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Abstract
We prove that every countable distributive lattice is embeddable in the �0

2 enumeration degrees via a 0–1 preserving
monomorphism. Moreover, we prove that every countable distributive lattice is embeddable below arbitrary �0

2 degree
via a 0 preserving monomorphism.
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1 Introduction

The local structure of the enumeration degrees Ge is the partially ordered set of the enumeration
degrees below the first jump 0e

′ of the least enumeration degree 0e. Cooper [3] shows that Ge
consists exactly of the �0

2 enumeration degrees, degrees which contain �0
2 sets, or equivalently

consist entirely of �0
2 sets. In investigating structural complexity of Ge, the natural question of what

other structures are embeddable in Ge arises. For example, if we view Ge as a countable partial
ordering, we might ask what other partial orderings are embedded in Ge. The complete answer to
this question is provided by Bianchini [2], who proves that every countable partial ordering can be
embedded densely in Ge, i.e. in any non-empty interval of �0

2 enumeration degrees; see also Sorbi
[11] for a published proof of Bianchini’s result.

As Ge is an interval of enumeration degrees, Ge is a countable upper semi-lattice with least and
greatest elements. In this article, we investigate a further question of characterizing special types of
partially ordered structures, lattices, that are embeddable in Ge.

We start by outlining preliminary results on this topic. McEvoy and Cooper [8] prove that the
standard embedding ι of the Turing degrees in the enumeration degrees preserves greatest lower
bounds for low c.e. degrees, i.e. if a,b,c∈R and a′ =b′ =c′ =0T

′, then

a∧b=c�⇒ ι(a)∧ι(b)= ι(c).

This allows us to transfer known embeddability results for the low c.e. Turing degrees into the
substructure of the low �0

1 enumeration degrees.An unpublished result by Lachlan and independently
by Lerman is that every countable distributive lattice can be embedded in the low c.e. degrees
preserving the least element (See Soare [9] for a proof of this result.) This is also the best result
that can be obtained in this way, as Lachlan’s Nondiamond Theorem [6], yields the four elements
lattice {0,a,b,1} for which a �≤b and b �≤a (the diamond lattice) is not embeddable in the c.e. degrees
preserving least and greatest elements.

This limitation of the c.e. Turing degrees, however, does not apply to the local enumeration
degrees. Indeed, Ahmad [1] shows that the diamond lattice is embeddable in the �0

2 enumeration
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degrees preserving least and greatest elements, providing the first evidence for the fact that the
local structures of the Turing degrees and the enumeration degrees are not elementarily equivalent.
Furthermore, her proof embeds the intermediate degrees of the diamond in the low �0

2 enumeration
degrees. Lempp and Sorbi [7] extend this result and show that every finite lattice is embeddable in the
low �0

2 degrees preserving least and greatest elements. In this article, we extend the characterization
of partially ordered structures embeddable in Ge to include countable distributive lattices. Our two
main results are as follows.

Theorem 1
Every countable distributive lattice is embeddable in [0e,0e

′] preserving both least and greatest
elements. Moreover, the range of the embedding contains only low quasiminimal enumeration
degrees, except for the image of the least and greatest elements.

Theorem 2
Every countable distributive lattice is embeddable preserving the least element in every non-trivial
interval [a,b]⊆Ge, for which a,b are �0

2 enumeration degrees and a is low. Moreover, the range
of the embedding contains only enumeration degrees quasiminimal and low over a, except for the
image of the least and greatest elements.

A relativization of the proofs of Theorems 1 and 2 provides us with further insight to the global
structure of the enumeration degrees. Theorem 2 can be as usual only relativized above any total
enumeration degree. Theorem 1, however, provides an interesting example of a structural property
of the interval [0e,0e

′] which can be relativized to every interval [u,u′], where u is an arbitrary
enumeration degree.

As a further corollary of the proof of Theorem 2, we shall obtain that if v is downwards properly �0
2,

i.e. a �0
2 degree, which does not bound any non-trivial �0

2 degrees, then every countable distributive
lattice is embeddable in [v,0e

′] in such a way, that the range of the embedding consists only of degrees
low over v degrees except for the image of the greatest element. Harris [4] has recently announced
a result, that yields the existence of a downwards properly �0

2 degree in every jump class of the
high/low hierarchy of the �0

2 enumeration degrees, except for L1. Combing this with our result we
get that every countable distributive lattice is embeddable in Ln for n>1, Hn for n≥1 and I .

We shall prove both theorems using the notion of Kalimullin pairs (K-pairs). This notion is
introduced and used by Kalimullin to prove the definability of the enumeration jump.

Definition 1 [5]
A pair of sets {A,B} is a K-pair over U, if there is a set W ≤e U, such that A×B⊆W and A×B⊆W .
If A,B �≤e U, we call this K-pair non-trivial. If U is a c.e. set, then we refer to {A,B} just as a K-pair.

The enumeration degrees generated by K-pairs exhibit some very interesting properties [5]. If
a=de(A), b=de(B) and u=de(U), then {A,B} is a K-pair over U if and only if

∀x∈De[x∨u= (x∨u∨a)∧(x∨u∨b)]. (1.1)

Additionally, if {A,B} is a non-trivial K-pair over U then the degrees A⊕U and B⊕U are quasi-
minimal over U. Furthermore, if A,B are e-reducible to the enumeration jump of U, then both A⊕U
and B⊕U are low over U.

From now on we shall use the term K-pairs both for sets, as in Definition 1, and for degrees that
satisfy (1.1).

Equality (1.1) makes K-pairs a powerful tool for embedding distributive lattices in intervals of
enumeration degree. In order to illustrate this, consider a finite K-system {ai |0≤ i≤n−1}, i.e. for
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each i �= j, {ai,aj} is a non-trivial K-pair. Using induction on |X|+|Y |, we shall prove that, whenever
X and Y are disjoint non-empty subsets of {0,1,...,n−1}, the pair{∨

i∈X

ai,
∨
i∈Y

ai

}
is a K-pair. (1.2)

For |X|+|Y |=2 the statement follows from the definition of a K-system. Suppose that |X|+|Y |>2
and let |X|≥2. Fix an arbitrary x∈Ge and let

y≤x∨
∨
i∈X

ai, x∨
∨
i∈Y

ai. (1.3)

Fix i0 ∈X and let X0 =X −{i0}. From (1.3), we obtain

y≤ (x∨ai0 )∨
∨
i∈X0

ai, (x∨ai0 )
∨
i∈Y

ai.

As |X0|+|Y |< |X|+|Y | and X0 �=∅, we have that {∨i∈X0
ai,
∨

i∈Y ai} is a K-pair and hence y≤x∨ai0 .
But 1+|Y |< |X|+|Y | and again by the induction hypothesis {ai0 ,

∨
i∈Y ai} is a K-pair. From here

y≤x and so (1.2) is satisfied.
Note that (1.1) implies that if u≤e v and {a,b} is a K-pair over u, then {a,b} is a K-pair over v.

Thus, (1.2) implies that if v bounds a K-system of n degrees omitting u, then the lattice (2n,∩,∪)
is embeddable in the interval [u,v]. By Birkhoff’s Theorem, every finite distributive lattice is
embeddable in (2n,∩,∪) for an appropriate n and so we may conclude that every finite distributive
lattice is embeddable in [u,v], given that v bounds a sufficiently large K-system avoiding u. Our
strategy to prove Theorems 1 and 2 is to generalize (1.2) for special countable K-systems and to
prove that such K-systems exist.

2 Preliminaries

Throughout this article, we shall use standard notation. We refer the reader to Cooper [3] and Sorbi
[10] for an extensive survey of results on both the global and local theory of the enumeration degrees.
We outline the basic notions and facts used in the article.

By W0,W1,..., we denote the c.e. sets with their Gödel indices. For every natural number i and
every set of natural numbers A, we denote by Wi(A) the set

Wi(A)={x |∃u[〈x,u〉∈Wi &Du ⊆A},

where Du is the finite set with canonical index u. Thus, every c.e. set can be viewed as an operator
on sets, an enumeration operator. Its elements will be called axioms.

The relation enumeration reducibility is defined by B≤e A if and only if B=Wi(A) for some natural
i. This relation defines a preorder on the sets of natural numbers and induces an equivalence relation
≡e. The equivalence class of a set A, denoted by de(A), is the enumeration degree of the set A. The
enumeration degrees are ordered in the natural way by de(B)≤de(A) if and only if B≤e A.

The least upper bound of the enumeration degrees de(A) and de(B) is the degree of the join A⊕B=
{2a |a∈A}∪{2b+1 |b∈B} of A and B. The uniform join of the indexed system of sets {Ai | i∈ I}, I ⊆N,
is given by

⊕
i∈I Ai ={〈x,k〉 |k ∈ I &x∈Ak}. The uniform join is the least uniform upper bound for
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the system {Ai | i∈ I}, i.e. if Ai ≤e B uniformly in i∈ I and I ≤e B, then
⊕

i∈I Ai ≤e B. Furthermore, for
arbitrary computable sets R1 and R2⊕

k∈R1∪R2

Ak ≡e
⊕
k∈R1

Ak ⊕
⊕
k∈R2

Ak . (2.1)

The enumeration jump of the set A is defined by A′ =LA ⊕LA, where LA ={〈x,i〉 |x∈Wi(A)}. We
say that a set B is low over A, if A≤e B and A′ ≡e B′.

We say that a set A is total if A≤e A. A degree a is total if it contains a total set. The total degrees are
the images of the Turing degrees under the standard embedding ι :DT →De. The degrees containing
no total set are called partial. Thus, the partial degrees are exactly the degrees in De\ι(DT ). A degree
b is said to be quasi-minimal over a if every degree a�x≤b is partial (in particular b is partial).

Equality (1.1), characterizing the K-pairs with a lattice-theoretic property, follows from the
following theorem.

Theorem 3 [5]
Let A, B and U be sets of natural numbers.

(1) If {A,B} is a K-pair over U, then

∀x∈De[x∨de(U)= (x∨de(U)∨de(A))∧(x∨de(U)∨de(B))].

(2) If {A,B} is not a K-pair over U, then there is a set X ≤e U ′⊕(A⊕A)⊕(B⊕B), for which

de(X)∨de(U) �= (de(X)∨de(U)∨de(A))∧(de(X)∨de(U)∨de(B)).

From claim (1) of the theorem it follows, that if a and b are the degrees of a K-pair of �0
2 sets then

∀x∈Ge[x= (x∨a)∧(x∨b)]. (2.2)

It is still an open question whether two �0
2 degrees satisfying (2.2) have representatives forming a

K-pair. However, claim (2) settles the questions for �0
2 degrees. Namely, two �0

2 degrees a and b
satisfy (2.2) if and only if {A,B} is a K-pair for some A∈a and B∈b.

As we have mentioned in the Section 1 if {A,B} is a K-pair over U, then A⊕U and B⊕U are
quasi-minimal over U and furthermore, if A,B≤e U ′, then A and B are low over U. This statement
follows from Theorem 3 and following lemma.

Lemma 1 [5]
Let A, B and M be sets, such that A×B⊆M, A×B⊆M and A �≤e M. Then

B≤e A⊕M &B≤e A⊕M.

The following properties of K-pairs are only listed in [5]. As we will be using them in this article,
for completeness, we restate them and provide a formal proof.

Lemma 2 [5]
If {A,B} is a non-trivial K-pair over U, then A⊕U and B⊕U are quasi-minimal over U. Furthermore,
if A,B≤e U ′ then A⊕U and B⊕U are low over U, i.e. (A⊕U)′ ≡e (B⊕U)′ ≡e U ′.
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Proof. Towards a contradiction assume that {A,B} is a non-trivial K-pair over U and A⊕U is not
quasi-minimal over U. Fix a total C such that U ≤e C ≤e A⊕U. According to claim (1) of Theorem
3 for all x≥de(U) we have,

x= (x∨de(A⊕U))∧(x∨de(B⊕U)).

From C ≤e A⊕U, we obtain
x= (x∨de(C))∧(x∨de(B)). (2.3)

for every x≥de(U). Now claim (2) of Theorem 3 implies that {C,B} is a K-pair over U. Let W ≤e U
be such that C×B⊆W and C×B⊆W . Applying Lemma 1, we obtain B≤e C⊕W ≤e C ≤e C. But
then (2.3) is possible only if B≡e U, which contradicts the assumption that {A,B} is a non-trivial of
the K-pair .

Now suppose that A,B≤e U ′. Since A≡e LA and B≡e LB, applying consecutively (1) and (2) from
Theorem 3, we obtain that {LA,LB} is a K-pair over U. Let W ≤e U, be such that LA ×LB ⊆W and
LA ×LB ⊆W . Since LA,LB �≤e U Lemma 1 yields LA ≤e LB ⊕W and LB ≤e LA ⊕W . But LA, LB and
W are enumeration reducible to U ′ and hence LA,LB ≤e U ′. �

Finally, we shall need some lattice-theoretic results about embeddability of distributive lattices.
Birkhoff proves that every finite distributive lattice can be embedded in the Boolean algebra (2n,∪,∩)
preserving least and greatest elements. From here using a compactness argument one can prove
that every countable distributive lattice is embeddable in the countable atomless Boolean algebra
preserving least and greatest elements. The countable atomless Boolean algebra is unique up to
isomorphism. Take as an instance of it the algebra of finite unions of left semi-closed intervals of
rational numbers. Since (Q,≤) is a computable linear ordering, we thus obtain that the countable
atomless Boolean algebra is embeddable in the Boolean algebra R of computable sets. Thus, in order
to prove that every countable distributive lattice is embeddable in an interval of enumeration degrees
[u,v], it is enough to prove that R is embeddable in it.

3 Uniform K-systems

As we have seen in the Section 1, we need finite K-systems in order to be able to embed finite
distributive lattices in Ge. For arbitrary countable distributive lattice, we shall need the notion of
uniform K-systems.

Definition 2
We say that the system of sets {Ai}i<ω is a uniform K-system, if and only if for every natural i, Ai �≤e ∅
and there is a computable function r, such that whenever i �= j

Ai ×Aj ⊆Wr(i,j) &Ai ×Aj ⊆Wr(i,j).

For uniform K-systems, we are able to prove an analogue of (1.2) as follows.

Proposition 1
Let {Ai}i<ω be a uniform K-system and let R1 and R2 be disjoint computable sets. Then
{⊕i∈R1

Ai,
⊕

i∈R2
Ai} is a K-pair.

Proof. Let {Ai}i<ω be a uniform K-system and let R1 and R2 be disjoint computable sets. Consider
the set

W ={〈〈x,k〉,〈y,j〉〉 |k ∈R1,j∈R2,〈x,y〉∈Wr(k,j)}. (3.1)
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It is clear, that W is c.e. First, we shall prove, that
⊕

i∈R1
Ai ×⊕i∈R2

Ai ⊆W . Fix 〈x,k〉∈⊕i∈R1
Ai

and 〈y,j〉∈⊕i∈R1
Ai. We have x∈Ak , y∈Aj, k ∈R1 and j∈R2. From R1 ∩R2 =∅ we conclude k �= j

and hence by the uniformity condition, we obtain 〈x,y〉∈Wr(k,j). Therefore, 〈〈x,k〉,〈y,j〉〉∈W .

In order to prove
⊕

i∈R1
Ai ×⊕i∈R2

Ai ⊆W fix 〈x,k〉 �∈⊕i∈R1
Ai and 〈y,j〉 �∈⊕i∈R1

Ai. We shall
consider two cases. First suppose that either k �∈R1 or j �∈R2. Then according to (3.1), 〈〈x,k〉,〈y,j〉〉 �∈
W . Now suppose, that k ∈R1 and j∈R2. Then it should be the case x �∈Ak and y �∈Aj. But R1 and R2
are disjoint and hence by the uniformity of the K-system, we obtain 〈x,y〉 �∈Wr(k,j). Thus, in this case
we also have 〈〈x,k〉,〈y,j〉〉 �∈W . �
Lemma 3
Let {Ai}i<ω be a uniform K-system and let U be such that for all i, Ai �≤e U. Then every countable
distributive lattice is embeddable in the interval of enumeration degrees [de(U),de(U ⊕⊕i<ωAi)]
preserving least and greatest elements. Moreover, the range of the embedding, except for the image
of the least and greatest elements, contains only degrees quasi-minimal over de(U). Furthermore, if⊕

i<ωAi ≤e U ′ then all the images except for the image of the greatest element are low over de(U).

Proof. Since every distributive lattice is embeddable preserving least and greatest elements in the
lattice R of the computable sets, it is enough to prove the lemma for R. Consider the mapping
ϕ :R→[de(U),de(U ⊕⊕i<ωAi)], acting by the rule

ϕ(R)=de

(
U ⊕

⊕
k∈R

Ak

)
.

It is clear that ϕ(∅)=de(U) and ϕ(N)=de(U ⊕⊕i<ωAi). From (2.1), we immediately obtain that
ϕ preserves least upper-bounds. Thus, to show that ϕ is an embedding, it remains to show that ϕ

preserves greatest lower-bounds. Fix two computable sets R1 and R2, and let R̃1 =R1 −(R1 ∩R2) and
R̃2 =R2 −(R1 ∩R2). From (2.1), we obtain

U ⊕
⊕
k∈R1

Ak =
⎛⎝U ⊕

⊕
k∈R1∩R2

Ak

⎞⎠⊕
⊕
k∈R̃1

Ak

U ⊕
⊕
k∈R2

Ak =
⎛⎝U ⊕

⊕
k∈R1∩R2

Ak

⎞⎠⊕
⊕
k∈R̃2

Ak .

R̃1 and R̃2 are disjoint, so that Proposition 1 yields that {⊕k∈R̃1
Ak,

⊕
k∈R̃2

Ak} is a K-pair. Now from
Theorem 3 we obtain

ϕ(R1)∧ϕ(R2)=

de

⎛⎝⎛⎝U ⊕
⊕

k∈R1∩R2

Ak

⎞⎠⊕
⊕
k∈R̃1

Ak

⎞⎠∧de

⎛⎝⎛⎝U ⊕
⊕

k∈R1∩R2

Ak

⎞⎠⊕
⊕
k∈R̃1

Ak

⎞⎠=

de

⎛⎝U ⊕
⊕

k∈R1∩R2

Ak

⎞⎠=ϕ(R1 ∩R2).

It remains to prove that ϕ(R) is quasi-minimal and low over de(U) whenever R is non-trivial. Fix
a computable R and consider R. We have that R and R are disjoint computable sets, and hence by
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Proposition 1, {⊕k∈RAk,
⊕

k∈RAk} is a non-trivial K-pair. But
⊕

k∈RAk,
⊕

k∈RAk �≤e U and hence
{⊕k∈RAk,

⊕
k∈RAk} is a non-trivial K-pair over U. Applying Lemma 1, we obtain that both ϕ(R)

and ϕ(R) are quasiminimal and low over de(U). �

4 Existence of uniform K-systems

In this section, we prove the two main theorems announced in Section 1. By Lemma 3 both proofs will
follow from the existence of certain uniform K systems. We start by proving that there is a uniform
K-system, whose uniform join is equivalent to ∅′, and thus concluding the proof of Theorem 1.

Theorem 4
There is a uniform K-system {Ai}i<ω, such that

⊕
i<ωAi ≡e ∅′.

Proof. We assume that an effective coding of all finite strings of 0 and 1 is fixed. As usual, we shall
identify a string with its code. We denote by T the collection of all strings. If σ,τ ∈T , denote the
concatenation of σ and τ by σ∗τ. If τ is an initial segment of σ, we write τ ⊆σ. By τ<L σ, we mean
that there is a ρ∈T , such that ρ∗0⊆τ and ρ∗1⊆σ. We denote the length of the string σ by |σ|.
Furthermore, we denote by λx.(x)0 and λx.(x)1 the computable functions for which x=〈(x)0,(x)1〉
for arbitrary x.

We start the proof by constructing a sequence of finite binary strings δ(0)⊆δ(1)⊆···⊆δ(n)⊆···,
such that |δ(n)|=n. We set δ(0)=∅ and

δ(n+1)=
{
δ(n)∗0, δ(n)∈W(n)0 (∅),
δ(n)∗1, δ(n) �∈W(n)0 (∅).

Consider the following sets

R = { σ ∈T |∃n[δ(n)<L σ]},
S = { σ ∈T |∃n[δ(n)<L σ∨δ(n)=σ]},
A = { δ(n) |δ(n+1)=δ(n)∗1}∪R,

W= {〈σ0,σ1〉|σ0 ∈R∨σ1 ∈R∨(σ0 ∈S &σ0 ∗1⊆σ1)∨
(σ1 ∈S &σ1 ∗1⊆σ0)}.

To provide some visual intuition about the above defined sets we observe the following. The
sequence {δ(n)}n<ω defines an infinite path δ in the tree T . The set R is the collection of all finite
binary strings that are strictly to the right of the path δ. The set S is the set of strings to the right of
or on the path δ. The set A is specially chosen representative of 0e

′.
We prove that R≤e ∅, S ≤e ∅, Graph(δ)≤e A, W ≤e ∅ and A≡e ∅′.
• R≤e ∅ follows from

σ ∈R ⇐⇒ ∃τ �σ[τ∗1⊆σ &τ ∈W(|τ|)0 (∅)&∀ρ�τ[ρ∗0⊆τ ⇒ρ∈W(|ρ|)0 (∅)]].
• S ≤e ∅ follows from

σ ∈S ⇐⇒ σ ∈R∨∀ρ�σ[ρ∗0⊆σ ⇒ρ∈W(|ρ|)0 (∅)].
• Graph(δ)≤e A follows from

δ(n)∈A⇒δ(n+1)=δ(n)∗1,

δ(n)∈W(n)0 (∅)⇒δ(n+1)=δ(n)∗0.
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8 Embedding distributive lattices

• W ≤e ∅ follows directly from R,S ≤e ∅.
• Finally, to see that A≡e ∅′ we need only to prove that ∅′ ≤e A (the converse is obvious). For, fix

a computable function g, such that x∈L∅ ⇒Wg(x)(∅)=ω and x �∈L∅ ⇒Wg(x)(∅)=∅. Then

x �∈L∅ ⇐⇒ δ(〈g(x),0〉) �∈Wg(x)(∅) ⇐⇒ δ(〈g(x),0〉)∈A.

From here L∅ ≤e Graph(δ)⊕A≤e A and so ∅′ ≡e A.

Next we shall see that

(A×A)\{〈σ,σ〉 |σ ∈A}⊆W and A×A⊆W . (4.1)

First, let σ0,σ1 ∈A and σ0 �=σ1. If either σ0 ∈R or σ1 ∈R, then 〈σ0,σ1〉∈W . Now suppose that
σ0,σ1 �∈R. Then σ0 =δ(n) and σ1 =δ(m) for some n and m, such that δ(n+1)=δ(n)∗1 and δ(m+1)=
δ(m)∗1. Without loss of generality, let n<m. Then σ0 ∗1=δ(n+1)⊆δ(m)=σ1. But σ0 =δ(n) implies
σ0 ∈S, so that 〈σ0,σ1〉∈W .

Now let σ0,σ1 �∈A. Then σ0,σ1 �∈R. Towards a contradiction assume that 〈σ0,σ1〉∈W . Without
loss of generality, we may assume σ0 ∈S and σ0 ∗1⊆σ1. Since σ0 �∈R, σ0 =δ(n) for some n. But
σ0 �∈A and therefore δ(n+1)=σ0 ∗0<L σ0 ∗1⊆σ1. Thus σ1 ∈R. A contradiction.

We are ready to define the uniform K-system. For arbitrary i and j set, Ai ={σ ∈A | (|σ|)1 = i} and
Wij ={〈σ0,σ1〉∈W | (|σ0|)1 = i &(|σ1|)1 = j}. It is clear that there is a computable function r, such
that Wij =Wr(i,j). Furthermore, Ai ≤e A uniformly in i and

⋃
i<ωAi =A, so that

⊕
i<ωAi ≡e A. Note

that

δ(〈e,i〉)∈Ai ⇐⇒ δ(〈e,i〉)∈A ⇐⇒ δ(〈e,i〉) �∈We(∅),

and hence Ai �=We(∅) for arbitrary i and e.
Thus, it remains to prove that Ai ×Aj ⊆Wij and Ai ×Aj ⊆Wij for i �= j. Let σ0 ∈Ai and σ1 ∈Aj.

From the definition of Ai, Aj and from i �= j, we obtain σ0,σ1 ∈A, (|σ0|)1 = i, (|σ1|)1 = j, and σ0 �=σ1.
Therefore from (4.1), we obtain 〈σ0,σ1〉∈Wij.

Now let σ0 �∈Ai and σ1 �∈Aj. If either (|σ0|)1 �= i or (|σ1|)1 �= j, then 〈σ0,σ1〉 �∈Wij. On the other
hand if (|σ0|)1 = i and (|σ1|)1 = j, then σ0,σ1 �∈A and hence using (4.1) we obtain 〈σ0,σ1〉 �∈Wij. �

The uniform K-system {Ai}i<ω constructed in Theorem 4 consists of low �0
2, hence �0

2, and non
c.e. sets. Thus, if U is a downwards properly �0

2 set, i.e. for every X ≤e U, X is either c.e. or is not �0
2,

then Ai �≤e U for all i. Therefore, Lemma 3 and Theorem 4 imply the following theorem, of which
Theorem 1 is a particular case.

Theorem 5
Let U be downwards properly �0

2. Then every countable distributive lattice is embeddable in the
interval [de(U),0e

′], preserving least and greatest elements. Moreover, the range of the embedding
contains only degrees quasi-minimal and low over de(U), except for the images of the least and
greatest elements.
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Lemma 3 and Theorem 4 can be relativized over an arbitrary set V . We first need to relativize the
notion of a uniform K-system.

Definition 3
We say that the system of sets {Ai}i<ω is a uniform K-system over V , if and only if for every natural
number i, Ai �≤e V and there is a function r, such that Graph(r)≤e V and whenever i �= j

Ai ×Aj ⊆Wr(i,j)(V )&Ai ×Aj ⊆Wr(i,j)(V ).

Making a slight modification to the proof of Theorem 4 (we just need to substitute ∅ by V ), we
can prove that for every set V , there is a uniform K-system {Ai}i<ω over V , such that

⊕
i<ωAi ≡e V ′.

On the other hand, Lemma 3 is valid even for the relativized K-system and hence every countable
distributive lattice is embeddable in the interval [de(V ),de(V ′)]. Furthermore, from the properties
of K-pairs, we obtain that the range of the embedding , except for 0 and 1, consists of low and
quasi-minimal over de(V ) degrees. In other words, we have the following theorem.

Theorem 6
Every countable distributive lattice is embeddable preserving least and greatest elements in arbitrary
interval [v,v′].

5 Bounding uniform K-systems

The rest of this article is devoted to the proof of Theorem 2. Our goal is to show that every non-trivial
�0

2 set bounds a uniform K-system. Before we can do this, we shall need to introduce some more
notation.

We will be working with �0
2 approximations to sets. Recall that a �0

2 approximation to a set A is a
uniform sequence of finite sets {A{s}}s<ω such that for every n we have that lim nA{s}(n) exists and is
equal to A(n). We shall use and respect the convention that for every s, A{s} ⊆N�s. Furthermore, we
shall say that a �0

2 approximation has index e if e is an index of the computable function ρ :N→N
defined by ρ(s)=us, where us is the canonical index of the finite set A{s}.

Definition 4
Let A be a set of natural numbers and i be a natural number:

(1) A[i] ={〈i,x〉 | 〈i,x〉∈A};
(2) For R∈{≤,<,≥,>} we set A[Ri] ={〈j,x〉 | 〈j,x〉∈A&(jRi)}.
(3) A[i]={x | 〈i,x〉∈A}.
We start with a dynamic property of sets A and B, a property of the approximations to sets A and

B, which ensures that the enumeration degrees of A and B form a K-pairs. This property originates
from Kalimullin [5].

Lemma 4
Let A0 and A1 be �0

2 sets with respective �0
2 approximations {A{s}

0 }s<ω and {A{s}
1 }s<ω such that for

every i∈{0,1}, every s and every x:

x∈ (A{s}
i \A{s+1}

i )∩ω[k] ⇒ω[≥k] �s⊆A1−i.
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Then de(A0) and de(A1) form a K-pair. An index of a c.e. set W such that

A0 ×A1 ⊆W and A0 ×A1 ⊆W

is uniformly computable from the indices of the approximations to A0 and A1.

Proof. Let W =⋃s<ωA{s}
0 ×A{s}

1 . The set W is c.e. and its index is obviously computable from the
indices of the approximations to A0 and A1.

It follows from the properties of a �0
2 approximation that A0 ×A1 ⊆W . Fix (a0,a1)∈A0 ×A1.

We will prove that for all stages s we have (a0,a1) /∈A{s}
0 ×A{s}

1 and hence A0 ×A1 ⊆W . Assume

towards a contradiction that there is a stage s such that 〈a0,a1〉∈A{s}
0 ×A{s}

1 . Then a0 <s and can be
represented as a0 =〈k0,y0〉 for some natural numbers k0,y0. Similarly a1 <s and can be represented
as a1 =〈k1,y1〉 for some natural numbers k1,y1. Let i∈{0,1} be such that ki =min{k0,k1}. As ai /∈Ai

there will be a least stage s′ >s such that ai ∈A{s′−1}
i \A{s′}

i . By the property of the approximations
ω[≥ki] �s⊆A1−i. By our choice of i it follows that a1−i ∈A1−i, contradicting the assumption that
〈a0,a1〉∈A0 ×A1. �
Theorem 7
Let A be a �0

2 set and let B be a low �0
2 set such that A�e B. There is a uniform K-system {Ai}i<ω

which is uniformly enumeration reducible to A and for every i, Ai �e B.

Proof. Fix a �0
2 set A and a low �0

2 set B such that A�e B. Let {A{s}}s<ω be a �0
2 approximation

to A and let {B{s}}s<ω be a low �0
2 approximation to B. Recall that a low �0

2 approximation has
the additional property that for every enumeration operator W with standard �0

1 approximation
{W {s}}s<ω, the approximation {W {s}(B{s})}s<ω to the set W (B) is also �0

2.
We shall construct a monotone uniform sequence of computable sets {V {s}}s<ω and let V =⋃
s<ωV {s}. The constructed set V is c.e., hence an enumeration operator. We set Ai =V (A)[i]. This

definition automatically ensures that the system {Ai | i∈ω} is uniformly enumeration reducible to A.
A �0

2 approximation to the set Ai can be obtained by setting for every stage s, A{s}
i =V {s}(A{s}). We

will ensure that the following three requirements are satisfied:

• For every natural number i:

Di : {A{s}
i }s<ω is a �0

2 approximation.

• For every pair of distinct natural numbers i �= j:

K〈i,j〉 :∀s,x(x∈ (A{s}
i \A{s+1}

i )∩ω[k] ⇒ω[≥k] �s⊆Aj).

• For every pair of natural numbers i and e:

N〈i,e〉 :We(B) �=Ai.

Where We is the e-th enumeration operator in some standard listing of all c.e. set.

The first two groups of requirements ensure that for every i �= j the pair (Ai,Aj) is a K-pair. This
together with Lemma 4 ensures that the system {Ai}i<ω is a uniform K-system. Indeed for every i
an index of the approximation {A{s}

i }s<ω is uniformly computable from the index of {A{s}}s<ω and
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the index which will be produced by the construction of the c.e. set V . From this by Lemma 4, we
can obtain uniformly in i and j an index of a c.e. set Wi,j such that Ai ×Aj ⊆Wi,j and Ai ×Aj ⊆Wi,j.
Finally, the third group of requirements ensures that for every i, Ai �e B.

Construction
The construction is in stages. At stage 0, we set V {0} =∅. At stage s>0, we construct V {s+1} from its
value constructed at the previous stage, by allowing certain requirements to enumerate new axioms
in it.

Step 1. Satisfying the K-requirements.

If V {s}(A{s})\V {s}(A{s+1})=∅ then set V̂ {s+1} =V {s}. Otherwise, we represent every
natural number z as z=〈i,〈k,y〉〉 for some numbers i,k,y. Choose the number z such
that z∈V {s}(A{s})\V {s}(A{s+1}) with least k, say z0 =〈i0,〈k0,y0〉〉. Although we do not
know yet what A{s+1}

i0
will be, as this depends on what new axioms we will enumerate in

V {s+1}, it is quite possible that ultimately we will have:

〈k0,y0〉∈ (A{s}
i0

\A{s+1}
i0

)∩ω[k0].

To ensure that the requirements K〈i0,j〉 for every j are satisfied, we need to enumerate
ω[≥k0] �s in Aj for every j �= i. So we set:

V̂ {s+1} =V {s}∪{〈〈j,x〉,∅〉 | x∈ω[≥k0] �s& j �= i0}.

Note that for every i, we are adding finitely many axioms for elements in ω[i]. Hence,
V̂ {s+1} is a computable set. Furthermore, for every i, we have V̂ {s+1}(A{s+1})[i]⊆ω �s.

Step 2. Satisfying the N -requirements.
For every k =〈i,e〉 define l(k,s)= l(A{s}

i ,W {s}
e (B{s})), the length of agreement between

Ai and We(B), measured at stage s. Here, We is approximated by its standard �0
1

approximation. Choose the least k ≤s such that l(k,s)>max{l(k,t) | t <s}. In other words
choose the least k ≤s such that s is an expansionary stage for the requirement Nk . We will
call such stages s, k-expansionary. If there is no such number k, set V {s+1} = V̂ {s+1} and
end this stage.
Otherwise for the least k such that s is k-expansionary, say k =〈i,e〉, we try to code the set
A in the set Ai. We define

V {s+1} = V̂ {s+1}∪{〈〈i,〈k,y〉〉,{y}〉 | 〈k,y〉<s}.

Note that again we are adding finitely many axioms to V {s+1}. It follows that V {s+1} is
computable and that for every i, V {s+1}(A{s+1})[i]⊆ω �s.

This completes the construction.
We prove that the constructed set V satisfies all requirements in three steps.

Proposition 2
For all i∈ω the sequence {A{s}

i }s<ω is a �0
2 approximation.

Proof. Fix i and a natural number x. We will prove that all axioms enumerated in V for 〈i,x〉 are
enumerated at stages s>x and are either valid at all but finitely many stages or invalid at all but finitely
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many stages. Fix an axiom 〈〈i,x〉,D〉, enumerated in V {s+1} at stage s. If this axiom is enumerated
under Step (1). of the construction then x<s and D=∅. As V {s+1} ⊆V {t} at all t ≥s+1 it follows
that x∈A{t}

i at all t ≥s+1.
If the axiom is enumerated under Step (2). of the construction then x=〈k,y〉<s, where k and y are

natural numbers, and D={y}. As {A{s}}s<ω is a �0
2 approximation to A there is a stage sy such that

at all t ≥sy we have A{t}(y)=A(y) and hence if A(y)=1, the axiom is valid at all stages t ≥sy and if
A(y)=0, the axiom is invalid at all stages t ≥sy.

It follows that for all s, A{s}
i ⊆ω �s and that for all x, lim sA{s}

i (x) exists (by definition it is of course
equal to Ai(x)). �
Proposition 3
For every i �= j the sets Ai and Aj form a K-pair.

Proof. Assume towards a contradiction that for some i and j the requirement K〈i,j〉 is not satisfied,
i.e. there is a stage s and numbers x and k such that:

x∈ (A{s}
i \A{s+1}

i )∩ω[k] and ω[≥k] �s�Aj.

Then x=〈k,y〉 for some number y and:

〈i,〈k,y〉〉∈V {s}(A{s})\V {s+1}(A{s+1}).

As V {s}(A{s+1})⊆V {s+1}(A{s+1}), it follows that:

〈i,〈k,y〉〉∈V {s}(A{s})\V {s}(A{s+1}).

At stage s under Step (1). of the construction, we select 〈i0,〈k0,y0〉〉 as the number with least second
coordinate that belongs to the set V {s}(A{s})\V {s}(A{s+1}). Hence, k0 ≤k and:

V {s+1} ⊇ V̂ {s+1} =V {s}∪{〈〈j,z〉,∅〉 | z∈ω[≥k0] �s& j �= i0}.

If i0 = i then j �= i0 and an axiom 〈〈j,z〉,∅〉 is enumerated in V {s+1} for every z∈ω[≥k0] �s. As k0 ≤k
and hence ω[≥k0] �s⊆ω[≥k] �s it follows that ω[≥k] �s⊆Aj contradicting our assumption.

If i0 �= i then, as x∈ω[≥k0], the axiom 〈〈i,x〉,∅〉 is enumerated in V {s+1} and hence x∈A{s+1}
i which

contradicts the assumption that x∈A{s}
i \A{s+1}

i .
In both cases the assumption that K〈i,j〉 is not satisfied leads to a contradiction and is therefore

wrong. �
Proposition 4
For every i, Ai �e B.

Proof. First, we note that by Proposition 2 and our choice of low approximation to B for every
k =〈i,e〉 we have that We(B)=Ai if and only if there are infinitely many k-expansionary stages.
Indeed, we have �0

2 approximations to We(B) and Ai hence for every n there is a stage sn such

that at all t >sn we have A{t}
i �n=Ai �n and W {t}

e (B{t})�n=We(B)�n. If Ai =We(B) then for all n,
l(k,sn)≥n, i.e. the length of agreement grows unboundedly with infinitely many expansionary stages.
If Ai �=We(B) then there is a number n such that Ai(n) �=We(B)(n) and the length of agreement is
bounded by n, l(k,t)<n at all t ≥sn+1.
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Assume towards a contradiction that there is an N -requirement which is not satisfied and let k be
the least index such that Nk is not satisfied.

It follows that for all m=〈im,em〉<k the requirement Nm is satisfied and there is a stage s0
such that all stages t >s0 are not m-expansionary for any m<k. Hence, during the course of the
whole construction each requirement Nm, where m<k, adds only finitely many axioms to V . By
Proposition 2, each such axiom is valid or invalid at all but finitely many stages. Let s1 ≥s0 be a
stage such that at all t >s1 each axiom added by a requirement Nm, where m<k, does not change
its state (i.e. it is valid at all t >s1 or invalid at all t >s1).

We now turn to Step (1) of the construction. If at stage t >s1 an element z has the property
z∈V {t}(A{t})\V {t}(A{t+1}) then 〈z,∅〉 /∈V {t} and an axiom for z enumerated under Step (2) of the
construction is valid at stage t and invalid at stage t+1. By our choice of stage s1 this axiom is
enumerated by Nl where l≥k. It follows that z can be represented as z=〈jl,〈l,yl〉〉; furthermore,
l can be represented as l=〈jl,el〉. Hence, if at stage t >s1 the number z with least second coordinate
such that z∈V {t}(A{t})\V {t}(A{t+1}) has second coordinate k then it has first coordinate i. Otherwise
z has second coordinate strictly larger than k. In both cases no more axioms of the form 〈〈i,〈k,y〉〉,∅〉
are enumerated in V {t+1} at stages t >s1.

Let D be the finite set of all y, such that 〈〈i,〈k,y〉〉,∅〉∈V . We will prove that for every natural
number y we have y∈A if and only if 〈k,y〉∈Ai for all y /∈D. Hence A≤e Ai =We(B), contradicting
the fact that A�e B.

Fix y /∈D. The only axiom for 〈i,〈k,y〉〉 in V (if any) is 〈〈i,〈k,y〉〉,{y}〉. Hence, if y /∈A then 〈k,y〉 /∈Ai.
If y∈A then let s>s1 be a stage such that y<s and s is k-expansionary. The assumption that Ai =We(B)
yields that there are infinitely many k-expansionary stages. Step 2 of the construction enumerates the
axiom 〈〈i,〈k,y〉〉,{y}〉 in V {s+1} hence y∈Ai. �

�
Theorem 2 is now a direct application of Lemma 3 and Theorem 7.
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