊆ δs+1; if this is the first
time we have taken this case since the last initialization of α, end the stage.

Rα ∈ {Iodi,0,Ψ, Iodi,1,Ψ, Ievi,0,Ψ, Ievi,1,Ψ, Ik,2,Ψ, In,3,Ψ}. Say that α addresses the requirement

Rα : Aα 6= Ψα(Cα ⊕ Pα). We distinguish the following possible cases:

(1) there is no appointed witness (i.e. gα is undefined): appoint a new witness
g, i.e. let gα = g, define g ∈ Aα, axiomatize, on behalf of g, higher priority
strategies β ⊂ α interacting with α, and higher priority γ ⊂ α, indirectly
interacting with α; let α_〈w〉 ⊆ δs+1; end the stage.

(2) g = gα is defined and g ∈ Aα \Ψα(Cα ⊕ Pα): Let α_〈w〉 ⊆ δs+1.
(3) g ∈ Ψα(Cα ⊕ Pα): let g /∈ Aα; rectify higher priority strategies β ⊂ α which

interact with α, and higher priority γ ⊂ α indirectly interacting with α; let
α_〈d〉 ⊆ δs+1; if this is the first time we have taken this case since the last
initialization of α, then end the stage.

3.5. Verification. The verification breaks down into the following lemmas.

Lemma 3.3. All the sets built in the construction are 2-c.e.

Proof. This is clear form the construction, since for every number, we make at most
two moves: We may enumerate it a first time, if needed; and after enumeration we
may later extract it, if needed. �

Lemma 3.4. For every n the following hold:

(1) αn = lim infs δs � n exists;
(2) αn is eventually never initialized;
(3) after the last initialization of αn there are infinitely many αn-true stages s

and at each such stage S
[j]
αn,s contains a new element for every j;

(4) the witnesses gαn , the traces gαn,β, pαn,β (used in the axiomatization pro-
cedures), and the parameters xαn(t), bαn(t), gαn,β(t) (used by minimality
strategies) reach a limit.

Proof. The proof is by induction on n. For n = 0, αn = λ and the claims are
immediate.

Suppose now that αn = lim infs δs � n exists, and claims (1)–(4) are true of n. For
simplicity, let α = αn. By (1), let u be the last stage at which α is initialized. It fol-
lows by inductive assumption that after this stage if α needs to appoint a witness gα,
traces gα,β , pα,β , xα(t), bα(t), then it is allowed to do so, and the values of these pa-
rameters will never change again: In particular, we use the inductive assumption (3),
to conclude that α is allowed, when needed, to appoint a new witness or a new trace

g ∈ S[j]
α , for enumeration of g ∈ Gj . Moreover, at all α-true stages s > u, the action

taken by α, lets some α_〈o〉 ⊆ δs. If we can show that αn+1 exists, then it follows
that after t, αn+1 is initialized only if it ends the stage.

It is now trivial to show that if α is a D-strategy, or a comparability strategy, or an
incomparability strategy, then αn+1 exists, since at all α-true stages s > u we define
α_〈o〉 ⊆ δs, and o lies in a finite set. Moreover, if α is a D-strategy, or a comparability
strategy, then αn+1 never ends the stage after u; if α is an incomparability strategy,
then αn+1 ends the stage only at the first αn+1-true stage after u, namely through
Case 1, if αn+1 = α_〈w〉, or through Case 3, if αn+1 = α_n 〈d〉. Finally, by our

conventions on the stream, S
[j]
αn+1 = S

[j]
α : Therefore (3) is true of n+ 1 as well.
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Finally, let us consider the case Rα = MΦ,Ψ. Clearly there exists a greatest
m ∈ ω ∪ {ω} such that for every t < m, xα(t) is eventually appointed. If m ∈ ω
then we eventually have outcome w or d, which are both finitary, and the inductive

claim on S
[j]
αn+1 carries through. Thus assume that m = ω and i is the least such that

there are infinitely many α_〈i〉-stages: Such an outcome i exists since there are only
finitely many D-strategy β ⊂ α. Notice that whenever we visit α_〈i〉 we add a new

element g to the set S
[i]
α_〈i〉. Thus the inductive claim on S

[j]
αn+1 holds. Finally notice

that after t, we end the stage at most once at αn+1-true stages, namely at the first
αn+1-stage if αn+1 = α_〈o〉 if o ∈ {d,w}, after which αn+1 is never initialized.

�

Let f =
⋃
n αn be the true path, defined by

αn = lim inf
s

δs � n.

Lemma 3.5. For every n, Rαn is satisfied.

Proof. Let n be given. Let α = αn, and suppose by the previous lemma that tn is
the least stage such that at no t ≥ tn is α initialized, and we do not stop the stage
after α acts.

Rα = Di. Let x be given. We must check that, for every x, A(x) = ∆α(Gi ⊕ B)(x).
Since a number x may enter A (and consequently ∆α(Gi⊕B)) only due to the action
of some M-strategy β, clearly we need only to check this for those numbers x such
that there are β and t with x = xβ(t), as appointed at some stage. Only strategy β is
responsible for keeping x in or out of A. Without loss of generality, we may assume
that x has been appointed at a stage u ≥ tn. There are two possible cases:

Assume first that β + α: At the first α-true stage s > u if x ∈ A then we dump x
into A and into ∆α, which makes x ∈ ∆α(Gi ⊕B). Otherwise, if x /∈ A at s, then at
no α-stage after last initialization of α do we have x ∈ A, hence we do not define any
∆α-axiom for x.

The other case to consider is β ⊇ α: If β appoints x and β is initialized before
ever extracting x, then x ∈ A, but on the other hand at the first α-stage after
initialization of β, we dump x into ∆α(Gi ⊕ B). Otherwise, at stage u, when β
appoints x, β enumerates also an axiom 〈x, {g} ⊕ ∅〉〉 ∈ ∆α (where g = gβ,α(t))
and defines g ∈ Gi, which makes x ∈ ∆α(Gi ⊕ B) as long as β takes outcome w,
waiting for x ∈ Φβ(Ψβ(G) ⊕ B). Then either β jumps immediately from outcome w
to outcome d because x is the least eligible witness in Φβ(Ψβ(G)⊕ B), and extracts
x from A and g from Gi, implying A(x) = ∆α(Gi ⊕B)(x); or β takes some outcome
j, keeps x ∈ A, adds an axiom 〈x, ∅ ⊕ {b}〉 ∈ ∆α (b = bβ(t)), letting b ∈ B, which
keeps x ∈ ∆α(Gi ⊕B), even if some lower priority strategy extracts g from Gi; until
β takes, if this is ever the case, outcome d, due again to x becoming the least eligible
witness, and extracts x from A, g from Gi, and b from B, making x /∈ ∆α(Gi ⊕ B).
In all cases A(x) = ∆α(Gi ⊕B)(x).

Rα =MΦ,Ψ. If αn+1 = α_〈w〉 then there exists t such that x = xα(t) is defined, no
xα(m) is ever defined for m > t, and x ∈ A \ Φ(Ψ(G) ⊕ B). If αn+1 = α_〈d〉 then
there is some x = xα(t) (among finitely many witnesses xα(0), . . . , xα(m)) which α
has defined after last initialization) such that x ∈ Φ(Ψ(G)⊕B) \A.

It remains to consider the case when αn+1 = α_〈i〉 for some i ∈ ω. We claim in
this case that Gi = Γα_〈i〉(Ψ(G)), where Γα_〈i〉 is the s-operator, as enumerated by
α after the last initialization of α.

If g is eventually used by a strategy β ≤ α, then either g /∈ Gi, and in this case there
is no Γα_〈i〉-axiom for g, or g ∈ Gi, in which case by construction we add an axiom
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〈g, ∅〉 ∈ Γα_〈i〉. Next, for every g which is ever used by any strategy β >L α_〈i〉,
we have (at the moment when we discard g by initialization) either g /∈ Gi, in which
case we have Gi(g) = Γα_〈i〉(Ψ(G))(g) since we never define any axiom in Γα_〈i〉 for
g, or we have g ∈ Gi, in which case we add an axiom 〈g, ∅〉 ∈ Γα_〈i〉.

So we need only to show that for every g such that g is enumerated into S
[i]
α_〈i〉 at

some α_〈i〉-stage,

g ∈ Gi ⇔ g ∈ Γα_〈i〉(Ψ(G)).

The reason we have enumerated g into S
[i]
α_〈i〉 at some stage t′ ≥ tn is that we have

found an axiom 〈y, {g}〉 ∈ Ψ, with g ∈ Gi, in correspondence with some witness x,
for which there is an axiom 〈x, {g} ⊕ ∅〉 ∈ ∆β (where β ⊂ α is such that Rβ = Di).
Moreover there is no other axiom 〈y, {g′}〉 ∈ Ψ with g′ ∈ G: Indeed, such an axiom
can not appear after t′ since in this case we would be able to diagonalize (since x
is now eligible) and give outcome d. If it is present at stage t′, then since we give
outcome i at t′ there must be an axiom 〈x, {g′} ⊕ ∅〉 ∈ ∆j with j > i (here Dj = Dγ ,
for some γ ⊂ α), but in this case we extract g′ from G by construction.

We are therefore able to conclude:

g ∈ Gi ⇔ y ∈ Ψ(G)⇔ g ∈ Γα_〈i〉(Ψ(G)),

as desired.

Rα ∈ {Codi , Cevi , Ck,n,2, Ck,n,3}. We must check that Aα = Θα(Cα ⊕ Pα). Fix g: As
for the case of D-strategies, we must consider the incomparability strategy β which
is responsible for dealing at some stage u with g, and enumerates g into Aα. As
for the case of a D-strategy, if β + α then at the first α-true stage s > u if g ∈
Aα then we dump g into Aα and Θα; otherwise, if g /∈ Aα then at no α-stage s
after last initialization of α do we have g ∈ A, hence we do not define any ∆α-
axiom for g. It is left to consider the case when α ⊆ β. If there is an α-true stage
s ≥ tn at which g ∈ Aα, and β has been initialized, then again by dumping, as
before, we achieve Aα(g) = Θα(Cα ⊕ Pα)(g) = 1. Otherwise, notice that g can
be enumerated by β into Aα, either because β and α interact, or because β and
α indirectly interact, and the axiomatization procedure performed by β towards α
makes Aα(g) = Θα(Cα ⊕ Pα)(g) = 1 as long as we do not need to extract g from
Aα; but, if and when we need to extract the witness g /∈ Aα, then the rectification
procedure guarantees that Aα(g) = Θα(Cα ⊕ Pα)(g) = 0.

Rα = Ii,Ψ. We must check that Gi 6= Ψ(
⊕

j 6=iGj). Consider a stage after which α
does not change gα anymore. By Lemma 3.4 such a stage exists. If at no future
α-stage do we have gα ∈ Ψ(

⊕
j 6=iGj) then αn+1 = α_〈w〉 and the requirement is

satisfied. Otherwise at some future α-stage we have that gα ∈ Ψ(
⊕

j 6=iGj). As

explained in the construction, at the first such stage, we restrain (by initialization)
gα ∈ Ψ(

⊕
j 6=iGj), and we extract gα from Gi, thus letting gα ∈ Ψ(

⊕
j 6=iGj) \Gi.

Rα ∈ {Iodi,0,Ψ, Iodi,1,Ψ, Ievi,0,Ψ, Ievi,1,Ψ, Ik,2,Ψ, Ik,3,Ψ}. We must check that the requirement

Aα 6= Ψα(Cα ⊕ Pα), is satisfied. Consider a stage after which α does not change
gα anymore. By Lemma 3.4 such a stage exists. If at no future α-stage do we have
gα ∈ Ψα(Cα⊕Pα) then αn+1 = α_〈w〉 and the requirement is satisfied. Otherwise at
some future α-stage we have that gα ∈ Ψα(Cα⊕Pα). As explained in the construction,
at the first such stage, we restrain gα ∈ Ψα(Cα ⊕ Pα), and we extract gα from Aα,
thus letting gα ∈ Ψα(Cα ⊕ Pα) \Aα. �

This concludes the proof of Theorem 3.1. �
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