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Abstract. We present a relativized version of the notion of a degree
spectrum of a structure with respect to finitely many abstract structures.
We study the connection to the notion of joint spectrum. We prove that
some properties of the degree spectrum as a minimal pair theorem and
the existence of quasi-minimal degrees are true for the relative spectrum.
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1 Introduction

Let A = (N;R1, . . . , Rs) be a structure, where N is the set of all natural numbers,
each Ri is a subset of Nri and the equality = and the inequality 6= are among
R1, . . . , Rs.

An enumeration f of A is a total mapping from N onto N.
Given an enumeration f of A and a subset A of Na let

f−1(A) = {〈x1, . . . , xa〉 | (f(x1), . . . , f(xa)) ∈ A}.

Denote by f−1(A) = f−1(R1)⊕ . . .⊕ f−1(Rs).
Given a set X of natural numbers denote by de(X) the enumeration degree

of X and by dT(X) the Turing degree of X.
The following notion of enumeration degree spectrum of A is introduced by

Soskov [10].

Definition 1. The enumeration degree spectrum of A is the set

DS(A) = {de(f−1(A)) | f is an enumeration of A} .

Let us point out that the notion of enumeration degree spectra of a structure
A differs from the one usually studied in the literature [2, 6–8] where the degree
spectrum of a structure A is defined to be the set

DST(A) = {dT(f−1(A)) | f is an injective enumeration of A}.
? This work was partially supported by Sofia University Science Fund.



We shall call DST(A) the Turing degree spectrum of A. In some sense the
notion of enumeration degree spectra is more general of the notion of Turing
degree spectra. To see that observe that if we want to consider Turing degrees
instead of enumeration degrees then it is enough to take the structure

A
+ = (N;R1, . . . , Rs, R

c
1, . . . , R

c
s),

where Rc
i is the complement of Ri. Let ι be the Roger’s embedding of the Turing

degrees into the enumeration degrees. Then

DS(A+) = {ι(dT(f−1(A))) | f is an enumeration of A} .

Concerning the injectivity of the enumerations Soskov [10] proved that for
every enumeration f of A there exists a bijective enumeration g of A such that
g−1(A) ≤e f−1(A). The last result shows that almost all of the known results
about Turing degree spectra remain valid also for enumeration degree spectra.

Since we are going to work only with enumeration degree spectra from now
on we shall call them simply degree spectra.

Soskov [10] initiated the study of the properties of the degree spectra as sets
of enumeration degrees. He introduced the notion of co-spectrum CS(A) of a
structure A as the set of all lower bounds of the elements of the degree spectra
and proved several properties which show that the degree spectra behave with
respect to their co-spectra very much like the cones of the enumeration degrees
{x | x ≥ a} behave with respect to the intervals {x | x ≤ a}.

Some typical properties of degree spectra and their co-spectra are the exis-
tence of minimal pair of enumeration degrees and the existence of quasi-minimal
degree.

More precisely, for every degree spectrum DS(A), there exist total enumera-
tion degrees f0 and f1 in DS(A) such that the set of all enumeration degrees less
than or equal to both f0 and f1 is equal to CS(A). Every such pair of degrees is
called minimal pair for DS(A).

For each degree spectrum DS(A), there is an enumeration degree q 6∈ CS(A),
called quasi-minimal for DS(A) such that every total degree a ≥ q belongs to
DS(A) and every total degree a ≤ q belongs to CS(A).

In this paper we shall relativize Soskov’s approach to degree spectra by con-
sidering multi-component spectra.

The notion of relatively intrinsically Σ0
n sets on a structure A, studied by

Ash, Chisholm, Knight, Manasse and Slaman [3, 4], defines a kind of reducibility
of a set to a structure. A set A is relatively intrinsically Σ0

n+1 on A if for every
enumeration f of A, f−1(A) is enumeration reducible to f−1(A)(n).

Soskov and Baleva [11] extended this notion in the spirit of Ash [1]. Let
B1, . . . , Bk be sets of natural numbers. A set A is relatively intrinsically Σ0

n+1

with respect to B1, . . . , Bk if f−1(A) is enumeration reducible to f−1(A)(n)

for every enumeration f of A such that f−1(Bi) is enumeration reducible to
f−1(A)(i) for each i = 1, . . . k. In other words, in the definition above not all
enumerations of A are considered but only those enumerations which “assume”
that each Bi is relatively Σ0

i+1 on A for i = 1, . . . k.



Consider a structure A and finitely many structures A1, . . . ,An. We will
restrict the class of enumerations of A to these enumerations of A which “assume”
that each Ai is relatively Σ0

i+1 on A.
An enumeration f of A is n-acceptable with respect to the structures A1,

. . . ,An if f−1(Ai) is enumeration reducible to f−1(A)(i) for each i ≤ n.

Definition 2. The relative spectrum of the structure A with respect to A1, . . . ,
An is the set

RS(A,A1, . . . ,An) = {de(f−1(A)) | f is a n-acceptable enumeration of A} .

In the present paper we shall study the properties of the relative spectra.
We shall show that all properties of the degree spectra obtained by Soskov [10]
remain true for the relative spectra and hence these properties are not enough
to specify the sets of enumeration degrees which are degree spectra. In the last
section we shall compare the notion of relative spectra with another generaliza-
tion of the notion of spectra — the joint spectrum of a structure A with respect
to the structures A1, . . . ,An [12–14].

2 Preliminaries

2.1 Enumeration Degrees

Intuitively a set A is enumeration reducible to a set B, denoted by A ≤e B,
if there is an effective procedure to enumerate A given any enumeration of B.
More precisely, the set A is enumeration reducible to B if there is an enumeration
operator Γz such that A = Γz(B), i.e.

(∀x)(x ∈ A ⇐⇒ (∃v)(〈v, x〉 ∈ Wz & Dv ⊆ B))

where Dv is the finite set with a canonical code v and Wz is the recursively
enumerable set with index z with respect to a Gödel numbering of all r.e. sets.

The relation ≤e is reflexive and transitive and induces an equivalence relation
≡e on all sets of natural numbers. The enumeration degree of the set A, denoted
by de(A), is the equivalence class relatively ≡e. By De we denote the set of all
enumeration degrees. Define A+ = A⊕ (N\A). A set A is total if A ≡e A+. An
enumeration degree a is total if a contains the e-degree of a total set. Cooper [5]
introduced the jump operation “′” for enumeration degrees.

Definition 3. Given a set A, let K0
A = {〈x, z〉 | x ∈ Γz(A)}.

The e-jump A′ of A is the set (K0
A)+.

1. A(0) = A;
2. A(n+1) = (A(n))′.

It is noteworthy that the set A is ΣB
n+1 if A ≤e (B+)(n).

This definition can be further generalized to the notion of A(α) for any con-
structive ordinal α, see [11].



Definition 4. Let B0, . . . , Bn be arbitrary subsets of N. Define the set
P(B0, . . . , Bi) by induction on i ≤ n as follows:

1. P(B0) = B0;
2. If i < n then P(B0, . . . , Bi+1) = (P(B0, . . . , Bi))′ ⊕Bi+1 .

We will use the following jump inversion theorem proved by Soskov:

Theorem 5 ([9]). Let B0, . . . , Bn be a sequence of sets of natural numbers and
k < n. Suppose that Q is a total set such that P(B0, . . . , Bn) ≤e Q and let A be
a set such that A 6≤e P(B0, . . . , Bk) and A+ ≤e Q. Then there exists a total set
F with the following properties:

1. Bi ≤e F (i) for all i ≤ n;
2. F (i+1) ≡e F ⊕ (P(B0, . . . , Bi))′ for all i ≤ n;
3. A 6≤e F (k);
4. F (n) ≡e Q .

Furthermore, this theorem can be modified using regular enumerations in the
following way:

Theorem 6 ([14]). For each k ∈ {0, . . . , n − 1}, let {Ak
r}r∈N be a sequence of

subsets of N such that for every r, Ak
r 6≤e P(B0, . . . , Bk). Then there exists a

total set F with the following properties:

1. Bi ≤e F (i) for all i ≤ n;
2. Ak

r 6≤e F (k) for all r and all k < n .

Let A ⊆ De. Then A is upwards closed if whenever b is a total e-degree above
an enumeration degree a ∈ A then b ∈ A.

The co-set of A is the set co(A) of all lower bounds of A:

co(A) = {b | b ∈ De & (∀a ∈ A)(b ≤ a)} .

2.2 Degree Spectra and Co-Spectra

Let A = (N;R1, . . . , Rs) be a structure. Recall that the degree spectrum of A is
DS(A) = {de(f−1(A)) | f is an enumeration of A}.

For each natural number n, the nth jump spectrum of A is the set

DSn(A) = {de(f−1(A)(n)) | f is an enumeration of A} .

Definition 7. The co-spectrum of A is the co-set of DS(A):

CS(A) = {b | (∀a ∈ DS(A))(b ≤ a)} .

The nth co-spectrum of A is the set CSn(A) = co(DSn(A)).
Soskov [10] proved that every degree spectrum is an upwards closed set of

enumeration degrees. Therefore the degree spectra share all properties of up-
wards closed sets of degrees. Here are some examples of such properties. Let A
be an upwards closed set of degrees. Then:



1. co(A) = co({b ∈ A | b is a total e-degree });
2. for each n > 0 and any enumeration degree c ∈ De,

co(A) = co({b ∈ A | c ≤ b(n)}).

From the second property it follows that the elements of an upwards closed set
A with arbitrary high jumps determine completely the co-set of A.

Note that the degree spectrum DS(A) does not necessarily contain all enu-
meration degrees b ≥ a, for some a ∈ DS(A). For example, the degree spectrum
of the structure A = (N; =, 6=) is precisely the set of all total degrees.

Further properties true of the degree spectra but not necessarily true of all
upwards closed sets are:

1. the existence of a minimal pair for the degree spectrum DS(A);
2. the existence of quasi-minimal degree for the degree spectrum DS(A);
3. for each n ≥ 1 and each enumeration degree c ∈ DSn(A),

CS(A) = co({b ∈ DS(A) | c = b(n)}) .

The third property shows that all elements of the degree spectrum DS(A) with
low jumps also determine its co-set CS(A).

3 Relative Spectra of Structures

We shall relativize the notion of degree spectrum of A by considering multi-
component spectra. We start by restricting the class of enumerations of A, con-
sidered in the definition of relative spectra.

Let A1, . . . ,An be arbitrary abstract structures on N.

Definition 8. Let k ≤ n. An enumeration f of A is k-acceptable with respect to
the structures A1, . . . ,Ak if f−1(Ai) ≤e f−1(A)(i) for each i ≤ k.

Denote by Ek the class of all k-acceptable enumerations of A with respect to
the structures A1, . . . ,Ak.

The relative spectrum of A is the set generated by all n-acceptable enumerations
of A with respect to A1, . . . , An. Recall that:

Definition 9. The relative spectrum of the structure A with respect to A1, . . . ,
An is the set

RS(A,A1, . . . ,An) = {de(f−1(A)) | f ∈ En} .

We shall see that the relative spectrum of the structure A with respect to
A1, . . . , An is an upwards closed set of degrees and hence it has all properties of
upwards closed sets.

Lemma 10. Let f be an enumeration of A and F be a total set such that
f−1(A) ≤e F and f−1(Ai) ≤e F (i) for all i ≤ n. Then there exists a n-acceptable
enumeration g of A with respect to A1, . . . , An such that



1. g−1(A) ≡e F ;
2. for every B ⊆ N, it holds that g−1(B) ≤e F ⊕ f−1(B) .

Proof. Fix two different natural numbers s and t and let xs and xt be such that
f(xs) ' s and f(xt) ' t. Define an enumeration

g(x) '

f(x/2) if x is even,
s if x = 2z + 1 and z ∈ F ,
t if x = 2z + 1 and z 6∈ F .

It is clear that f−1(A) ≤e g−1(A). Since “=” and “6=” are among the predi-
cates of A, F ≤e g−1(A). Hence F ⊕ f−1(A) ≤e g−1(A).

In order to see that g−1(A) ≤e F ⊕ f−1(A), consider the predicate Ri of
A. Let x1, . . . , xri

be arbitrary natural numbers. Define the natural numbers
y1, . . . , yri

by means of the following recursive in F procedure. Consider xj for
j ≤ ri. If xj is even then let yj = xj/2. If xj = 2z+1 and z ∈ F then let yj = xs.
If xj = 2z + 1 and z 6∈ F then let yj = xt.

Clearly 〈x1, . . . , xri
〉 ∈ g−1(Ri) ⇐⇒ 〈y1, . . . , yri

〉 ∈ f−1(Ri) . Since the set
F is total, g−1(Ri) ≤e F ⊕ f−1(A).

It follows that g−1(A) ≡e F ⊕ f−1(A). But since f−1(A) ≤e F , we have that
F ⊕ f−1(A) ≡e F and so g−1(A) ≡e F .

For the proof of the second property, consider a set of natural numbers B.
Let g−1(=) = {〈x, y〉 : g(x) = g(y)}. Since g−1(A) ≡e F then g−1(=) ≤e F .
From the definition of g it follows that

g−1(B) = {x | (∃y ∈ f−1(B))(〈x, 2y〉 ∈ g−1(=))} .

Therefore g−1(B) ≤e F ⊕ f−1(B).
Then for i ∈ {1, . . . , n}, it holds that g−1(Ai) ≤e F ⊕f−1(Ai) ≤e F ⊕F (i) ≡e

F (i) ≡e g−1(A)(i). And thus g is a n-acceptable enumeration of A with respect
to A1, . . . , An.

Proposition 11. The relative spectrum is closed upwards, i.e. if b is a total
e-degree and for some a ∈ RS(A, A1, . . . , An), b ≥ a then b ∈ RS(A, A1, . . . ,
An).

Proof. Let b be a total degree, b ≥ a and a ∈ RS(A, A1, . . . , An). Consider a
total set F representing the degree b and let f be a n-acceptable enumeration
of A with respect to A1, . . . , An such that f−1(A) ∈ a. Thus f−1(A) ≤e F and
f−1(Ai) ≤e f−1(A)(i) ≤e F (i) for all i ≤ n. Then by the previous lemma there
exists a n-acceptable enumeration g of A with respect to A1, . . . , An such that
g−1(A) ≡e F . Hence de(F ) = b ∈ RS(A, A1, . . . , An).

Note that if f is a k-acceptable enumeration of A with respect to A1, . . . , Ak

for some k ≤ n then P(f−1(A), f−1(A1), . . . , f−1(Ak)) ≡e f−1(A)(k).

Definition 12. For k ∈ {1, . . . , n}, the kth relative jump spectrum of A with
respect to A1, . . . ,An is the set

RSk(A,A1, . . . ,An) = {a(k) | a ∈ RS(A,A1, . . . ,An)} .



Proposition 13. For k ∈ {1, . . . , n}, the kth relative jump spectrum of A with
respect to A1, . . . ,An is closed upwards, i.e. if b is a total e-degree, b ≥ a(k) and
a ∈ RS(A,A1, . . . , An) then b ∈ RSk(A,A1, . . . ,An).

Proof. Let G be a total set representing the total degree b, b ≥ a(k), a ∈
RS(A,A1, . . . , An) and let f be a n-acceptable enumeration of A with respect
to A1, . . . , An such that f−1(A) ∈ a. Then f−1(A)(k) ≤e G. The enumera-
tion f is a n-acceptable, hence f−1(Ai) ≤e f−1(A)(i) for each i ≤ n. Then
P(f−1(A), f−1(A1), . . . , f−1(Ak)) ≤e f−1(A)(k) ≤e G. By Theorem 5 there ex-
ists a total set F such that f−1(A) ≤e F , F (k) ≡e G and f−1(Ai) ≤e F (i)

for i ≤ k. By Lemma 10 there is a k-acceptable enumeration g of A with re-
spect to A1, . . . , Ak so that g−1(A) ≡e F . So, g−1(Ai) ≤e g−1(A)(i) for i ≤ k.
But again by Lemma 10 for each j ∈ {k + 1, . . . , n}, we have g−1(Aj) ≤e

F ⊕ f−1(Aj) ≤e F ⊕ f−1(A)(j) ≤e F ⊕ F (j) ≡e F (j) ≡e g−1(A)(j). It fol-
lows that g is a n-acceptable enumeration of A with respect to A1, . . . , An. Thus
de(g−1(A)) ∈ RS(A,A1, . . . ,An) and G ≡e g−1(A)(k). Then de(G) ∈ RSk(A,
A1, . . . , An).

4 Relative Co-spectra of Structures

Definition 14. The relative co-spectrum of A with respect to A1, . . . ,An is the
co-set of RS(A,A1, . . . ,An), i.e.

CRS(A,A1, . . . ,An) = {b | b ∈ De&(∀a ∈ RS(A,A1, . . . ,An))(b ≤ a)} .

Define by RS0(A,A1, . . . ,An) = RS(A,A1, . . . ,An) and by
CRS0(A,A1, . . . ,An) = CRS(A,A1, . . . ,An).

For every enumeration f of A and each k ≤ n, let

P
f
k = P(f−1(A), f−1(A1), . . . , f−1(Ak)) .

Definition 15. For k ≤ n, the kth relative co-spectrum of A with respect to
A1, . . . ,An is the co-set of RSk(A,A1, . . . ,An), i.e.

CRSk(A,A1, . . . ,An) = {b | b ∈ De&(∀a ∈ RSk(A,A1, . . . ,An))(b ≤ a)} .

We will show that the kth relative co-spectrum of A with respect to A1, . . ., An

depends actually only on the first k + 1 structures A,A1, . . ., Ak.

Proposition 16. CRSk(A,A1, . . . ,Ak, . . . ,An) = CRSk(A,A1, . . . ,Ak) for
each k ∈ {0, . . . , n}.

Proof. It is clear that RSk(A,A1, . . . ,Ak, . . . ,An) ⊆ RSk(A,A1, . . . ,Ak). Thus,
CRSk(A,A1, . . . ,Ak) ⊆ CRSk(A,A1, . . . ,Ak, . . . ,An).

Fix a ∈ CRSk(A,A1 . . .Ak . . . ,An) and let A ∈ a. Assume that A 6≤e

f−1(A)(k) for some k-acceptable enumeration f of A with respect to A1, . . . ,Ak.
Then A 6≤e P

f
k . Hence, by Theorem 5 for B0 = f−1(A), B1 = f−1(A1), . . ., Bn =



f−1(An), Bn+1 = N, there exists a total set F such that f−1(A) ≤e F , A 6≤e F (k)

and f−1(Ai) ≤e F (i) for each i ≤ n. From Lemma 10 it follows that there is a k-
acceptable enumeration g of A with respect to A1, . . . ,Ak such that g−1(A) ≡e F .
Then A 6≤e g−1(A)(k) and g−1(Ai) ≤e g−1(A)(i) for i ≤ k. But for j ∈ {k + 1,
. . . , n}, g−1(Aj) ≤e F ⊕ f−1(Aj) ≤e F ⊕ F (j) ≡e F (j) ≡e g−1(A)(j). Thus g is a
n-acceptable enumeration of A with respect to A1, . . . ,An and A 6≤e g−1(A)(k)

which contradicts the choice of A as de(A) ∈ CRSk(A,A1, . . . ,Ak . . . ,An).

Proposition 17. For every A ⊆ N and k ≤ n the following are equivalent:

1. de(A) ∈ CRSk(A,A1, . . . ,An).
2. A ≤e P

f
k for every k-acceptable enumeration f of A with respect to A1 . . .Ak.

Proof. If f is a k-acceptable enumeration of A with respect to A1, . . . , Ak then
f−1(A)(k) ≡e P

f
k since f−1(Ai) ≤e f−1(A)(i) for each i ≤ k. On the other

hand by Proposition 16 CRSk(A,A1, . . . ,An) = CRSk(A,A1, . . . , Ak). So, the
equivalence of the two assertions follows from the definition of the kth relative
co-spectrum of A with respect to A1, . . . ,An.

5 Forcing k-Definable Sets

In order to obtain a forcing normal form of the sets with enumeration degrees in
CRSk(A,A1, . . . , An) we shall define the notions of a forcing relation τ k Fe(x)
and a relation f |=k Fe(x) for k ≤ n.

Let f be an enumeration of A.

Definition 18. For every i ≤ n and e, x ∈ N, define the relations f |=i Fe(x)
and f |=i ¬Fe(x) by induction on i:

1. f |=0 Fe(x) ⇐⇒ (∃v)(〈v, x〉 ∈ We & Dv ⊆ f−1(A));
2. f |=i+1 Fe(x) ⇐⇒ (∃v)(〈v, x〉 ∈ We & (∀u ∈ Dv)(

(u = 〈0, eu, xu〉 & f |=i Feu(xu)) ∨
(u = 〈1, eu, xu〉 & f |=i ¬Feu(xu)) ∨
(u = 〈2, xu〉 & xu ∈ f−1(Ai+1))));

3. f |=i ¬Fe(x) ⇐⇒ f 6|=i Fe(x) .

As an immediate corollary of the definitions we receive the following:

Lemma 19. Let A ⊆ N and k ≤ n. Then

A ≤e P
f
k ⇐⇒ (∃e)(A = {x | f |=k Fe(x)}) .

The forcing conditions, called finite parts, are finite mappings τ of N to N. We
will denote the finite parts by letters δ, τ, ρ. Assume an effective coding of the
finite parts. By the least finite part with a fixed property we mean the finite part
with a minimal code.



Definition 20. For any i ≤ n and e, x ∈ N and for every finite part τ , define the
forcing relations τ i Fe(x) and τ i ¬Fe(x) following the definition of relation
“|=i”.

1. τ 0 Fe(x) ⇐⇒ (∃v)(〈v, x〉 ∈ We & Dv ⊆ τ−1(A));
2. τ i+1 Fe(x) ⇐⇒ (∃v)(〈v, x〉 ∈ We & (∀u ∈ Dv)(

(u = 〈0, eu, xu〉 & τ i Feu(xu)) ∨
(u = 〈1, eu, xu〉 & τ i ¬Feu(xu)) ∨
(u = 〈2, xu〉 & xu ∈ τ−1(Ai+1))));

3. τ i ¬Fe(x) ⇐⇒ (∀ρ ⊇ τ)(ρ 6i Fe(x)) .

Definition 21. Let k ≤ n+1. An enumeration f of A is k-generic with respect
to A1, . . . ,An if for every j < k and e, x ∈ N it holds that

(∀τ ⊆ f)(∃ρ)(τ ⊆ ρ & ρ j Fe(x)) =⇒ (∃τ ⊆ f)(τ j Fe(x)) .

Clearly if f is a k-generic enumeration then f is a m-generic for all m ≤ k.
The next properties follow from the definition of a k-generic enumeration:

Lemma 22. 1. Let k ≤ n and e, x ∈ N and let τ ⊆ ρ be finite parts. Then

τ k (¬)Fe(x) ⇒ ρ k (¬)Fe(x) .

2. If f is a k-generic enumeration of A with respect to A1, . . . ,An then

f |=k Fe(x) ⇐⇒ (∃τ ⊆ f)(τ k Fe(x)) .

3. If f is a (k + 1)-generic enumeration of A with respect to A1, . . . ,An then

f |=k ¬Fe(x) ⇐⇒ (∃τ ⊆ f)(τ k ¬Fe(x)) .

Definition 23. Let A ⊆ N and k ≤ n. The set A is forcing k-definable on A
with respect to A1, . . . ,An if there exist a finite part δ and e ∈ N such that

x ∈ A ⇐⇒ (∃τ ⊇ δ)(τ k Fe(x)) .

Proposition 24. For each k ∈ {0, 1, . . . , n}, let {Ak
r}r∈N be a sequence of sub-

sets of N such that for every r, the set Ak
r be not forcing k-definable on A with

respect to A1, . . . ,An. Then there exists a (n + 1)-generic enumeration f of A
such that Ak

r 6≤e P
f
k for all r and every k ≤ n.

Proof. We shall costruct a (n + 1)-generic enumeration f of A with respect to
A1, . . . ,An such that for each k ≤ n and r ∈ N, Ak

r 6≤e P
f
k . We will call the

last condition the omitting condition. The enumeration f will be constructed on
stages. On each stage q we shall define a finite part δq so that δq ⊆ δq+1 and
ultimately we will define f =

⋃
q δq. We shall consider three kinds of stages. On

stages q = 3r we shall ensure that the mapping f is total and surjective. On
stages q = 3r+1 we shall ensure that f is (n+1)-generic and on stages q = 3r+2
we shall ensure that f satisfies the omitting condition.



Let δ0 = ∅. Suppose that we have already defined δq.
(a) Case q = 3r. Let x0 be the least natural number which does not belong

to dom(δq) and let s0 be the least natural number which does not belong to the
range of δq. Set δq+1(x0) ' s0 and δq+1(x) ' δq(x) for x 6= x0.

(b) Case q = 3〈e, k, x〉+ 1. If k ≤ n then consider the set
Xk
〈e,x〉 = {ρ | ρ k Fe(x)}. Check whether there exists a finite part ρ ∈ Xk

〈e,x〉
that extends δq. If there is then let δq+1 be the least extension of δq that belongs
to Xk

〈e,x〉. Otherwise let δq+1 = δq.
(c) Case q = 3〈e, k, r〉 + 2. If k ≤ n then consider the set Ak

r which is not
forcing k-definable on A with respect to A1, . . . ,An. Denote by

C = {x | (∃τ ⊇ δq)(τ k Fe(x))} .

Clearly C is forcing k-definable on A with respect to A1, . . . ,An and hence
C 6= Ak

r .
Let x0 be the least natural number such that

x0 ∈ C & x0 6∈ Ak
r ∨ x0 6∈ C & x0 ∈ Ak

r .

(i) Suppose that x0 ∈ C. Then there exists a finite part τ such that

δq ⊆ τ & τ k Fe(x0) . (1)

Let δq+1 be the least τ satisfying (1).
(ii) If x0 6∈ C then set δq+1(x) ' δq(x). Notice that in this case we have that

δq+1 k ¬Fe(x0).
If k > n then set δq+1 = δq.
Let f =

⋃
q δq. It follows from stages 3r that the obtained enumeration is

total and surjective. Furthermore, f is (n + 1)-generic: suppose that for every
finite part τ ⊆ f , there is an extension ρ of τ so that ρ k Fe(x). Consider the
stage q = 3〈e, k, x〉+ 1. Since δq ⊆ f then there is a finite part ρ ⊇ δq such that
ρ k Fe(x). From the construction we have that δq+1 k Fe(x) and δq+1 ⊆ f .

To prove that the enumeration f satisfies the omitting condition, let the
set Ak

r be one of the given sets, not forcing k-definable on A with respect to
A1, . . . ,An, and suppose for a contradiction that Ak

r ≤e P
f
k . Then Ak

r = {x |
f |=k Fe(x)} for some e. Since the enumeration f is (n + 1)-generic and hence
(k + 1)-generic by Lemma 22 we have

f |=k (¬)Fe(x) ⇐⇒ (∃τ ⊆ f)(τ k (¬)Fe(x)) (2)

for each number x.
Consider the stage q = 3〈e, k, r〉+2. From the construction there is a x0 such

that one of the following two cases holds:
(i) x0 6∈ Ak

r & δq+1 k Fe(x0). By (2) f |=k Fe(x0) and hence x0 ∈ Ak
r . A

contradiction.
(ii) x0 ∈ Ak

r and (∀ρ ⊇ δq)(ρ 6k Fe(x0)). Then δq k ¬Fe(x0). So by (2),
f 6|=k Fe(x0) and hence x0 6∈ Ak

r . A contradiction.
Thus we have obtained the desired enumeration of A.



Corollary 25. For each k ∈ {0, 1, . . . , n}, let {Ak
r}r∈N be a sequence of subsets

of N such that for all r, the set Ak
r is not forcing k-definable on A with respect

to A1, . . . ,An. Then there exists a n-acceptable enumeration g of A with respect
to A1, . . . ,An such that the enumeration degree of g−1(A) is total and Ak

r 6≤e

g−1(A)(k) for all k ≤ n and r ∈ N.

Proof. We know from the previous proposition that there is a (n + 1)-generic
enumeration f of A such that Ak

r 6≤e P
f
k for all k ≤ n and r ∈ N.

Let B0 = f−1(A), B1 = f−1(A1), . . ., Bn = f−1(An), Bn+1 = N. For each
k ≤ n and all r, the set Ak

r 6≤e P
f
k = P(B0, . . . , Bk). By Theorem 6 there exists

a total set F such that f−1(A) ≤e F and for each i ≤ n, f−1(Ai) ≤e F (i)

and moreover Ak
r 6≤e F (k) for all k ≤ n and r ∈ N. From Lemma 10 it follows

that there is a n-acceptable enumeration g of A with respect to A1, . . . ,An

such that g−1(A) ≡e F . Then the enumeration degree of g−1(A) is total and
Ak

r 6≤e g−1(A)(k) for all k ≤ n and r ∈ N.

Theorem 26. For every A ⊆ N and k ≤ n if de(A) ∈ CRSk(A,A1, . . . ,An)
then A is forcing k-definable on A with respect to A1, . . . ,An.

Proof. If a set A is not forcing k-definable on A with respect to A1, . . . ,An

then there exists a n-acceptable enumeration g of A with respect to A1, . . . , An

such that A 6≤e g−1(A)(k). Hence A 6≤e P
g
k and according to Proposition 17,

de(A) 6∈ CRSk(A,A1, . . . ,An).
The proof of the existence of such a n-acceptable enumeration g is similar to

the one in Corollary 25. First we construct a (n+1)-generic enumeration f of A
with respect to A1, . . . , An which omits the set A, i.e. A 6≤e P

f
k . Then we apply

Theorem 5 and Lemma 10 in order to find a n-acceptable enumeration g of A
with respect to A1, . . . ,An such that A 6≤e g−1(A)(k).

We will see in the next section that the opposite is also true.
Next we will give an abstract version of Theorem 5. We shall examine the

construction from Proposition 24 in order to get the complexity of the con-
structed enumeration. By D(A) we denote the diagram of the structure A, i.e.
D(A) = f−1(A) for f = λx.x and by D(Ai) — the diagram of the structure Ai

for i = 1, . . . , n. Let Pn = P(D(A),D(A1), . . . ,D(An)).

Theorem 27. Let k < n and let A ⊆ N be not forcing k-definable on A with
respect to A1, . . . ,An. Suppose that Q is a total set such that A+ ⊕ Pn ≤e Q.
Then there exists an enumeration g of A satisfying the following conditions:

1. The enumeration degree of g−1(A) is total;
2. g is a n-acceptable enumeration of A with respect to A1, . . . , An;
3. A 6≤e g−1(A)(k);
4. g−1(A)(n) ≡e Q.

Proof. First we define a n-generic enumeration f of A with respect to A1, . . . ,
An which omits the set A, i.e. A 6≤e P

f
k . Note that since k < n, n-genericity

suffices. On stages q = 3〈e, k, x〉+ 1 for k < n we ensure that f is n-generic. On



stages q = 3r+2 we ensure that f satisfies the only omitting condition A 6≤e P
f
k .

From the construction and from the definition of the forcing relation it follows
that the enumeration f will be enumeration reducible to A+ ⊕ Pn.

Let i ≤ n. Then there exists an e such that Pf
i = {x : f |=i Fe(x)}. Since

f is n-generic, we can rewrite this as Pf
i = {x : (∃τ ⊆ f)(τ i Fe(x))}. Then

P
f
i ≤e f ⊕ Pn.

Let B0 = f−1(A), B1 = f−1(A1), . . ., Bn = f−1(An). Then
P(B0, B1, . . . , Bn) ≤e f ⊕ Pn ≤e A+ ⊕ Pn ≤e Q. We also have that A 6≤e

P(B0, B1, . . . , Bk) = P
f
k . By Theorem 5, there exists a total set F such that

f−1(A) ≤e F , f−1(Ai) ≤e F (i) for each i ≤ n, A 6≤e F (k) and F (n) ≡e Q. By
Lemma 10 it follows that there is a n-acceptable enumeration g of A with respect
to A1, . . . ,An such that g−1(A) ≡e F . Then the enumeration degree of g−1(A)
is total, A 6≤e g−1(A)(k) and g−1(A)(n) ≡e Q.

Proposition 28. Let k < n and A ⊆ N be not forcing k-definable on A with
respect to A1, . . . ,An. Suppose that f is a n-acceptable enumeration of A with
respect to A1, . . . ,An and Q is a total set such that f−1(A)(n)⊕A+ ≤e Q. Then
there exists a n-acceptable enumeration g of A with respect to A1, . . . ,An such
that g−1(A)(n) ≡e Q and A 6≤e g−1(A)(k).

Proof. We first construct a bijective enumeration h of A such that h−1(A) ≤e

f−1(A). Let f−1(=) = {〈x, y〉 : f(x) = f(y)}. Since 6= is also among the predi-
cates of A, f−1(=)+ ≤e f−1(A). Define the function m using primitive recursion
relative f−1(A) as follows:

m(0) ' 0;
m(i + 1) ' µz[(∀k ≤ i)(〈m(k), z〉 6∈ f−1(=))] .

Set h = λx.f(m(x)). The enumeration h is bijective and h−1(A)⊕ f−1(=)+ ≡e

f−1(A). Moreover if B is an arbitrary set of natural numbers then
h−1(B)⊕ f−1(=)+ ≡e f−1(B). Hence h−1(Ai)⊕ f−1(=)+ ≡e f−1(Ai) for each
i ≤ n. Since f is a n-acceptable enumeration of A with respect to A1, . . . ,An,
for each i ≤ n, h−1(Ai) ≤e f−1(Ai) ≤e f−1(A)(i). Then Ph

n ≤e f−1(A)(n) ≤e Q.
Denote by B the structure (N;h−1(R1), . . . , h−1(Rs)) and if

Ai = (N;Ri
1, . . . , R

i
si

) then Bi = (N;h−1(Ri
1), . . . , h

−1(Ri
si

)). Thus D(B) ≡e

h−1(A) andD(Bi) ≡e h−1(Ai) for i ≤ n. Hence P(D(B),D(B1), . . . ,D(Bn)) ≤e

Q. Since A is not forcing k-definable on A with respect to A1, . . . ,An then
from the definition the forcing k-definable sets it follows that A is not forcing
k-definable on B with respect to B1, . . . ,Bn. By Theorem 27 there exists a
n-acceptable enumeration r of B with respect to B1, . . . ,Bn such that the enu-
meration degree of r−1(B) is total, r−1(B)(n) ≡e Q and A 6≤e r−1(B)(k). Finally
we can define g = λx.h(r(x)). Then g−1(A) ≡e r−1(B) and g−1(Ai) ≡e r−1(Bi)
for i ≤ n. Thus g is a n-acceptable enumeration on A with respect to A1, . . . ,An,
g−1(A)(n) ≡e Q and A 6≤e g−1(A)(k).



6 Normal Form Theorem

In this section we shall give an explicit form of the sets which are forcing k-
definable on A with respect to A1, . . . , An by means of recursive Σ+

k formulae.
These formulae can be considered as a modification of Ash’s formulae [1] appro-
priate for their use on abstract structures and they are first used by Soskov and
Baleva [11].

6.1 Recursive Σ+
k Formulae

Let L = {T1, . . . , Ts} be the first order language of the structure A. For each
i ≤ n, let Li = {T i

1, . . . , T
i
si
} be the language of Ai where every T i

j is a ri
j-ary

predicate symbol. Without loss of generality we may assume that the languages
are disjoined. Consider a fixed sequence {Xi}i∈N of variables.

Definition 29. (1) An elementary Σ+
0 formula with free variables among W1,

. . ., Wr is an existential formula of the form

∃Y1 . . .∃YmΦ(W1, . . . ,Wr, Y1, . . . , Ym),

where Φ is a finite conjunction of atomic formulae in L;
(2) A Σ+

i formula with free variables among W1, . . ., Wr is a recursively enu-
merable disjunction of elementary Σ+

i formulae with free variables among
W1, . . . ,Wr;

(3) An elementary Σ+
i+1 formula with free variables among W1, . . . ,Wr is a for-

mula of the form

∃Y1 . . .∃YmΦ(W1, . . . ,Wr, Y1, . . . , Ym),

where Φ is a finite conjunction of atoms in Li+1, Σ+
i formulae or negations

of Σ+
i formulae.

Let Φ be a Σ+
i formula with free variables among W1, . . . ,Wr and let t1, . . . , tr

be elements of N. Then by (A,A1, . . . ,An) |= Φ(W1/t1, . . . ,Wr/tr) we denote
that Φ is true in the structure, obtained from A by adding the predicates from
A1, . . . ,An, under the variable assignment v such that v(W1) = t1, . . . , v(Wn) =
tn. More precisely we have the following definition:

Definition 30. (1) If Φ is an elementary Σ+
0 formula then (A) |= Φ(W1/t1, . . . ,

Wr/tr) if Φ is true under the variable assignment v such that v(W1) =
t1, . . . , v(Wn) = tn.

(2) If Φ = ∃Y1 . . .∃YmΨ(W1, . . . ,Wr, Y1, . . . , Ym) is an elementary Σ+
i+1 formula,

Ψ = (ϕ & α) where ϕ is a conjunction of Σ+
i formulae or negations of Σ+

i

formulae and α is a conjunction of atoms in Li+1 then

(A,A1, . . . , Ai+1) |= Φ(W1/t1, . . . ,Wr/tr) ⇐⇒
∃s1 . . .∃sm( (A, . . . ,Ai) |= ϕ(W1/t1, . . . ,Wr/tr, Y1/s1, . . . , Ym/sm) &

(Ai+1) |= α(W1/t1, . . . ,Wr/tr, Y1/s1, . . . , Ym/sm)) .



6.2 Formally k-Definable Sets

Definition 31. Let A ⊆ N and let k ≤ n. The set A is formally k-definable on
A with respect to A1, . . . ,An if there exists a recursive sequence {Φγ(x)} of Σ+

k

formulae with free variables among W1, . . . ,Wr and elements t1, . . . , tr of N such
that for every x ∈ N, the following equivalence holds:

x ∈ A ⇐⇒ (A,A1, . . . ,An) |= Φγ(x)(W1/t1, . . . ,Wr/tr) .

We shall show that the forcing k-definable sets coincide with the formally k-
definable sets.

Let var be an effective bijection between the natural numbers and the vari-
ables. Given a natural number x, by X we shall denote the variable var(x). Let Q
be one of the quantifiers ∃ or ∀, E = {y1, y2, . . . , ym}, where y1 < y2 < . . . < ym

and let Φ be an arbitrary formula. Then by Q(y : y ∈ E)Φ we shall denote the
formula QY1 . . . QYmΦ.

Lemma 32. Let E = {w1, . . . , wr} ⊆ N and let k, x, e ∈ N. There exists a
uniform effective way to construct a Σ+

k formula Φk
E,e,x with free variables among

W1, . . . ,Wr such that for every finite part δ with dom(δ) = E, the following
equivalence is true:

(A,A1, . . . ,Ak) |= Φk
E,e,x(W1/δ(w1), . . . ,Wr/δ(wr)) ⇐⇒ δ k Fe(x) .

Proof. We shall construct the formula Φk
E,e,x by induction on k following the

definition of the forcing relation k.
(1) Let k = 0. Consider an element v of the set V = {v : 〈v, x〉 ∈ We}. For

every u ∈ Dv, define the atom Πu as follows:

(a) If u = 〈j, x1, . . . , xrj 〉, j ≤ s and all x1, . . . , xrj are elements of E then let
Πu = Tj(X1, . . . , Xrj

).
(b) Let Πu be X0 6= X0 in the other cases.

Set Πv =
∧

u∈Dv
Πu and Φ0

E,e,x =
∨

v∈V Πv.
(2) Let k = i + 1. Let V = {v : 〈v, x〉 ∈ We} and v ∈ V .
For every u ∈ Dv, define the formula Πu as follows:

(a) If u = 〈0, eu, xu〉 then let Πu = Φi
E,eu,xu

.
(b) If u = 〈1, eu, xu〉 then let Πu = ¬(

∨
E∗⊇E(∃y ∈ E∗ \ E)Φi

E∗,eu,xu
).

(c) If u = 〈2, xu〉, xu = 〈j, x1, . . . , xri+1
j
〉, j ≤ si+1 and x1, . . . , xri+1

j
∈ E then

let Πu = T i+1
j (X1, . . . , Xri+1

j
).

(d) Let Πu = Φi
{0},0,0 ∧ ¬Φi

{0},0,0 in any other case.

Now let Πv =
∧

u∈Dv
Πu and set Φi+1

E,e,x =
∨

v∈V Πv.
An induction on k shows that for every k the Σ+

k formula Φk
E,e,x satisfies the

requirements of the Lemma.



Theorem 33. If a set A ⊆ N is forcing k-definable on A with respect to A1, . . . ,
An then A is formally k-definable on A with respect to A1, . . . ,An.

Proof. Let A be forcing k-definable on A with respect to A1 . . . ,An. Then there
exist a finite part δ and e ∈ N such that

x ∈ A ⇐⇒ (∃τ ⊇ δ)(τ k Fe(x)) .

Let E = dom(δ) = {w1, . . . , wr} and let δ(wj) = tj , j = 1, . . . , r. For each τ ⊇ δ,
denote by Eτ = dom(τ). Then from the previous lemma we know that:

(A,A1, . . . ,Ak) |=
∨

τ⊇δ ∃(y ∈ Eτ \ E)Φk
Eτ ,e,x(W1/t1, . . . ,Wr/tr) ⇐⇒

(∃τ ⊇ δ)(τ k Fe(x)) .

Then for all x ∈ N the following equivalence is true:

x ∈ A ⇐⇒ (A,A1, . . . ,Ak) |=
∨

E∗⊇E

∃(y ∈ E∗ \ E)Φk
E∗,e,x(W1/t1, . . . ,Wr/tr)

where E∗ denotes any finite extension of E.
It is clear that A is formally k-definable on A with respect to A1, . . . ,An.

Corollary 34. Let A ⊆ N and let k ≤ n. Then the following are equivalent:

(1) de(A) ∈ CRSk(A,A1, . . . ,An).
(2) A is forcing k-definable on A with respect to A1, . . . ,An.
(3) A is formally k-definable on A with respect to A1, . . . ,An.

Proof. The implication (1) ⇒ (2) follows from the Theorem 26.
The implication (2) ⇒ (3) follows from the previous theorem.
The implication (3) ⇒ (1) could be proved easily by induction on k using

Proposition 17.

7 Properties of the Relative Spectra

By Proposition 11 the relative spectra are upwards closed sets of degrees. So
they possess all properties of upwards closed sets of degrees proved by Soskov
[10]:

1. The total e-degrees in the relative spectrum determine completely its co-
set, i.e.

CRS(A,A1, . . . ,An) = co({b ∈ RS(A,A1, . . . ,An) | b is a total e-degree }).
2. The members of the relative spectrum with high jumps also determine its

co-set, i.e. for p ≥ 1 and c ∈ De,
CRS(A,A1, . . . ,An) = co({b ∈ RS(A,A1, . . . ,An) | c ≤ b(p)}).
We shall show in this section that the relative spectra have all other properties

of the degree spectra proved by Soskov [10]: the minimal pair theorem, the
existence of quasi-minimal degree and a third property which shows that the
members of the relative spectrum with low jumps also determine its co-set.

We start with an analogue of the third property.



Proposition 35. Let k < n and let c ∈ RSn(A,A1, . . . ,An). Then

CRSk(A,A1, . . . ,An) = co({b(k) | b ∈ RS(A,A1, . . . ,An) & b(n) = c}) .

Proof. Denote by Ak = {b(k) | b ∈ RS(A,A1, . . . ,An) & b(n) = c}. It is clear
that CRSk(A,A1, . . . ,An) ⊆ co(Ak).

Since c ∈ RSn(A,A1, . . . ,An) there is a n-acceptable enumeration f of A
with respect to A1, . . . ,An such that f−1(A)(n) ∈ c. Denote by Q = f−1(A)(n).
Q is a total set as n > 0.

Let A ∈ a and a ∈ co(Ak). Then for every n-acceptable enumeration h of A
with respect to A1, . . . ,An such that h−1(A)(n) ≡e Q, the set A ≤e h−1(A)(k).
Since f is such an enumeration A ≤e f−1(A)(k). Then by the monotonicity
of the enumeration jump A+ ≤e A′ ≤e f−1(A)(k+1) ≤e f−1(A)(n). So A+ ⊕
f−1(A)(n) ≤e Q.

According to Corollary 34 it is enough to show that the set A is forcing k-
definable on A with respect to A1, . . . ,An. Assume for a contradiction that A is
not forcing k-definable on A with respect to A1, . . . ,An. By Proposition 28 there
exists a n-acceptable enumeration g of A with respect to A1, . . . ,An such that
g−1(A)(n) ≡e Q and A 6≤e g−1(A)(k). This contradicts the choice of A.

Corollary 36. Let n > 0 and c ∈ RSn(A,A1, . . . ,An). Then

CRS(A) = CRS(A,A1, . . . ,An) = co({b ∈ RS(A,A1, . . . ,An) | b(n) = c}) .

7.1 Minimal Pair Theorem

Soskov [10] proved a minimal pair theorem for the degree spectrum of a structure
A. For each constructive ordinal α, there exist elements f and g of DS(A) such
that for any enumeration degree a and any β + 1 < α,

a ≤ f(β) & a ≤ g(β) ⇒ a ∈ CSβ(A) .

We shall prove an analogue of this minimal pair theorem for the relative spec-
trum.

Theorem 37. For any structures A,A1, . . . ,An, there exist total enumeration
degrees f and g in RS(A,A1, . . . ,An) such that for any enumeration degree a
and k ≤ n:

a ≤ f(k) & a ≤ g(k) ⇒ a ∈ CRSk(A,A1, . . . ,An) .

Proof. Let h be an arbitrary enumeration of A. Consider a total set Q such that
P

h
n ≤e Q. By Theorem 5 there exists a total set F with the following properties:

h−1(A) ≤e F , h−1(Ai) ≤e F (i) for all i ≤ n and F (n) ≡e Q. By Lemma 10 there
exists a n-acceptable enumeration f of A with respect to A1, . . . , An such that
F ≡e f−1(A) and so h−1(A) ≤e f−1(A). Then the enumeration degree of f−1(A)
is total and de(F ) ∈ RS(A,A1, . . . ,An). Let k ≤ n. Since f is a n-acceptable



enumeration of A with respect to A1, . . . , An, we have that F (k) ≡e P
f
k . Denote

by {Xk
r }r∈N the sequence of all sets enumeration reducible to Pf

k .
For each k ≤ n, consider the sequence {Ak

r}r∈N of these sets among {Xk
r }r∈N

which are not forcing k-definable on A with respect to A1, . . . ,An. By Corol-
lary 25 there is a n-acceptable enumeration g such that for all r and all k =
0, . . . , n, Ak

r 6≤e g−1(A)(k) and the enumeration degree of g−1(A) is total. Let
G = g−1(A). It is clear that de(G) ∈ RS(A,A1, . . . ,An).

Suppose now that k ≤ n and X is a set such that X ≤e F (k) and X ≤e G(k).
From X ≤e F (k) and F (k) ≡e P

f
k , it follows that X = Xk

r for some r. If we
assume that X is not forcing k-definable on A with respect to A1, . . . ,An then
X = Ak

l for some l and X 6≤e G(k).
Hence X is forcing k-definable on A with respect to A1, . . . ,An. By Corol-

lary 34, de(X) ∈ CRSk(A,A1, . . . ,An). Then by setting f = de(F ) and g = de(G)
we obtain the desired minimal pair.

7.2 Quasi-Minimal Degree

Let A be a set of enumeration degrees and co(A) be the co-set of A. The degree
q is quasi-minimal with respect to A if the following conditions hold ([10]):

1. q 6∈ co(A).
2. If a is a total degree and a ≥ q then a ∈ A.
3. If a is a total degree and a ≤ q then a ∈ co(A).

Soskov [10] showed that for any structure A, there is a quasi-minimal degree q
with respect to DS(A), i.e. q 6∈ CS(A) and for every total degree a: if a ≥ q
then a ∈ DS(A) and if a ≤ q then a ∈ CS(A). It is clear that the quasi-
minimal degree q with respect to DS(A) is not a total enumeration degree.
Soskov constructed it as de(f−1(A)) for some partial generic enumeration of A.
For example, consider the structure A = (N; =, 6=). Then DS(A) consists of all
total degrees, CS(A) = {0} and quasi-minimal degree with respect to DS(A) is
each quasi-minimal enumeration degree, i.e. q > 0 and for each total a ≤ q it
holds that a = 0. In this case the quasi-minimal degrees are outside DS(A).

Theorem 38. For any structures A,A1, . . . , An, there exists an enumeration
degree q such that:

1. q 6∈ CRS(A,A1, . . . ,An);
2. If a is a total degree and a ≥ q then a ∈ RS(A,A1, . . . ,An);
3. If a is a total degree and a ≤ q then a ∈ CRS(A,A1, . . . ,An).

Proof. Let f be a partial generic enumeration of A [10]. Soskov proved that
de(f−1(A)) is quasi-minimal with respect to DS(A). By Theorem 4 from [13]
there is a set F such that f−1(A) <e F , f−1(Ai) ≤e F (i) for i ≤ n and for
any total set A, if A ≤e F then A ≤e f−1(A). We call the set F quasi-minimal
over f−1(A) with respect to f−1(A1),. . . , f−1(An). The set F is constructed
as a partial regular enumeration. Set q = de(F ). We will prove that q has the
desired properties.



Since de(f−1(A)) 6∈ CS(A) and de(f−1(A)) < q then q 6∈ CS(A). But
CS(A) = CRS(A,A1, . . . ,An) and hence q 6∈ CRS(A,A1, . . . ,An).

Let X be a total set.
If X ≤e F then X ≤e f−1(A) as F is quasi-minimal over f−1(A). Thus

de(X) ∈ CS(A) = CRS(A,A1, . . . ,An) by the choice of f−1(A).
If X ≥e F then X ≥e f−1(A). Since “=” is among the predicates of A,

dom(f) ≤e X and since X is a total set, dom(f) is r.e. in X. Let ρ be a recursive
in X enumeration of dom(f). Set h = λn.f(ρ(n)). Thus h−1(A) ≤e X and
h−1(Ai) ≤e X(i) for i ≤ n. By Lemma 10 there is a n-acceptable enumeration g
of A such that g−1(A) ≡e X. And then de(X) ∈ RS(A,A1, . . . ,An).

8 The Connection with the Joint Spectra

In this section we will consider the connection of the relative spectra with the
joint spectra [12].

Definition 39. The joint spectrum of A,A1, . . . ,An is the set

DS(A,A1, . . . ,An) = {a | a ∈ DS(A),a′ ∈ DS(A1), . . . ,a(n) ∈ DS(An)} .

The co-set of DS(A,A1, . . . ,An) is denoted by CS(A,A1, . . . ,An). The kth jump
spectrum of A,A1, . . . ,An is the set DSk(A,A1, . . . ,An) of all kth jumps of the
members of the joint spectrum DS(A,A1, . . . ,An). The co-set of DSk(A,A1, . . . ,
An) is denoted by CSk(A,A1, . . . , An).

The properties of both notions of spectra are very similar [13, 14], for example
the joint spectra are closed upwards, the kth co-spectrum depends only on the
first k structures. By Proposition 16, CRS(A,A1, . . . ,An) = CSR(A) = CS(A).
It is known [13, 14] that CS(A,A1, . . . ,An) = CS(A). Therefore we have the
following proposition:

Proposition 40. CS(A,A1, . . . ,An) = CRS(A,A1, . . . ,An).

The difference is in the kth co-spectrum for k ≥ 1. Firstly, we know by Propo-
sition 17 that for any set A ⊆ N,

de(A) ∈ CRSk(A,A1, . . . ,An) ⇐⇒ A ≤e P(f−1(A), f−1(A1), . . . , f−1(Ak))

for every k-acceptable enumeration f of A with respect to A1, . . . ,Ak. Whereas
for the kth joint co-spectra we have

de(A) ∈ CSk(A,A1, . . . ,An) ⇐⇒ A ≤e P(f−1(A), f−1
1 (A1), . . . , f−1

k (Ak))

for every enumerations f of A, f1 of A1, . . . , fk of Ak.
Secondly, the normal form of forcing k-definable sets for the joint spectra

uses a different definition of Σ+
k formulae. Namely, in the induction step (3) the

existential quantifier over the atomic predicates must be independent from the
rest. More precisely, the third clause in the definition of Σ+

k formulae is:



(3) An elementary Σ+
i+1 formula with free variables among W̄ 0, . . . , W̄ i+1 is a

formula of the form

∃Ȳ 0 . . .∃Ȳ i+1Φ(W̄ 0, . . . , W̄ i+1, Ȳ 0, . . . , Ȳ i+1)

where Φ is a finite conjunction of Σ+
i formulae and negations of Σ+

i formulae
with free variables among Ȳ 0, . . . , Ȳ i, W̄ 0, . . . , W̄ i and atoms in Li+1 with
variables among W̄ i+1, Ȳ i+1;

Notice that the variables for each structure are different. Moreover, when we
define the value of a Σ+

n formula in (A,A1, . . . ,An) under an assignment then
we treat the structure (A,A1, . . . ,An) as a many-sorted structure with disjoint
sorts.

These differences are essential and will enable us to give an example of struc-
tures A and A1 for which CS1(A,A1) 6= CRS1(A,A1).

Example 41. Fix an effective bijective coding of the pairs of natural numbers.
Denote by 〈i, j〉 the code of the ordered pair (i, j). Let R and S be binary
predicates defined as follows: for every i, j ∈ N, R(〈i, j〉, 〈i + 1, j〉), i.e. R is
the graph of the successor function for the first coordinate. For every i, j ∈ N,
S(〈i, j〉, 〈i, j + 1〉), i.e. S is the graph of the successor function for the second
coordinate. Let A = (N, R, S,=, 6=).

Consider a set M which is Σ0
3 , but not Σ0

2 in the arithmetical hierarchy. Fix
an enumeration of the elements of M , M = {j0, . . . , ji, . . .}.

Define A1 = (N, P, =, 6=), where P (〈i, ji〉) ⇐⇒ ji ∈ M .
Claim: de(M) ∈ CRS1(A,A1) and de(M) 6∈ CS1(A,A1).
Let t0 = 〈0, 0〉. Then de(M) ∈ CRS1(A,A1), since

j ∈ M ⇐⇒ ∃Y0 . . .∃Yi∃Z0 . . .∃Zj(Y0 = t0 & R(Y0, Y1) & . . . & R(Yi−1, Yi)
& Yi = Z0 & S(Z0, Z1) & . . . & S(Zj−1, Zj) & P (Zj)) .

On the other hand if A ⊆ N and de(A) ∈ CS1(A,A1) then A is a Σ0
2 set in

the arithmetical hierarchy. This follows from the fact that for any elementary
Σ+

1 formula Φ(W1, . . . ,Wr), we can effectively find an elementary Σ+
1 formula

Ψ(W1, . . . ,Wr), where the predicate symbol P does not occur in Ψ such that for
any fixed t1, . . . , tr ∈ N,

(A,A1) |= Φ(W1/t1, . . . ,Wr/tr) ⇐⇒ (A,A1) |= Ψ(W1/t1, . . . ,Wr/tr) .

So, we have two different generalizations of the notion of degree spectra with
respect to given structures, both sharing similar properties. It is still not known
what additional properties we should find to characterize the sets of enumeration
degrees which are spectra of a structure relatively given structures.

Acknowledgements The author thanks to the anonymous referees for their
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