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Abstract. In the present paper we give two applications of the Jump
inversion theorem for the degree spectra [12], which says that every jump
spectrum is also a spectrum and that if a spectrum A is contained in
the set of the jumps of the degrees in some spectrum B then there ex-
ists a spectrum C such that C € B and A is equal to the set of the
jumps of the degrees in C. In the first application we give a method of
constructing a structure, possessing an nth - jump degree equal to o™
and which has no kth -jump degree for k£ < n. In the second result we
relativize Wehner’s construction [13] and obtain a structure whose nth
-jump spectrum contains all degrees above an arbitrary fixed degree.
Key words: Turing degrees; degree spectra; forcing; Marker’s exten-
sions; enumerations.

1 Degree spectra and jump spectra

Let 2 = (A; Ry,...,Rs) be a countable structure, where the set A is infinite,
each R; C A™ and the equality = is among R, ..., R;.

The notion of a degree spectrum of a countable structure is introduced by
RICHTER [9] and further studied by AsH, DOWNEY, JOCKUSH and KNIGHT [1,
2,6].

An enumeration f of 2 is a total mapping of N onto A.

Given a set R C A% and an enumeration f of 2, let

FHR) = {{a1s - za) | (f(21), -+, f(=a)) € R}
Let f~H(2A) = f~H(Ri) @...® f1(Rs).
Definition 1. The degree spectrum of 2 is the set

DS(2A) = {dr(f~*(A)) | f is an enumeration of A} .
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Here by dr(B) we denote the Turing degree of the set B.
For every structure 2 the degree spectrum DS(2) is closed upwards [11], i.e.
for all Turing degrees a and b, a € DS() & a < b = b € DS().

Definition 2. The jump spectrum of 2 is the set DS; () = {a’ | a € DS()}.

Theorem 3. [12] For every structure 2 there exists a structure B such that
DS; () = DS(®B).

The structure B is constructed in two stages. First, we define the least acceptable
extension A* of /A which we call Moschovakis’ extension of 2. Roughly speaking
2A* is an extension of 2 with additional coding machinery. Using this coding
machinery we define the set Kg which is an analogue of Kleene’s set K. Finally
we set B = (A*, Kg().

Theorem 4. [12] Let A and B be structures such that DS(A) C DS1(B). Then
there exists a structure € such that DS(€) C DS(B) and DS;(€) = DS().

The structure € is obtained as a Marker’s extension of 2 [8], coding B in €.
In the construction we use a relativized variant of the representation of X9 sets
of GONCHAROV and KHOUSSAINOV [3].

Definition 5. Let n > 1. The nth jump spectrum of 2 is the set DS, () =
{a(™ | a € DS(A)}.

One can easily see by induction on n that for every n there exists a structure
2™ such that DS, () = DS(AM).

Theorem 6. [12] Let 2 and B be structures such that DS(A) C DS,,(B). Then
there exists a structure € such that DS(€) C DS(B) and DS, (€) = DS().

2 Some Applications

Definition 7. A degree a is said to be the nth jump degree of a structure 2 if
a is the least element of DS, ().

Notice that if a is the nth jump degree of 2 then for all k, a*) is the (n+k)th
jump degree of 2. Hence if a structure 2 possesses an nth jump degree then it
possesses (n + k)th jump degrees for all k.

The definitions above can be naturally generalized for all recursive ordinals
a. In [2] DowNEY and KNIGHT proved with a fairly complicated construction
that for every recursive ordinal « there exists a linear ordering 2 such that A
has ath jump degree equal to 0(* but for all # < «, there is no Sth jump degree
of 2.

Here we shall present a construction which allows us to obtain for every
natural number n examples of structures which have (n + 1)st jump degree but
do not have kth jump degree for £ < n.

The idea of this construction is the following. In [12] we give an example of
a group U, a subgroup of the set of rational numbers, satisfying the following
conditions:



1. DS(A) C {a: 0™ < a}.
2. DS(2() has no least element.
3. 2 has a first jump degree equal to 0(*+1),

Let B = (N;=) be a structure such that DS(B) is equal to the set of all
Turing degrees. Clearly DS(2() C DS,,(®8). By Theorem 6, there exists a structure
¢ such that DS, (€) = DS(2). Therefore € does not have an nth jump degree
and hence it has no kth jump degree for k < n. On the other hand DS,,11(€) =
DS;(20) and hence the (n + 1)th jump degree of € is 0 +1),

Our second application is a generalization of results of SLAMAN [10] and
WEHNER [13]. They give an example of a structure with degree spectrum con-
sisting of all nonrecursive Turing degrees.

Theorem 8. [13] There is a family of finite sets, which has no r.e. enumeration,
i.e. r.e. universal set, and for each nonrecursive set X there is a enumeration
recursive in X.

First we relativize this theorem.

Theorem 9. Let B C N. There is a family F of sets, which has no r.e. in B
enumeration, and for each set X >p B there is a enumeration of the family F,
recursive in X.

Following an idea of KALIMULLIN [7] we consider the following family of sets
F={{0}eBYu{{1}@B}U{{n+2}@ F | F finite set, F # W7}.

Proposition 10. Let X C N. If a universal for F set U is r.e. in X then
X >r B.

It is clear that B <p X.

If we assume that B =7 X, then we can construct a recursive in B function
g, such that (Vn)(W[ = # W7). This is a contradiction with the recursion
theorem.

Proposition 11. Let B <p X. There exists a universal set U for the family F,
such that U <7 X.

Since X £ B then at least one of the sets X or X is not r.e. in B. Without
loss of generality assume that X is not r.e. in B. Fix an enumeration of X =
{z1,...,zs,...} and denote by vs = (z1,...,xs).

The set U we construct in stages. At each stage s we find an approximation
U® of U and a witness z;, -, for every finite set F' and i,n € N.

Construction

U°={(0,00} U{(0,2z+1) |z € Byu{(1,2)}u{(1,22+1) | = € B}U (1)
{({n, Fyiy+2,2n+ )} U{((n, F,i) +2,2c+ 1) |z € F}

for each finite set F and i,n € N and let 2 ., = —1.
At stage s, denote by F(,, p v ={x | ((n, F,i) + 2,22 +1) € U"}.



— I F}, gy # WP and @5, # =1, we set a3, = 25, 5

— I F, pyy = WP and @3, p; # —1, we set 25z, = —1 and add ((n, F,4) +
2,2vs + 1) to USTL.

— If 23 p; = —1, we check if there is a z such that z € F}} ., ¢ z € wpB.,.
If there is such a number z, we set xff}l to be the least one. If not, we add
({n, F,i) + 2,20, + 1) to U

End of construction
Let U=,U® and F = J F*.
Consider the sequence {z;, p;}-

1. If this sequence has a limit a natural number, i.e. it is stable for all s > sq
for some sg, then the index (n, F, i) is an index of a finite set from the family
F.

2. If the sequence has a limit —1 or it does not have a limit at all, then there
exists a monotone sequence of stages s; < s3 < ... < s < ..., such that
WPh, ={vs, | ke N}UF. It follows that the set {v,, |k € N} isr.e. in B,
and hence X is r.e. in B. A contradiction.

It follows that every set with index greater than 1 in U is finite and belongs to
the family F. It is clear that every member of the family F has an index.
Moreover ({n, F,i) +2,2x + 1) € U if and only if one of the following holds:

1. x € F;
2. z = (vy,...,Vs), for some s.

Hence U <7 X.
So the constructed set U is universal for the family F and U <p X.

Theorem 12 (Wehner, Slaman). [13/[10] There is a structure €, for which
DS(€) ={z | z >r 0}.

The relativized result is the following:

Theorem 13. For eachn € N and every Turing degree b > 0" there exists €,
for which DS, (€) = {x | x > b} .

We construct the structure 2, such that DS() = {z | x > b}, using the
family F in the same way as is done in [13]. Let B = (N;=). It is clear that
b € DS,,(B) for each b > 0. Thus DS(A) C DS, (B). By the Jump inversion
Theorem 6 there exists a structure €, such that DS, (€) = DS(2).

Finally we would like to note that there is a relativized variant of WEHNER’S
result for b = 0 and for b = 0" as follows:

Theorem 14. [}] For every n there is a structure €, such that DS(€) = {z |
A 0(”)}, i.e. the degree spectrum contains exactly all non-low, Turing
degrees.

Theorem 15. [5] There is a structure €, such that DS(€) = {z | 2’ >7 0"}.



And the last authors made a suggestion that they can use an arbitrary Turing
degree b in place of 0" and thereby building structures with spectrum {z | 2’ >r

b}.

In conclusion would like to point out that the Jump inversion theorem gives

a method to lift some interesting results for degree spectra to the nth jump
spectra.
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