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Immunity properties of the s-degrees

Roland Omanadze and Andrea Sorbi

Abstract. We investigate immunity properties of the s-degrees. In particular we show that
neither the immune nor the hyperimmune s-degrees are upwards closed since there exist
�02 s-degrees a �s b such that a is hyperimmune, but b is immune free. We also show that
there is no hyperhyperimmune …0

2 set A such that K �Os A, where K is the complement
of the halting set and �Os denotes the finite-branch version of s-reducibility.
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1 Introduction

Rozinas, [16], shows that the immune and hyperimmune enumeration degrees are
upwards closed, namely if a is immune (hyperimmune) and a �e b, then so is b.
(Here �e denotes enumeration reducibility, as defined below. We also recall that
if P is a property of sets, then we say that a degree has property P if some set
in the degree has property P .) The same holds for the Turing degrees: in fact,
Jockusch [7], extends this upwards closure property to the cohesive Turing de-
grees as well. It is an open problem whether the hyperhyperimmune enumeration
degrees are upwards closed. In this paper we consider a stronger version of enu-
meration reducibility known as s-reducibility, and we show that neither the im-
mune nor the hyperimmune s-degrees are upwards closed, by exhibiting �02 s-de-
grees a �s b such that a is hyperimmune, but b does not contain any immune set.
(Here �s denotes s-reducibility, as defined below.) We also show that there is no
hyperhyperimmune …02 set A such that K �Os A, where K is the complement of
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the halting set and�Os denotes the finite-branch version of s-reducibility, as defined
below. In particular, it follows that degs.K/ does not contain any �02 hyperhyper-
immune set (already proved in [14]), and that degOs.K/ is hyperhyperimmune free.

Our main references for computability theory are [4], or [15]. We only intro-
duce here some of the notions and notations that are most commonly used in the
paper. A set A is enumeration reducible to a set B (abbreviated by e-reducible,
and denoted by A �e B) if there exists a computably enumerable (abbreviated by
c.e.) set ˆ such that

A D ¹x W .9 finite D/Œhx;Di 2 ˆ and D � B�º

(where we identify finite sets with their canonical indices, and hu; vi denotes the
image of .u; v/ under the usual Cantor pairing function from pairs of numbers to
numbers): we write in this case A D ˆ.B/, so the c.e. setˆ can also be viewed as
an operator on sets of numbers, called an enumeration operator, or simply an e-
operator. The e-degrees are the equivalence classes of sets under the equivalence
relation �e generated by �e. The e-degrees, under the partial ordering relation
�e induced by the reducibility, form an upper semilattice with least element 0e
consisting of the c.e. sets, and with supremum given by the usual join operation on
sets.

Particular and important cases of e-operators are provided by the so-called
s-operators: an e-operator ‰ is an s-operator if for every hx;Di 2 ‰ we have
that jDj � 1, where jX j denotes the cardinality of a given set X . Then we say
that A is s-reducible to B (denoted by A �s B), if there exists an s-operator ‰
such that A D ‰.B/. The s-degrees are the equivalence classes of sets under the
equivalence relation �s generated by �s: we get again an upper semilattice with
least element 0s consisting of the c.e. sets, and with supremum given by the usual
join operation on sets. It is clear that �s is included in �e, but not conversely: in
fact it is known, [18], that every nonzero e-degree contains at least two s-degrees.
Amongst the subreducibilities of �e, s-reducibility is perhaps the most important
and useful one. In most practical instances of a set A being e-reducible to a set B ,
it is often the case that one can in fact show that A �s B: this is perhaps due
to the fact that the partial ordering �e naturally embeds into �s, via the simple
observation that A �e B if and only if A� �s B

�, where for a given set X ,
X� D ¹D W D finite and D � Xº. (In fact, [8], the s-degree of X� is the greatest
s-degree inside the e-degree ofX .) Interest in s-reducibility (very often through its
presentation as Q-reducibility, see Lemma1.2 below), derives also from its many
applications to computability theory and general mathematics: for instance Q-
reducibility plays a key role in Marchenkov’s solution of Post’s problem using
Post’s methods [10]; and has applications in the study of word problems (for in-
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stance, [1], [9]) and in abstract computational complexity (for instance, [2], [5]).
For this, and more appropriate references, see the survey paper [12].

The e-operators and the s-operators can be effectively listed and computably
approximated as c.e. sets: a computable approximation ¹‰tºt to an e-operator ‰
is a computable increasing sequence of finite sets such that ‰ D

S
t ‰t . If ˆ is

an e-operator, then for every x let Axˆ.x/ D ¹hy;Di 2 ˆ W y D xº.

Definition 1.1. We say that an e-operatorˆ is finite if for every x, jAxˆ.x/j <1.
If r 2 ¹s; eº, we say that A �Or B if there is a finite r-operator ˆ such that A D
ˆ.B/.

In other words, �Os and �Oe are the finite-branch versions (using terminology
from [3]) of s-reducibility and e-reducibility, respectively.

We also recall that a set A is Q-reducible to a set B (denoted by A �Q B) if
there exists a computable function f such that, for every x,

x 2 A, Wf .x/ � B:

We say in this case that the function f witnesses that A �Q B . Q-reducibility was
introduced by Tennenbaum, as quoted by Rogers [15]. It is easy to see, [5]:

Lemma 1.2. If B ¤ ! then A �s B if and only if A �Q B , or equivalently if there
exists a computable function f such that, for every x,

x 2 A, Wf .x/ \ B ¤ ;:

Proof. See [5]. Moreover, the proof shows that from an s-operator ˆ such that
A D ˆ.B/ one can construct a suitable computable function f such that for
every x, jWf .x/j D jAxˆ.x/j, and vice versa from a computable function f , one
can construct a suitable s-operator ˆ such that for every x, jAxˆ.x/j D jWf .x/j.

The previous lemma gives a useful characterization of s-reducibility, which will
be often used in this paper. In particular, we will refer to the following definition.

Definition 1.3. We say that a computable function f witnesses that A �s B , if f
witnesses that A �Q B .

The following useful fact is a refinement of a result in [13, Theorem 4], therein
stated when both A and B are �02 sets.1 We recall that a �02 approximation to

1 This extension of [13, Theorem 4] has been also noticed independently by C. Harris.
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a set A is a computable sequence of sets ¹Asºs such that for every x, A.x/ D
lims As.x/ (identifying sets with their characteristic functions); on the other hand,
we say that a computable sequence of sets ¹Asºs is a †02 approximation to A, if
A D ¹x W lim infs As.x/ D 1º.

Theorem 1.4. If A �e B , with A 2 �02 and B 2 †02, then A �Oe B .

Proof. Suppose that A �e B , with A 2 �02 and B 2 †02. Let ˆ be an e-operator
such that A D ˆ.B/. Start with a �02-approximation ¹Asºs to A, with a †02-
approximation ¹Bsºs to B , and with a computable approximation ¹ˆsºs to the
e-operator ˆ, where we recall that each ˆs is finite. We show how to construct
a finite e-operator ‰ such that A D ‰.B/.

For every x we give instructions for enumerating, step by step and uniformly
in x, pairs hx;Di 2 ‰. We also use a parameter D.x; s/ denoting, if defined,
a finite set.

Step 0) Do not enumerate any pair; let D.x; 0/ be undefined.

Step s C 1) We distinguish two cases:

Case 1) if x … As then we do not enumerate any pair, and we do not change
D.x; s/ (whether undefined or not);

Case 2) if x 2 As and D.x; s/ is defined and D.x; s/ � BsC1, then do not
enumerate any pair and do not change D.x; s/. Otherwise, let D be such that
hx;Di 2 ˆsC1 and the age of D is least among all such finite sets, where the age
of D is the least t such that for all u with t � u � s C 1, we have that D � Bu;
enumerate hx;Di 2 ‰ at step sC 1, and letD.x; sC 1/ D D; if no suchD exists
then do not enumerate any pair, and let D.x; s C 1/ be undefined.

This ends the construction. Let ‰ be the e-operator obtained by taking all pairs
hx;Di which are enumerated this way. Clearly ‰ � ˆ, and thus if x … A then
x … ‰.B/. If x … A then after some stage we stop enumerating axioms of the
form hx;Di 2 ‰, so jAx‰.x/j <1. If x 2 A, whence x 2 ˆ.B/, then there is an
axiom hx;Ei 2 ˆwithE � B and the age ofE becomes constant and least, say t :
if at bigger and bigger stages s � t , we keep enumerating axioms hx;Di 2 ‰ such
that at a later u;D 6� Bu, then we eventually enumerate hx;Ei 2 ‰, after which
we do not enumerate any more axioms of the form hx;Di 2 ‰. In conclusion, ‰
is finite and A D ‰.B/.

Theorem 1.5. If A �s B , A 2 �02 and B 2 †02 then A �Os B , or equivalently,
there is a computable function f such that for every x, Wf .x/ is finite and

x 2 A, Wf .x/ \ B ¤ ;:
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Proof. This is an immediate consequence of Theorem 1.4 and (the proof of) Lem-
ma 1.2.

We conclude this section with the following observation about the structure of
Or-degrees within r-degrees, for r 2 ¹e; sº. We say that an r-degree is Or-contiguous
if it consists of just one Or-degree.

Theorem 1.6. If r 2 ¹e; sº, then every †02 r-degree containing some �02 set con-
tains a least Or-degree, comprising all�02 sets lying in the given r-degree. As a con-
sequence, a �02 r-degree consists of only �02 sets if and only if it is Or-contiguous.

Proof. If A 2 degOr.a/ and A is �02, then for every B 2 degr.A/ by the previous
theorems we have A �Or B . Moreover if B 2 �02 then A �Or B .

2 Immunity properties of the s-degrees

In this section we show that the immune �02 s-degrees and the hyperimmune �02
s-degrees are not upwards closed. We recall that an infinite set A is called:

(i) immune if it does not contain any infinite c.e. set;

(ii) hyperimmune if for every disjoint strong array ¹Df .x/ºx (meaning a se-
quence of finite sets given by a computable function f listing their canonical
indices, such that Df .x/ \ Df .y/ D ; if x ¤ y), there exists x such that
Df .x/ \ A D ;;

(iii) hyperhyperimmune if for every disjoint weak array ¹Wf .x/ºx (meaning a se-
quence of finite sets given by a computable function f listing c.e. indices
for them, such that Wf .x/ \ Wf .y/ D ; if x ¤ y), there exists x such that
Wf .x/ \ A D ;.

The following definition arises from the notion of a nowhere simple set, due to
Shore, [17]: the complement of a noncomputable nowhere simple set is nowhere
immune.

Definition 2.1. We say that a setA is nowhere immune ifA is not c.e. and for every
c.e. set B with A\B infinite, there is an infinite c.e. setW such thatW � A\B .

We can now show:

Lemma 2.2. Let A be a nowhere immune†02 set, and let B 2 �02. If B �s A, then
B is nowhere immune.
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Proof. Assume that A and B are as in the statement of the lemma. By Theo-
rem 1.5, let f be a computable function such that for every x, Wf .x/ is finite and

x 2 B , Wf .x/ \ A ¤ ;:

Let C be an infinite c.e. set such that B \ C is infinite. Consider the set

X D
� [

x2C

Wf .x/

�
\ A:

We distinguish two cases:

(i) X c.e.: in this case we have

B \ C D ¹x W Wf .x/ \X ¤ ;º \ C;

showing that B \ C itself is c.e.;

(ii) X not c.e.: then X is infinite and since A is nowhere immune, let W � X be
an infinite c.e. set. Then the set

¹x W Wf .x/ \W ¤ ;º \ C

is an infinite c.e. subset of B\C : infinity follows from the fact that the finite
sets ¹Wf .x/ W x 2 B \ C º cover W .

Theorem 2.3. Let A 2 �02, and B;C 2 †02 be such that A is immune, C is
nowhere immune and A �s B ˚ C . Then A �s B .

Proof. We first show two preliminary lemmata.

Lemma 2.4. Let A �s B ˚ C , A immune, C nowhere immune, and suppose
that the reduction is witnessed by a computable function f such that, for every x,
Wf .x/ is finite and

x 2 A, Wf .x/ \ .B ˚ C/ ¤ ;:

Suppose that W is a c.e. set such that jW \ Aj D 1, and let

V D
[

x2W

Wf .x/:

Then

(i) jV \ .; ˚ C/j <1.

(ii) jV \ .B ˚ ;/j D 1.

AUTHOR’S COPY | AUTORENEXEMPLAR 

AUTHOR’S COPY | AUTORENEXEMPLAR 



Immunity properties of the s-degrees 569

Proof. We first observe that the set

E D V \ .B ˚ C/

is infinite, in fact not even c.e. Indeed, if E were c.e. then the following set OW ,

OW D ¹x W Wf .x/ \E ¤ ;º;

would be c.e. and W \ A � OW � A, giving an infinite c.e. subset of A, contrary
to the fact that A is immune. In order to show the claim it is therefore sufficient to
show (i). Assume by contradiction that (i) does not hold, i.e.

jV \ .; ˚ C/j D 1:

Then clearly
j¹x W 2x C 1 2 V \ .; ˚ C/ºj D 1

and thus the set
¹x W 2x C 1 2 V º \ C

is infinite as well. Since ¹x W 2x C 1 2 V º is a c.e. set and C is nowhere immune,
there is an infinite c.e. set QW such that

QW � ¹x W 2x C 1 2 V º \ C:

We have
W � D ¹2x C 1 W x 2 QW º � V \ .; ˚ C/

andW � is an infinite c.e. set, but then, since the setsWf .x/ are finite and coverW �,
it follows that the set

¹y W Wf .y/ \W
� ¤ ;º

is an infinite c.e. subset of A, contrary to immunity of A.

Lemma 2.5. Suppose that A �s B ˚C as witnessed by a computable function f ,
and let

V D
[

x2!

Wf .x/:

If V \ .; ˚ C/ is c.e. then A �s B .

Proof. Suppose that f and V are as in the statement of the Lemma. Without loss
of generality we may suppose that B ¤ ;. Let R D V \ .;˚C/ and take b 2 B:
define

Wg.x/ D ¹y W 2y 2 Wf .x/ or Œy D b and Wf .x/ \R ¤ ;�º:

Then for every x,
x 2 A, Wg.x/ \ B ¤ ;:
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Let us now go back to the proof of the theorem. Let A;B;C be as an in the
statement of the theorem, and by Theorem 1.5, let f be a computable function
such that for every x, Wf .x/ is finite and

x 2 A, Wf .x/ \ .B ˚ C/ ¤ ;:

In Lemma 2.4 take W D !, then it follows that

R D V \ .; ˚ C/

is finite, hence c.e. By Lemma 2.5 it then follows that A �s B .

Remark 2.6. From the proof of Theorem 2.3 we also get: if in addition A �bs

B ˚ C then A �bs B , where �bs is the bounded version of �s, i.e. X �bs Y if
there exist a finite s-operator ˆ, and a number n, such that X D ˆ.Y / and for
every x, jAxˆ.x/j � n.

An important consequence of Theorem 2.3 is:

Theorem 2.7. Let A 2 �02 and B 2 †02 be such that A is not nowhere immune,
B is nowhere immune and B 6�s A. Then the s-degree of the set A˚ B contains
neither nowhere immune sets nor �02 immune sets.

Proof. Let A and B be as above, and suppose that C �s A ˚ B . The set C
cannot be nowhere immune since otherwise from A �s C it would follow that A
is nowhere immune by Lemma 2.2. If C is �02 then C cannot be immune either
since by Theorem 2.3 it would follow that C �s A, but B �s C , so B �s A,
a contradiction.

It is well known that one can define a jump-operation (e-jump) on the e-degrees.
McEvoy and Cooper [11] have characterized the e-low e-degrees (i.e. the e-degrees
whose jump is the least possible jump) as follows:

Lemma 2.8. The following are equivalent of an e-degree a:

(i) a is e-low;

(ii) a contains only �02 sets;

(iii) all e-degrees b �e a contain only �02 sets;

(iv) for any fixed uniform computable approximation ¹ˆe;sºe;s of the enumera-
tion operators ¹ˆeºe , each set A in a can be equipped with a�02 approxima-
tion ¹Asºs such that for every e; x, lims ˆe;s.As/.x/ exists.
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Immunity properties of the s-degrees 571

We suppose to fix once and for all a uniform computable approximation of
the e-operators ¹ˆe;sºe;s . A �02 approximation ¹Asºs (relative to ¹ˆe;sºe;s) as in
Lemma 2.8(iv) will be called an e-low approximation. A set A is called e-low if
its e-degree is e-low.

Corollary 2.9. If a low e-degree a contains an immune set A and a nowhere im-
mune setB withB 6�s A, then a contains an s-degree that contains neither immune
nor nowhere immune sets.

Proof. Let a be e-low, and let A;B 2 a be such that A is immune, B is nowhere
immune, and B 6�s A. Then degs.A˚ B/ is contained in a, and by Theorem 2.7
degs.A ˚ B/ contains neither nowhere sets nor immune sets, since by e-lowness
degs.A˚ B/ contains only �02 sets.

One can also define a jump operation on the s-degrees (see for instance [13]),
and derive a characterization of the low s-degrees similar to that in Lemma 2.8.
Without entering into the details of the definition of the s-jump, we directly take
the following as the definition of an s-low s-degree:

Definition 2.10. An s-degree is s-low if and only if it contains only �02 sets.

In view of Theorem 1.6, we may observe:

Corollary 2.11. For r 2 ¹s; eº, if an r-degree a is r-low then a consists of only one
Or-degree.

Proof. By Theorem 1.6.

Following Lemma 2.8, it is easy to see, [13], that a is s-low if and only if
all sets A in a can be equipped with a �02 approximation ¹Asºs (called an s-low
approximation) such that for every e; x, lims ‰e;s.As/.x/ exists, where ¹‰e;sºe;s
is some fixed uniform computable approximation to the s-operators. We fix our
uniform computable approximation to the s-operators ¹‰e;sºe;s as follows: we
start up with some uniform computable approximation ¹�e;sºe;s to all s-operators;
let l and r be computable functions such that

�l.z/ D ¹hx;Di W hx;D ˚ ;i 2 �zº

�r.z/ D ¹hx;Ei W hx;; ˚Ei 2 �zºI

then define

‰e;s D

8
<̂

:̂

�z;s; if e D 3z;

�l.z/;s; if e D 3z C 1;

�r.z/;s; if e D 3z C 2.
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Lemma 2.12. The s-low s-degrees form an ideal, in particular if degs.A/ and
degs.B/ are s-low, then so is degs.A˚ B/.

Proof. Let A and B be s-low, and take s-low �02 approximations ¹Asºs and ¹Bsºs
to A and B respectively, witnessing this fact. We aim at showing that if C �s

A ˚ B then C 2 �02. Assume that C D ‰3z.A ˚ B/ for some s-operator ‰3z
(recall that ¹‰3zºz is a listing of all s-operators), and that lims ‰3z;s.As˚Bs/.x/
does not exist. Since ¹Asºs and ¹Bsºs are �02 approximations, this means that
there are infinitely many axioms hx;D ˚ Ei 2 ‰3z each of which applies at
finitely many stages but D ˚ E 6� A ˚ B . But since ‰3z is an s-operator (thus
hx;D ˚ Ei 2 ‰3z implies D D ; or E D ;), by definitions of ‰3zC1;s and
‰3zC2;s it follows that there exist infinitely many axioms hx;Di 2 ‰3zC1 each
of which applies at finitely many stages but D 6� A, or there exist infinitely many
axioms hx;Ei 2 ‰zC2 which apply at some stage but E 6� B . In the former case
we have that lims ‰3zC1;s.As/.x/ does not exist, and in the latter case we have
that lims ‰3zC2;s.Bs/.x/ does not exist, contrary to the assumption that we work
with s-low approximations to A and B .

The following is the final preliminary result that we need for the main result of
this section:

Lemma 2.13. For every s-low set A there exists an e-low set B such that B is
nowhere immune, and B 6�s A.

Proof. Suppose that A is given with the required properties, and let ¹Asºs be an
s-low approximation to A. We build an e-low approximation ¹Bsºs to a set B such
that B is nowhere immune and B 6�s A.

We aim at satisfying the following requirements:

Pe W jWej D 1) .9V /ŒV c.e. and V � We \ B and jV j D 1�

Ie W B ¤ ‰e.A/

Lhe;xi W lim
s
ˆe;s.Bs/.x/ exists;

where ¹‰eºe and ¹ˆeºe are effective listings of the s-operators and the e-operators,
respectively, equipped with their fixed uniform computable approximations.

Notice that satisfaction of all Ie makes B 6�s A, in particular B is not c.e.;
satisfaction of all requirements Pe (together with the fact that B is not c.e.) makes
B nowhere immune; and finally satisfaction of all Lhe;xi makes B e-low.

In the course of the construction, at stage s we define Bs , and the values of
parameters w.e; n; s/, u.e; s/, and D.e; x; s/: we say that we reset the parameters
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u.e; s/ andD.e; x; s/ if we define them to be undefined. If not otherwise specified
each parameter retains the same value as at the previous stage.

Step 0. Let B0 D ;; reset all parameters.

Step s C 1. By substages: At substage i < s, we distinguish the following cases:

(i) i D 3e (we work towards satisfying Pe): assume that n is the least number
such that w.e; n/ is undefined. If all u.j; s/ with j � e C n are defined and
there exists a least w 2 We;s such that w > u.j; s/ for all such j , then let
w.e; n; s C 1/ D w and let w 2 BsC1. Reset all parameters u.j; s/ with
j > e C n, and move to Step s C 2. Otherwise move to substage i C 1.

(ii) i D 3e C 1 (we work towards satisfying Ie): if u.e; s/ is undefined, then
choose a big number u (never used so far in the construction), let u.e; s C
1/ D u, let u 2 BsC1 and move to substage i C 1. Otherwise, let u.e; s/ 2
BsC1 if and only if u.e; s/ … ‰e;s.As/. If u.e; s/ 2 Bs n BsC1 then reset all
D.j; x; s/ with e < hj; xi and move to Step s C 2; otherwise go to substage
i C 1.

(iii) i D 3he; xi C 2 (we work towards satisfying Lhe;xi): if D.e; x; s/ is unde-
fined and there exists D such that x 2 ˆe;s.D/, and D \ ¹u.j; s/ W j �
he; xiº \ Bs D ;, then choose the least such D, set D D D.e; x; s C 1/,
let D � BsC1, reset all parameters u.j; s/ with j > he; xi, and go to Step
s C 2. Otherwise, move to substage i C 1.

If i C 1 D s then we move to Step s C 2.
Finally let B D ¹x W .9t /.8s � t /Œx 2 Bs�º. This ends the construction.

We now show that the construction works. First of all we notice that each
w.e; n; s/ never changes after being defined for the first time. Also, one can argue
by induction on j that u.j / D lims u.j; s/ exists: assume that this is true of every
i < j , and assume also that t is a stage such that Bs.u.i// D Bt .u.i// for all
s � t and i < j . After its definition u.j; s/ can be set undefined again either
because of some pair e; n with e C n < j (due to the action of the strategy for
Pe in relation to the definition of w.e; n/ for the first time), but this can happen
only once for each such pair e; n; or u.j; s/ can be set again undefined because of
some number he; xi < j and a new definition of D.e; x; s/ (due to the action of
the strategy for Lhe;xi), but at stages s > t , D.e; x; s/ can be redefined at most
once: indeed, at s C 1 with s � t , no i < he; xi resets D.e; x; s/, since there is
no change BsC1.u.i// ¤ Bs.u.i//, and on the other hand D.e; x; s C 1/ does
not change any more if defined for the first time. So eventually u.j; s/ D u.j /

remains unchanged, and by s-lowness of A, lims ‰j;s.u.j // exists, so there is
some t 0 � t such that Bs.u.j // never changes at stages s � t 0. This shows
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also that the requirement Ij is satisfied since ‰j;s.As/.u.j // can change only
finitely many times, and at each change we change Bs.u.j // accordingly in order
to diagonalize: eventually we get B.u.j // ¤ ‰j .A/.u.j //.

To show that each requirement Pe is satisfied, suppose that we have already
defined w.e;m/ for every m < n. Let t be a stage such that no u.j; s/ D u.j /

changes at any stage s � t , for all j � e C n. If We is infinite, then at some
stage s � t there is a number w 2 We;s such that w > u.j / for all such j ,
so we can define the final value w.e; n/ to be such a w, and let w.e; n/ 2 B .
It follows that if We is infinite then B contains an infinite c.e. subset V � We,
namely V D ¹w.e; n/ W n 2 !º.

It remains to show that each Lhe;xi is satisfied. Suppose that t is the least stage
so that at all s � t , each u.j; s/, with j � he; xi, has reached its limit u.j /,
and Bs.u.j // does not change. If there are infinitely many stages s such that
x 2 ˆe;s.Bs/ then at the first such stage s � t we can find a finite set D such that
x 2 ˆe.D/ and D \ ¹u.j / W j � he; xiº \ B D ;: as argued earlier, this set D
is the final value of D.e; x; s/, and the construction ensures that at all big enough
stages s we have that D � Bs , giving that x 2 ˆe;s.Bs/.

Theorem 2.14. There exist �02 s-degrees a and b such that a �s b, with a hyper-
immune and b immune-free. In fact, for every s-low and immune a, there exists
a �02 immune-free s-degree b such that a �s b.

Proof. If A is s-low and immune, by the previous lemma let B be e-low (hence
s-low) such that B is nowhere immune and B 6�s A. From Lemma 2.12, it follows
thatA˚B is s-low, hence all sets C 2 degs.A˚B/ are�02. Then, by Theorem 2.7
we can conclude that degs.A ˚ B/ is immune-free. This shows that for every s-
low and immune a, there exists a�02 immune-free s-degree b such that a �s b. To
conclude the proof of the theorem, let for instance C be e-low and non c.e.: then
it is known that the set A D KC is hyperimmune (see for instance [6]: recall that
KC D ¹x W x 2 ˆx.C /º) and A �e C , hence A is e-low, and therefore s-low.
Take a D degs.A/, thus a D degs.A/ is hyperimmune, and by the above argument
there exists an immune-free s-degree b such that a �s b.

3 The s-degree of K

In this final section we take a look at the complete s-degree, that is the s-degree of
K, where K is any creative set. We immediately observe:

Fact 3.1. degs.K/ is hyperimmune.
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Proof. Consider the set KK D ¹x W x 2 ˆx.K/º (see also proof of Theo-
rem 2.14). As observed in [6], KK is hyperimmune. Moreover, [11], K �1 KK ,
and as the latter set is †02 we also have KK �s K, hence KK 2 degs.K/.

Unfortunately, we do not know if degs.K/ is hyperhyperimmune, although we
conjecture that it is not so. However, we can prove:

Theorem 3.2. Let A be a …02 set and K �Os A. Then A is not hyperhyperimmune.

Proof. Let f be a computable function such that for every x, Wf .x/ is finite and

x 2 K , Wf .x/ \ A ¤ ;:

Suppose that r is a computable function such that the partial computable function
'r.i/, with index r.i/, enumerates Wi \ K without repetitions, and its domain is
an initial segment of !, see [15, Corollary 5.V(d)]. If the index i is clear from the
context, for j in the domain of 'r.i/ denote aj D 'r.i/.j /. Then it is easy to see
that there is a computable function � of two variables such that for all i; n,

W�.i;n/ D

´
Wi n ¹a0; : : : ; an�1º; if jWi \Kj � n;

;; if jWi \Kj < n.

By induction, we now construct a computable function g. Suppose that we have
already defined g.0/; : : : ; g.n/ so that, for all x; y � n,

(i) Wg.x/ \ A ¤ ;;

(ii) x ¤ y ) Wg.x/ \Wg.y/ \ A D ;;

(iii) Wg.x/ is finite.

(It is trivial to observe that we can define g.0/ with the above properties.)

Step nC 1. It is well known that for every n,

n 2 .Wn nK/ [ .K nWn/W

this property states that K is completely productive via the identity function.
(Completely productive sets are described in [15]; the complement of every cre-
ative set is completely productive.) Consider now the c.e. set

W˛.n/ D
°
x W .9s � x/

h
Wf .x/;s \ As \

�[

i�n

Wg.i/

�
¤ ;

i±
;

where ¹Asº is a †02 approximation to A.
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Lemma 3.3. W˛.n/ \K is finite.

Proof. Suppose that W˛.n/ \K is infinite. Then there is y such that for infinitely
many s and x 2 K,

y 2 Wf .x/;s \ As \
�[

i�n

Wg.i/

�
:

But for all x 2 K, Wf .x/ � A, and therefore y 2 A. Then by †02-ness of A, we
have that there exists t such that for all s � t , y … As , a contradiction.

Define
Wg.nC1/ D

[

j�jW˛.n/\Kj

Wf .�.˛.n/;j //:

Lemma 3.4. For all k, 1 � k � n,

Wg.k/ \Wg.nC1/ \ A D ;:

Proof. Let k, 1 � k � n, be such that

Wg.k/ \Wg.nC1/ \ A ¤ ;:

Then there is j , 0 � j � jW˛.n/ \Kj, such that

Wg.k/ \Wf .�.˛.n/;j // \ A ¤ ;:

Since the identity function is a completely productive function for K, we have

�.˛.n/; j / 2 .K \W�.˛.n/;j // [ .K nW�.˛.n/;j //:

If �.˛.n/; j / 2 K \W�.˛.n/;j / then Wf .�.˛.n/;j // � A and

Wg.k/ \Wf .�.˛.n/;j // \ A D ;:

a contradiction.
If �.˛.n/; j / 2 K nW�.˛.n/;j /, then by definition of �.˛.n/; j /, �.˛.n/; j / …

W˛.n/, and thus

Wf .�.˛.n/;j // \ A \
�[

i�n

Wg.i/

�
D ;:

It follows that
Wg.k/ \Wf .�.˛.n/;j // \ A D ;;

a contradiction, again.
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Lemma 3.5. Wg.nC1/ \ A ¤ ;.

Proof. Since the identity function is a completely productive function for K, for
j D jW˛.n/ \Kj we have W�.˛.n/;j � K, thus �.˛.n/; j / 2 K n W�.˛.n/;j /,
giving

Wf .�.˛.n/;j / \ A ¤ ;:

By generalizing the Reduction Principle for c.e. sets, let ˇ be a computable
function such that for all x; y,

Wˇ.x/ � Wg.x/;

x ¤ y ) Wˇ.x/ \Wˇ.y/ D ;;

[

x2!

Wˇ.x/ D
[

x2!

Wg.x/:

Then for all x; y,

Wˇ.x/ \ A ¤ ;;

x ¤ y ) Wˇ.x/ \Wˇ.y/ D ;;

Wˇ.x/ is finite:

To see that Wˇ.x/ \ A ¤ ;, notice that Wg.x/ \ A ¤ ; by Lemma 3.5, and
Wg.x/ \ A � Wˇ.x/: if Wg.x/ \ A \ Wˇ.y/ ¤ ; for some y ¤ x, then, as
Wˇ.y/ � Wg.y/, it would follow that Wg.x/ \ Wg.y/ \ A ¤ ;, contrary to the
property of g established by Lemma 3.4.

The disjoint weak array ¹Wˇ.x/ºx witnesses that A is not hyperhyperimmune.

We derive as a corollary a result already proved in [14]:

Corollary 3.6. degOs.K/ is hyperhyperimmune-free.

Proof. If A 2 degOs.K/, then A 2 �02 (hence K �Os A by Theorem 1.5), so A 2
…02.

This leaves open the following question:

Question 3.7. Is degs.K/ hyperhyperimmune-free?
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