Some applications of the Jump Inversion Theorem for the Degree Spectra

Alexandra A. Soskova and Ivan N. Soskov *

Faculty of Mathematics and Informatics, Sofia University, 5 James Bourchier blvd., 1164 Sofia, Bulgaria, asoskova@fmi.uni-sofia.bg; soskov@fmi.uni-sofia.bg

Abstract. In the present paper we give two applications of the Jump inversion theorem for the degree spectra [12], which says that every jump spectrum is also a spectrum and that if a spectrum \mathcal{A} is contained in the set of the jumps of the degrees in some spectrum \mathcal{B} then there exists a spectrum \mathcal{C} such that $\mathcal{C} \subseteq \mathcal{B}$ and \mathcal{A} is equal to the set of the jumps of the degrees in \mathcal{C} . In the first application we give a method of constructing a structure, possessing an nth - jump degree equal to $\mathbf{0}^{(n)}$ and which has no kth -jump degree for k < n. In the second result we relativize Wehner's construction [13] and obtain a structure whose nth -jump spectrum contains all degrees above an arbitrary fixed degree.

Key words: Turing degrees; degree spectra; forcing; Marker's extensions; enumerations.

1 Degree spectra and jump spectra

Let $\mathfrak{A} = (A; R_1, \dots, R_s)$ be a countable structure, where the set A is infinite, each $R_i \subseteq A^{r_i}$ and the equality = is among R_1, \dots, R_s .

The notion of a degree spectrum of a countable structure is introduced by RICHTER [9] and further studied by ASH, DOWNEY, JOCKUSH and KNIGHT [1, 2,6].

An enumeration f of \mathfrak{A} is a total mapping of \mathbb{N} onto A. Given a set $R \subseteq A^a$ and an enumeration f of \mathfrak{A} , let

$$f^{-1}(R) = \{ \langle x_1, \dots, x_a \rangle \mid (f(x_1), \dots, f(x_a)) \in R \}.$$

Let
$$f^{-1}(\mathfrak{A}) = f^{-1}(R_1) \oplus \ldots \oplus f^{-1}(R_s)$$
.

Definition 1. The degree spectrum of \mathfrak{A} is the set

$$DS(\mathfrak{A}) = \{d_T(f^{-1}(\mathfrak{A})) \mid f \text{ is an enumeration of } \mathfrak{A}\}\$$
.

 $^{^{\}star}$ This work was partially supported by Bulgarian National Science Fund under contract D002-258/18.12.08

Here by $d_{\rm T}(B)$ we denote the Turing degree of the set B.

For every structure \mathfrak{A} the degree spectrum $\mathrm{DS}(\mathfrak{A})$ is closed upwards [11], i.e. for all Turing degrees \mathbf{a} and \mathbf{b} , $\mathbf{a} \in \mathrm{DS}(\mathfrak{A})$ & $\mathbf{a} \leq \mathbf{b} \Rightarrow \mathbf{b} \in \mathrm{DS}(\mathfrak{A})$.

Definition 2. The jump spectrum of \mathfrak{A} is the set $DS_1(\mathfrak{A}) = \{ \mathbf{a}' \mid \mathbf{a} \in DS(\mathfrak{A}) \}.$

Theorem 3. [12] For every structure \mathfrak{A} there exists a structure \mathfrak{B} such that $\mathrm{DS}_1(\mathfrak{A}) = \mathrm{DS}(\mathfrak{B})$.

The structure \mathfrak{B} is constructed in two stages. First, we define the least acceptable extension \mathfrak{A}^* of \mathfrak{A} which we call *Moschovakis' extension* of \mathfrak{A} . Roughly speaking \mathfrak{A}^* is an extension of \mathfrak{A} with additional coding machinery. Using this coding machinery we define the set $K_{\mathfrak{A}}$ which is an analogue of Kleene's set K. Finally we set $\mathfrak{B} = (\mathfrak{A}^*, K_{\mathfrak{A}})$.

Theorem 4. [12] Let \mathfrak{A} and \mathfrak{B} be structures such that $DS(\mathfrak{A}) \subseteq DS_1(\mathfrak{B})$. Then there exists a structure \mathfrak{C} such that $DS(\mathfrak{C}) \subseteq DS(\mathfrak{B})$ and $DS_1(\mathfrak{C}) = DS(\mathfrak{A})$.

The structure \mathfrak{C} is obtained as a *Marker's extension* of \mathfrak{A} [8], coding \mathfrak{B} in \mathfrak{C} . In the construction we use a relativized variant of the representation of Σ_2^0 sets of Goncharov and Khoussainov [3].

Definition 5. Let $n \geq 1$. The nth jump spectrum of \mathfrak{A} is the set $DS_n(\mathfrak{A}) = \{\mathbf{a}^{(n)} \mid \mathbf{a} \in DS(\mathfrak{A})\}.$

One can easily see by induction on n that for every n there exists a structure $\mathfrak{A}^{(n)}$ such that $\mathrm{DS}_n(\mathfrak{A}) = \mathrm{DS}(\mathfrak{A}^{(n)})$.

Theorem 6. [12] Let \mathfrak{A} and \mathfrak{B} be structures such that $DS(\mathfrak{A}) \subseteq DS_n(\mathfrak{B})$. Then there exists a structure \mathfrak{C} such that $DS(\mathfrak{C}) \subseteq DS(\mathfrak{B})$ and $DS_n(\mathfrak{C}) = DS(\mathfrak{A})$.

2 Some Applications

Definition 7. A degree **a** is said to be the *nth jump degree* of a structure \mathfrak{A} if **a** is the least element of $DS_n(\mathfrak{A})$.

Notice that if **a** is the *n*th jump degree of \mathfrak{A} then for all k, $\mathbf{a}^{(k)}$ is the (n+k)th jump degree of \mathfrak{A} . Hence if a structure \mathfrak{A} possesses an *n*th jump degree then it possesses (n+k)th jump degrees for all k.

The definitions above can be naturally generalized for all recursive ordinals α . In [2] DOWNEY and KNIGHT proved with a fairly complicated construction that for every recursive ordinal α there exists a linear ordering $\mathfrak A$ such that $\mathfrak A$ has α th jump degree equal to $\mathbf 0^{(\alpha)}$ but for all $\beta < \alpha$, there is no β th jump degree of $\mathfrak A$.

Here we shall present a construction which allows us to obtain for every natural number n examples of structures which have (n+1)st jump degree but do not have kth jump degree for $k \le n$.

The idea of this construction is the following. In [12] we give an example of a group \mathfrak{A} , a subgroup of the set of rational numbers, satisfying the following conditions:

- 1. $DS(\mathfrak{A}) \subseteq \{\mathbf{a} : \mathbf{0^{(n)}} \le \mathbf{a}\}.$
- 2. $DS(\mathfrak{A})$ has no least element.
- 3. \mathfrak{A} has a first jump degree equal to $\mathbf{0}^{(n+1)}$.

Let $\mathfrak{B} = (N; =)$ be a structure such that $\mathrm{DS}(\mathfrak{B})$ is equal to the set of all Turing degrees. Clearly $\mathrm{DS}(\mathfrak{A}) \subseteq \mathrm{DS}_n(\mathfrak{B})$. By Theorem 6, there exists a structure \mathfrak{C} such that $\mathrm{DS}_n(\mathfrak{C}) = \mathrm{DS}(\mathfrak{A})$. Therefore \mathfrak{C} does not have an nth jump degree and hence it has no kth jump degree for $k \leq n$. On the other hand $\mathrm{DS}_{n+1}(\mathfrak{C}) = \mathrm{DS}_1(\mathfrak{A})$ and hence the (n+1)th jump degree of \mathfrak{C} is $\mathbf{0}^{(n+1)}$.

Our second application is a generalization of results of Slaman [10] and Wehner [13]. They give an example of a structure with degree spectrum consisting of all nonrecursive Turing degrees.

Theorem 8. [13] There is a family of finite sets, which has no r.e. enumeration, i.e. r.e. universal set, and for each nonrecursive set X there is a enumeration recursive in X.

First we relativize this theorem.

Theorem 9. Let $B \subseteq N$. There is a family \mathcal{F} of sets, which has no r.e. in B enumeration, and for each set $X >_T B$ there is a enumeration of the family \mathcal{F} , recursive in X.

Following an idea of Kalimullin [7] we consider the following family of sets

$$\mathcal{F} = \{\{0\} \oplus B\} \cup \{\{1\} \oplus \overline{B}\} \cup \{\{n+2\} \oplus F \mid F \text{ finite set, } F \neq W_n^B\}.$$

Proposition 10. Let $X \subseteq N$. If a universal for \mathcal{F} set U is r.e. in X then $X >_T B$.

It is clear that $B \leq_T X$.

If we assume that $B \equiv_T X$, then we can construct a recursive in B function g, such that $(\forall n)(W_{g(n)}^B \neq W_n^B)$. This is a contradiction with the recursion theorem.

Proposition 11. Let $B <_T X$. There exists a universal set U for the family \mathcal{F} , such that $U \leq_T X$.

Since $X \not\leq B$ then at least one of the sets X or \overline{X} is not r.e. in B. Without loss of generality assume that X is not r.e. in B. Fix an enumeration of $X = \{x_1, \ldots, x_s, \ldots\}$ and denote by $\nu_s = \langle x_1, \ldots, x_s \rangle$.

The set U we construct in stages. At each stage s we find an approximation U^s of U and a witness $x_{n,F,i}^s$ for every finite set F and $i,n \in \mathbb{N}$.

Construction

$$U^{0} = \{(0,0)\} \cup \{(0,2x+1) \mid x \in B\} \cup \{(1,2)\} \cup \{(1,2x+1) \mid x \notin B\} \cup \{(\langle n,F,i \rangle + 2,2n+4)\} \cup \{(\langle n,F,i \rangle + 2,2x+1) \mid x \in F\}$$

$$(1)$$

for each finite set F and $i,n\in N$ and let $x_{n,F,i}^0=-1$. At stage s, denote by $F_{\langle n,F,i\rangle}^s=\{x\mid (\langle n,F,i\rangle+2,2x+1)\in U^s\}.$

- If $F^s_{\langle n,F,i\rangle} \neq W^B_{n,s}$ and $x^s_{n,F,i} \neq -1$, we set $x^{s+1}_{n,F,i} = x^s_{n,F,i}$. If $F^s_{\langle n,F,i\rangle} = W^B_{n,s}$ and $x^s_{n,F,i} \neq -1$, we set $x^{s+1}_{n,F,i} = -1$ and add $(\langle n,F,i\rangle + 1)$ $(2, 2\nu_s + 1)$ to U^{s+1} .
- If $x_{n,F,i}^s = -1$, we check if there is a z such that $z \in F_{\langle n,F,i \rangle}^s \not\Leftrightarrow z \in W_{n,s}^B$. If there is such a number z, we set $x_{n,F,i}^{s+1}$ to be the least one. If not, we add $(\langle n, F, i \rangle + 2, 2\nu_s + 1)$ to U^{s+1} .

End of construction

Let
$$U = \bigcup_s U^s$$
 and $F = \bigcup_s F^s$.
Consider the sequence $\{x_{n,F,i}^s\}$.

- 1. If this sequence has a limit a natural number, i.e. it is stable for all $s \geq s_0$ for some s_0 , then the index $\langle n, F, i \rangle$ is an index of a finite set from the family
- 2. If the sequence has a limit -1 or it does not have a limit at all, then there exists a monotone sequence of stages $s_1 < s_2 < \ldots < s_k < \ldots$, such that $W_{n,s}^B = \{\nu_{s_k} \mid k \in N\} \cup F$. It follows that the set $\{\nu_{s_k} \mid k \in N\}$ is r.e. in B, and hence X is r.e. in B. A contradiction.

It follows that every set with index greater than 1 in U is finite and belongs to the family \mathcal{F} . It is clear that every member of the family \mathcal{F} has an index.

Moreover $(\langle n, F, i \rangle + 2, 2x + 1) \in U$ if and only if one of the following holds:

- 1. $x \in F$;
- 2. $x = \langle \nu_0, \dots, \nu_s \rangle$, for some s.

Hence $U \leq_T X$.

So the constructed set U is universal for the family \mathcal{F} and $U \leq_T X$.

Theorem 12 (Wehner, Slaman). [13][10] There is a structure €, for which $DS(\mathfrak{C}) = \{x \mid x >_T 0\}.$

The relativized result is the following:

Theorem 13. For each $n \in N$ and every Turing degree $b \ge 0^{(n)}$ there exists \mathfrak{C} , for which $DS_n(\mathfrak{C}) = \{x \mid x >_T b\}$.

We construct the structure \mathfrak{A} , such that $DS(\mathfrak{A}) = \{x \mid x >_T b\}$, using the family \mathcal{F} in the same way as is done in [13]. Let $\mathfrak{B} = (N; =)$. It is clear that $b \in \mathrm{DS}_n(\mathfrak{B})$ for each $b \geq 0^{(n)}$. Thus $\mathrm{DS}(\mathfrak{A}) \subseteq \mathrm{DS}_n(\mathfrak{B})$. By the Jump inversion Theorem 6 there exists a structure \mathfrak{C} , such that $DS_n(\mathfrak{C}) = DS(\mathfrak{A})$.

Finally we would like to note that there is a relativized variant of Wehner's result for $b = 0^{(n)}$ and for b = 0'' as follows:

Theorem 14. [4] For every n there is a structure \mathfrak{C} , such that $DS(\mathfrak{C}) = \{x \mid$ $x^{(n)} >_T 0^{(n)}$, i.e. the degree spectrum contains exactly all non-low_n Turing

Theorem 15. [5] There is a structure \mathfrak{C} , such that $DS(\mathfrak{C}) = \{x \mid x' \geq_T 0''\}$.

And the last authors made a suggestion that they can use an arbitrary Turing degree b in place of 0'' and thereby building structures with spectrum $\{x \mid x' \geq_T b\}$.

In conclusion would like to point out that the Jump inversion theorem gives a method to lift some interesting results for degree spectra to the nth jump spectra.

References

- Ash, C. J., Jockush, C., Knight, J. F.: Jumps of orderings. Trans. Amer. Math. Soc. 319 (1990) 573–599
- 2. Downey, R. G., Knight, J. F. : Orderings with α th jump degree $\mathbf{0}^{(\alpha)}$. Proc. Amer. Math. Soc. **114** (1992) 545–552
- 3. Goncharov, S., Khoussainov, B.: Complexity of categorical theories with computable models. Algebra and Logic, 43, No. 6, (2004) 365–373
- Goncharov, S., Harizanov, V., Knight, J., McCoy, Ch., Miller, R. Solomon, R.: Enumerations in computable structure theory. Ann. Pure Appl. Logic, 13(3) (2005) 219–246
- Harizanov, V., Miller, R.: Spectra of structures and relations. J. Symbolic Logic 72(1) (2007) 324–348
- Knight, J. F.: Degrees coded in jumps of orderings. J. Symbolic Logic 51 (1986) 1034–1042
- Kallimulin, I.: Some notes on degree spectra of the structures. LNCS 4497 (2007) 389–397
- 8. Marker, D.: Non Σ_n -axiomatizable almost strongly minimal theories. J. Symbolic Logic **54** No. 3,(1989) 921–927
- 9. Richter, L. J.: Degrees of structures. J. Symbolic Logic 46 (1981) 723-731
- Slaman T. A.: Relative to any nonrecursive set. Proc. Amer. Math. Soc. 126 (1998) 2117–2122
- 11. Soskov, I. N. : Degree spectra and co-spectra of structures. Ann. Univ. Sofia $\bf 96$ (2004) 45--68
- Soskova, A., Soskov, I. N.: A Jump Inversion Theorem for the Degree Spectra. J Logic Computation 19, (2009) 199–215
- 13. Wehner St. : Enumerations, Countable Structures and Turing Degrees. Proc. of Amer. Math. Soc. 126 (1998) 2131–2139