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Abstract We study a strong enumeration reducibility, called bounded enumeration
reducibility and denoted by≤be, which is a natural extension of s-reducibility≤s. We
show that ≤s,≤be, and enumeration reducibility do not coincide on the �0

1–sets, and
the structure Dbe of the be-degrees is not elementarily equivalent to the structure of
the s-degrees. We show also that the first order theory of Dbe is computably isomor-
phic to true second order arithmetic: this answers an open question raised by Cooper
(Z Math Logik Grundlag Math 33:537–560, 1987).
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1 Introduction

In this paper we study the degree structure of a strong enumeration reducibility, called
bounded enumeration reducibility, or simply be-reducibility. A reducibility ≤r is a
strong enumeration reducibility if ≤r is a proper subset of ≤e (where ≤e denotes
enumeration reducibility), and ≤r has a least degree 0r consisting exactly of the
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164 D. Marsibilio, A. Sorbi

computably enumerable (c.e.) sets. We recall that any c.e. set W defines an enu-
meration operator (or, simply, e-operator) i.e. a mapping� carrying sets of numbers
to sets of numbers. More precisely, if A ⊆ ω , then � maps A to �(A), where

�(A) = {x : (∃u)[〈x, u〉 ∈ W & Du ⊆ A]},

and Du is the finite set with canonical index u. If W = We then we write � = �e.
If A = �(B) then we say that A is enumeration reducible to B (or, simply, A is
e-reducible to B; in symbols: A ≤e B) via �. We will often identify finite sets with
their canonical indices, thus writing for instance 〈x, D〉 instead of 〈x, u〉, if D = Du .
(Here and throughout the paper, n-tuples or strings of numbers will be often identi-
fied with numbers via suitable codings: see any standard textbook on computability
theory for details.) There are many reasons to consider enumeration reducibility as
the most comprehensive positive reducibility: indeed, A ≤e B can be regarded as the
formalization of the intuitive notion of the existence of an algorithm that allows us to
enumerate A, given any enumeration of B.

There are already several papers dedicated to strong enumeration reducibilities. A
good survey on these reducibilities can be found in [2, § 8]; seminal work on strong
enumeration reducibilities was laid down by Polyakov and Rozinas, [15,14]; more
recent and lengthy papers on the subject are [1] and [13].

An e-operator� is said to be an s-operator if� is defined by a c.e. set W such that

(∀u)(∀x)[〈x, u〉 ∈ W ⇒ |Du | ≤ 1],

where |X | denotes the cardinality of a given set X . We say that A is s-reducible to
B (in symbols: A ≤s B) if A = �(B), for some s-operator �. There are several
reasons why one should consider s-reducibility as the most important strong enumera-
tion reducibility. First of all, mathematical practice shows that in most practical cases
where we have A ≤e B we do in fact have A ≤s B; moreover ≤e naturally embeds
into ≤s: if X∗ denotes the set of all finite strings of elements of X , for a given subset
X ⊆ ω, then one has: A ≤e B if and only if A∗ ≤s B∗ (see for instance [5]); finally,
s-reducibility is known to have many applications to computability theory (for instance,
Marchenkov’s solution of Post’s problem using Post’s methods), and to general math-
ematics, including word problems and abstract computationally complexity: for these
applications of ≤s, or, rather, of its isomorphic copy known as Q-reducibility, see for
instance Omanadze’s survey paper [12].

Useful though it might be, s-reducibility fails however to handle cases when one
would normally expect reducibility. For instance, as we show below (Lemma 2.1), we
do not have in general that A × A ≤s A, or A ⊕ B ≡s A × B if A, B are not c.e.
(where, given subsets X,Y ⊆ ω, we let X × Y = {〈x, y〉 : x ∈ X & y ∈ Y }): we do
not have A× A ≤s A, since in order to enumerate a pair 〈a, b〉 ∈ A× A, starting from
an enumeration of A, we need, in general, both a and b to appear in the enumeration;
on the other hand A × A ≤e A via the e-operator � = {〈〈a, b〉, {a, b}〉 : a, b ∈ ω},
whose axioms 〈x, D〉 do not satisfy |D| ≤ 1, but do satisfy |D| ≤ 2. As justified by
Lemma 1.1, this leads to the following natural definition: An e-operator � is said to
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Bounded enumeration reducibility and its degree structure 165

be a bounded enumeration operator (or, simply, a be-operator) if � is defined by a
c.e. set W such that

(∃n)(∀u)(∀x)[〈x, u〉 ∈ W ⇒ |Du | ≤ n].

It is easy to see that ≤be is in fact a reducibility, i.e. reflexive and transitive (see
e.g. [13]). We say that A is be-reducible to B (in symbols: A ≤be B) if A = �(B),
for some be-operator �. The corresponding degree structure Dbe, of the be-degrees,
will be denoted by Dbe. (In general for a given reducibility r, we use the symbol Dr
to denote the structure of the r-degrees, and 0r to denote the least element, if any, of
Dr.)

Lemma 1.1 The following hold:

(1) ≤be lies in between≤s and≤e, i.e.≤s ⊆ ≤be ⊆ ≤e. Thus Dbe has least element
0be = {W : W c.e.}. Hence, ≤be is a strong enumeration reducibility;

(2) ≤be is the reducibility generated by≤2e, where we define X ≤2e Y if X = �(Y )
for some e-operator � such that |D| ≤ 2 for every 〈x, D〉 ∈ � (we call � a
2e-operator);

(3) ≤e is the smallest reducibility ≤r such that
(a) ≤s ⊆ ≤r;
(b) X∗ ≤r X, for every set X, where X∗ is the set of all finite strings of elements

of X.

Proof We prove the items one by one:

(1) This follows immediately from the fact that 0s = 0e = {W : W c.e.};
(2) For every n ≥ 1, let X ≤ne Y if there exists an e-operator � such that |D| ≤ n

for every 〈x, D〉 ∈ �. (Thus ≤s = ≤1e). Let ≤∗2e be the reducibility generated
by ≤2e: thus X ≤∗2e Y if there exists a sequence Z1, . . . , Zn of sets such that
X = Z1,Y = Zn and Z1 ≤2e · · · ≤2e Zn . It is clearly enough to show that
≤be ⊆ ≤∗2e. To this end, assume that A ≤be B: then there is some n ≥ 1 such
that A ≤ne B. We show by induction on n ≥ 1 that A ≤∗2e B.
The claim is trivial for n = 1, 2. Thus suppose that n > 2, and ≤(n−1)e ⊆ ≤∗2e.
If A ≤ne B then clearly A ≤s B × Bn−1, and by induction Bn−1 ≤∗2e B
as Bn−1 ≤(n−1)e B: thus there is a sequence B1, . . . , Bm such that Bn−1 =
B1, Bm = B and

B1 ≤2e · · · ≤2e Bm .

We now observe that if X ≤2e Y then for every Z , we have Z × X ≤2e Z × Y .
Indeed, assume that X = �(Y ) via a 2e-operator�. Then Z × X = �(Z × Y ),
where

� = {〈〈x, y〉, D〉 : x ∈ ω & (∃E)[〈y, E〉 ∈ � & D = {〈x, e〉 : e ∈ E}]}.

It follows:

B × Bn−1 = B × B1 ≤2e · · · ≤2e B × Bm = B × B,
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and thus,

A ≤s B × Bn−1 ≤∗2e B × B ≤2e B,

which implies A ≤∗2e B, as desired.
(3) Assume that ≤r satisfies (3a) and (3b). Since Y ≤s X∗ for every Y ≤e X (see

[7,20]; see also [5] and [4] for applications of this property of ∗), we have

A ≤e B ⇒ A∗ ≤s B∗

⇒ A∗ ≤r B∗

⇒ A∗ ≤r B;

but A ≤s A∗, giving A ≤r B.

��
We investigate some basic properties of Dbe, which is an upper semilattice with

least element. We adapt to ≤be the machinery developed by Slaman and Woodin in
[18], to conclude that every countable antichain is definable from finitely many param-
eters in De, in a uniform way. As a consequence of this, the main result of the paper
states that the first order theory of the Dbe is computably isomorphic to true second
order arithmetic. This solves an open problem proposed by Cooper in [1], asking
whether the first order theory of Dbe is undecidable.

1.1 Terminology and notations

Our notations and terminology for computability theory is standard and can be found
in [3,16], or [19]. We will often identify e-operators with their associated c.e. sets.
We will use the following notations about strings: If σ is a finite string of numbers
then |σ | denotes the length of σ . (Notice that we use here the same symbol as the
one used to denote the cardinality of a set: the particular meaning of the symbol will
always be clear from the context). If σ is a string, then for i < |σ |, the symbol (σ )i
denotes the i th component of σ ; likewise, if x ∈ X0 × · · · × Xn−1, then (x)i , for
i < n, denotes the i th coordinate of x . If {Cr }r∈ω is a family of sets of numbers, then
for every I ⊆ ω we define

⊕
i∈I Ci =⋃

i∈I {i}×Ci . It is clear that if I is computable
and I ⊆ J then

⊕
i∈I Ci ≤m

⊕
j∈J C j . Moreover, if I = {0, . . . , n−1}, n > 2, then⊕

i∈I Ci ≡m C0 ⊕ · · · ⊕ Cn−1, where C0 ⊕ · · · ⊕ Cn−1 results inductively from the
standard definition of join of two sets, A ⊕ B = {2x : x ∈ A} ∪ {2x + 1 : x ∈ B}.
For n = 2 however, ⊕ has the standard meaning.

For future reference, we note:

Lemma 1.2 There is an effective listing of all be-operators.

Proof Let {We}e∈ω be the standard enumeration of the c.e. sets. By the s-m-n theorem,
there exists a computable function b such that

Wb(〈p,n〉) = {〈x, u〉 : 〈x, u〉 ∈ Wp & |Du | ≤ n}
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Bounded enumeration reducibility and its degree structure 167

Let�e be the be-operator defined by Wb(e). Then {�e}e∈ω is an effective enumeration
of the be-operators. It is clear that the be-operators are closed under composition (in
a uniform way). ��

Since, by the s-m-n–Theorem, �e = Wb(e), for some computable function b, we
can work with uniformly computable approximations {�e,s}s∈ω to the be-operators, by
taking �e,s = Wb(e),s , where {Wi,s}s∈ω gives uniformly computable approximations
to the c.e. sets.

2 Basic results about be-reducibility

In this section we review or introduce some basic facts concerning ≤be.

2.1 Relations between ≤s,≤be, and ≤e

We begin by showing that≤be is a proper reducibility lying in between≤s and≤e. We
show that differences between ≤s and ≤be on one hand, and between ≤be and ≤e on
the other hand, already appear at the level of�0

1 sets. This is in a sense the best result
we can obtain since on c.e. sets the three reducibilities coincide, being 0s = 0be = 0e.

We recall that, given subsets X,Y ⊆ ω, we define X ×Y = {〈x, y〉 : x ∈ X & y ∈
Y }, and X∗ is the set of all finite strings of elements of X . Notice that X∗ ≡s X∞,
where

A∞ = {u : Du ⊆ A}.

Lemma 2.1 There exists a �0
1–set A such that A∗ �≤be A.

Proof We build a computable sequence of sets {As}s∈ω such that A0 = ω and As+1 ⊆
As , so that A =⋂

s∈ω As is the desired set. The requirements are, for every e,

Pe : A∗ �= �e(A),

where {�e}e∈ω is an effective list of all be-operators, see Lemma 1.2 (each index e is
regarded as a pair e ∈ ω × ω). Thus, for every e, 〈x, D〉 ∈ �e implies |D| ≤ (e)1.

In order to satisfy Pe, for a given e, we use the following Friedberg–Muchnik type
of diagonalization strategy:

(1) appoint a “fresh” witness x ∈ A∗ such that |x | = (e)1 + 1. Say that (e)1 = n,
thus x = 〈x0, . . . , xn〉: “fresh” means that each xi has never been so far used in
the construction, and xi �= x j if i �= j , for all i, j < n;

(2) await x ∈ �e(A);
(3) extract x from A∗, and restrain x ∈ �e(A): this can be done, since x ∈ �e(A)

via an axiom 〈x, D〉 ∈ �e, with |D| ≤ n, so there is at least one xi such that
xi /∈ D; therefore we can restrain D ⊆ A, and extract some xi from A.
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168 D. Marsibilio, A. Sorbi

Construction. The construction is by stages. At stage s, we define a computable set
As , together with a witness x(e, s) for every e. We say that we reset Pe at stage s, if
we set x(e, s) to be undefined. Unless otherwise specified, the values of A and x(e)
at each stage are the same as at the previous stage.

Stage 0: Let A0 = ω, and reset all Pe;
Stage s+ 1: Pick the least e ≤ s, if any, that requires attention at stage s+ 1, i.e. such
that x(e, s) is undefined, or x(e, s) ∈ A∗ ∩ �e(A)[s]. (Here, as in [19], given an
expression A which is a function of the stage, by A[s] we mean the evaluation of the
expression at the end of stage s. Thus �e(A)[s] = �e,s(As).)

(a) If x(e, s) is undefined, then choose a fresh x , and let x(e, s + 1) = x ;
(b) if x(e, s) ∈ A∗ ∩ �e(A)[s] then there exists some D with 〈x(e, s), D〉 ∈ �e,s ,

and D ⊆ As : let xi be the first component of x(e, s) such that xi /∈ D, and define
As+1 = As \ {xi }. Finally, reset at s + 1 all Pi , with i > e.

This ends the construction.

Verification A = ⋂
s As is �0

1: no element that is extracted at some point is ever
re-enumerated into A.

Assume by induction that for every i < e, xi = limt x(i, t) exists and Pi requires
attention only finitely often: let s0 ≥ e be the least stage such that, for every s > s0, for
every i < e, x(i, s) = x(i) and Pi does not require attention after s0. So at stage s0+1
we define x(e) = x(e, s0 + 1), the final value of the witness for Pe, and either Pe will
never get attention again, in which case x(e) ∈ A∗\�e(A), or there is a least t > s0+1,
such that x(e) ∈ �(A)[t], and we restrain x(e) ∈ �(A), and extract x(e) from A∗,
through extraction of some coordinate of x(e) from A. In either case, the inductive
claim extends to Pe, which is eventually satisfied, as A∗(x(e)) �= �i (A)(x(e)). ��
Lemma 2.2 For any set A, if A × A ≤s A then A∗ ≤s A.

Proof Assume that A× A ≤s A. Let us first show that there is a computable function
f such that for every n,� f (n) is an s-operator, and An = � f (n)(A), where

An = {x ∈ A∗ : |x | = n}.

From this it follows that A∗ ≤s A, since

x ∈ A∗ ⇔ x ∈ A|x |

⇔ x ∈ � f (|x |)(A),

thus A∗ = �(A), with

� = {〈x, D〉 : 〈x, D〉 ∈ � f (|x |)}

which is an s-operator since each � f (|x |) is.
It remains only to show the existence of such a function f . Clearly we can take

f (2) = e where�e is the s-operator such that A× A = �e(A). Assume by induction
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that we know how to compute f (n). Let l be a computable function such that, for
n ≥ 2, l(〈x0, . . . , xn〉) = 〈x0, . . . , xn−1〉. Then

x ∈ An+1 ⇔ 〈l(x), (x)n〉 ∈ An × A

⇔ 〈l(x), (x)n〉 ∈ � f (n)(A)× A.

Thus An+1 = �(A × A), where

� = {〈〈u, v〉, D〉 : (∃E)[D = E × {v} & 〈u, E〉 ∈ � f (n)]}

which is clearly an s-operator. Hence An+1 ≤s A via the composition of the s-operator
� f (n+1) = � ◦�e. ��

Corollary 2.3 There exists a �0
1–set A such that

A × A �≤s A & A∗ �≤be A.

Proof Let A be the �0
1–set A provided by Lemma 2.1. For this set we also have that

A × A �≤s A by Lemma 2.2. ��

Therefore we obtain the following refinement of Lemma 1.1:

Corollary 2.4 We have ≤s ⊂≤be ⊂ ≤e with proper inclusions: counterexamples to
the reverse inclusions of Lemma 1.1 are provided by �0

1 sets.

Proof Let A be as in Corollary 2.3: then A × A ≤be A, but A × A �≤s A; and
A∗ ≤e A, but A∗ �≤be A. All the sets involved are �0

1 since if X,Y ∈ �0
1 then also

X × Y, X∗ ∈ �0
1. ��

In the following corollary (where functions are identified with their graphs), we
observe that differences between these reducibilities appear also on total functions,
where e-reducibility coincides with Turing reducibility.

Corollary 2.5 There are total functions f such that f × f �≤s f , and f ∗ �≤be f .

Proof The result is an immediate consequence of the fact that if A ∈ �0
1 then A ≡s χA,

where χA is the characteristic function of A. On the other hand × and ∗ preserve ≤s
(for ∗ we even have X ≤e Y implies X∗ ≤s Y ∗, see [7,20]; see also [5] and [4] for
applications of this property of ∗). ��

We conclude this section with the following simple application of Lemma 2.2.
Remember that a set A = {a0 < a1 < · · · < an < · · · } is retraceable if there is a
partial computable functionψ such that, for all n, ψ(an+1) ↓= an , andψ(a0) ↓= a0.

Corollary 2.6 If A is retraceable then A∗ ≤s A.
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Proof By Lemma 2.2 it suffices to show that if A is retraceable (as witnessed, say, by
a partial computable function ψ) then A × A ≤s A. For this, consider the following
s-operator �:

� = {〈〈a, b〉, D〉 : [a < b & (∃n)[ψn(b) ↓= a] & D = {b}] or

[b < a & (∃n)[ψn(a) ↓= b] & D = {a}] or

[a = b & D = {a}] } .

��
Given a poset P , let us indicate with T h(P) the set of sentences (in the language,

with equality, of partial orders, i.e. with signature ≤) that are true in P . If P1 and
P2 are partial orders we say that P1 and P2 are elementary equivalent (in symbols,
P1 ≡ee P2) if T h(P1) = T h(P2).

Theorem 2.7 Dbs and Dbe are not elementarily equivalent.

Proof Zacharov, [20, Theorem 3], shows that the following sentence σ (which can be
translated into the language of posets),

σ := (∃a �= 0)(∀b)(∀c)(a ≤ b ∨ c → a ≤ b or a ≤ c)

is true in Ds (i.e., Ds |� σ ) but not in De. Indeed, for every retraceable set A, we have
that if A ≤s B ⊕C then A ≤s B or A ≤s C . To show that De �|� σ , Zacharov proves
that for every non-c.e. set A one can find B,C such that A = B ∩C , and A �≤e B and
A �≤e C . But clearly A ≤be B⊕C , via the be-operator� = {〈x, {2x, 2x+1}〉 : x ∈ ω}.
Hence Dbe �|� σ . ��

We do not know yet whether Dbe �≡ee De, although we conjecture that this is so.

2.2 Structural properties of Dbe

In this section we point out some basic properties of the poset Dbe. Theorem 2.8 and
Corollary 2.9 can be derived as particular cases of more general results of Polyakov
and Rozinas, [14]. Since the proof in [14] is only sketched, for completeness, we repro-
duce full proofs here. Given an upper semilattice 〈U,≤,∨〉, we say that a nonempty
I ⊆ U is an ideal if for all x, y ∈ U ,

(1) x ≤ y & y ∈ I ⇒ x ∈ I ;
(2) x, y ∈ I ⇒ x ∨ y ∈ I .

Theorem 2.8 (Exact Pair Theorem, [14]) Given a countable ideal {a0, a1, . . .} of
be-degrees, there exist be-degrees b and c such that:

(i) for every n, an <be b, c and
(ii) if d ≤be b, c then for some n, d ≤be an.
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Proof Let An ∈ an for every n. Define B =⊕
n An , and build C =⊕

n Cn by infinite
extensions: at stage s+ 1 we define approximations Cs+1

n to each Cn so that for every
t ≥ s + 1 and for every n ≤ s,Ct

n = Cs+1
n (in other words, by the end of stage s + 1

we have entirely defined all Cn for every n ≤ s), whereas for n > s,Cs+1
n is finite.

The idea is to copy each An into Cn except for a finite part of it, which is used to
guarantee condition (ii). More precisely, at stage s + 1, with s = 〈i, j〉 we satisfy the
requirement

�i (B) = � j (C)⇒ (∃n)[� j (C) ≤be An]

by looking for a finite set F compatible with Cs (“compatible with Cs” means that if
y ∈ F and y ∈⊕

n<s ω then y ∈⊕
n<s Cn) such that there exists an x with

x ∈ � j (C
s ∪ F) \�i (B),

with Cs = ⊕
n Cs

n . We choose such a finite set F (if any, otherwise we take F = ∅),
we extend Cs+1 = Cs ∪ F , and then fill up with A〈i, j〉 the rest of C〈i, j〉, by defining,
where C〈i, j〉 is still undefined, C〈i, j〉(x) = A〈i, j〉(x) (we identify here sets with their
characteristic functions).

Now if no such F can be found at stage s + 1 = 〈i, j〉 + 1, then x ∈ � j (C) if and
only if there exists a finite set F such that 〈x, F〉 ∈ � j and F is compatible with Cs ,
hence

� j (C) = � j (
⊕

n

Xn),

where

Xn =
{

Cn if n < 〈i, j〉,
ω, if n ≥ 〈i, j〉.

Since Cn differs only finitely from An for every n < s = 〈i, j〉, we have also that

⊕

n

Xn ≡m

⊕

n

Yn ≡m A0 ⊕ · · · ⊕ A〈i, j〉−1,

where

Yn =
{

An if n < 〈i, j〉,
ω, if n ≥ 〈i, j〉.

But ≤m ⊆ ≤be, thus if D = �i (B) = � j (C) then D ≤be A0 ⊕ · · · ⊕ A〈i, j〉−1. By
definition of an ideal, this implies that there exists some n with D ≤be An . ��
Corollary 2.9 ([14]) Dbe is not a lattice.
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Proof Take any countable strictly ascending chain of be-degrees

a0 <be a1 <be · · · :

for instance, consider any family {Bi : i ∈ ω} of sets such that, for every finite F ⊆ ω,
if i /∈ F , then Bi �≤be

⊕
j∈F B j : any family of sets which are computably independent

with respect to ≤be, whose existence is proved in Lemma 2.12, satisfies this property.
Finally, take ai to be the be-degree of

⊕
i≤n Bi . Then no exact pair b, c for the ideal

generated by this chain has greatest lower bound. ��
Remark 2.10 As observed in [14], it is clear from the proof that Theorem 2.8 and
Corollary 2.9 hold of any reducibility ≤r such that ≤m ⊆ ≤r ⊆ ≤e, originating a
degree structure which is an upper semilattice, with join operation on degrees given
by the join operation on sets.

Definition 2.11 A countable family of sets {Cn}n∈ω is computably independent with
respect to a reducibility ≤r if for every computable set I and n /∈ I ,

Cn �≤r

⊕

m∈I

Cm .

Note that {Cn}n∈ω is computably independent if and only if Cn �≤r
⊕

m �=n Cm for
every n ∈ ω.

Lemma 2.12 There exists a countable family of sets computably independent with
respect to ≤e.

Proof This can be proved in many ways. For instance, it is known (see e.g. [9]), that
there exists a countable family of c.e. sets which are computably independent with
respect to Turing reducibility: taking complements, we get a family of�0

1 sets that are
computably independent with respect to e-reducibility, since�0

1e-degrees are total (see
proof of Corollary 2.5), and on total functions e-reducibility and Turing reducibility
coincide. ��
Corollary 2.13 There exists a countable family of sets computably independent with
respect to ≤be.

Proof This follows trivially from the fact that ≤be ⊆≤e. ��
Theorem 2.14 Every countable partial order is embeddable in Dbe.

Proof The proof follows the pattern of the analogous result for most known reducibil-
ities: see for instance the presentation in [11] of this result for Turing reducibility, due
to Sacks [17]. It is known, Mostowski [8], that there exists a computable partial order
in which every countable partial ordering is embeddable. Therefore it suffices to prove
that every computable partial ordering � is embeddable in Dbe. By Corollary 2.13
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let {Cn}n∈ω be computably independent with respect to ≤be. We associate a set Ba to
every a in the domain of � (which we may assume to be ω) as follows:

Ba =
⊕

n�a

Cn .

We have to prove that

a � b ⇔ Ba ≤be Bb.

This follows easily by the properties of
⊕

mentioned in Sect. 1.1. Suppose that
a � b: since {n : n � a} is computable, it follows that Ba ≤m Bb. Suppose now that
Ba ≤be Bb and a �� b, hence a /∈ {n : n � b}: then

Ca ≤m Ba ≤be Bb ≤m

⊕

n �=a

Cn,

giving that Ca ≤be
⊕

n �=a Cn , a contradiction, since {Cn}n∈ω is computably indepen-
dent with respect to ≤be. ��

With a taste for generalization, as in [14], we can extend the previous result to:

Corollary 2.15 Let ≤r be a reducibility such that ≤m ⊆≤r ⊆≤e. Then every count-
able partial order is embeddable into Dr.

Proof The proof is as in Theorem 2.14, by observing that in fact if a � b then
Ba ≤m Bb; moreover, Ca ≤m Ba and Bb ≤m

⊕
n �=a Cn . ��

We conclude the section by observing that it is possible to define a suitable jump
operation on the be-degrees: see for instance [1, Definition 4.5]. To this jump operation
and to the local structure of the be-degrees (i.e. the be-degrees below the first jump)
and its first order theory will be devoted a future paper by the authors, [6].

3 Global properties

Global results about a degree structure include, for example, the characterization of
the complexity of the first order theory of the degree structure. Here, by the first order
theory of a given degree structure P = 〈P,≤〉, we mean the set T h(P) of all first
order sentences σ in the language of posets such that P |� σ . It was proved by Slaman
and Woodin [18] that T h(De) is computably isomorphic to true second order arith-
metic. In particular T h(De) is undecidable and not axiomatizable. Cooper [1] raised
as an open problem whether the first order theory of Dbe is undecidable. Using the
machinery in [18] we can prove something stronger, namely that also the first order
theory of Dbe is computably isomorphic to true second order arithmetic. The proof
is obtained by adapting the proof of [18, Theorem 2.11] to the be-degrees. We do not
claim any essential originality in the proof, except perhaps that our proof is formulated
as a plain step-by-step extension argument rather than using the language of forcing.
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It has also a more general character: indeed, by replacing ≤be with ≤r, we easily
conclude that the proof works for all reducibilities with certain reasonable properties
(see Theorem 3.21), including of course ≤r = ≤e.

3.1 Definability of antichains

We recall the following:

Definition 3.1 In a poset, a set of elements is an antichain if its members are pairwise
incomparable with respect to the partial order relation.

Theorem 3.2 Every countable antichain is definable from finitely many parameters,
in Dbe, in a uniform way; namely, there exists a first order formula ϕ(x, a, b, c) with
four free variables in the language of posets such that for every countable antichain
C in Dbe there exist three degrees a, b, c, such that for every degree x,

x ∈ C ⇔ Dbe |� ϕ(x, a, b, c).

Proof As in [18], we show that a countable antichain in Dbe can be viewed as the
set of the minimal solutions of a property which is first order definable in Dbe with
parameters. Let C = {cn}n∈ω be a countable antichain in Dbe. Given x ∈ Dbe, let (x]
denote the ideal of Dbe generated by x, i.e (x] = { y ∈ Dbe : y ≤be x}. Consider the
following first order property in the language of posets:

P(x, a, b) ⇔ (x] �= (x ∪ a] ∩ (x ∪ b].

We want to prove that, for every countable antichain C, there exists three parameters
a, b, c such that

x ∈ C ⇔ x ≤be c & P(x, a, b) & ¬(∃z ≤be c)(z <be x & P(z, a, b)).

It is important to observe that the property P is fixed. If we change the antichain, only
the parameters a, b, c change. This fact ensures the uniformity of our result.

We define the parameters by constructing three sets A, B,C such that A ∈ a, B ∈
b,C ∈ c. Let C = ⊕

n∈ω Cn , with Cn ∈ cn . Then cn ≤ c, for every n ∈ ω. Let
{Eu}u∈ω be the following enumeration of the sets with cardinality less or equal to 1:

Eu =
{∅ if u = 0,
{u − 1} if u > 0.

We will write 〈x, Eu〉, instead of 〈x, u〉 or 〈x, {u}〉, to emphasize that we view the
second component of a pseudopair as always coding a finite set with cardinality ≤ 1.
Given a set W , define

W≤1(X) = {x : (∃Eu)[〈x, Eu〉 ∈ W & Eu ⊆ X ]. (a)
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Thus, W≤1(X) ≤be X ⊕W .
Finally, let {�e}e∈ω be an effective listing of the be-operators: see Lemma 1.2.
The sets A and B have to satisfy the following conditions:

(i) For every n, cn is a solution of P(x, a, b), i.e. Dbe |� P(cn, a, b). Since (x] ⊆
(x ∪ a] ∩ (x ∪ b] always holds, we require that (x ∪ a] ∩ (x ∪ b] � (x]. Indeed,
we prove that:

(∀n)[Dn ≤be Cn ⊕ A,Cn ⊕ B & Dn �≤e Cn]

where the set Dn is defined by:

x ∈ Dn ⇔ (∃u)[〈x, Eu〉 ∈ A[n] & Eu ⊆ Cn],

or, in accordance with the notation introduced in (a),

Dn = (A[n])≤1(Cn),

where as usual A[n] denotes the nth column of A, i.e.

A[n] = {〈n, x〉 : 〈n, x〉 ∈ A}.

Clearly Dn ≤be Cn ⊕ A, since |Eu | ≤ 1 for every u.
Furthermore A and B will be constructed so that

(A[n])≤1(Cn) = (B[n])≤1(Cn).

Hence Dn ≤be Cn ⊕ B too. It remains to ensure that Dn �≤e Cn by diagonal-
ization.

(ii) For every n, cn is a minimal solution of P(x, a, b).
Let {Xm}m∈ω be an enumeration of the sets be-reducible to C . For example, let
Xm = �m(C), for every m ∈ ω. We require that:

(∀m
)[
(∃D)[D ≤be Xm ⊕ A, Xm ⊕ B & D � Xm] ⇒ (∃n)[Cn ≤be Xm]

]
.

The requirements. In conclusion, the requirements are, for all e, i, n,m:

Pe,n : Dn �= �e(Cn),

Re,i,m : �e(Xm ⊕ A) = �i (Xm ⊕ B) �≤be Xm ⇒ (∃n)[Cn ≤be Xm],

where�e denotes the eth enumeration operator: in other words, as anticipated above,
we aim at Dn �≤e Cn , rather than simply Dn �≤be Cn

The construction. We first introduce some definitions, from [18]. Although our proof
is organized as a classical step-by-step extension argument rather than as a forcing
argument, we will keep some of the terminology of [18] that is typical of the language
of forcing.
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Definition 3.3 A condition is a triple p = 〈Ap, Bp, kp〉 where:

(1) Ap and Bp are finite sets;

(2) for every n, (A[n]p )
≤1(Cn) = (B[n]p )≤1(Cn);

(3) kp ≥ max {x : (∃n)(∃u)[〈n, 〈x, Eu〉〉 ∈ Ap ∪ Bp]}, i.e.

kp ≥ max
⋃

n

(
(A[n]p )

≤1(ω) ∪ (B[n]p )≤1(ω)
)
.

Definition 3.4 If p and q are conditions, q extends p (in symbols: q � p) if:

(1) kp ≤ kq ;
(2) Ap ⊆ Aq and Bp ⊆ Bq ;
(3) for every x ,

x ∈
(

⋃

n

(A[n]q )≤1(ω) ∪ (B[n]q )≤1(ω)

) ∖ (
⋃

n

(A[n]p )
≤1(ω) ∪ (B[n]p )≤1(ω)

)

⇒ x > kp.

At stage s we build a condition ps , so that ps+1 � ps . In the end, we set
A =⋃

s∈ω Aps and B =⋃
s∈ω Bps .

Step 0: p0 = 〈∅,∅, 0〉.
Step s + 1: We distinguish three cases:

(1) s = 3〈e, n〉.
We diagonalize Dn against �e(Cn), i.e. Dn �= �e(Cn). Pick x > ks , thus
〈n, 〈x, Eu〉〉 /∈ Aps ∪ Bps , for every u.
If x ∈ �e(Cn), then set ps+1 = 〈Aps , Bps , x〉. Otherwise ps+1 = 〈Aps ∪
{〈n, 〈x, E0〉〉}, Bps ∪ {〈n, 〈x, E0〉〉}, x〉. We have that:

x ∈ �e(Cn)⇒ 〈x, Eu〉 /∈ A[n], for every u

⇒ x /∈ Dn .

x /∈ �e(Cn)⇒ 〈x, E0〉 ∈ A[n]

⇒ x ∈ Dn (since ∅ ⊆ Cn).

(2) s = 3〈e, i,m〉 + 1.
We look for a condition q � ps such that, for some x ,

x ∈ �e(Xm ⊕ Aq) & (∀q ′ � q)[x /∈ �i (Xm ⊕ Bq ′)]

or

x ∈ �i (Xm ⊕ Bq) & (∀q ′ � q)[x /∈ �e(Xm ⊕ Aq ′)].

If such condition exists, then set ps+1 = q. Otherwise ps+1 = ps .
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(3) s = 3〈e, x,m〉 + 2.
We look for a condition q � ps such that x ∈ �e(Xm ⊕ Aq). If such condition
exists, then set ps+1 = q. Otherwise ps+1 = ps .

Verification. It remains to prove that the requirements Re,i,m are satisfied. It is useful
to give the following definitions.

Definition 3.5 Let p = 〈Ap, Bp, kp〉 be a condition. A finite set F is compatible with
〈Ap, kp〉 (in symbols: cpt(F, 〈Ap, kp〉)) if

(1) Ap ⊆ F ;

(2) x ∈ (⋃
n(F

[n])≤1(ω)
) ∖ (⋃

n(A
[n]
p )

≤1(ω)
)
⇒ x > kp.

Lemma 3.6 If q � p, with q = 〈Aq , Bq , kq〉 and p = 〈Ap, Bp, kp〉, then for every
finite F,

cpt(F, 〈Aq , kq〉)⇒ cpt(F, 〈Ap, kp〉).

Moreover Ap and Aq are compatible with 〈Ap, kp〉.
Proof The claims are straightforward consequences of the definitions. ��
Definition 3.7 Let q � p and assume that cpt(F, 〈Ap, kp〉). The amalgamation of q
with F (in symbols: q ∗ F) is the condition defined as follows:

(1) Aq∗F = Aq ∪ F ;
(2) Bq∗F = Bq ∪ (F \ Aq);

(3) kq∗F = max
⋃

n

(
(A[n]q∗F )

≤1(ω) ∪ (Bq∗F ][n])≤1(ω)
)
∪ {kq}.

Given p and q as above and a finite set G, we define G compatible with 〈Bp, kp〉
(in symbols: cpt(G, 〈Bp, kp〉)) and the amalgamation of q with G similarly, with the
roles of F and G interchanged. Note that

cpt(F, 〈Ap, kp〉) & q � p ⇒ q ∗ F � p.

In particular, p ∗ F � p.
Suppose now that

�e(Xm ⊕ A) = �i (Xm ⊕ B) �≤be Xm . (b)

Then:

Lemma 3.8 Let s = 3〈e, i,m〉 + 1. If there are no conditions q0, r0 � ps such that,
for some x,

x ∈ �e(Xm ⊕ Aq0) & (∀r ′ � r0)[x /∈ �e(Xm ⊕ Ar ′)]

then, for every x,

x ∈ �e(Xm ⊕ A) ⇔ (∃F)[cpt(F, 〈Aps , kps 〉) & x ∈ �e(Xm ⊕ F)].
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Proof (⇒): The left-to-right implication follows immediately from Lemma 3.6.
(⇐): Assume that F is a finite set, F compatible with 〈Aps , kps 〉, and x ∈ �e(Xm⊕F).
Let s′ = 3〈e, x,m〉+2. If x < i , then ps � ps′ , hence by Lemma 3.6 F is compatible
with 〈Aps′ , kps′ 〉 too. As we have that ps′ ∗ F � ps′ and x ∈ �e(Xm ⊕ Aps′ ∗F ), the
construction at stage s′ + 1 ensured that x ∈ �e(Xm ⊕ A). If x ≥ i then ps′ � ps .
As we have that ps ∗ F � ps and x ∈ �e(Xm ⊕ Aps∗F ), there exists an r ′ � ps′
such that x ∈ �e(Xm ⊕ Ar ′) (otherwise ps ∗ F and ps′ would be two extensions
of ps contradicting our hypothesis). The construction at stage s′ + 1 ensures that
x ∈ �e(Xm ⊕ A).

��
Since the compatibility condition defined in Definition 3.5 is decidable, we have:

Corollary 3.9 Under the assumptions of Lemma 3.8 we have:

�e(Xm ⊕ A) ≤be Xm .

Proof Let

G = Aps ∪ {〈n, 〈x, Eu〉〉 : n, u ∈ ω & x > kps }.

By the previous lemma (and by the definition of a condition, and that of a finite set F
compatible with 〈Aps , kps 〉), it is not difficult to see that

�e(Xm ⊕ A) = �e(Xm ⊕ G).

Since G is computable, we also have that Xm⊕G ≤m Xm , and thus�e(Xm⊕ A) ≤be
Xm , as ≤be extends ≤m. ��

But the conclusion of the previous corollary is a contradiction, since in (b) we have
supposed that �e(Xm ⊕ A) = �i (Xm ⊕ B) �≤be Xm .

Hence there must exist two conditions q0, r0 � ps and a number x0 such that

x0 ∈ �e(Xm ⊕ Aq0) & (∀r ′ � r0)[x0 /∈ �e(Xm ⊕ Ar ′)]. (c)

We can suppose that r0 = 〈Aps , Bps , kq0〉: indeed, (c) remains true if we extend q0 and
r0 to two conditions in which kq0 and kr0 are replaced with k = max {kq0 , kr0}, and then
of course we can replace the new r0 with the extension of ps , given by 〈Aps , Bps , k〉.
Hence

Lemma 3.10 Let x0 ∈ ω and q0, r0 � ps be such that:

– r0 = 〈Aps , Bps , kq0〉;
– x0 ∈ �e(Xm ⊕ Aq0) & (∀r ′ � r0)[x0 /∈ �e(Xm ⊕ Ar ′)].
Then there exist q, r � ps such that, for some n, z, u,

– Aq = Ar ∪ {〈n, 〈z, Eu〉〉} and Bq = Br ∪ {〈n, 〈z, Eu〉〉};
– kr = kq;
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– x0 ∈ �e(Xm ⊕ Aq) & (∀r ′ � r)[x0 /∈ �e(Xm ⊕ Ar ′)].
Further, Ar0 ⊆ Ar and Br0 ⊆ Br ; consequently Ar0 ⊆ Aq and Br0 ⊆ Bq.

Proof Let 〈n0, 〈z0, Eu0〉〉, 〈n1, 〈z1, Eu1〉〉, . . . , 〈nh, 〈zh, Euh 〉〉 be a 1-1 enumeration
of Aq0 \ Ar0 . Clearly kr0 > zi , for every 0 ≤ i ≤ h. We build by induction a finite
sequence {ri } of conditions extending ps , starting with the given r0. Suppose that we
have defined ri = 〈Ari , Bri , kr0〉, with i ≤ h, and

(∀r ′ � ri )[x0 /∈ �e(Xm ⊕ Ar ′)].

Let Fi = Ari ∪ {〈ni , 〈zi , Eui 〉〉}. Consider the condition ri ∗ Fi . (Notice that by
assumptions and definition of amalgamation, kri∗Fi = kr0 .) If

(∀r ′ � ri ∗ Fi )[x0 /∈ �e(Xm ⊕ Ar ′)],

then define ri+1 = ri ∗Fi and proceed with the recursion. Otherwise stop the recursion,
extend ri ∗ Fi to a condition q such that x0 ∈ �e(Xm ⊕ Aq) and let r = 〈Ar , Br , kq〉,
with Ar = Aq \ {〈ni , 〈zi , Eui 〉〉} and Br = Bq \ {〈ni , 〈zi , Eui 〉〉}. Since q � ri ∗ Fi ,
we have that r � ri , hence

(∀r ′ � r)[x0 /∈ �e(Xm ⊕ Ar ′)].

Notice also that Aq = Ar ∪{〈ni , 〈zi , Eui 〉〉}, Bq = Br ∪{〈ni , 〈zi , Eui 〉〉} and kr = kq .
Now we claim that there must be an i ≤ h such that the second case holds for

ri ∗ Fi . If not, then at the last step of the recursion (i = h), we built a condition rh+1
such that Arh+1 = Aq0 and (∀r ′ � rh+1)[x0 /∈ �e(Xm⊕ Ar ′)]. This is a contradiction,
since x0 ∈ �e(Xm ⊕ Aq0). ��

Let q and r be the conditions provided by the previous lemma, with kq = kr = k.
Let n, z, u be such that Aq = Ar ∪ {〈n, 〈z, Eu〉〉} and Bq = Br ∪ {〈n, 〈z, Eu〉〉}. We
want to prove that, for such n,Cn ≤be Xm .

Lemma 3.11 Eu ⊆ Cn.

Proof Suppose that Eu � Cn . Then t = 〈Aq , Br , k〉 is a condition, since r is a
condition and

(A[n]q )≤1(Cn) = (A[n]r )≤1(Cn) = (B[n]r )≤1(Cn).

Furthermore x0 ∈ �e(Xm ⊕ At ). Now suppose that there exists G compatible with
〈Br , k〉 such that x0 ∈ �i (Xm ⊕ G). Then r ∗ G � ps can force �e(Xm ⊕ A) �=
�i (Xm ⊕ B) at stage s + 1, contradicting our assumption in (b) that �e(Xm ⊕ A) =
�i (Xm ⊕ B). Hence

(∀G)[cpt(G, 〈Br , k〉)⇒ x0 /∈ �i (Xm ⊕ G)].
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Since 〈Bt , kt 〉 = 〈Br , k〉,we have that

(∀G)[cpt(G, 〈Bt , kt 〉)⇒ x0 /∈ �i (Xm ⊕ G)].

Then for every t ′ � t, x0 /∈ �i (Xm ⊕ Bt ′), and thus t � ps can force�e(Xm ⊕ A) �=
�i (Xm ⊕ B) at stage s+1, contradiction. ��
Lemma 3.12 For every y,

y ∈ Cn ⇔ (∃G)[cpt(G, 〈Br ∪ {〈n, 〈z, Ey+1〉〉}, k〉) & x0 ∈ �i (Xm ⊕ G)].

Proof (⇒:) Suppose that y ∈ Cn . Let again q, r be the conditions provided by Lemma
3.10. Then the condition

t = 〈Aq , Br ∪ {〈n, 〈z, Ey+1〉〉}, k〉

is an extension of ps such that x0 ∈ �e(Xm ⊕ At ): this is so because by Lemma 3.11,
z ∈ (A[n]q )≤1(Cn). Now if there is no G compatible with 〈Br ∪ {〈n, 〈z, Ey+1〉〉}, k〉
such that x0 /∈ �i (Xm ⊕G), then for every t ′ � t, x0 /∈ �i (Xm ⊕ Bt ′), and thus t can
force �e(Xm ⊕ A) �= �i (Xm ⊕ B) at stage s + 1, contradiction.
(⇐): Suppose that y /∈ Cn . Then v = 〈Ar , Br ∪ {〈n, 〈z, Ey+1〉〉}, k〉 is an extension
of ps such that

(∀v′ � v)[x0 /∈ �e(Xm ⊕ Av′)].

Now suppose that there exists a finite set G compatibile with

〈Br ∪ {〈n, 〈z, Ey+1〉〉}, k〉)

and x0 ∈ �i (Xm ⊕ G). Then v ∗ G � ps can force �e(Xm ⊕ A) �= �i (Xm ⊕ B) at
stage s+1, contradiction. ��
Corollary 3.13 For the n provided by Lemma 3.10, we have Cn ≤be Xm.

Proof Let r, n, z, k be as in Lemma 3.10, and for every y let

G y = Br ∪ {〈n, 〈z, Ey+1〉〉} ∪ {〈m, 〈x, Eu〉〉 : m, u ∈ ω & x > k}.

It follows by Lemma 3.12:

y ∈ Cn ⇔ x0 ∈ �i (Xm ⊕ G y).

Since G y is computable, we have that Xm ⊕ G y ≤m Xm uniformly in y, hence there
is a computable function g such that

Xm ⊕ G y = �g(y)(Xm),
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where each�g(y) is an m-operator, i.e. an e-operator� of the form� = {〈x, { f (x)}〉 :
x ∈ ω}, for some total computable function f . Notice that an index for such a com-
putable function fy relative to �g(y), can be uniformly found in y.

Hence Cn = �(Xm), where

� = {〈y, D〉 : 〈x0, D〉 ∈ �i ◦�g(y)}.

It is clear that � is a be-operator, since

〈y, D〉 ∈ � ⇔ 〈x0, D〉 ∈ �i ◦�g(y)

⇔ (∃E)[〈x0, E〉 ∈ �i & D = fy[E]] :

Hence |D| ≤ |E | and thus � is a be-operator since so is �i . ��
��

3.2 Definability of countable relations

We now turn to definability of countable relations.

Lemma 3.14 For every be-degree a, there exists a collection {ci : i ∈ ω} of be-
degrees, which does not introduce any new relation below a, i.e. for every x, y ≤be a,
every i ∈ ω, and every computable set I ,

x ∪ ci ≤be y ∪
⊕

j∈I

c j ⇔ x ≤be y & i ∈ J.

Proof We sketch the proof. Let a ∈ Dbe be given, A ∈ a, and Xm = �m(A), where
{�m}m∈ω is a list of be-operators in E . We want to construct a set C , such that, letting
Ci = C [i], the i th column of C , we have that {ci }i∈ω is the desired collection of
be-degrees.

The construction of C is by stages, aiming at satisfying the following require-
ments, where (X,Y ) = (Xm, Xn) is any pair of sets ≤be A, i ∈ ω,� = �q is any
be-operator:

P�,X,Y : X = �(Y ⊕ C)⇒ X ≤be Y ;
R�,i,Y : Ci �= �(Y ⊕

⊕

j �=i

C j ).

Suppose that a stage s we have defined a binary string γs which is intended to be a
finite initial segment of the characteristic function of the eventual set C : let γ0 = ∅.
We define γs+1 ⊃ γs as follows.

If s = 2t + 1, t = 〈q,m, n〉 then we distinguish the following two cases (where
� = �q , X = Xm,Y = Xn):
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(1) (∃x, F)[F is finite & min F ≥ |γs | & x ∈ �(Y ⊕ (γ+s ∪ F)) \ X ] (where for
a given string γ, γ+ = {x < |γ | : γ (x) = 1}).
In this case, let γs+1 ⊇ γs be the least string γ such that |γ | > |γs | and F ⊆ γ+.
Notice that this entails X �= �(Y ⊕ C).

(2) Otherwise, simply extend γs+1 as above with F = ∅. In this case it is easy to see
that

X = �(Y ⊕ G),

where G is the computable set,

G = γ+s ∪ {x : x > |γs |}.

But Y ⊕ G ≡m Y , hence X ≤be Y , since ≤be extends ≤m.

If s = 2t + 2, t = 〈q, i, n〉, and �q = �,Y = Xn , then let x > |γs |. We still
distinguish two cases:

(1) (∃F)[F is finite & min F ≥ |γs | & F ⊆ ⊕
j �=i ω & x ∈ �(Y ⊕ ((γ+s ∩⊕

j �=i ω) ∪ F) ].
In this case let γs+1 ⊇ γs be the least string γ such that |γ | > |γs |, γ (〈i, x〉) = 0
and F ⊆ γ+. It follows that x ∈ �(Y ⊕⊕

j �=i C j ) \ Ci .
(2) Otherwise, let γs+1 ⊇ γs be the least string γ such that γ (〈i, x〉) = 1. It follows

that x ∈ Ci \�(Y ⊕⊕
j �=i C j ).

��
Remark 3.15 Notice that we could strengthen the result as to make Ci �≤e (Y ⊕⊕

j �=i C j ), for every i and X : an argument similar to the one used in the above proof
shows that it is in fact possible to satisfy the stronger requirements

R�,i,Y : Ci �= �(Y ⊕
⊕

j �=i

C j ),

for every enumeration operator �. Notice also, by the observation made at the end of
step 2t + 1, that the result holds not only for ≤be, but more generally for every ≤r
such that ≤m ⊆ ≤r ⊆ ≤e.

Theorem 3.16 Every countable relation is first order definable from finitely many
parameters in Dbe, in a uniform way.

Proof First of all, we prove the theorem for countable sets. Given a countable set A
of degrees, let a be above every element of A (a exists since A is countable, and
Ui ≤be

⊕
j∈ω U j , for every countable collection of sets {U j } j∈ω). Now by Lemma

3.14 consider a set C of degrees, with the same cardinality of A, not introducing any
new relation on the degrees under a. Note that C is antichain (in fact a computably
independent set of degrees) and so it is definable from parameters by Theorem 3.2.
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Let f be a bijection, mapping A to C and consider the set C∗ = {x ∪ f (x) : x ∈ A}.
C∗ is also an antichain, since for every x, y ∈ A

x ∪ f (x) ≤be y ∪ f ( y) ⇔ x ≤be y & f (x) = f ( y) ⇔ x = y

and so it is definable from parameters. Now we can show that

• A is definable from parameters: in fact

x ∈ A ⇔ x ≤be a & (∃c ∈ C)(x ∪ c ∈ C∗).

The left to right implication is trivial. Now suppose that x ≤be a and there exists
an element c ∈ C such that x ∪ c ∈ C∗. Then x ∪ c = y ∪ f ( y), for some y ∈ A.
By definition of A, it follows that x = y and c = f ( y). Then x ∈ A.

• The function f from A to C is definable from parameters: in fact

f (x) = y ⇔ x ∈ A & y ∈ C & x ∪ y ∈ C∗.

Note that, by Theorem 3.2, the formulas defining A and f are fixed, only the param-
eters change. This ensures the uniformity of our results.

Finally we how to define countable relations. Let R be an n-ary relation on degrees.
Consider the n projections of R, i.e.

Ri = {x : (∃〈x1, . . . xn) ∈ R)(x = xi )},

for each 1 ≤ i ≤ n. Let r be above every element of
⋃

1≤i≤n Ri . Now consider a set
C, which is a disjoint union of sets Ci with 1 ≤ i ≤ n, such that for every i, Ci has the
same cardinality as Ri and for every x, y ≤be r and c, c1, . . . , ck ∈ C

x ∪ c ≤be y ∪ c1 ∪ · · · ∪ ck ⇔ x ≤be y & c = c j ,

for some 1 ≤ j ≤ k. Such a C exists by Lemma 3.14. Note that C is an independent
antichain. For every i , let fi be a bijection, mapping Ri to Ci . By the same argu-
ments used for countable sets, we can prove that each Ri and fi are definable from
parameters. Now define

A = {c1 ∪ · · · ∪ cn : 〈 f −1
1 (c1), . . . , f −1

n (cn)〉 ∈ R}.

A is a countable set and so it is definable from parameters. Furthermore, for each
element a ∈ A, there is a unique sequence c1, . . . , cn ∈ C such that a = c1∪ · · ·∪ cn ,
since C is an independent antichain. Then

R = {〈x1, . . . , xn〉 : (∀i ≤ n)(xi ∈ Ri ) & f1(x1) ∪ · · · ∪ fn(xn) ∈ A}

gives the desired definition of R from parameters. The required uniformity follows
from the uniformity of Theorem 3.2 and what we proved for countable sets. ��
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3.3 Classifying the complexity of the first order theory

Let us say that a reducibility ≤r is arithmetical if there exists a formula of second
order arithmetic ϕ(U, V ) with free set variables amongst U, V and no occurrence of
quantified set variables, such that, for all pairs of sets X,Y ,

X ≤r Y ⇔ N |� ϕ(X,Y ).

Lemma 3.17 Let V2 denote the true sentences of second order arithmetic. If ≤r is
arithmetical and Dr is the degree structure of ≤r, then T h(Dr) ≤1 V2.

Proof Let σ be a sentence in the language of posets. Consider a bijection x "→ X
mapping each variable in σ to a set variable in the second order language of arithme-
tic. This gives a way of translating sentences in the language L of posets into second
order arithmetical sentences, upon interpretation of x ≤ y with ϕ(X,Y ), where ϕ
is the arithmetical definition of the reducibility. It is therefore straightforward that
T h(Dr) ≤m V2. Finally (using a familiar argument, since V2 is a cylinder, see [16])
from a computable function f which gives the m-reduction, we can construct a one-
one computable function g which gives the same reduction. We define g by induction.
Suppose that g(i) is defined on every i < n. Let f (n) = m, where m codes a sentence
σ of second order arithmetic. Then define g(n) to be the Gödel number of the sentence
σ & · · ·& σ , where the number of iterations of & is such that the code of the sentence
obtained is different from all g(i), for i < n. ��
Lemma 3.18 The reducibility ≤be is arithmetical.

Proof Notice that X ≤be Y if and only if

(∃e)[�e bounded & X = �e(Y )],

where “�e bounded ” means: (∃n)(∀x, D)[〈x, D〉 ∈ �e ⇒ |D| ≤ n], which is a 
0
2

expression; on the other hand, a simple inspection shows that X = �e(Y ) is a �0
2

expression, hence X ≤be Y is 
0
3 . ��

Theorem 3.19 The first order theory of Dbe is computably isomorphic to true second
order arithmetic.

Proof We prove that the two theories have the same 1-degree, thus they are comput-
ably isomorphic by the Myhill Isomorphism Theorem, see [10]. One direction is given
by Lemma 3.17. For the converse, we recall that a standard model of arithmetic is a
structure 〈N , 0, s,+,×〉 where N is a countable set, 0 is a distinguished element, s
is a unary function, + and × are binary functions, such that 〈N , 0, s,+,×〉 satisfies
finitely many first order axioms (let us call P− the collection of these axioms, for
instance the axioms of Robinson’s arithmetic) together with the second order induc-
tion. Now suppose that �n is a list of given degrees coding a countable set of degrees: we
can say, with a first order formula in the language of posets, that given degrees �a code
(on the set coded by �n) an element 0, and the graphs of functions s,+,×, satisfying
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the requirements to be a standard model of arithmetic: this can be done since every
countable relation is first order definable, with parameters, in Dbe, by Theorem 3.16;
P− is finite; and second order quantification can be expressed by replacing quantifica-
tion on subsets of N with quantification on the finitely many parameters defining such
sets (using Theorem 3.16 and uniformity). Given a sentence ϕ of second order arith-
metic, let ϕ̂ be obtained by replacing quantification on subsets of N with that on the
parameters defining such sets, and by replacing in an obvious way the occurrences of
0, s,+,× with their first order definitions with parameters in the language of posets;
finally, let ϕ∗ say that there are degrees �n, �a as above, which code a standard model of
arithmetic, in which ϕ̂ holds: then ϕ is true if and only if the first order sentence ϕ∗,
in the language of posets, is true in Dbe. Since ϕ∗ can be effectively obtained from ϕ,
we have that V2 ≤m T h(Dbe). Finally, as in the proof of Lemma 3.17, using the fact
that theories are cylinders, we conclude that in fact V2 ≤1 T h(Dbe). ��

The following answers a question raised by Cooper [1, Question 5.13]:

Corollary 3.20 The first order theory of Dbe is undecidable and not axiomatizable.

Proof It follows from the fact that true second order theory of arithmetic is undecidable
and not axiomatizable. ��

A closer look at its proof shows that Theorem 3.2 holds in fact of every reducibility
≤r such that ≤2e ⊆ ≤r (hence ≤be ⊆ ≤r), ≤r ⊆ ≤e, and ≤r is given by some class Er
of e-operators with suitable closure properties. For Corollary 3.9 to hold, it is sufficient
that ≤r extends ≤m but this is ensured by the fact that ≤be ⊆ ≤r. More delicate is
Corollary 3.13: a reasonable sufficient closure property for Er, is the following:

(∗) For every � ∈ Er, for every x0, and for every total computable function f , such
that � f (y) is an m-operator for every y, then � ∈ Er, where

� = {〈y, D〉 : y ∈ ω & 〈x0, D〉 ∈ � ◦� f (y)}.

It is not difficult to see that the above closure property is satisfied by any class Er which
is closed under smaller axioms, meaning that for every� ∈ Er, and every enumeration
operator �, if

(∀x, D)[〈x, D〉 ∈ � ⇒ (∃y, E)[〈y, E〉 ∈ � & |D| ≤ |E | ]

then � ∈ Er. Reducibilities ≤be and ≤e are clearly closed under smaller axioms.
Summarizing the various results of this section in a more general setting, we can

conclude:

Theorem 3.21 Let ≤r be such that:

(1) ≤be ⊆ ≤r ⊆ ≤e;
(2) there is a class of e-operators Er, such that the set {e : �e ∈ Er} is arithmetical,

Er satisfies closure property (∗), and X ≤r Y if and only if X = �(Y ) for some
� ∈ Er.

Then T h(Dr) is computably isomorphic to true second order arithmetic.
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Proof The proof is the same as for ≤be, by replacing every occurrence of ≤be in the
proof with ≤r: of course we can not conclude in general that ≤r is 
0

3 , but ≤r is still
arithmetical under the assumptions. ��
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