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Abstract. We prove that every diagonally nonrecursive function computes a

set A which is bi-immune, meaning that neither A nor its complement has an
infinite computably enumerable subset.

1. Introduction

A function f : ω → ω is called diagonally nonrecursive (or DNR, for short), if,
for all e, f(e) 6= ϕe(e), where {ϕe} is the standard enumeration of the partial com-
putable functions. Two basic methods of producing noncomputable functions are
diagonalization (producing the DNR functions) and coin-tossing (producing, with
probability 1, random sets, in various senses of “random”). It is natural to compare
the computational power required to produce functions using these methods. The
answer turns out to depend on whether we consider arbitrary functions in DNR, or
only those taking values in {0, 1}. Specifically, every {0, 1}-valued DNR function
computes a 1-random set (by [?], Theorem 8.4), and every 1-random set computes
a DNR function ([?], Remark 10.2). Furthermore, these results are strict in the
sense that there is a 1-random set which computes no {0, 1}-valued DNR function
([?], Theorem 10.4), and there is a DNR function which computes no 1-random set
([?], Theorem 10.4).

It would be remarkable if this intertwining of diagonalization and randomness
could be extended by showing that all DNR functions compute sets satisfying some
particular weak randomness property. A natural property to try first is weak 1-
randomness, which is also known as Kurtz-randomness. Here we obtain a negative
result by analyzing a proof from [?]:

Theorem 1.1. There is a computably bounded DNR function which does not com-
pute any Kurtz-random set.

To obtain a positive result, we consider a yet weaker property, bi-immunity. A
set A is bi-immune if neither A nor its complement A contains an infinite c.e.
subset. We finally obtain a positive result, which is the main result of this paper:

Theorem 1.2. Every DNR function computes a bi-immune set. This holds uni-
formly in the sense that there is a Turing functional Ψ such that Ψf is bi-immune
for all DNR functions f .
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Corollary 1.3. Every DNR function is Turing equivalent to a bi-immune set.

The corollary follows at once from Theorem ?? and the upward closure of the
degrees of bi-immune sets [?]. However, the latter result was proved in a highly
nonuniform fashion, so we don’t know whether the corollary holds in any uniform
sense.

Theorem ?? is not the first positive result on the computational power of DNR
functions. The Arslanov completeness criterion (see [?], Theorem V.5.1) implies
that every c.e. set which can compute a DNR function has degree 0′. This result
is extended in [?], Theorem 5.1, to show that every n-CEA set A which computes
a DNR function has degree ≥ 0′. Also, it was shown by A. Kučera ([?], Theorem
VII.1.10), that every ∆0

2 DNR function computes a non-computable c.e. set. These
results were actually stated in terms of fixed-point free functions (those satisfying
(∀e)[We 6= Wf(e)]), rather than DNR functions, but it is easily seen ([?], Lemma
4.1) that every DNR function computes a fixed-point free function, and vice-versa.

In the other direction, it is known that DNR functions can be computationally
weak. It follows from the low basis theorem that there are {0, 1}-valued DNR
functions of low degree. Also, it was shown by M. Kumabe and the second author
[?] that there are computably bounded DNR functions of minimal degree.

Our results fit in naturally with a number of previous results on the relative
complexity of various classes of functions related to diagonalization, randomness
and bi-immunity. This complexity is best discussed in terms of strong (Medvedev)
reducibility and weak (Muchnik) reducibility. Recall that if P and Q are subsets
of Baire space ωω, we say that P is weakly (or Muchnik) reducible to Q (written
P ≤w Q) if for every function f ∈ Q there is a function g ∈ P such that g is Turing
reducible to f . If this holds uniformly, i.e. there is a fixed Turing functional Ψ such
that Ψf ∈ P for all f ∈ Q, we say that P is strongly (or Medvedev) reducible to Q,
written P ≤s Q. For example, our main result states that the class of bi-immune
sets is strongly reducible to DNR. See [?], for example, for further information on
weak and strong reducibilities and [?] for further information on 1-randomness and
Kurtz-randomness.

Let DNRk be the class of DNR functions taking values in {0, 1, . . . , k−1}, and let
DNRREC be the class of DNR functions f such that there is a computable function
g with g(n) ≥ f(n) for all n, i.e. the class of DNR functions which are computably
dominated. Let BI be the class of bi-immune sets, let 1R be the class of all 1-random
sets, and let KR be the class of all Kurtz-random sets, which are also known as
weakly 1-random sets. Our results, together with previously known results, enable
us to understand how weak and strong reducibility behave on the classes which
have just been defined.

We carry this out first for weak reducibility. It is shown in [?], Theorem 5, that
DNRk is weakly equivalent to DNR2 for all k ≥ 2, so we need not consider DNRk

for k > 2. We then have the following strict chain which includes all classes under
consideration except for KR:

DNR2 >w 1R >w DNRREC >w DNR >w BI

See Theorem 10.4 of [?] for references to the proofs of the first three inequalities
above. In particular, the work of Ambos-Spies, Kjos-Hanssen, Lempp, and Slaman
[?] plays a major role here. For the final inequality DNR >w BI, of course our
main result, Theorem ??, implies that BI ≤w DNR. To see that DNR 6≤w BI,
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consider a c.e. degree a such that 0 < a < 0′. Then a contains a bi-immune set A
by [?], Theorem 5.2, but there is no A-computable DNR function by the Arslanov
completeness criterion.

We continue to consider weak reducibility and now bring KR, the class of Kurtz-
random sets, into the picture. We have a strict chain:

1R >w KR >w BI

Here the reductions are obvious (using the identity functional), since 1R ⊆ KR ⊆
BI . To show that the first inequality is strict, it suffices, since DNR ≤w 1R, to show
that DNR 6≤w KR . To prove this, again let a be a c.e. degree such that 0 < a < 0′.
Then a is hyperimmune by Dekker’s Theorem (see Theorem V.2.5 of [?]) and hence
contains a Kurtz-random set A by a result of Kurtz (see Corollary 8.11.8 of [?]).
Again by the Arslanov completeness criterion, there is no A-computable DNR func-
tion since a is c.e. and a < 0′. This shows that DNR 6≤w KR and hence 1R 6≤w
KR. To see that the second inequality is strict, we need to show the existence of a
bi-immune set which does not compute any Kurtz-random set. This follows from
known results. First, S. Simpson ([?], Theorem 25) showed that there is a min-
imal, hyperimmune-free degree a which contains a bi-immune set A. (His proof
used forcing with coinfinite computable conditions, and the corresponding generic
sets have minimal degree by a theorem of Lachlan [?]. Alternatively, this result
of Simpson follows immediately from Theorem ?? and Theorem ??, although this
approach seems less straightforward than the original.) Second, it was shown by
Nies, Stephan, and Terwijn (see Theorem [?], Theorem 8.11.11) that every Kurtz-
random set of hyperimmune-free degree is 1-random. Finally, no 1-random set is
computable or of minimal degree by a theorem of Kurtz (see [?], Corollary 6.9.5).
Hence, if B ≤T A is Kurtz-random, then B has hyperimmune-free degree, so B is
a 1-random set which is computable or of minimal degree, a contradiction. Thus,
A is a bi-immune set which computes no Kurtz-random set, and it follows that KR
6≤w BI.

To complete the picture for ≤w, we show that KR is incomparable under ≤w
with both DNRREC and DNR. We have already remarked that DNR 6≤w KR, and
it follows that DNRREC 6≤w KR. By Theorem ??, KR 6≤w DNRREC, and hence KR
6≤w DNR.

We now consider strong reducibility on the same classes. The picture is generally
similar. Some of the reductions we mentioned above in discussing weak reducibil-
ity are actually strong reductions, as mentioned there. Negative results for weak
reducibility carry over immediately to strong reducibility, since strong reducibility
implies weak reducibility. However, there are some differences between strong and
weak reducibility on the classes we are studying. The main one is that DNRk 6≤s
DNRk+1 for all k ≥ 2, as shown in [?], Theorem 6. Our main theorem (Theorem
??) gives that BI ≤s DNR. We thus have an infinite strict chain:

DNR2 >s DNR3 >s · · · >s DNRREC >s DNR >s BI

By [?], Corollary 8.4, and the effective universality of DNR2 for nonempty Π0
1 classes

P ⊆ 2ω, we have 1R ≤s DNR2. Then by previous remarks we have another strict
chain:

DNR2 >s 1R >s KR >s BI

Except for the top and bottom elements (which coincide) all of the elements of the
first chain are incomparable with all of the elements of the second chain. To see
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this, it suffices to show that KR 6≤s DNR3 and DNR 6≤s 1R. The former result is
Theorem 5.4 of [?], which is proved from a Ramseyan result on edge-labeled ternary
trees. It is an elementary exercise that DNR 6≤s 1R using that 1R is topologically
dense and DNR has no computable element. We omit the proof.

The above discussion gives a complete description of weak and strong reducibility
on the classes DNRk, DNRREC, DNR, 1-random, KR, and BI. This information is
summarized in the following two diagrams:

Weak reducibility

BI

DNR

DNRREC

1R

DNR2

KR

Strong reducibility

BI

DNR

DNRREC

DNR3

DNR2

KR

1R

Figure 1. Strong and weak reducibility

2. Notation and terminology

We use the variables e, i, j, k, n,m, x to range over ω; the variables f and g to
range over functions ω → ω; we use h and T to range over functions ω<ω → ω<ω; T
to range over subsets of ω<ω; α, β, γ, σ, τ to range over ω<ω. We use the variables
Ψ and Φ to range over Turing functionals. Also, |σ| denotes the length of σ. We
write σ_τ to denote the concatenation of σ and τ , and for i ∈ ω we often identify
i with τ of length 1 such that τ(0) = i. Thus we may write σ_i to denote σ_τ
such that |τ | = 1 and τ(0) = i. A string σ is DNR if σ(e) 6= ϕe(e) for all e in the
domain of σ.

We let ϕe be the eth partial computable function ω → ω according to a fixed
effective listing of all such functions, and let We denote the domain of ϕe. We
assume that if x ∈Wn[s] then x < s. We write 0i to denote the sequence of i many
zeros, and we let λ denote the empty string.
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3. DNR functions and Kurtz randoms

In order to show that there is a DNR function f which does not compute any
Kurtz-random set, it suffices to observe that the DNR minimal degree constructed
in [?] is automatically hyperimmune-free. The fact that it is hyperimmune-free
follows from an analysis of the trees that the function f is constructed to lie on.

Theorem 3.1. There is a DNR function f such that the degree of f is both minimal
and hyperimmune-free. Hence, there is a computably bounded DNR function which
does not compute any Kurtz-random set.

Proof. We first observe that the second statement follows from the first. Let f
be as in the first statement. Then f is computably bounded since its degree is
hyperimmune-free. The argument given in the introduction to this paper that
KR 6≤w BI actually shows that no function of hyperimmune-free minimal degree
computes a Kurtz-random set, so f computes no Kurtz-random set.

We now show that the DNR minimal degree constructed in [?] is hyperimmune-
free. By a function-tree we mean a partial function T : ω<ω → ω<ω such that for
any σ ∈ ω<ω and i ∈ ω, if T (σ_i) ↓ then:

(i) T (σ) ↓ and T (σ) ⊂ T (σ_i);
(ii) for all i′ < i, T (σ_i′) ↓ and T (σ_i′) is incompatible with T (σ_i);
(iii) there exists i′ such that T (σ_i′) ↑.

We write τ ∈ T when τ is in the range of T and we write f ∈ [T ] when there exist
an infinite number of initial segments of f in (the range of) T . We say that τ is of
level n in T if τ = T (σ) for σ of length n. The strings τ and τ ′ are Ψ-splitting if

Ψτ is incompatible with Ψτ ′
.

Definition 3.2. We say that a function-tree T is delayed Ψ-splitting if whenever
τ0, τ1 ∈ T are incompatible, any τ2, τ3 ∈ T properly extending τ0 and τ1 respectively
are Ψ-splitting.

The DNR function f constructed in [?] satisfies the property that for every
{0, 1}-valued functional Ψ such that Ψf is total and non-computable, f ∈ [T ] for
some function-tree T which is delayed Ψ-splitting and partial computable, with
computable domain.

Now suppose that Φf ∈ ωω (so that Φf is total but not necessarily {0, 1}-valued).
We have to show that Φf is computably dominated. It is reasonable to assume that
if Φσ(n)[s] ↓ then n < s and Φσ(n′)[s] ↓ for all n′ < n, so that Φσ is a finite string.
We define Ψ which is {0, 1}-valued and which codes Φ in a natural way. For σ ∈ ω<ω
we define h(σ) by induction on |σ|. For the empty string λ, we define h(λ) = λ.
Given h(σ), we define h(σ_i) = h(σ)_0i1. Then if Φσ = τ , we define Ψσ = h(τ).
The definition of Ψ is consistent since if σ1 extends σ0, then Φσ1 ⊇ Φσ0 and hence
h(Φσ1) ⊇ h(Φσ0). Now suppose that f ∈ [T ], where T is delayed Ψ-splitting and
partial computable with computable domain. Then T is also delayed Φ-splitting,
since any Ψ-split pair of strings is also Φ-split because h preserves compatibility of
strings. Suppose that T (σ_i) = τ0 ⊂ f and that, for some j 6= i, T (σ_j) = τ1
has proper extensions in T . Let T (σ) = τ and put ` = |Φτ |. Let τ ′0 be the initial
segment of f of level |σ| + 2 in T . Then any proper extension τ ′1 of τ1 in T must

Φ-split with τ ′0, and hence Φτ
′
0(`) ↓. We may conclude that, for any g ∈ [T ] which

is not an isolated path through T (i.e. such that every initial segment of g has more
than one infinite extension in [T ]), Φg is total. However, any isolated path through
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T is computable, since it is an isolated element of the computably bounded Π0
1 class

[T ]. Since no DNR function is computable, we conclude that Φg is total for every
DNR function g ∈ [T ].

Now we simply apply compactness together with the fact that T has computable
domain. For each n, there is a length ` such that all strings τ ∈ T of level l either
satisfy Φτ (n) ↓ or else τ is not DNR. Such a length can be found uniformly in n
using a computable search since the family of non-DNR strings is c.e. This allows
us to bound Φf (n) and so computably dominate Φf . �

4. The intuition behind the proof of Theorem ??

We construct a {0, 1}-valued Turing functional Ψ so that Ψf is bi-immune for
all DNR functions f . The requirements are as follows:

R2n : If Wn is infinite, then for all DNR f , Ψf ∩Wn 6= ∅;
R2n+1 : If Wn is infinite, then for all DNR f , Ψf ∩Wn 6= ∅.

In this section we give the basic idea behind the construction, by showing how
to simultaneously satisfy two requirements. There are then further challenges to be
met as one looks to satisfy all requirements, and in Section ?? we formally define
the construction which suffices to achieve this.

First of all, let us consider how we might satisfy a single requirement, say R0.
The strategy in this case is very simple. At each stage s with W0,s = ∅, for all σ
of length s + 1, we define Ψσ(s) = 1. At the first stage s0 (if any) at which some
number x is enumerated in W0, the strategy stops acting. In this case, we have
x < s0 by convention, so Ψf (x) = 1, and hence Ψf ∩W0 6= ∅, for all f , by the action
of the strategy at stage x. Of course, such a stage s0 must exist if W0 is infinite.

Now let us see how one might go about satisfying another requirement as well as
R0, R3 say (we consider R3 instead of R1 for the sake of greater generality, since R1

also corresponds to W0). By the recursion theorem, we may assume we are given
a number n such that we may define the value ϕn(n) at some point during the
construction. We call such an n a “diagonalisation point”. As we work to satisfy
R3, we use a fixed diagonalisation point n to ensure that our action does not injure
R0.

We divide R3 up into an infinite number of subrequirements. The first of these
looks to satisfy R3 for all f such that f(n) = 0, the second for those f with
f(n) = 1, and so on. The strategy for the first subrequirement becomes active
at stage s0 = n. Once it is active (until it finishes), at each stage s, for all σ of
length s + 1 such that σ(n) = 0, we define Ψσ(s) = 0. For all other σ of length
s + 1 we define Ψσ(s) = 1, if R0 so requests. The strategy waits until a number
x ≥ s0 enters W1, say at stage s1. Since s0 ≤ x < s1, the action of the strategy
has ensured that R3 is satisfied for all f with f(n) = 0, via its action at stage
x. If no such number ever appears in W1, then clearly W1 is finite and the entire
requirement R3 (not just this subrequirement) is satisfied. When such a number
appears at stage s1, and hence we have satisfied R3 for all f with f(n) = 0, and
we say that the strategy for the first subrequirement finishes. Then the strategy
for the next subrequirement becomes active at the next stage s1 + 1. While this
subrequirement is active, at each stage s, and for all σ of length s + 1 such that
σ(n) = 1, we define Ψσ(s) = 0. For all other σ of length s+ 1 we define Ψσ(s) = 1
if so requested by R0. The strategy for the second subrequirement, then waits until
a number ≥ s1 + 1 enters W1. If this happens then the strategy for the second
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subrequirement finishes, and the strategy for the third subrequirement begins at
the next stage, and so on. Thus, either one of the subrequirements becomes active
and never finishes and hence R3 is satisfied, or each eventually becomes active and
eventually finishes. In the latter case, all subrequirements of R3 are met, and hence
R3 is met for all functions f , whatever the value of f(0). Thus R3 is met in all
cases. However, how do we know that R0 is met? (Note that we have defined Ψ
according to the wishes of R3 rather than R0 when they request opposite values.
This may seem strange, but if we always followed the wishes of R0, the construction
would obviously fail if W0 = ∅.) As we have already remarked, R0 is obviously met
if W0 is empty, so assume W0 6= ∅. At the first stage when a number x enters
W0, we have to be sure that the action we have taken for R3 does not prevent R0

from being satisfied. When x is enumerated into W0, we look to see which of the
subrequirements for R3 (if any) was active at stage x. There will be precisely one
of these if x ≥ n, and this will be the only subrequirement which defines Ψσ(x) for
any string σ . If this was the subrequirement which looks to satisfy R3 for all f
with f(n) = i, then we define ϕn(n) = i. The effect of this is that no string σ with
σ(n) = i is DNR. Hence if f extends σ for which we have defined Ψσ(x) = 0, then
f is not DNR, and R0 is satisfied. Above we assumed that x ≥ n. If x < n, then
no subrequirement of R3 is active at stage x, but this is no problem since then we
win by the basic R0 strategy without defining ϕn(n).

Note that in the above, there is no diagonalization witness associated with R0

because there is no higher priority requirement than R0, while there is one diag-
onalization witness associated with R3 because there is one requirement of higher
priority than R3 (namely R0) and that requirement finishes at most once. This
theme is amplified in the next section.

5. The construction

In the previous section, the single requirement R0 gave rise to infinitely many
subrequirements of the next requirement R3. We now iterate this idea, so that
each subrequirement of Rn gives rise to infinitely many subrequirements of Rn+1.
Hence, the construction is carried out on the infinitely branching tree T = ω<ω.
Note, however, that our tree of strategies will not be used in the conventional
fashion, in the sense that there will not be a special path defined at each stage. At
any given stage many incompatible nodes of the tree may act.

To deal with all requirements simultaneously, we need an infinite computable set
D of diagonalization points. The existence of such a set D follows from a slight
generalization of the recursion theorem ([?], Proposition II.3.4) which asserts that
every computable function has an infinite computable set of fixed points. Thus, for
each n ∈ D, we are allowed to define ϕn(n) during the construction.

Each node α ∈ T of length n is devoted to a subrequirement Rα of Rn. More
specifically, we define for each α ∈ T a partial function θα with finite domain, and
then Rα asserts that Rn holds for all functions f extending θα. We also assign to
each α ∈ T a finite set Eα of diagonalization points. The domain of θα will be the
union of all sets Eβ for β ⊆ α.

5.1. Defining Eα and θα. We start by defining the sets Eα recursively. For the
empty string λ, let Eλ be empty. If Eα is defined, where α has length n, let E+

α ⊆ D
be a set of n+ 1 diagonalization points, and set Eα_i = E+

α for all i ∈ ω. Further,
arrange that Eβ and Eγ are disjoint if β and γ are distinct and are not siblings, i.e.
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are not immediate successors of the same node. We use n+ 1 new diagonalization
points, since there are n+1 strings β extended by α, and each Rβ will finish at most
once. Each diagonalization point can be used to prevent Rα_i from interfering with
a particular Rβ , for β ⊆ α.

Next we define the partial functions θα recursively. Let θλ be the empty par-
tial function. If θα is defined, let E+

α be as above, and effectively enumerate the
extensions of θα to ∪β⊆αEβ ∪ E+

α as θ0, θ1, · · · , in such a way that each extension
appears precisely once in the list. Let θα_i = θi for all i ∈ ω. We show in the
verification by induction on n that every function f ∈ ωω extends θα for exactly
one α of length n. Thus, to meet Rn it suffices to meet Rα for all α of length n.

5.2. The instructions for Rα. Let Wα be the c.e. set associated with Rα. Let
i(α) = 1 if α has even length and otherwise let i(α) = 0. We say that a string or
function has type α if it extends θα.

At each stage at which it is active the strategy for Rα proceeds as follows. Let
sα be the first stage at which it was active, as defined in the construction below.

(1) The strategy requests that Ψσ(s) = i(s) for all σ of length s+ 1 of type α.
(2) If s ≥ sα is minimal such that Wα[s] has an element x ≥ sα, then we declare

that Rα finishes at stage s. In this case we say that Rα finishes via the least
such x (and will not be active at future stages). For each β ⊇ α we now
use the diagonalization points in Eβ to ensure that values of Φσ(x) defined
by Rβ do not prevent Rα from being satisfied. For each β ⊃ α we proceed
as follows. If at stage x the subrequirement Rβ was active, let e ∈ Eβ be
minimal such that ϕe(e) is not yet defined, and set ϕe(e) = θβ(e). We will
see in the verification by a trivial counting argument that such an e always
exists.

Note that Rα finishes at most once. If Rα becomes active but never finishes then
Wα is finite, so Rn, where n = |α|, (not just Rα) is met in this case. Now consider
the effect of our use of the diagonalization points when Rα finishes via x. Suppose
that β ⊃ α was active at stage x and that we set ϕe(e) = θβ(e) for some e ∈ Eβ .
The effect of this definition is that no function of type β is DNR, since θβ is not
DNR.

5.3. The construction. It is convenient to assume that W0 is empty. Rλ is active
at all stages. For all α, Rα_0 becomes active at the first stage s ≥ maxEα_0. For
i ≥ 0, if Rα_i finishes at stage s, then it is not active at stages s′ > s, and Rα_(i+1)

becomes active at stage s+ 1.
At each stage s, take the Rα which are active at stage s in lexicographical order,

and perform their instructions. Then for all σ of length s+ 1, define Ψσ(s) = i(α),
where α is the longest string such that Rα is active at stage s and σ has type α.

5.4. The verification. The basic idea is that when Rα finishes, our use of diago-
nalization points means that it is permanently satisfied. If we consider a single n,
we can see that Rα is met for all α of length n, and hence Rn is met. Namely, if the
strategy for some Rα starts and fails to finish, then Rn is met as remarked above.
Otherwise, Rα finishes for every α of length n, meeting Rα permanently. Now let
us see this in more detail.

First we show by induction on n, that for every function f there is a unique α
of length n such that f extends θα. This is obvious for n = 0. Now suppose that it
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is true for n. First we show existence. Let f be given. Choose α of length n such
that f extends θα. Then the restriction of f to ∪β⊆αEβ ∪E+

α is an extension of θα
to ∪β⊆αEβ ∪E+

α , and so is equal to θα_i for some i. In order to show uniqueness,
first note that α is unique by the induction hypothesis. If f ⊇ θα_j , then θα_j and
θα_i are compatible, meaning that i = j.

Next we observe that, when β ⊃ α, and α finishes via x, there is a least e ∈ Eβ
such that ϕe(e) is not yet defined, and for which we can define ϕe(e) = θβ(e) if β
was active at stage x. This follows since |Eβ | is the same as the number of proper
initial segments of β, and each of these can finish at most once. When α ⊂ β, and
α finishes via x, there is at most one sibling β′ of β, which is active at stage x,
meaning that for e ∈ Eβ = Eβ′ with ϕe(e) as yet undefined, we are free to define
ϕe(e) = θβ′(e) for this β′. (Here we consider β to be a sibling of itself.)

In order that the instructions should be well defined, we also have to check that
if |σ| = s+ 1 then there is a longest α such that Rα is active at stage s and σ has
type α. Since Rλ is always active, there exists at least one α such that Rα is active
at stage s and σ is of type α. The fact that there is a longest such, then follows
from the fact that θα and θγ are incompatible when α and γ are incompatible. If
both α and γ are active at stage s then any σ of length s + 1 which is of type α
and type β extends θα and θβ .

We show next that R2n is met (the verification for R2n+1 being almost identical).
Since we have shown that for every function f there is a unique α of length 2n such
that f extends θα, it suffices to show that Rα is met for all α of length 2n . Fix
such an α, fix f which is DNR and extends θα and assume that Wn is infinite. We
must show that Ψf ∩Wn is nonempty. Since we are assuming that W0 is empty,
we can let β and i be such that α = β_i. Since Wn is infinite, it is easy to show
by induction on j, that each requirement Rβ_j starts acting at some stage and
also finishes. Suppose α starts acting at stage s and finishes at stage t, via the
enumeration of x into Wn. We have s ≤ x < t, so at stage x the requirement Rα
is active. Letting σ be the initial segment of f of length x + 1, we have that σ is
of type α since f extends θα. If Ψσ(x) = 1, then x ∈ Ψf ∩Wn, so we are done.
Otherwise, at stage x, some Rγ requests that Ψσ(x) = 0 where |γ| ≥ |σ| and σ is
also of type γ. We claim that γ properly extends σ. Since σ extends both θγ and
θα, γ and α are compatible. Since γ and β have lengths of opposite parity and
|γ| ≥ |σ|, it follows that γ properly extends σ, as claimed. By construction, since
γ was active at stage x, for some e ∈ Eγ , we set ϕe(e) = θγ(e), so that θγ is not
DNR. Now f ⊇ σ ⊇ θγ so f is not DNR, and hence this case does not arise.

6. An open question

We finish by mentioning an open question concerning a possible strengthening
of our main result. We first need a definition

Definition 6.1. A set A is called effectively immune if A is infinite and there is a
computable function f such that, for all e, if We ⊆ A, then |We| < f(e). Of course,
then A is called effectively bi-immune if both A and A are effectively immune. Let
EBI be the class of effectively bi-immune sets.

Question 1. The following related questions are open.

(i) Does every DNR function compute an effectively bi-immune set? In other
words, is it the case that EBI ≤w DNR?
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(ii) Is it the case that EBI ≤s DNR?
(iii) Is every DNR function Turing equivalent to an effectively bi-immune set?

Stephen Simpson has kindly brought to our attention that he announced a pos-
itive solution to (iii) in [?] but that he subsequently retracted the claim, after it
was questioned by Bjørn Kjos-Hanssen. Of course, a positive solution to (ii) would
strengthen our main result, Theorem ??, as well as Theorem 7 of [?], which essen-
tially asserts that every DNR function computes a bi-immune set. However, the
methods of our paper do not seem adequate to prove (iii).
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