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We show that the diamond lattice can be embedded into the Σ0
2 enumeration degrees

preserving 0 and 1, with atoms one high and Π0
1, and the other one low.

1. Introduction

When studying a degree structure, a very natural question is to determine which lattices can

be embedded into the structure. This is important not only for measuring how complicated

the structure is, but also for answering global questions about the structure, including

issues such as decidability of fragments of its first-order theory. It is known that there is

an embedding ι (preserving 0, sup, and jump operation) of the Turing degrees into the

enumeration degrees, which maps the Turing degree of a set A to the enumeration degree

of the characteristic function of A. When restricted to the low computably enumerable

(c.e.) Turing degrees, ι also preserves infima (McEvoy and Cooper 1985). So all lattices

that are known to be embeddable into the low c.e. Turing degrees are also embeddable

into the Π0
1 enumeration degrees, and thus into the enumeration degrees below the first

enumeration jump 0′
e, which comprise the enumeration degrees that partition the Σ0

2 sets.

Since not all finite lattices are embeddable into the c.e. Turing degrees, the question arises

as to what one can say about lattice embeddings that are not induced by ι. The first

approach to this problem was through diamond embeddings. The diamond lattice (or
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simply diamond ) is the four-element Boolean algebra {0, a, b, 1}, with bottom 0, top 1, and

a complement of b. Interest in diamond embeddings in the Σ0
2-enumeration degrees was

also originally motivated by Cooper’s question, raised in Cooper (1984), asking whether

the structure of the Σ0
2-enumeration degrees and the structure of the c.e. Turing degrees

are elementarily equivalent. Ahmad (1991) showed that the diamond can be embedded

into the Σ0
2-enumeration degrees through an embedding that preserves 0 and 1, that is,

maps 0 to the least enumeration degree 0e and 1 to its jump 0′
e: since the diamond cannot

be embedded into the c.e. Turing degrees preserving 0 and 1 (a classical result known as

the Non-Diamond Theorem, which is due to Lachlan (Lachlan 1966)), the two structures

are not elementarily equivalent. It is worth noting that the two atoms in the embedded

diamond of Ahmad’s proof are both low enumeration degrees, which is important for the

economy of the proof and makes the construction a finite priority argument. Ahmad’s

diamond embedding result has since turned out to be a particular case of a much more

general phenomenon, which was proved by Lempp and Sorbi (Lempp and Sorbi 2002),

viz., that every finite lattice is embeddable into the Σ0
2 enumeration degrees preserving

0 and 1 through an embedding that maps each element except 1 to a low enumeration

degree. Different proofs for diamond embeddings have appeared in the literature since

then. Of course, if we are not intererested in preserving 0 or 1, then every incomplete Σ0
2

enumeration degree a is the bottom of a diamond, since a is meet-reducible (Nies and

Sorbi 1999), whereas not every non-zero a �e 0′
e is the top of a diamond since there are

non-zero join-irreducible Σ0
2 enumeration degrees (Ahmad and Lachlan 1998). The final

word in this direction was perhaps given in Arslanov et al. (2003), where it was proved

that:

(1) If a <e b and b is total (that is, b contains the graph of a total function) and there is

some total c with a �e c <e b, then the diamond is embeddable with a as the bottom

and b as the top.

(2) If a is total and Δ0
2, then the diamond is embeddable with a as the top and 0e as the

bottom.

Ahmad’s result is a corollary of both statements.

It should be noted that in all known proofs of 0, 1-preserving diamond embeddings, the

atoms are mapped to low enumeration degrees. Very little is known about 0, 1-preserving

diamond embeddings in which the atoms do not embed to low enumeration degrees. So

a new interesting line of research consists of exploring the possible complexity of the

images of the intermediate elements of the diamond. This paper, which can be viewed as

a sequel to Sorbi et al. (2009), aims to provide a contribution in this direction. In Sorbi

et al. (2009), we showed that there is a minimal pair of Π0
1 high enumeration degrees. In

Theorem 1, we show that we can stretch the proof in Sorbi et al. (2009) from a minimal

pair to a diamond embedding in which one of the atoms is still Π0
1 and high, and the

other is low (but, of course, necessarily not Π0
1 by the Lachlan Non-Diamond Theorem).

The construction shows a way of combining highness with the minimal pair argument in

a simple way. While one set is constructed to be low, the ‘meshing’ phenomenon described

in McEvoy and Cooper (1985) will not happen, which makes the proof of Theorem 1 in
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the current paper much simpler than the one given for Sorbi et al. (2009, Theorem 1),

which involves a 0′′′-priority construction.

1.1. The theorem

We will prove the following theorem.

Theorem 1. There are non-zero enumeration degrees a and b below 0′
e such that a is low,

b is high and Π0
1, and a ∪ b = 0′

e, a ∩ b = 0e. That is, the diamond lattice can be embedded

into the Σ0
2 enumeration degrees preserving 0 and 1, with two atoms, one low and the

other high and Π0
1.

Our notation and terminology for computability theory are standard and follow,

unless otherwise specified, the textbook Soare (1987). Good introductions to enumeration

reducibility and related notions can be found in Cooper (2003) and Odifreddi (1999). If

〈z, F〉 ∈ Φ, with Φ an enumeration operator, F is said to be a use-neighbourhood of z

(relative to Φ).

2. Requirements

To prove Theorem 1, we will construct two Σ0
2 sets A and B, via suitable Σ0

2 approximations

{As}s∈ω and {Bs}s∈ω , and an enumeration operator Γ satisfying the following requirements:

S: K = ΓA,B

Pe: A 	= We

L〈e,i〉: i ∈∞ ΦA
e ⇒ i ∈ ΦA

e

Me: ΦA
e = ΨB

e ⇒ ΦA
e is c.e.

He: ϕe total ⇒ CB dominates ϕe,

where CB is the computation function of B, that is, for any x, we have

CB(x) = μs > x[Bs � x ⊆ B � x],

where K is a creative set and {(We,Φe,Ψe)}e∈ω is an effective list of all triples (W,Φ,Ψ),

where W is a c.e. set and Φ and Ψ are enumeration operators. Here i ∈∞ ΦA
e means

that there are infinitely many stages s such that i ∈ ΦA
e [s], where, as in Soare (1987),

the ‘[s]’ denotes the fact that the expression is evaluated at the end of Stage s in some

fixed uniform computable approximation of the enumeration operators using finite sets.

In particular, ΦA
e [s] stands for ΦAs

e,s, where Φe,s and As denote the approximations at Stage

s of Φe and A, respectively. Finally, ΓA,B denotes the application of the enumeration

operator Γ to the set A ⊕ B.

Let a and b be the enumeration degrees of A and B, respectively. Then the L-

requirements ensure that a is low (as proved in McEvoy and Cooper (1985)), and the

H-requirements ensure that b is high (refer to Shore and Sorbi (1999) to see why

the domination property implies highness). The P-requirements ensure that a is non-

zero. Together with this, the M-requirements ensure that a and b form a minimal pair,

which means b is incomplete. The S-requirement ensures a and b has join 0′
e. Therefore,
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{0e, a, b, 0′
e} is a diamond in the Σ0

2 enumeration degrees. It will follow from the construction

that B can be taken to be Π0
1.

3. Strategies

In this section, we describe how each strategy works and consider the interactions between

various strategies. In the following, when clarity is not compromised by the context, we

will frequently not specify the stage at which the various expressions are evaluated: so,

for instance, at Stage s, we may write K instead of Ks (where we refer to some fixed

c.e. approximation {Ks}s to K using a computable increasing sequence of finite sets), and

ΓA,B instead of ΓA,B[s].

3.1. The S-strategy

S is a global requirement. That is, in the whole construction, we will construct an enumer-

ation operator Γ such that K = ΓA,B . The construction of Γ follows the following rules:

(1) At Stage s, for the least z ∈ K but z 	∈ ΓA,B , enumerate z into ΓA,B with a use-

neighbourhood γ(z) containing a big number – we enumerate this number into A

and B at this stage (in fact, we may assume that the number is in B already, starting

with B0 = ω) and later, when this number is removed from one of A and B, then z

is automatically removed from ΓA,B . This number in γ(z) is called the crucial element

of the use-neighbourhood γ(z).

(2) If z ∈ ΓA,B at Stage s and we want to enumerate z′ > z into ΓA,B at this stage,

we require that the selected use-neighbourhood of z′ contains all numbers in the

use-neighbourhood of z. Thus, whenever z is removed from ΓA,B later, z′ is removed

from ΓA,B automatically.

(3) If z ∈ ΓA,B at Stage s and z 	∈ K , we remove the crucial element in the use-

neighbourhood γ(z) from B.

Note that in the construction, the use-neighbourhood γ(z) not only contains crucial

elements, but also contains other numbers, such as those numbers that have been selected

as witnesses for P-strategies, and removing such numbers (to satisfy P-strategies) will

also remove numbers from ΓA,B automatically. We will see this in both the construction

and the verification.

3.2. A P-strategy

A single P-strategy is simply a Friedberg–Muchnik’s diagonalisation argument. Let α be

a P-strategy. For convenience, we will sometimes use Wα to denote We(α) (where e(α) = e,

with Pe being the requirement assigned to α), and we will also apply this convention to

other parameters and strategies. Strategy α works as follows:

(1) Choose a witness xα and enumerate xα into A.

(2) Wait for xα to enter Wα.

(3) Extract xα from A.
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α has two possible outcomes:

(1) α waits forever at Step 2, in which case A(xα) = 1 	= 0 = Wα(xα), and Pe is satisfied.

Let w denote this outcome.

(2) α reaches Step 3 at some stage. Then A(xα) = 0 	= 1 = Wα(xα), and Pe is satisfied.

Let d denote this outcome.

3.3. An L-strategy

Fix e and i. We satisfy the L〈e,i〉-requirement by giving higher priority to the L〈e,i〉-

strategies – once i is found in ΦA
e , we will protect this enumeration (in the construction,

we will let the (already visited) L〈e,i〉-strategy with the highest priority act). To be

consistent with the S-strategy, we set a threshold, p, for an L〈e,i〉-strategy. That is, when

an L〈e,i〉-strategy is first visited, we set p to be a big number in K , and this strategy can

act to protect an enumeration as above only when γ(p) is selected (it may happen that p

enters K , in which case, we just update it as the next number in K). Whenever a number

� p enters K , we reset this strategy by removing any restraint set by this strategy. To

protect an enumeration from the construction of Γ, we need to remove the crucial element

in γ(p) from B, so that no further extractions for correcting ΓA,B(p′) with p′ > p can injure

this enumeration.

3.4. An M-strategy

An Me-strategy η is a standard minimal pair strategy. That is, we define the length of

agreement functions l(η, s) and m(η, s) as follows:

l(η, s) = max{x < s : for all y < x,ΦA
η (y) = ΨB

η (y)}
m(η, s) = max{l(η, t) : t < s is an η-stage}.

We say that a stage s is η-expansionary if s = 0 or l(η, s) > m(η, s). At η-expansionary

stages, we enumerate all y < l(η, s) in ΦA
η but not yet in Vη at Stage s, into Vη .

In the construction, we will ensure that after y enters Vη , then at any later stage y

will be in at least one of ΦA
η and ΨB

η (but not necessarily both). Vη is constructed as a

c.e. set and if ΦA
η = ΨB

η , then Vη will be equal to these two sets, which shows that the

Me-requirement is satisfied at η.

Unlike the high minimal pair construction of Sorbi et al. (2009, Theorem 1), since

A is constructed as low, the ‘meshing’ phenomenon will not happen in this diamond

embedding, and we do not need to worry about Σ3-outcomes satisfying the M-strategies.

In other words, lowness of A eliminates the risk that there exists some x such that x

is in neither ΦA
η nor ΨB

η , but at each stage s, x appears to be in either ΦA
η [s] or ΨB

η [s].

While lowness of either side of the minimal pair is an immediate antidote to prevent

this phenomenon (called ‘meshing’ in McEvoy and Cooper (1985)) from appearing, other

constructions, such as the one in Sorbi et al. (2009), require a more careful analysis of

interactions between strategies: in particular, in building a minimal pair in which both A

and B are high, satisfaction of η would usually be delegated to a lower priority highness

strategy demanding that x be removed from ΦA
η or ΨB

η infinitely many times, that is, η
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would be satisfied through what is usually called a Σ0
3-outcome in the jargon of priority

arguments.

η has two possible outcomes i <L f, where i denotes the case where there are infinitely

many η-expansionary stages and f denotes the case where there are only finitely many

η-expansionary stages.

3.5. An H-strategy

Let ζ be a strategy working for He. As usual, ζ has a fixed infinite computable set

Eζ = {x0 < x1 < . . . } at its disposal, and we start with Eζ ⊆ B. Strategy η waits for a

stage s at which ϕζ(y) ↓ for all y such that x0 � y < x1 (without loss of generality, we

may assume that ϕζ(y) < s). If no such s exists, ϕζ is not total. So we suppose that such

an s exists. So ζ extracts x0 from B forever at the first stage t > s that we visit ζ again.

Thus, for all y with x0 � y < x1, we have CB(y) � t > s > ϕζ(y). We then work on x1 in

the same way, and so on. We define the length of agreement function l(ζ, s) as follows:

l(ζ, s) = max{x < s : for all y < x, ϕζ(y) converges}
m(ζ, s) = max{l(ζ, t) : t < s is a ζ-stage}.

We say that a stage s is ζ-expansionary if s = 0 or l(ζ, s) > m(ζ, s). At ζ-expansionary

stages, we extract the least number x in Eζ[s] (which is Eζ minus the elements that have

been extracted at stages < s) from B, provided there exists a bigger number in Eζ[s] less

than l(ζ, s). Thus, if ϕζ is total, ζ will extract all numbers in Eζ from B, and for any

y � x0, we have CB(y) > ϕζ(y).

ζ has two possible outcomes i <L f, where i denotes the case where there are infinitely

many ζ-expansionary stages, and f denotes the case where there are only finitely many

ζ-expansionary stages.

Notte that the basic idea of an H-strategy does not differ from similar constructions

that appear in the literature. In particular, the handling of the H-strategies in this

construction is quite similar to the one used in the construction of a minimal pair of high

enumeration degrees (Sorbi et al. 2009), that is, at any expansionary stage, at most one

element is extracted from A and B.

3.6. Interactions between strategies

We now discuss possible interactions between the strategies, and describe how to solve

any conflicts that may occur.

We will first consider the case where a P-strategy α is below the infinitary outcome i of

an M-strategy η, and there exist H-strategies between them. Without loss of generality,

we can assume that η	i ⊆ ζ	i ⊆ α, where ζ is an H-strategy. Then ζ and η can prevent

a P-strategy α from being satisfied. Suppose α selects a number xα at Stage s0 (so xα is

enumerated into A at this stage) and sees that xα is in Wα at Stage s1. So α wants to

remove xα from A now, but it also notices that if xα is removed from A, then some z

can also be removed from ΦA
η . It can also happen that z is also removed from ΨB

η by

ζ’s action, so when η is visited again, z is in neither ΦA
η nor ΨB

η , so our strategy for η
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fails if z ∈ Vη . To avoid this, as in the standard construction of a high minimal pair of

enumeration degrees (Sorbi et al. 2009), only one element (the least number of a suitably

appointed finite set F) can be extracted from either A or B between two consecutive

η-expansionary stages. So, after seeing that xα is in Wα, α waits until all numbers less

than xα in Eζ have been extracted from B, and then at the next η-expansionary stage, α

extracts xα from A. Hence, α’s action is delayed at most finitely many times, and such an

action is consistent with ζ.

In general, if there are many H-strategies between η and α, we extract only the least

number from {xα} ∪ (
⋃

ζ Eζ) at each η-expansionary stage. Again, α’s action is delayed

in this way at most finitely many times, and is thus consistent with η, and with the

H-strategies between η and α too.

We will now consider whether any consistency problems arise between an L-strategy

β and other strategies, such as a P-strategy α, an M-strategy η or the splitting-strategy

S. Suppose β has higher priority than α and η has higher priority than both α and β.

Suppose that at Stage s1, α extracts a number x from A (so at this point, α’s extraction

does not injure η). Then, before the next η-expansionary stage (that is, before we see new

axioms enumerating numbers in Vη into ΦA
η ), β (working for requirement L〈e,i〉) sees that i

is now in ΦA
e , so to keep i in ΦA

e , and to ensure consistency between β and the S-strategy,

β extracts the crucial element of γ(pβ) from B, as described in the L-strategy. Then at

the next η-expansionary stage s3 > s2, both A and B-sides have changed, which can result

in the failure of η.

To avoid this, at Stage s2, when β acts, we also put the number x back into A to

make sure that the A-side is kept the same as before, and hence to keep η working as

before. β is happy with this enumeration as i is kept in ΦA
e . And α is also happy with

the re-enumeration of x back into A as it is initialised at Stage s2, and when it is visited

again, it will select another number, x′ say, as a witness.

4. Construction

We are now ready to give the full construction. First we assign the following priority

ranking to the requirements:

S < P0 < L0 < H0 < M0 < P1 < L1 < H1 < M1 < · · ·

< Pe < Le < He < Me < · · · .

The construction makes use of a priority tree: see Soare (1987) for details of the tree

method in computability theory. The priority tree T is built as follows. First note that S
is a global strategy, so we do not put it on T . Assume that τ is a node on T . Then:

(1) If |τ| = 4e, let τ be a Pe-strategy. τ has outcomes w <L d, where w denotes the

outcome that τ waits for xτ to appear in Wτ, and w denotes the outcome that τ

extracts xτ from A eventually.

(2) If |τ| = 4e + 1, let τ be a Le-strategy. τ has outcome 1.
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(3) If |τ| = 4e + 2, let τ be an He-strategy. τ has outcomes i <L f, where i denotes

the outcome that there are infinitely many τ-expansionary stages, and f denotes the

outcome that there are only finitely many τ-expansionary stages.

(4) If |τ| = 4e + 3, let τ be an Me-strategy. τ has outcomes i <L f, where i denotes

the outcome that there are infinitely many τ-expansionary stages, and f denotes the

outcome that there are only finitely many τ-expansionary stages.

We assume that at each stage s > 0, exactly one number, ks, is extracted from K .

We now describe the full construction. At Stage s, we first define the current true path

σs with |σs| � s. In the following, when a strategy is initialised all parameters associated

with it will be cancelled and can only be redefined at a later stage when it is visited again.

Stage 0: Initialise all the nodes on T and let A,Vη , where η ∈ T is any M-strategy, and

all constructed functionals, be �; let B = ω. Let σ0 = λ, the root of T , and go to

Stage 1.

Stage s > 0: Stage s consists of five phases:

Phase 1. Extract the crucial element of γ(ks) from B, enumerate into A all the numbers

that have been extracted from A after the stage at which γ(ks) is defined, and reset

all strategies ξ with threshold pξ � ks: if ks is a threshold of ξ and ξ is not satisfied

yet, choose the least number in Ks, bigger than ks, of course, and define it as pξ . If

ξ is reset and ξ′ is a strategy with lower priority, then ξ′ is initialised automatically.

Phase 2. Find the highest L-strategy β that is not satisfied yet but sees i(β) entering

ΦA
e(β) at Stage s. Extract γ(pβ) (or, rather, the crucial element of γ(pβ)) from B, and

enumerate into A all the numbers that have been extracted from A after the stage

at which pβ is defined. Declare that β is satisfied at Stage s and initialise all the

strategies with lower priority.

Phase 3. Define σs inductively starting from λ with |σs| � s. At the end of Stage s,

initialise all the strategies with priority lower than σs.

Substage 0: Let σs(0) = λ. Recall that λ is a P0 strategy. If pλ and xλ are not

defined (this happens only at Stage 1), define them as fresh numbers, enumerate

xλ into A and stop Stage s. If pλ, xλ are defined and xλ is not in Wλ, let λ	w

act at the next substage. If λ has been satisfied before, let λ	d act at the next

substage. Otherwise, that is, λ has not been satisfied so far and xλ is in Wλ,

extract xλ from A, declare that λ is satisfied at Stage s and stop Stage s.

Substage t > 0: Assume that σs(t) has already been constructed. If |σs(t)| = s then

set σs = σs(t) and go to the next stage. If |σs(t)| < s, find the outcome for σs(t)

as follows:

Case 1: σs(t) = α is a P-strategy:

(α1): xα and pα are not defined.

Define each of them as fresh numbers, enumerate xα into A, let

σs = σs(t) and go to the next stage.

(α2): xα and pα are defined.

If α has been satisfied before and has not been initialised since then,

let σs(t + 1) = α	d and go to the next substage.
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Otherwise, check whether xα is in Wα or not. If it is not in Wα, let

σs(t+1) = α	w and go to the next substage. If it is in Wα, enumerate

xα into Fs+1 and stop Stage s by letting σs = α.

Case 2: σs(t) = β is an L-strategy:

Check whether pβ is defined or not. If pβ is not defined yet, define it as a

big number in K that is bigger than s, and stop Stage s. Otherwise, that is,

either β has been satisfied before or i(β) 	∈ ΦA
e(β), let σs(t + 1) = α	1 and go

to the next substage. Note that β may act at Phase 2.

Case 3: σs(t) = ζ is an H-strategy:

Check whether s is ζ-expansionary or not. If it is not ζ-expansionary, let

σs(t + 1) = α	f and go to the next substage. If it is ζ-expansionary, let

σs(t + 1) = α	i, enumerate those numbers less than l(ζ, s) that are in Eζ,s,

but not the biggest one, into Fs+1, and go to the next substage.

Case 4: σs(t) = η is an M-strategy.

There are two cases:

(η1): s is not η-expansionary.

Let σs(t + 1) = η	f, and go to the next substage.

(η2): s is η-expansionary.

Let σs(t + 1) = η	i, enumerate all y < l(η, s) in ΦA
η , but not yet in

Vη[s], into Vη , and go to the next substage.

Phase 4 (Extraction). Extract the least number in Fs+1 from A or B. If the number

being extracted is from A, then this number is selected by a P-strategy α (actually,

σs = α), and we declare at this phase that α is satisfied at Stage s.

Phase 5 (Extending Γ). Find the least number n in K with n 	∈ ΓA,B , and enumerate

n into ΓA,B with use-neighbourhood consisting of the following numbers:

(1) a single crucial number, which is a fresh number;

(2) all numbers in γ(n′), if n′ < n and n′ ∈ ΓA,B;

(3) if n � pα, where α is a P-strategy, and α is active at Stage s (that is, α of higher

priority has been visited at a stage t � s and not initialised since then), then

γ(n) contains xα. In particular, if n is a threshold of a P-strategy α, then γ(n)

contains xα.

This completes the full construction. Take

A = {x : (∃t)(∀s � t)[x ∈ As]}
B = {x : (∃t)(∀s � t)[x ∈ Bs]}.

In fact, it follows from the construction that B = {x : (∀s)[x ∈ Bs]}.)

5. Verification

We will now prove that the constructed A,B and Γ satisfy all the requirements. We say

that a strategy ξ is visited at Stage s if ξ = σs(t) for some t. Define TP , the true path,
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as lim infs σs. That is, λ is on TP (λ is visited at every stage s), and if ξ is on TP , then

for an outcome O of ξ, we have ξ	O is on TP if and only if there are infinitely many

ξ	O-stages, and for any outcome O′ <L O, there are at most finitely many ξ	O′-stages.

The following is a crucial lemma for the verification.

Lemma 5.1. For each ξ on TP :

(i) ξ can be reset or initialised at most finitely often.

(ii) There is an outcome O of ξ such that ξ�O is on TP .

(iii) If O is as in the previous item, ξ can initialise ξ�O at most finitely often.

Therefore, TP is infinite.

Proof. We prove this lemma by induction. Let ξ− be the immediate predecessor of ξ,

and assume that (i)–(iii) are all true for ξ−. That is, there is a least stage sξ− after which:

(i) ξ− cannot be reset or initialised,

(ii) no nodes to the left of ξ can be visited again,

(iii) ξ can be initialised by ξ− at most finitely many times.

We now prove that the lemma is true for ξ.

From the assumption on ξ− and the choice of sξ− , after Stage sξ− , we know ξ can never

be initialised by strategies with higher priority. Let s0 denote sξ− , and let s1 � s0 be the

stage at which pξ is selected (if ξ is an L-strategy or a P-strategy). Then ξ can be reset

only when some number k � pξ leaves K (as K is infinite, pξ settles down eventually).

This shows that (i) is true for ξ.

We now show that (ii) and (iii) are both true for ξ. There are four cases:

Case 1: ξ = α is a P-strategy.

By the choice of s0, when α is first visited after s0, we have that α defines pα and

xα (xα is enumerated into A). This xα will not be cancelled in the remainder of the

construction, even though pα is updated (when the previous pα enters K , but this can

happen at most finitely many times).

If xα does not enter Wα at any stage, any (further) α-stage will be an α	w-stage, and

hence according to the definition of TP , we have α	w is on TP .

If xα enters Wα at some stage, at the next few α-stages s > s0, we know xα is put into

Fs. Note that at such a stage s, σs is defined as α, and only the least number from Fs is

extracted from A or B. At these stages, numbers in Eζ , where ζ ⊂ α is an H-strategy

with infinitary outcome along α, are extracted one by one, so, eventually, at a large

enough α-stage s, we know xα will turn out to be the least number in Fs, thus xα is

extracted from A at this stage, and α is declared to be satisfied. After this stage, any

further α-stage is an α	d-stage, and (ii) is true. Note that after Stage s, α never acts

again, so (iii) is true for α.

Case 2: ξ = β is an L-strategy.

As β has only one outcome, and any β-stage is also a β�1-stage, β�1 is on TP , thus

(ii) is true for β. And (iii) is also true for β since β may only act when i(β) enters

ΦA
e(β), but by the choice of sξ− , such an action can only happen (in Phase 2) at most

once after this stage.
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Case 3: ξ = ζ is an H-strategy.

If ϕζ is total, there are infinitely many ζ-expansionary stages, so ζ has outcome i

infinitely often. That is, at these stages, ζ	i is visited. If ϕζ is not total, there are

only finitely many ζ-expansionary stages, and after a large enough stage, ζ always has

outcome f. That is, any further ζ stage is a ζ	f-stage. In all cases, (ii) is true for ζ.

And (iii) is obviously true for ζ since ζ does no action during the whole construction.

Case 4. ξ = η is an M-strategy.

The argument for this case is similar to the argument for ζ. We consider whether there

are finitely many or infinitely many η-expansionary stages, and show that in either

case, η has an outcome O such that η	O is on TP , so (ii) is true. And (iii) is also

true since, apart from enumerating Vη , we know η does no action during the whole

construction.

This shows that (i)–(iii) is true for every node on TP , so TP is infinite.

Note that the proof of Lemma 5.1 also shows that the L-strategies are satisfied, and

whenever an L-strategy β is visited at a stage s in Phase 3, it does not act at all. This

means we have the following lemma.

Lemma 5.2. Given a requirement Le, let β be an Le-strategy on TP . Then the

requirement Le is satisfied by β or by an Le-strategy to the left of β.

Notice that β can act even though it is not on the current true path.

From Lemma 5.1, we can also see that the P-strategies are also all satisfied along the true

path. Let α be a Pe-strategy on TP . If xα never enters Wα, then A(xα) = 1 	= 0 = Wα(xα).

This corresponds to outcome w. If xα enters Wα, then, as argued above, xα will be extracted

from A eventually, and hence A(xα) = 0 	= 1 = Wα(xα). This corresponds to outcome d.

Thus, we have the following lemma.

Lemma 5.3. Given a requirement Pe, let α be a Pe-strategy on TP . Then the requirement

Pe is satisfied by α.

Now we show that for any e, the He-strategy is also satisfied.

Lemma 5.4. Given a requirement He, let ζ be an He-strategy on TP . Then the

requirement He is satisfied by ζ.

Proof. Without loss of generality, suppose that ϕe is total. Then, as ζ is on TP , there

are infinitely many ζ-expansionary stages, and hence each number x in Eζ is eventually

removed. Note that in the construction, a (least) number in Eζ is put into Fs at a stage

s only when l(ζ, s) is bigger than the next number in Eζ . So, for any x ∈ Eζ , except the

least one, we have first convergence of ϕe(x) at a stage s, with ϕe(x) < s, and then B � x

changes later. This ensures that CB(x) > ϕe(x), and hence CB dominates ϕe, which means

He is satisfied.

Now we show that for all e, the Me-strategy is also satisfied.
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Lemma 5.5. Given a requirement Me, let η be the Me-strategy on TP . Then the

requirement Me is satisfied at η.

Proof. Let sη be the last stage at which η is initialised. Let Vη be the set constructed

after Stage sη . We prove that η is satisfied, and, furthermore, if ΦA
η = ΨB

η , then ΦA
η = Vη .

There are two cases:

Case 1: There are only finitely many η-expansionary stages.

In this case, l(η, s) has a liminf, which entails a disagreement between ΦA
η and ΨB

η at

some number m say, at infinitely many η-stages. Without loss of generality, we can

suppose m ∈ ΦA
η [s] − ΨB

η [s], where s is an η-expansionary stage after which η always

has outcome f. This disagreement is preserved since every further stage at which η is

visited is an η	f-stage, so m is kept in ΦA
η and we can argue that m is not in ΨB

η since

m is not in ΨB
η infinitely many times. This shows that ΦA

η 	= ΨB
η , and η is satisfied.

Case 2: There are infinitely many η-expansionary stages.

In this case, there are infinitely many η-expansionary stages and at these stages, we

may put more and more numbers into Vη . We now prove that Vη = ΦA
η .

To do this, since A is constructed to be low, we only need to show that at any

η-expansionary stage, for each m ∈ Vη , we have m is in both ΦA
η and ΨB

η . Let s1 < s2
be two consecutive η-expansionary stages. If no number is extracted from A at Stage

s1, then m always stays in ΦA
η up to Stage s2 since no smaller number can be extracted

from A in this period.

So we assume that a number x is extracted from A by a P-strategy α at Stage s1.

Hence, at Stage s1, no extraction due to H-strategies is performed, so ΨB
η is kept

the same. Again, if no L-strategy with higher priority acts and no number less than

or equal to pα exits K between Stages s1 and s2, then B has no change below the

corresponding use, so m is in ΨB
η up to Stage s2.

Thus, suppose that between Stages s1 and s2, either an L-strategy with higher priority

acts or a number less than or equal to pα exits K . Then a number will be extracted

from B, which perhaps drives m out of ΨB
η before Stage s2. However, if this happens,

the number extracted from A at Stage s1, xα, will be put into A again, which ensures

that m is in ΦA
η , up to Stage s2.

Therefore, as A is low, if there are infinitely many η-expansionary stages and at any

such stage, s say, for any m, we have m ∈ Vη[s], then m is also in ΦA
η [s]. That is, m is

in ΦA
η [s] for infinitely many s, which ensures that m is in ΦA

η . Therefore, in this case,

we will have Vη = ΦA
η , and ΦA

η is c.e.

This completes the proof of Lemma 5.5.

We will now prove that the S-requirement is satisfied.

Lemma 5.6. The requirement S is satisfied. That is, K = ΓA,B .

Proof. Whenever a number k exits K at a stage, if k is still in ΓA,B , we remove k from

ΓA,B by extracting the crucial element in γ(k) from B. (Notice that collaboration between

A and B is essential in Γ-correction, since when the B side cannot be changed because
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of some minimal pair strategy, A has already automatically corrected Γ by the extraction

of some xα, which happens because of the way use-neighbourhoods for Γ are defined.)

Thus, to show that the S-requirement is satisfied, we only need to show that for k, k can

be added to and later removed from ΓA,B at most finitely often, which will ensure that

ΓA,B(k) = K(k) for all k. This is true because for a fixed k, k is removed from ΓA,B when

one of the following happens:

(1) a number k′ � k exits K;

(2) an L-strategy β acts to satisfy itself, and thus a crucial number in γ(pβ) is extracted

from B, or a P-strategy α acts to satisfy itself and thus an xα is extracted from A.

Since k is fixed and after k is extracted from ΓA,B it will be enumerated into ΓA,B later on

provided k is in K , after a late enough stage, no strategy’s action can extract k from ΓA,B .

Now, by induction, we can see that after a late enough stage, k is kept in ΓA,B if k is in

K .

This completes the proof of Theorem 1. Since elements that are extracted from B, which

starts as B0 = ω, are never re-enumerated back into it, so it follows that B is Π0
1.
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