
Effective reducibilities and Degree spectra of

Abstract structures

Alexandra A. Soskova and Ivan N. Soskov

Faculty of Mathematics and Computer Science

Sofia University

5 James Bourchier Blvd.

1164 Sofia, Bulgaria

August 15, 2011

1

Abstract

We introduce the basic notions and facts of the classical Computability

theory. The accent is on the relative computability and some reducibilities

among sets and functions, as Turing reducibility, many-one reducibility,

c.e. reducibility and enumeration reducibility. We show how the structure

of Turing degrees can be embedded isomorphically into the structure of

the enumeration degrees. We illustrate some basic methods as forcing,

genericity and prove some basic theorems as Fridberg’s Jump Inversion

Theorem for the Turing jump and the existence of quasi-minimal enu-

meration degree, the minimal pair theorem and the Selman’s theorem for

the enumeration degrees. We give an illustration how the Computability

theory is applied in the Computable structure theory. We give an survey

of some general properties of the degree spectra of a structure which show

that they behave with respect to their co-spectra very much like the cones

of enumeration degrees. Among the results are the analogs of Selman’s

Theorem, the Minimal Pair Theorem and the existence of a quasi-minimal

enumeration degree. We consider the relationships between the spectra

and the jump spectra. Our first result is that every jump spectrum is also

a spectrum. The main result is a Jump inversion theorem for the degree

spectra.

Contents

1 Introduction 2

1Research partially supported by BNSF, contract No: D002-258/18.12.08.

1

2 Relative computability 3

2.1 Computable functions . 3
2.2 Turing reducibility . 6
2.3 Many-one reducibility . 7
2.4 c.e.-reducibility . 8

3 Turing degrees and Turing jump 9

3.1 Turing degrees . 9
3.2 The Turing jump . 10
3.3 Genericity . 10
3.4 Jump Inversion Theorem . 13

4 Enumeration reducibility 13

4.1 Enumeration operator . 13
4.2 Enumeration degrees . 16
4.3 Quasi-minimal degree . 17
4.4 Selman’s theorem . 18
4.5 Minimal pair theorem . 19

5 Degree Spectra and Co-spectra 21

5.1 Enumeration Degree Spectra . 21
5.2 The Minimal pair theorem for Degree spectra 25
5.3 The Quasi-minimal degree . 26
5.4 Jump spectra . 27
5.5 The Jump Inversion Theorem . 28
5.6 Applications . 29

1 Introduction

This is a short course on Computability theory and its applications in Com-
putable structure theory. We start with Kleene’s definition of the computable
functions, Turing computable functions based on the notion of Turing machines
and the Unlimited Register Machine - computable functions. It turns out that
all these notions describe the same class of functions and this is by the Church-
Turing thesis the class of all intuitively effective functions. The relativization of
the notion of computable functions could be obtain in different ways, comparing
the computability of two possibly incomputable sets of natural numbers and
using a different information of them. We consider some basic properties of the
Turing reducibility, many-one reducibility and c.e. reducibility. In the next sec-
tion we introduce the properties of the Turing degrees and Turing jump, some
properties of the generic sets and the forcing relation in order to represent some
methods of this theory. We present the proof of the Fridberg’s Jump Inversion
Theorem. Next sections is devoted to the notion of enumeration operator, the
properties of enumeration reducibility and the connections with the other re-
ducibilities. We show how the Turing degrees are isomorphically embedded into

2

the enumeration degrees. We prove some basic properties of the enumeration
reducibility as the quasi-minimal degree, the minimal pair theorem and the Sel-
man’s theorem. In the last section we consider as an application of this theory
the notion of degree spectrum of a countable structure which is a measure of
complexity of the structure. We consider several examples of degree spectra and
co-spectra and prove some general properties of the degree spectra which show
that the degree spectra behave with respect to their co-spectra very much like
the cones of enumeration degrees. Among the results we would like to mention
are the analogs of Selmans Theorem, the Minimal Pair Theorem and the exis-
tence of a quasi-minimal enumeration degree. We introduce an analogue of a
jump of a structure and prove a jump inversion theorem for degree spectra and
that every jump spectrum is a spectrum of a structure.

We follow [5, 2] for the basic notions of Computability theory. The approach
and the structure of the explanations come from of the course on Recursion
theory in the Master program Logic and Algorithms, which was taught by the
second author in the past several years at Sofia university. And the last section
is based on [17, 18].

2 Relative computability

In this section we will introduce the class of computable functions. The goal is to
fix he notations and definitions and to remind some basic facts and theorems,
from the classical computability theory. All notions and theorems could be
found in [5, 2].

2.1 Computable functions

After Gödel’s formalization of the intuitive notion of a computable function,
Stephen Kleene gave this model of computability its final form, and he developed
the theory of computability (recursive function theory).

We will consider only partial functions on the set of the natural numbers
N = {0, 1, 2, . . .}. Denote by Fn the set of all partial functions on n arguments
on N.

Definition 2.1.1 (Kleene). A function f is partial recursive (p.r.) if it can be
obtained from the basics O = λx.0, S = λx.x + 1, and Ink = λx1, . . . , xn.xk
by the operations superposition, primitive recursion and µ operation applied
finitely many times, where

• the function h ∈ Fn is a superposition of gi ∈ Fn, i = 1 . . . k, and f ∈ Fk
iff λx1 . . . xn.h(x1, . . . , xn) = f(g1(x1, . . . , xn) . . . gn(x1, . . . , xn)),

• h ∈ Fn+1 is a primitive recursion of f ∈ Fn and g ∈ Fn+2 iff

h(x1, . . . , xn, 0) = f(x1, . . . , xn) and

h(x1, . . . , xn, y + 1) = g(x1, . . . , xn, y, h(x1, . . . , xn, y))

3

• h ∈ Fn is obtained by µ operation of f ∈ Fn+1 iff

h(x1, . . . , xn,) = µy[f(x1, . . . , xn, y) = 0]

(i.e. ∀z < y(↓ f(x1, . . . , xn, z) > 0)&f(x1, . . . , xn, y) = 0).

As usual a function in the natural numbers we call primitive recursive if it
can be obtained from O,S and Ikn by the operations superposition and primitive
recursion, applied finitely many times (without using the µ operation). We call
a p.r. function computable (recursive) if it is total.

Using the primitive recursive functions we can code different ”data struc-
tures” in the natural numbers, i.e. the n-tuples of natural numbers, the finite
sequences of natural numbers, the finite subsets of N.

Let 〈x, y〉 = 2x(2y + 1) − 1. It is easy to see that it is a bijection be-
tween N2 and N. Moreover there are primitive recursive decoding functions
L(〈x, y〉) = x and R(〈x, y〉) = y. Let π1(x) = x and πn+1(x1, . . . , xn+1) =
〈x1, πn(x2, . . . , xn+1)〉. Denote by 〈x1, . . . , xn〉 the code 〈n, πn(x1, . . . , xn)〉) of
the sequence x1, . . . , xn.

The finite set {x1, . . . , xn} we denote by Dv, where v = 2x1 + · · ·+ 2xn .
Several models of computation arise at the beginning of 20th century. The

first machine-based model is due to Alan Turing (1936). The basic hardware for
any Turing machine consists of a tape, subdivided into cells, which is infinitely
extendable in both directions, and a reading/writing head. Each Turing ma-
chine has a program, which uses finitely many internal states and a finite input
alphabet. The computation begins at the start state with the first symbol of
the input. The program decides at each step what action to be done: to replace
the current symbol and to move the head to the left or to the right by one
position or to stay at the same position. The natural numbers are represented
by strings in a finite alphabet, e.g. binary represented. If the machine comes
to a final state it stops and the result is on the tape, after the position of the
head. A function f on the natural numbers is computable by a Turing machine
M if for every input n the machine M stops whenever ↓ f(n) (is defined) and
M(n) = f(n).

As Cooper writes in [2] “It is a remarkable fact that computability exists
independently of any language used to describe it. Any sufficiently general
model of the computable functions gives the same class of functions.” This
prompts Alonzo Church and Alan Turing to conjecture the following in the
1930s.

Fact 2.1.2 (Church - Turing thesis). A function f is effectively computable iff
f is Turing computable.

What we mean by f being effectively computable is that there exists some
description of an algorithm, in some language, which can be used to compute
by finitely many steps any value f(x) for which ↓ f(x).

In support of the Church-Turing thesis it happens that all sufficiently general
known models of computability are equivalent, i.e. they compute the same class
of functions. Other computational models characterizing the intuitive idea of

4

effective computability are: general recursive functions of Gödel, Herbrand and
Kleene(1936), λ-definable function of Church (1936), Post canonical systems
(1943), Markov’s algorithms (1951), Unlimited Register Machines by Shepherd-
son and Sturgis (1963).

Unlimited Register Machines (or URMs) are mathematical abstractions of
real-life computers. URMs are more user-friendly than Turing machines. A
URM has registers R1, R2, . . . which store natural numbers r1, r2, A URM
program is a finite list of instructions each having one of four basic types: Z(n)
which says that rn = 0, S(n) : rn := rn + 1, T (m,n) : rn := rm and the goto
instruction J(m,n, q) : If rn = rm then go to instruction with a label q else go
to next instruction. Each URM computation using a given program starts with
instruction number 1 on the list and carries out the rest in numerical order
unless told to jump. A computation will halt if it runs out of instructions to
obey. The result is obtained in R1.

A function f is computable by a URM program P if P halts only on the
elements of the domain of the function f and gives the same result as f . f is
URM-computable if and only if there is a URM program which computes f .

Proposition 2.1.3. A function is URM - computable iff it is Turing computable
iff it is partial recursive.

So we will identify p.r. functions with the Turing computable ones and with
URM - computable ones.

Consider an effective coding of all URM programs. By ϕe we will denote

the function, computable by the program with code e. Let {ϕ
(n)
e }e∈ω be the

standard listings of the URM computable functions on n arguments.

Theorem 2.1.4 (Kleene’s normal form theorem). There exists a primitive re-
cursive function Tn such that

1. ↓ ϕ
(n)
e (x̄) ⇐⇒ ∃z[Tn(e, x̄, z) = 0];

2. ϕ
(n)
e (x̄) = L(µz[Tn(e, x̄, z) = 0]).

Theorem 2.1.5 (Smn -theorem). There is a primitive recursive function Smn :

ϕ(m+n)
a (x̄, ȳ) ≃ ϕ

(n)
Sm
n
(a,x̄)(ȳ),

for every a, x̄, ȳ.

Theorem 2.1.6 (Universal function theorem). There is a partial recursive func-
tion Un ∈ Fn+1

ϕ(n)
a (x̄) ≃ Un(a, x̄)

for every a, x̄.

The characteristic function of a subset A of N we denote by

cA(x) =

{

1 , x ∈ A

0 , x /∈ A.

5

The set A is computable iff cA is computable.
The semi-characteristic function of A we denote by:

χA(x) ≃

{

1 , x ∈ A

¬ ↓ , x /∈ A.

The set A is computable enumerable (c.e.) if χA is p.r. The c.e. sets are the
domains of the p.r. functions. The set A is c.e if there is an effective process
for enumerating all the members of A, or more formally: if A = ∅ or there
is a computable function f such that A = {f(0), f(1), ...} = range(f). The
computable sets are closed under union, intersection and complement, and the
c.e. sets are closed under union and intersection. Every computable set is c.e..

The connection between computable and c.e sets is given by Post’s theorem:
the set A is computable iff A and Ā are c.e.. The Kleene set K = {x | x ∈Wx}
is c.e. (by the Universal function theorem K is the domain of λx.U1(x, x)), but
not computable since its complement is not c.e..

Denote by W
(n)
e = dom(ϕ

(n)
e) the computably enumerable (c.e.) set which

is the domain of ϕ
(n)
e .

The normal form of the c.e sets is: W
(n)
e = {x̄ | ∃z[Tn(e, x̄, z) = 0]}.

2.2 Turing reducibility

Let φ be a partial function on N, which we will refer to as an oracle.

Definition 2.2.1. A function is computable in φ if it can be obtained from
the basic functions O, S, Ink and φ by superposition, primitive recursion and
µ-operation, applied finitely many times.

We can relativize the notion of a URM program: a URM program with oracle
φ is a URM program with an additional command O(n), which sends a query
to the oracle about its value on argument: the number, which is contained in
the nth register. If the oracle φ(rn) is defined, then the result φ(rn) is obtained
in the nth register, otherwise the computation does not halt. A function f is
URM computable with oracle φ if there is a URM program with oracle φ which
computes f . It turns out that a function f is URM computable with oracle φ
iff f is computable in φ.

The Normal form theorem for the functions computable in φ, the Smn theo-
rem, the Universal function theorem, and all the properties of the computable
functions and c.e. sets are relativized naturally.

Definition 2.2.2. A function f is Turing reducible to the function φ (f ≤T φ)
if f is computable in φ.

Let A ⊆ N be given. We say that a function f is computable in A, if f is
computable in cA.

We will denote the functions that are computable in A by {ϕAe }e∈ω. We use
also the notation {e}A for ϕAe . The computable in A functions coincide with

6

the A - Turing computable ones, i.e. computable with a Turing machine with
oracle A.

For sets A,B ⊆ N:

Definition 2.2.3. B is Turing reducible to A (B ≤T A) if the characteristic
function cB ≤T cA.

The intuition behind this definition is as follows: we want B to be com-
putable from A if we can give a yes or no answer to every membership question
of the form Is n ∈ B? using additionally finitely many answers to similar ques-
tions about the set A Is m1 ∈ A?, Is m2 ∈ A?, . . . , Is mk ∈ A?. The immediate
properties are:

1. If A ⊆ N is computable, then (∀B ⊆ N)(A ≤T B), i.e. cA ≤T B for an
arbitrary oracle B.

2. A ≤T N ⇒ A is computable.

3. A ≤T A.

2.3 Many-one reducibility

A stronger reducibility is the many-one reducibility (m-reducibility), which gives
a very natural way of comparing the computability of different possibly incom-
putable sets of natural numbers A and B.

Definition 2.3.1. The set A is many-one reducible (m-reducible) to B if

A ≤m B ⇐⇒ (∃ total computable function h)(∀x)(x ∈ A ⇐⇒ h(x) ∈ B).

It is clear that if B is computable (c.e) and A ≤m B then A is computable
(c.e.).

Proposition 2.3.2. A is c.e. iff A ≤m K.

Proof. Let A be c.e. Define:

g(x, y) ≃

{

0 , x ∈ A

¬ ↓ , x /∈ A.

Since g is p.r., by the Smn theorem, there is a primitive recursive function h,
such that ϕh(x)(y) ≃ g(x, y). Then x ∈ A ⇐⇒ ↓ ϕh(x)(h(x)) ⇐⇒ h(x) ∈ K.
For the other direction it is enough to mention that K is c.e.

Proposition 2.3.3. A ≤m B,B ≤m C ⇒ A ≤m C.

Proof. Let x ∈ A ⇐⇒ h(x) ∈ B and x ∈ B ⇐⇒ g(x) ∈ C, where g and h are
computable. Then x ∈ A ⇐⇒ g(h(x)) ∈ C, i.e. A ≤m C.

Proposition 2.3.4. If A ≤m B, then A ≤T B. Morover K̄ ≤T K, K̄ 6≤m K.

Proof. Let A ≤m B by h. Using h we construct a program which computes
h(x) and asks the oracle B if h(x) ∈ B. If we assume that K̄ ≤m K, then K̄
will be c.e. which we know is a contradiction.

7

2.4 c.e.-reducibility

Definition 2.4.1. A is computable enumerable (c.e.) inB:

A ≤c.e. B ⇐⇒ A = dom({a}B)

for some program with code a.

It follows from the definition:

1. If A is c.e., then (∀B)(A ≤c.e. B).

2. If A ≤c.e. N, then A is c.e.

Proposition 2.4.2. A ≤m B,B ≤c.e. C ⇒ A ≤c.e. C.

Proof. Let A ≤m B and h be a computable function: x ∈ A ⇐⇒ h(x) ∈ B
and e: B = dom(ϕCe). Consider g(x) ≃ ϕCe (h(x)). Then x ∈ A ⇐⇒ h(x) ∈
B ⇐⇒ ↓ g(x). Hence A = dom(g) but g ≤T C, then A ≤c.e. C.

Proposition 2.4.3. A ≤T B ⇒ A ≤c.e. B.

Proof. Let cA = {a}B. Construct a new program:

1. execute {a}B(x) with output y

2. if y = 1 stop

3. if y = 0 infinite loop.

Definition 2.4.4. WB
a = dom({a}B), KB = {a | a ∈WB

a }.

It is clear that: KB ≤c.e. B and KB �c.e. B. We could see that KB �T B from
the next properties.

Proposition 2.4.5. A ≤c.e. B,B ≤T C ⇒ A ≤c.e. C.

Proof. Let A = dom({a}B), B = {b}C . We can translate carefully the program
with code a to another substituting everywhere the call O(n) by calling the
program b.

Using the same technique we can prove the transitivity of ≤T .

Proposition 2.4.6. A ≤T B,B ≤T C ⇒ A ≤T C.

Notice that from A ≤c.e. B,B ≤c.e. C it does not follow that A ≤c.e. C.
Since K ≤c.e. K and K ≤c.e. ∅, (K is c.e.), if we assume the transitivity of
≤c.e. then K ≤c.e. ∅ ≤T N. Thus K will be c.e., a contradiction.

Proposition 2.4.7 (Post). A ≤T B ⇐⇒ A ≤c.e. B & A ≤c.e. B.

8

Proof. Let A ≤T B. Since A ≤T B then A ≤c.e. B, and A ≤c.e. B.
Let A ≤c.e. B and A ≤c.e. B. Then there are programs P and Q, such

that {P}B = χA, {Q}B = χA. Using them we construct a program PQ, which
computes P and Q parallel, step by step, and gives in output 1 if P halts, and
0 if Q halts.

(∀x)(↓ {P}B(x)∨ ↓ {Q}B(x)) ⇒ (∀x) ↓ {PQ}B(x)).

So A ≤T B.

3 Turing degrees and Turing jump

3.1 Turing degrees

Definition 3.1.1. A ≡T B ⇐⇒ (A ≤T B & B ≤T A).

The relation ≡T is an equivalence relation.

Definition 3.1.2. The Turing degree of the set A is the equivalence class con-
taining A:

dT (A) = {B | B ≡T A}.

Definition 3.1.3. dT (A) ≤ dT (B) ⇐⇒ A ≤T B

Let DT be the set of all Turing degrees. The structure (DT ,≤) is a partial
order.

Definition 3.1.4 (The operation join). A⊕B = {2x | x ∈ A}∪{2x+1 | x ∈ B}.

Proposition 3.1.5. dT (A⊕B) is the least upper bound of dT (A) and dT (B).

Proof. 1. x ∈ A ⇐⇒ 2x ∈ A⊕B ⇒ A ≤m A⊕B ⇒ A ≤T A⊕B, so A⊕B
is a upper bound of A and B.

2. Let cA = {a}C, cB = {b}C . Then cA⊕B is computable in C since

cA⊕B(x) ≃

{

ϕCa ([x/2]) , if x is odd,

ϕCb ([x/2]) , if x is even.

The least Turing degree is 0T = dT (∅) = dT (R), where R is an arbitrary
computable set.

So we have that the structure DT = (DT ,≤,⊕,0T) is an upper semi-lattice.

9

3.2 The Turing jump

Definition 3.2.1. The Turing jump of a set A is the set:
A′ = KA = {x | x ∈ dom(ϕAx)}.

The Turing jump has the following properties.

Proposition 3.2.2. 1. KA ≤c.e. A.

2. B ≤c.e. A⇒ B ≤m KA.

Hint: Let B ≤c.e. A, Consider:

g(x, y) ≃

{

0 , x ∈ B

¬ ↓ , x /∈ B.

By the Smn theorem there is a computable h: ϕAh(x)(y) ≃ g(x, y).

Then x ∈ B ⇐⇒ ↓ ϕA
h(x)(h(x)) ⇐⇒ h(x) ∈ KA.

3. A <T KA, since KA �c.e. A.

Here A <T KA means that A ≤T KA & A 6≡T KA.

Proposition 3.2.3. A ≤T B ⇐⇒ A′ ≤m B′.

Proof. (⇒) Let A ≤T B. We have A′ ≤c.e. A and then A′ ≤c.e. B. Thus
A′ ≤m B′ (by 2.).

(⇐) Let A′ ≤m B′. We have A ≤c.e. A⇒ A ≤m A′ ≤m B′ and A ≤c.e. A⇒
A ≤m A′ ≤m B′. Then A ≤m B′, A ≤m B′, But (by 1.) B′ ≤c.e. B and then
A ≤c.e. B, A ≤c.e. B. By Post theorem. A ≤T B.

Corollary 3.2.4 (Monotonicity of the jump). A ≤T B ⇒ A′ ≤T B′.

Definition 3.2.5. (dT (A))
′ = dT (A

′).

Since A <T KA, then dT (A) < dT (A
′).

3.3 Genericity

Definition 3.3.1. Every finite mapping τ : [0;n−1] −→ N we call a finite part.
We denote by |τ | = n the length of the interval, where τ is defined. For any
a ∈ N and τ : [0;n− 1] −→ N, let λx.(τ ∗ a)(x) be the finite part:

(τ ∗ a)(x) ≃ (τ ∗ n→ a)(x) ≃

{

τ(x) if 0 ≤ x < n,

a if x = n.

If A is a set, we write τ ⊆ A instead of τ ⊆ cA, i.e. τ is a subfunction of cA.

We denote the finite parts with the Greek letters: α, β, δ, τ, ρ. . . . We say
that α ⊆ β if (∀x) (↓ α(x) ⇒↓ β(x) & α(x) = β(x)).

10

Definition 3.3.2. The set A is generic, if for every c.e. set S of finite parts:

(∃α ⊆ A) (α ∈ S ∨ (∀β ⊇ α)(β /∈ S))
︸ ︷︷ ︸

α decides S

.

The set of finite parts S is called dense in A, if (∀α ⊆ A)(∃β ∈ S)(α ⊆ β).
It is easy to see that A is generic, if whenever S is dense in A, then A meets S,
i.e. (∃α ⊆ A)(α ∈ S).

Let S be the set of all finite parts and Se =We ∩ S, e ∈ N. There is a total
computable function h, such that Se =Wh(e) for every e.

We will show how to construct a generic set.
The construction of a generic set: We construct by steps finite parts

αn, which will approximate cA, αn ⊆ αn+1 ⊆ A.

• We start with α0 = ∅.

• For αn+1 we ask if there is an extension of αn in Sn. If there is, set αn+1

to be the least one. If there is not then we let αn+1 = αn.

The construction assures that A is generic and one can see that cA =
⋃

n αn is
a total function.

Proposition 3.3.3. If A is generic then A is not a finite set.

Proof. Assume that A is finite. There exists an upper bound n, such that
x ∈ A ⇒ x < n. Let S = {α | (∃m > n)(α(m) ≃ 1)}. S is c.e. Since A is
generic then (∃α ⊆ A)(α ∈ S ∨ (∀β ⊇ α)(β /∈ S)). Since A is finite α /∈ S. Then
(∀β ⊇ α)(∀m > n)(β(m) 6≃ 1), which is impossible. Hence A is infinite.

Proposition 3.3.4. If A is generic then every c.e. V ⊆ A is finite.

Proof. Let S = {α | (∃x)(α(x) ≃ 0&x ∈ V)}. S is c.e. Since A is generic then
∃α ⊆ A such that α ∈ S ∨(∀β ⊇ α)(β /∈ S). Clearly α /∈ S (V ⊆ A). Then
(∀β ⊇ α)(∀x)(β(x) ≃ 0 ⇒ x /∈ V). Let n ≥ |α|, then for every β ⊇ α, with
|β| > n and β(n) = 0 we have n /∈ V . Thus V is finite.

As corollary we have that if A is generic since A ⊆ A and A is infinite, then

Corollary 3.3.5. If A is generic then A is not c.e.

Proposition 3.3.6. Let A be generic. If V ≤T A is c.e., then V is computable.

Proof. We know V ≤T V ≤T A, hence there is an a, such that V = dom({a}A).
Let S = {α | (∃x ∈ V)(↓ {a}α(x))}. Since S is c.e. and A is generic there is
α ⊆ A, such that α ∈ S ∨(∀β ⊇ α)(β /∈ S). If α ∈ S, then (∃x ∈ V)(↓ {a}A(x)).
Then x ∈ V , a contradiction.

Then (∀β ⊇ α)(∀x ∈ V)(¬ ↓ {a}β(x)). If x ∈ V then ↓ {a}A(x). By the
compactness of the computation there is β ⊆ A, ↓ {a}β(x). We can suppose
that β ⊇ α. Hence

x ∈ V ⇐⇒ (∃β ⊇ α)(↓ {a}β(x)),

i.e. V is c.e. But V is c.e., therefore V is computable.

11

Definition 3.3.7. The set A models the formula Fe(x):

A |= Fe(x) ⇐⇒ ↓ {e}A(x) ⇐⇒ x ∈ WA
e .

Definition 3.3.8. The finite part α forces formula Fe(x):

α
Fe(x) ⇐⇒ ↓ {e}α(x).

Here are some properties of this relations.

1. α ⊆ A&α
Fe(x) ⇒ A |= Fe(x).

2. α ⊆ β&α
Fe(x) ⇒ β
Fe(x).

3. A |= Fe(x) ⇔ (∃α ⊆ A)(α
Fe(x)).

Lemma 3.3.9. The set {(α, e, x) | α
Fe(x)} is c.e.

Definition 3.3.10. A |= ¬Fe(x) ⇐⇒ A2Fe(x) ⇐⇒ ¬ ↓ {e}A(x).

Definition 3.3.11. α
¬Fe(x) ⇐⇒ (∀β ⊇ α)(β 1Fe(x)).

Theorem 3.3.12. Let A be a generic set. Then

A |= ¬Fe(x) ⇐⇒ (∃α ⊆ A)(α
¬Fe(x)).

Proof. (⇐) Let α ⊆ A&α
¬Fe(x). Suppose that A |= Fe(x). Then (∃β ⊆
A)(β
Fe(x)). Let γ = α∪β. Then γ ⊇ β ⇒ γ
Fe(x), but γ ⊇ α, α
¬Fe(x) ⇒
γ 1Fe(x) - a contradiction.

(⇒) Let A |= ¬Fe(x). We search for α ⊆ A, α
¬Fe(x), i.e. no extension
of α could forces Fe(x). But A is generic. Suppose that (∀α ⊆ A)(α1¬Fe(x)).
Hence (∀α ⊆ A)(∃β ⊇ α)(β
Fe(x)). Set Se,x = {β | β
Fe(x)}. Se,x is c.e.
and dense in A, then there is α ⊆ A,α ∈ Se,x, i.e. α
Fe(x). Then A |= Fe(x),
a contradiction. So (∃α ⊆ A)(α
¬Fe(x)).

Corollary 3.3.13 (Truth lemma). If A is generic, then

A |= (¬)Fe(x) ⇐⇒ (∃α ⊆ A)(α
(¬)Fe(x)).

Notice that {(α, e, x) | α
¬Fe(x)} ≤T ∅′.

Corollary 3.3.14. For every generic A we have A′ ≡T A⊕∅′.

Proof. 1. A′ is a upper bound of ∅′ and A. Hence ∅′⊕A ≤T A′.

2. A′ = KA = {x | x ∈ WA
x } ≤c.e. A. Then there is e, such that x ∈

KA ⇐⇒ ↓ {e}A(x) ⇐⇒ A |= Fe(x) ⇐⇒ (∃α ⊆ A)(α
Fe(x)). Thus
KA ≤c.e. A⊕∅′. A is generic then x ∈ KA ⇐⇒ ¬ ↓ {e}A(x) ⇐⇒
A2Fe(x) ⇐⇒ (∃α ⊆ A)(α
¬Fe(x)). And KA ≤c.e. A⊕∅′. Thus
KA = A′ ≤T A⊕∅′ by Post theorem.

12

3.4 Jump Inversion Theorem

Theorem 3.4.1 (Fridberg’s Jump Inversion Theorem). Let ∅′ ≤T B. There
exists a generic A, such that A′ ≡T B.

Proof. We will construct the set A by steps, so that A ≤T B and A will be
generic. Then A′ ≡T A⊕∅′ ⇒ A′ ≤T B. For the other direction we will code
B in A⊕∅′. On each step n we will define a finite part αn of cA.

Let α0 = ∅. Let αn be constructed. We ask: ”Is it true that: (∃β ⊇ αn)(β ∈
Sn)?”. Since the set V = {(α, n) | (∃β ⊇ α)(β ∈ Sn)} is c.e., then V ≤T K = ∅′.
If yes, set α∗

n will be the minimal such β, if no, then α∗
n = αn. Thus assures

that A is generic. Set αn+1 = α∗
n ∗ cB(n).

1. A ≤T B. Since |αn+1| ≥ n, n ∈ A ⇐⇒ αn+1(n) = 1. And αn+1 ≤T
B⊕∅′ ≤T B.

2. A is generic, since α∗
n assures genericity with respect to Sn.

3. B ≤T A⊕∅′. We have k ∈ B ⇐⇒ αk+1(|α∗
k|) = 1. We can construct

B repeating the construction, changing cB(n) with cA(|α∗
n|). So, using

oracle A and ∅′ we have B ≤T A⊕∅′.

Thus A is generic and A′ ≡T B.

Corollary 3.4.2. There exists a generic A 6≡T ∅ such that A′ ≡T ∅′.

Corollary 3.4.3. There exists a generic A such that ∅ �T A �T A′ ≡T ∅′.

A more strong result is obtained by Jockush and Shore: for every c.e. non-
computable V ⊆ N there is a generic set A such that A ≤T V .

4 Enumeration reducibility

In this section we will consider a positive reducibility between sets : enumeration
reducibility. Intuitively a set A is enumeration reducible to the set B if we can
computably enumerate the members of A from an enumeration of the members
of B. To explain this notion more formally we start with the definition of
enumeration operator.

4.1 Enumeration operator

Definition 4.1.1. An operator Γ : 2N −→ 2N is an enumeration operator (e-
operator) if:

1. Γ is compact : x ∈ Γ(A) ⇐⇒ (∃D ⊆ A)(x ∈ Γ(D)&D - finite) for all x,

2. Γ is effective : there is a computable function h, such that Γ(Wa) =Wh(a).

Definition 4.1.2. A set A is enumeration reducible to B:

A ≤e B ⇐⇒ (∃Γ - e-operator)(A = Γ(B)).

13

Proposition 4.1.3. A ≤e B,B ≤e C ⇒ A ≤e C.

Proposition 4.1.4. Γ is an e-operator ⇐⇒ there exists a c.e. W , such that:

Γ(A) = {x | (∃v)(〈x, v〉 ∈W &Dv ⊆ A)}

Proof. (⇐) Let x ∈ Γ(A) ⇐⇒ (∃v)(〈x, v〉 ∈W &Dv ⊆ A).

1. (compact) x ∈ Γ(A) ⇒ (∃v)(〈v, x〉 ∈ W &Dv ⊆ A) ⇒ x ∈ Γ(D).

2. (monotone) Let A ⊆ B. Then x ∈ Γ(A) ⇒ (∃v)(〈v, x〉 ∈ W &Dv ⊆ A ⊆
B) ⇒ x ∈ Γ(B).

3. (effective) x ∈ Γ(Wa) ⇐⇒ (∃v)(〈v, x〉 ∈ W &Dv ⊆Wa). Consider:

R = {(a, x) | (∃v)(〈v, x〉 ∈ W &(∀y ∈ Dv)(y ∈ Wa))
︸ ︷︷ ︸

c.e. condition

}.

Let R =We and h(a) = S1
1(e, a).

x ∈ Γ(Wa) ⇐⇒ (a, x) ∈ R ⇐⇒ x ∈Wh(a).

(⇒) Let Γ be compact and effective and h is computable function, such that
Γ(Wa) =Wh(a). Consider also a computable function λ : Dv =Wλ(v). Then

x ∈ Γ(A) ⇐⇒ (∃D - finite)(D ⊆ A&x ∈ Γ(D))

⇐⇒ (∃v)(Dv ⊆ A& x ∈ Γ(Dv))

⇐⇒ (∃v)(Dv ⊆ A& x ∈ Γ(Wλ(v)))

(effective) ⇐⇒ (∃v)(Dv ⊆ A& x ∈Wh(λ(v)))

⇐⇒ (∃v)(Dv ⊆ A&〈x, v〉 ∈ W),

where W = {〈x, v〉 | x ∈Wh(λ(v))}.

Since the e-operator Γ is completely determined by the c.e. set W from
the last Proposition we will use the following notation W (A) = Γ(A) = {x |
(∃v)(〈x, v〉 ∈ W &Dv ⊆ A)}. For the finite set D = Dv and x ∈ N we will use
the notation 〈x,D〉 instead of 〈x, v〉, i.e.

W (A) = {x | (∃D)(〈x,D〉 ∈W &D ⊆ A)}.
Here are several examples which shows some basic properties of the enumer-

ation reducibility.

1. A ≤e A via the c.e. set W = { 〈x, {x}〉 | x ∈ N }.

2. If A is c.e. then A ≤e B via the c.e. set W = { 〈x, ∅〉 | x ∈ A }.

3. If f is computable function for A ≤m B, i.e. A = f−1(B), then A ≤e B
via the c.e. set W = { 〈x, {f(x)}〉 | x ∈ N }.

Denote by 〈ϕ〉 the graph of the partial function ϕ, i.e 〈ϕ〉 = {〈x, y〉 | ϕ(x) ≃ y}.
Let ϕ and ψ are partial functions.

14

Definition 4.1.5. ϕ ≤e ψ ⇐⇒ 〈ϕ〉 ≤e 〈ψ〉.

If A ⊆ N we will write also A ≤e ϕ and ϕ ≤e A instead of A ≤e 〈ϕ〉 and
〈ϕ〉 ≤e A.

Proposition 4.1.6. ϕ ≤T ψ ⇒ ϕ ≤e ψ.

Proof. Let ϕ ≤T ψ and ϕ = {e}ψ. We are looking for a c.e. set W such that

〈x, y〉 ∈W (〈ψ〉) = 〈ϕ〉 ⇐⇒ (∃v)(〈〈x, y〉 , v〉 ∈W &Dv ⊆ 〈ψ〉),

Consider the c.e set W = {〈〈x, y〉 , v〉 | {e}θv(x) ≃ y} where θv(x) ≃ µy[〈x, y〉 ∈
Dv] .

〈x, y〉 ∈W (〈ψ〉) ⇐⇒ (∃v)({e}θv(x) ≃ y&Dv ⊆ 〈ψ〉)

⇐⇒ {e}ψ(x) ≃ y ⇐⇒ ϕ(x) ≃ y

⇐⇒ 〈x, y〉 ∈ 〈ϕ〉 .

Thus ϕ ≤e ψ.

The enumeration reducibility is weaker than Turing reducibility in the fol-
lowing sense. We will prove that cK ≤e χK , but cK �T χK .

For cK ≤e χK consider the c.e. set:

W ={〈〈x, 0〉 , v〉 | x ∈ N&Dv = {〈x, 1〉}}∪

{〈〈x, 1〉 , v〉 | x ∈ K &Dv = ∅}.

Then W defines an e-operator and W (χK) = cK .
Suppose that cK ≤T χK . Then there is an e, such that {e}χK = cK . Note

that cK is a total function. But ↓ χK(x) ≃ y ⇐⇒ y = 1. We could change
in the program e all oracle questions O(n) by Z(n), S(n), i.e. instead of asking
the oracle we write 1. Then we can compute cK by this new URM program
(without using the oracle) which is a contradiction, since K is not computable.

It turns out that if the function ψ is total then ϕ ≤e ψ and ϕ ≤T ψ are
equivalent.

Definition 4.1.7. Let A ⊆ N, g : N −→ N. The function g uniformizes the set
A, if 〈g〉 ⊆ A and for every x (∃y)(〈x, y〉 ∈ A) ⇒↓ g(x).

Proposition 4.1.8. If ψ is total and ϕ ≤e ψ, then ϕ ≤T ψ.

Proof. ϕ ≤e ψ ⇒ (∃W)(W (〈ψ〉) = 〈ϕ〉). Since W is c.e., then there is a
computable function f , which enumerates it, i.e. f(i) = 〈〈xi, yi〉 , vi〉. Consider
the function g defined as:

g(x) ≃

{

yi , if x = xi, (∀ 〈u, v〉 ∈ Dvi)(ψ(u) ≃ v);

¬ ↓ , otherwise.

It is clear that g ≤T ψ, thus there is an e, such that {e}ψ = ϕ and e does not
depend of ψ. Then ∆(ψ) = {e}ψ uniformizes W (〈ψ〉) = 〈ϕ〉. So ∆(ψ) = ϕ,
since ϕ is a function.

15

4.2 Enumeration degrees

Definition 4.2.1. A ≡e B ⇐⇒ A ≤e B&B ≤e A.

The relation ≡e is an equivalence relation, and the equivalence classes we
call enumeration degrees.

Definition 4.2.2. Enumeration degree of A is the equivalence class of A with
respect to the relation ≡e:

de(A) = {B | B ≡e A}.

Definition 4.2.3. Define the order between the e-degrees de(A) ≤ de(B) ⇐⇒
A ≤e B

Denote by De the set of all enumeration degrees. The structure (De,≤) is
a partially ordered set. The operation ⊕ gives the least upper bound of two
e-degrees.

Proposition 4.2.4. de(A⊕B) is the least upper bound of de(A) and de(B).

Proof. 1. x ∈ A ⇐⇒ 2x ∈ A⊕B then A ≤m A⊕B ⇒ A ≤T A⊕B ⇒
A ≤e A⊕B. And x ∈ B ⇐⇒ 2x + 1 ∈ A⊕B then B ≤e A⊕B, i.e.
A⊕B is an upper bound of A and B.

2. Let A ≤e C,B ≤e C, i.e. A =W1(C), B =W2(C). Denote by
W = {〈x, v〉 | (∃v1)(∃v2)(〈x, v1〉 ∈W1 &〈x, v2〉 ∈ W2 &Dv = Dv1 ⊕Dv2)}.
W is c.e. and W (C) = A⊕B, i.e. C ≤e A⊕B.

Denote by 0e = {W | W is c.e.}, 0e ≤ a for an arbitrary a. The structure
De = (De,0e,⊕,≤) is an upper semi-lattice.

Denote by A+ = A⊕A. Then A is total, if A ≡e A+.

Proposition 4.2.5. 1. A++
≡e A+, i.e.. A+ is total.

2. A+ ≡e 〈cA〉.
3. A is total ⇐⇒ A ≡e 〈cA〉.
4. If f is a total function, then 〈f〉 is a total set via the c.e. set

W = { 〈〈x, y〉, {〈x, z〉}〉 | y 6= z } .

Every computable set is total. But K is not total since K �e K. For
example A⊕A is total for any A and if f is a total function then 〈f〉 is total.

It turns out that we can express the c.e. reducibility and the Turing re-
ducibility in terms of the enumeration reducibility. By Proposition 4.1.8 we
have:

Corollary 4.2.6. A ≤c.e. B ⇐⇒ 〈χA〉 ≤T 〈cB〉 ⇐⇒ A ≤e B ⊕B.
A ≤T B ⇐⇒ 〈cA〉 ≤T 〈cB〉 ⇐⇒ 〈cA〉 ≤e 〈cB〉 ⇐⇒ A⊕A ≤e B ⊕B.

Definition 4.2.7. a ∈ De is total, if there is a total A ∈ a.

16

Notice that 0e is a total e-degree, but K ∈ 0e is not total.
The total degrees inDe form an upper semi-lattice isomorphic toDT . Denote

by Tot = {a | a is total e-degree}.

Definition 4.2.8 (Rogers, Myhill). The mapping κ : DT → De is defined as
κ(dT (A)) = de(A

+) for any set A.

The mapping κ is an isomorphic embedding of DT into De.

• A ≡T B ⇐⇒ A+ ≡e B+ (correctness);

• range(κ) = Tot. Indeed if A ∈ a ∈ Tot, then since A ≡e A+ we have
A+ ∈ a⇒ κ(dT (A)) = a and thus a ∈range(κ). But if a ∈ range(κ), then
a = de(A

+) ⇒ a ∈ Tot.

• Let κ(dT (A)) = κ(dT (B)) ⇒ A+ ≡e B+ ⇒ A ≡T B ⇒ dT (A) = dT (B).
(injective)

• A ≤T B ⇒ κ(dT (A)) = A+ ≤e B+ = κ(dT (B)). (isomorphic embedding)

So, κ is an isomorphism between DT in the total degrees in De. To see that
it is strong embedding of DT into De: range(κ) = Tot (De, we have to show
that there are non-total degrees.

4.3 Quasi-minimal degree

In the proof we will use forcing.

Definition 4.3.1. Modeling and forcing relations.

A |=e Fa(x, y) ⇐⇒ 〈x, y〉 ∈ Wa(A),

α
e Fa(x, y) ⇐⇒ 〈x, y〉 ∈ Wa(α
+), where α+ = {x | α(x) ≃ 1}.

We have the following properties of these relations:
1. α ⊆ A&α
e Fa(x, y) ⇒ A |=e Fa(x, y) (monotonicity).
2. α ⊆ β&α
e Fa(x, y) ⇒ β
e Fa(x, y), since α

+ ⊆ β+.
3.A |=e Fa(x, y) ⇒ (∃α ⊆ A)(α
e Fa(x, y)) (compactness).

Proposition 4.3.2. Let A be a generic set and ϕ ≤e A. There exists a com-
putable function ψ, such that ϕ ⊆ ψ.

Proof. Let A be a generic set and ϕ ≤e A, 〈ϕ〉 =Wa(A). Then 〈x, y〉 ∈ 〈ϕ〉 ⇐⇒
A |=e Fa(x, y). Consider the c.e. set (the relation
e is c.e.):

S = {α | (∃x)(∃y1)(∃y2)(α
e Fa(x, y1)&α
e Fa(x, y2)& y1 6= y2)}.
There is α ⊆ A, α ∈ S or (∀β ⊇ α)(β /∈ S). But α 6∈ S. Let ψ(x) ≃ y ⇐⇒

(∃β ⊇ α)(β
e Fa(x, y)). ψ is a function and ψ is computable since 〈ψ〉 is c.e.
Moreover if ϕ(x) ≃ y ⇒ A |=e Fa(x, y) ⇒ (∃β ⊇ α)(β
e Fa(x, y)) ⇒ ψ(x) ≃ y.

Thus ϕ ⊆ ψ.

Corollary 4.3.3. For every generic set A, the e-degree de(A) is non-total.

17

Corollary 4.3.4. If A is generic, X total and X ≤e A, then X ≤e ∅.

Definition 4.3.5. A is quasi-minimal if A �e ∅ and if X ≤e A and X is a total
set then X ≤e ∅.

From the previous Corollary:

Proposition 4.3.6. Each generic set is quasi-minimal.

4.4 Selman’s theorem

We will describe the technique of the regular enumerations in order to prove
some more results as Selman;s theorem and Minimal pair theorem.

Definition 4.4.1. Let B ⊆ N. The total function f : N −→ N is a regular
enumeration of B, if f(2N+ 1) = B.

In other words we code the elements of the set B on the odd position of f .
If B = ∅, we consider enumerations of N = ∅ ≡e ∅.

If f is a regular enumeration of B then χB(x) ≃ c1(µn[x = f(2n + 1)]),
where c1 = λx.1, So χB ≤T f and B ≤e f .

Definition 4.4.2. B-regular finite part is a function τ : [0; 2q + 1] −→ N, such
that 2x+ 1 ∈ dom(τ) ⇒ τ(2x+ 1) ∈ B.

If τ is a B-regular finite part, then there exists a regular enumeration f of
B such that f ⊇ τ .

Definition 4.4.3. The modeling and forcing relation for regular enumerations
of B and B-regular finite parts.

f |= Fe(x) ⇐⇒ x ∈We(〈f〉),

τ
Fe(x) ⇐⇒ x ∈We(〈τ〉).

The set Sτ = {〈e, x〉 | τ
Fe(x)} is c.e.
We have the usual properties of monotonicity and compactness:

1. τ ⊆ f & τ
Fe(x) ⇒ f |= Fe(x).

2. τ ⊆ ρ& τ
Fe(x) ⇒ ρ
Fe(x).

3. f |= Fe(x) ⇒ (∃τ ⊆ f)(τ
Fe(x)).

Proposition 4.4.4. Let A �e B. There exists a regular enumeration f of B,
such that A �e f .

Proof. We construct a sequence of B-regular finite parts τ0 ⊆ τ1 ⊆ · · · ⊆ τq ⊆
. . .

Let τ0(0) = 0, τ0(1) = z0 ∈ B. If τq is constructed:
1. q = 2e. Let z0 = µz[z ∈ B& z /∈ τq(2N+ 1)]. Set τq+1 = τq ∗ 0 ∗ z0.

18

2. q = 2e+ 1.

C = {x | (∃ρ ⊇ τq)(ρ is a B-regular finite part&

ρ(|τq|) = x& ρ
Fe(|τq|))}.

Since C ≤e B, then C 6= A. There are two cases:
2 (a). (∃x)(x ∈ C &x /∈ A). Then τq+1 is the minimal ρ satisfying C.
2 (b). (∃x)(x /∈ C &x ∈ A). Then τq+1 = τq ∗ x ∗ z0 for some z0 ∈ B.
Let f =

⋃

q τq. It is clear that f is a regular enumeration of B.

Suppose that A ≤e f , i.e. A = We(〈f〉). Then f−1(A) = {x | f(x) ∈ A} ≤e
f and there is e, such that n ∈ f−1(A) ⇐⇒ f |= Fe(n).

Consider the step q = 2e+ 1. Let n = |τq| = 2q + 2.
Case1. n ∈ f−1(A) ⇒ f(n) ∈ A ⇒ (∃ρ ⊇ τq)(ρ
Fe(n)& ρ(n) = f(n)).

Then f(n) ∈ C ∩A, a contradiction.
Case 2. n /∈ f−1(A) ⇒ f(n) /∈ A ⇒ (∀ρ ⊇ τq)(ρ(n) = f(n) ⇒ ρ1Fe(n)),

then f(n) /∈ C - a contradiction.
So A �e f .

Theorem 4.4.5 (Selman). [15] A ≤e B ⇐⇒ (∀X - total)(B ≤e X ⇒ A ≤e
X).

Proof. (⇒) From the transitivity of ≤e.
(⇐) Suppose that A �e B. Then by Proposition 4.4.4 there is a B-regular

enumeration f , such that A �e 〈f〉. But 〈f〉 is total and B ≤e 〈f〉, then
A ≤e 〈f〉 - a contradiction.

Corollary 4.4.6. If a, b ∈ De, then

a ≤ b ⇐⇒ (∀x - total)(b ≤ x⇒ a ≤ x).

The last Corollary shows that the set Tot of all total degrees in De is a base
of the automorphisms in De, i.e. each automorphism κ : De → De, for which
κ(a) = a for any a ∈ Tot is the identity on De.

4.5 Minimal pair theorem

Definition 4.5.1. The sets F and G form a minimal pair for B, if

1. B �e F,B �e G;

2. A �e F,A �e G⇒ A ≤e B,

i.e. B is the greatest lower bound for F and G.

Definition 4.5.2. We call f a generic regular enumeration of B, if f is a regular
enumeration of B and for every set of B-regular finite parts and S ≤e B it holds
(∃τ ⊆ f)(τ ∈ S ∨(∀ρ ⊇ τ)(ρ /∈ S)).

19

Proposition 4.5.3. Let B ⊆ N, and {An} be a sequence of sets, such that
(∀n)(An �e B). Then there exists a generic regular enumeration f of B, such
that (∀n)(An �e f).

Proof. The proof is similar to Proposition 4.4.4.
Denote by RB = {τ | τ is B-regular finite part}. We construct a monotone

increasing sequence of B-regular finite parts τq : [0; 2q + 1] −→ N.
Let τ0(0) = τ0(1) = b0 ∈ B. Suppose that we have constructed τq.
1. q = 3e. Set τq+1 = τq ∗ 0 ∗ b, where b is the first non-enumerated element

of B.
2. q = 3e+1. We assure the genericity of f . Consider Se =We(B)∩RB. If

there is τ ⊇ τq and τ ∈ Se, let τq+1 be the least one. If not τq+1 = τq.
3. q = 3e + 2. Let e = 〈n, k〉. We will assure that f−1(An) 6= Wk(〈f〉).

From here f−1(An) �e f and An �e f . Define

nq = |τq|

Cq = {x | (∃τ ⊇ τq)(τ is B-regular finite part)
︸ ︷︷ ︸

≤eB

& τ(nq) ≃ x
︸ ︷︷ ︸

c.e.

& τ
Fk(nq)
︸ ︷︷ ︸

c.e.

}.

Then Cq ≤e B and thus Cq 6= An.
3.(a) (∃x)(x ∈ Cq & x /∈ An). We get the minimal such x and set τq+1 to be

the minimal such τ .
3.(b) (∃x)(x /∈ Cq & x ∈ An). Then set τq+1 = τq ∗ x ∗ b, for some b ∈ B.
Finally we define f as follows: f(n) ≃ x ⇐⇒ (∃q)(τq(n) ≃ x). By the

construction f is a generic regular enumeration of B.
We will show that f−1(An) �e f .
Suppose that f−1(An) ≡e Wk(〈f〉) for some n and k. Consider the step

q = 3 〈n, k〉+ 2. We know f(nq) ≃ x is a witness for An 6= Cq.
1. x ∈ Cq &x /∈ An. Then

f |= Fk(nq) ⇒ nq ∈ f−1(An) ⇒ f(nq) = x ∈ An - a contradiction.

2. x /∈ Cq &x ∈ An. Then

nq ∈ f−1(An) ⇒ (∃τ ⊇ τq)(τ(nq) ≃ x& τ
Fk(nq)) ⇒ x ∈ Cq - a contradiction.

Thus f−1(An) �e f ⇒ An �e f .

Lemma 4.5.4. If f is a generic regular enumeration of B, then f �e B.

Proof. Suppose that f ≤e B. Consider

S = {τ - B-regular finite part | (∃x)(↓ τ(x)& τ(x) 6≃ f(x))}.

S ≤e B⊕〈f〉, but 〈f〉 ≤e B ⇒ S ≤e B. By genericity of f we have

(∃τ ⊆ f)(τ ∈ S
︸ ︷︷ ︸

τ*f

∨ (∀ρ ⊇ τ)(ρ /∈ S)
︸ ︷︷ ︸

not true f+ρ⊇τ

).

In both cases we have a contradiction.

20

Theorem 4.5.5 (Minimal pair theorem). For any B ⊆ N there is a minimal
pair F and G for B.

Proof. Let f be an arbitrary generic regular enumeration of B. Let {An}n be a
sequence of those sets which are enumeration reducible to f and which are not
enumeration reducible to B. By Proposition 4.5.3 we can construct a generic
regular enumeration g of B, such that (∀n)(An �e g). Set F = 〈f〉 , G = 〈g〉.
By Lemma 4.5.4 since 〈f〉 , 〈g〉 are the graphs of generic regular enumerations
of B we have that B �e F,B �e G. Suppose that A ≤e F,A ≤e G. Then
A /∈ {An}, otherwise A �e G. Since A /∈ {An}n, then A ≤e B.

Definition 4.5.6. (Cooper, McEvoy) For any set A ⊆ N denote by EA =
{〈i, x〉|x ∈ Ψi(A)}. The set Je(A) = E+

A is called the enumeration jump of A.

The enumeration jump Je is monotone and agrees with the Turing jump
JT (A) = KA in the following sense:

Theorem 4.5.7. For any A ⊆ N, JT (A)+ ≡e Je(A+).

Corollary 4.5.8. Let de(A)
′ = de(Je(A)). The jump is always total and agrees

with the Turing jump under the embedding κ.

5 Degree Spectra and Co-spectra

We will illustrate some results of the Computable Structure Theory based on
the enumeration and Turing reducibilities. We start with the notion of degree
spectrum of a structure, which in some sense is a measure of the complexity of
a countable structure.

Let A = (N;R1, . . . , Rk) be a denumerable structure. An enumeration of A

is every total surjective mapping of N onto N.
Given an enumeration f of A and a subset of A of Na, let

f−1(A) = {〈x1, . . . , xa〉 : (f(x1), . . . , f(xa)) ∈ A}.

Set f−1(A) = f−1(R1)⊕ · · · ⊕ f−1(Rk)⊕ f−1(=)⊕ f−1(6=).

Definition 5.0.9. (Richter) The Turing Degree Spectrum of A is the set

DST (A) = {dT (f
−1(A)) : f is an one to one enumeration of A)}.

The notion of a degree spectrum of a countable structure is introduced by
Richter [14] and further studied by Ash, Downey, Jockush and Knight in [10, 1,
6]. If a is the least element of DST (A), then a is called the degree of A.

5.1 Enumeration Degree Spectra

We will follow [17] to represent a notion of degree spectra of structure based on
the enumeration reducibilities.

21

Definition 5.1.1. The Enumeration Degree Spectrum of A is the set

DS(A) = {de(f
−1(A)) : f is an enumeration of A)}.

If a is the least element of DS(A), then a is called the e-degree of A.

Proposition 5.1.2. If A has e-degree a then a = de(f
−1(A)) for some one to

one enumeration f of A.

This Proposition shows that if we are interested of the least element of the
degree spectrum it is not important that we consider all enumerations of the
structure not only one to one. The benefit of considering arbitrary enumerations
is that in this way we ensure that the degree spectrum is closed upwards with
respect to the total e-degrees.

Proposition 5.1.3. If a ∈ DS(A), b is a total e-degree and a ≤e b then
b ∈ DS(A).

Definition 5.1.4. The structure A is called total if for every enumeration f of
A the set f−1(A) is total.

Proposition 5.1.5. If A is a total structure then DS(A) = κ(DST (A)).

Given a structure A = (N, R1, . . . , Rk), for every j denote by Rcj the com-
plement of Rj and let A+ = (N, R1, . . . , Rk, R

c
1, . . . , R

c
k).

Proposition 5.1.6. The following properties hold:

1. κ(DST (A)) = DS(A+).

2. If the structure A is total then DS(A) = DS(A+).

Clearly if A is a total structure then DS(A) consists of total degrees. The
vice versa is not always true.

Let K be the Kleene’s set and A = (N;GS ,K), where GS is the graph of
the successor function. Then DS(A) consists of all total degrees. On the other
hand if f = λx.x, then f−1(A) is an c.e. set. Hence K̄ 6≤e f−1(A). And
K̄ ≤e (f−1(A))+. So f−1(A) is not total.

We are interested to answer to the following question: Is it true that if
DS(A) consists of total degrees then there exists a total structure B such that
DS(A) = DS(B)?

Definition 5.1.7. Let A be a nonempty set of enumeration degrees the co-set
of A is the set co(A) of all lower bounds of A. Namely

co(A) = {b : b ∈ De & (∀a ∈ A)(b ≤e a)}.

Example 5.1.8. Fix a ∈ De and set Aa = {b ∈ De : a ≤e b}. Then co(Aa) =
{b ∈ De : b ≤e a}.

Definition 5.1.9. The set CS(A) = co(DS(A)). is called the co-spectrum of
A. If a is the greatest element of CS(A) then call a the co-degree of A.

22

Definition 5.1.10. A set A of natural numbers is admissible in A if for every
enumeration f of A, A ≤e f−1(A).

Clearly a ∈ CS(A) iff a = de(A) for some admissible in A set A.
We will give a characterization of the admissible in A sets in terms of the

structure. Thus we shall obtain some information about the elements of CS(A).
We will use the following forcing relation. For every finite part τ and natural

numbers e, x, let

τ
 Fe(x) ⇐⇒ x ∈We(τ
−1(A)) and

τ
 ¬Fe(x) ⇐⇒ (∀ρ ⊇ τ)(ρ 1 Fe(x)).

As usual an enumeration f is generic if for every e, x ∈ N, there exists a τ ⊆ f
such that τ
 Fe(x) ∨ τ
 ¬Fe(x).

Definition 5.1.11. A set A of natural numbers is forcing definable in the struc-
ture A iff there exist finite part δ and natural number e such that

A = {x|(∃τ ⊇ δ)(τ
 Fe(x))}.

Theorem 5.1.12. Let A ⊆ N and de(B) ∈ DS(A). Then the following condi-
tions are equivalent:

1. A is admissible in A.
2. A ≤e f−1(A) for all generic enumerations f of A.
3. A is forcing definable.

If the structure A has a degree a then a is also the co-degree of A. The vice
versa is not always true. For example, consider the linear ordering A = (N;<
,=, 6=). It is easy to see by a direct analysis of the forcing definable on A sets
that the co-degree of A is 0e. The first results about degrees of structures are
obtained by Richter [14]. Richter showed an example of a linear ordering which
has no degree. Let A = (N;<) be a linear ordering. She proved that DS(A)
contains a minimal pair of degrees and hence CS(A) = {0e}. Clearly 0e is the
co-degree of A. Therefore if A has a degree a, then a = 0e.

Knight [10] defined the so called jump degree of a structure. The jump
spectrum DS1(A) of A is the set of all jumps of the elements of DS(A). The co-
set of the jump spectrum DS1(A) is denoted by CS1(A). The least elements of
DS1(A) and CS1(A) are called a jump degree and a co-jump degree respectively.

Knight proved that for a linear ordering A, CS1(A) consists of all Σ0
2 sets.

The first jump co-degree of A is 0′
e. So if a linear ordering has a jump degree

it should be 0′
e. In the last section we will present more results about degrees

and co-degrees of sructures
There are examples of structures with more sophisticating properties. Inde-

pendently Slaman [16] and Wehner [20] proved that:

Example 5.1.13. (Slaman 1998, Wehner 1998) There exists an A such that

DS(A) = {a : a is total and 0e < a}.

Clearly the structure A has co-degree 0e but has not a degree.

23

Obviously if a structure A has a co-degree, then CS(A) is a principal ideal.
Building on results of Coles, Downey and Slaman [4] we shall show that every
principle ideal of enumeration degrees can be represented as CS(G) from some
subgroup G of the additive group of the rational numbers Q = (Q; +,=, 6=). Let
G be a nontrivial torsion free Abelian group of rank 1, i.e. G is a subgroup of
Q. Let a 6= 0 ∈ G. For every prime number p let hp(a) be the greatest k such
that (∃x ∈ G)(pk.x = a), and hp(a) = ∞ if pk|a in G for all k. Let {pi}i be the
sequence of the prime numbers. Consider

Sa = {〈i, j〉 | j ≤ hpi(a)}.

For a, b 6= 0 ∈ G, it is easy to see that Sa ≡e Sb.
Set sG = de(Sa). Then DS(G) = {b : b is total and sG ≤e b}. The co-

degree of G is sG. The group G has a degree iff sG is total. s
′

G is the jump
degree of G.

For every d ∈ De there exists a G, such that sG = d. Hence every principal
ideal of enumeration degrees is CS(G) for some G.

Similar results on algebraic fields are obtained by W. Calvert, V. Harizanov
and A. Shlapentokh (2007) [3] and A. Frolov, I. Kalimullin and R. Miller (2009)
[7].

In [17] the representation of an arbitrary countable ideal I of enumeration
degrees as a co-spectrum of a structure is obtained. Without loss of generality
we may assume that there exists a sequence b0,b1, . . . ,bk, . . . of elements of
the ideal I such that a ∈ I ⇐⇒ (∃k)(a ≤ bk). For every k fix a set Bk ∈ bk.
Set A = (N; f ;σ,=, 6=), where

f(〈i, n〉) = 〈i+ 1, n〉;

σ = {〈i, n〉 : n = 2k + 1 ∨ n = 2k & i ∈ Bk}.

Then CS(A) = I(de(B0), . . . , de(Bn), . . .)

Definition 5.1.14. Consider a subset A of De. Say that A is upwards closed
if for every a ∈ A all total degrees greater than a are in A.

There are some general properties of upwards closed sets of enumeration
degrees. Let A be an upwards closed set of degrees. First property is an
analougue of Selman’s theorem [15] for enumeration degrees.

Proposition 5.1.15. (Selman’s Theorem) Let At = {a : a ∈ A & a is total}.
Then co(A) = co(At).

The elements of an upwards closed set A with arbitrary high jumps deter-
mine completely the co-set of A.

Proposition 5.1.16. Let b be an arbitrary enumeration degree and n > 0. Set
Ab,n = {a : a ∈ A & b ≤e a(n)}. Then co(A) = co(Ab,n).

We will consider some specific properties of the degree spectra which are not
true for an arbitrary upwards closed set of enumeration degrees.

24

Theorem 5.1.17. Let A be a structure, 1 ≤ n and c ∈ DSn(A). Then

CS(A) = co({b ∈ DS(A) : b(n) = c}).

The Theorem shows that the elements of the degree spectrum DS(A) with
low jumps also determine its co-set CS(A). Here is an example of an upwards
closed set for which the last Theorem is not true.

Consider two sets A and B of natural numbers such that B 6≤e A and
A 6≤e B′. It is enough to take an arbitrary non c.e. set and construct and
construct a set A as a B′ generic and B � A.

Let D = {a : de(A) ≤e a} ∪ {a : de(B) ≤e a}. Set A = {a : a ∈ D & a′ =
de(B)′}. Clearly if a ≥ de(A), then a 6∈ A. Then de(B) is the least element of
A and hence de(B) ∈ co(A). de(B) 6≤ de(A) and hence de(B) 6∈ co(D).

5.2 The Minimal pair theorem for Degree spectra

An analog of the Minimal pair theorem for the enumeration degrees is the
following result:

Theorem 5.2.1. Let c ∈ DS(A). There exist f,g ∈ DS(A) such that f,g are
total, f′′ = g′′ = c′′ and CS(A) = co({f,g}).

Notice that for every enumeration degree b there exists a structure Ab s. t.
DS(Ab) = {x ∈ DT |b <e x}. Hence

Corollary 5.2.2 (Rozinas). For every b ∈ De there exist total f ,g below b′′

which form a minimal pair over b.

Not every upwards closed set of enumeration degrees has a minimal pair.
Indeed consider the finite lattice L consisting of the elements a,b, c, a ∧ b, a ∧
c,b∧c,⊤,⊥ such that ⊤ and ⊥ are the greatest and the least element of L. Since
every finite lattice can be embedded in the semi-lattice of the Turing degrees, the
lattice Lcan be embedded in (DT ,≤) and hence it can be embedded in (De,≤).
So we may assume that L is a substructure of (De,≤). Let A = {d ∈ De : (d ≥
a) ∨ (d ≥ b) ∨ (d ≥ c)}. Clearly A is an upwards closed set of enumeration
degrees. Assume that there exist f0, f1 ∈ A such that co({f0, f1}) = co(A). Let
x0,x1 ∈ {a,b, c} be such that f0 ≥ x0 and f1 ≥ x1. Let x2 = min{x0,x1}.
Clearly x2 ∈ co({f0, f1}) but x2 6∈ co(A). A contradiction.

25

a ∧ c b ∧ ca ∧ b

b ca

f0 f1

⊤

⊥

5.3 The Quasi-minimal degree

Now we present the third property of DS(A) which shows the existence of
enumeration degrees which are quasi minimal with respect to CS(A).

Definition 5.3.1. Let A be a set of enumeration degrees. The degree q is
quasi-minimal with respect to A if:

1. q 6∈ co(A).
2. If a is total and a ≥ q, then a ∈ A.
3. If a is total and a ≤ q, then a ∈ co(A).

Theorem 5.3.2. If q is quasi-minimal with respect to A, then q is an upper
bound of co(A).

Theorem 5.3.3. For every structure A there exists a quasi-minimal with respect
to DS(A) degree.

Corollary 5.3.4 (Slaman and Sorbi). Let I be a countable ideal of enumeration
degrees. There exist an enumeration degree q such that

1. If a ∈ I then a <e q.
2. If a is total and a ≤e q then a ∈ I.

Definition 5.3.5. Let B ⊆ A be sets of degrees. Then B is a base of A if

(∀a ∈ A)(∃b ∈ B)(b ≤ a).

Theorem 5.3.6. Let A be an upwards closed set of degrees possessing a quasi-
minimal degree. Suppose that there exists a countable base B of A such that all
elements of B are total. Then A has a least element.

26

Corollary 5.3.7. A total structure A has a degree if and only if DS(A) has a
countable base.

Now we can construct an upwards closed set A of degrees which does not
possess a quasi-minimal degree. Indeed let a and b be two incomparable total
degrees. Let A = {c : c ≥ a ∨ c ≥ b}. Clearly A has a countable base of total
degrees, but it has not a least element. So, A has no quasi-minimal degree.

a b

5.4 Jump spectra

Definition 5.4.1. The nth jump spectrum of a structure A is the set

DSn(A) = {a(n)|a ∈ DS(A)}.

If a is the least element of DSn(A) then a is called n-th jump degree of A.

Here we consider the relationships between the spectra and the jump spectra.
Since the degree spectra are upward closed sets of e-degrees we have the following
property.

Proposition 5.4.2. For every A, DS1(A) ⊆ DS(A).

Our first result is that every jump spectrum is also a spectrum of a struc-
ture, i.e. we show that for every structure A there exists a structure B such
that DS1(A) = DS(B). The structure B is constructed in two stages. First,
we define the least acceptable extension A∗ of A which we call Moschovakis’
extension of A. Roughly speaking A∗ is an extension of A with additional cod-
ing machinery. Using this coding machinery we define the set KA which is an
analogue of Kleene’s set K. Finally we set B = (A∗,KA).

Let A = (N;R1, . . . , Rn).
Let 0̄ 6∈ N. Set N0 = N ∪ {0̄}. Let 〈., .〉 be a pairing function such that none

of the elements of N0 is a pair and N∗ be the least set containing N0 and closed
under 〈., .〉.

27

Definition 5.4.3. Moschovakis’ extension of A is the structure

A
∗ = (N∗, R1, . . . , Rn,N0, G〈.,.〉, GL, GR,=).

Proposition 5.4.4. DS(A) = DS(A∗)

Let KA = {〈δ, e, x〉 : (∃τ ⊇ δ)(τ
 Fe(x))}. Set A∗
K = (A∗,KA,N∗ \KA).

The structure A∗
K is total. And DS1(A) = DS(A∗

K).

Theorem 5.4.5. [18] For every structure A there exists a structure B such that
DS1(A) = DS(B).

Montalban (2009)[13] presented a different approach adding to the structure
a complete set of computable Πc1 relations and the received structure he called
the jump of the structure. It turns out that the both approaches lead to a
structure whose degree spectrum is the jump spectrum of the initial structure.

5.5 The Jump Inversion Theorem

The main result in this subsection sounds like a Jump inversion theorem. Con-
sider two structures A and B. Suppose that

DS(B)t = {a|a ∈ DS(B) and a is total} ⊆ DS1(A).

Theorem 5.5.1. [18] There exists a structure C such that DS(C) ⊆ DS(A)
and DS1(C) = DS(B)t.

The structure C is constructed as a Markers extension [12] of A, an idea
influenced by the results of Goncharov and Khoussainov [8] .

Corollary 5.5.2. Let DS(B) ⊆ DS1(A). Then there exists a structure C such
that DS(C) ⊆ DS(A) and DS(B) = DS1(C).

Corollary 5.5.3. Suppose that DS(B) consists of total degrees greater than or
equal to 0′. Then there exists a total structure C′ such that DS(B) = DS(C′).

This Corollary gives a positive answer of the question above: If the degree
spectrum of a structure consists of total degrees greater than or equal to 0′,
then there is a total structure with the same degree spectrum.

28

DS(B) = DS1(C)

DS(A)

DS1(A)

DS(C)

a

a′

c

c′ = b

We can generalize the Jump inversion theorem by induction using the results
from Theorem 5.4.5 and Theorem 5.5.1.

Theorem 5.5.4. Let n ≥ 1. Suppose that DS(B) ⊆ DSn(A). There exists a
structure C such that DSn(C) = DS(B).

Corollary 5.5.5. Suppose that DS(B) consists of total degrees greater than or
equal to 0(n). Then there exists a total structure C such that DSn(C) = DS(B).

Stukachev (2009)[19] proved a similar result for Σ reducibility using Marker’s
extensions.

5.6 Applications

Recall that a nth jump degree is called the minimal element (if it exists) of the
nth jump spectra. Notice that if a structure A possesses a nth jump degree
then it possesses (n + k)th jump degrees for all k. The definition of the nth
jump degree can be naturally generalized for all recursive ordinals α. In [6]
Downey and Knight proved with a fairly complicated construction that for every
recursive ordinal α there exists a linear order A such that A has αth jump degree
equal to 0α but for all β < α, there is no βth jump degree of A.

As an application of Theorem 5.5.4 we will present a construction of a total
structure C such that C has a (n + 1)-st jump degree 0(n+1) but has no k-th
jump degree for k ≤ n.

Suppose that we have a structure B satisfying the following conditions:
1. DS(B) has no least element.
2. 0(n+1) is the least element of DS1(B).
3. All elements of DS(B) are total and above 0(n).
Let A = (N ; =) be a structure such that DS(A) is equal to the set of all

Turing degrees. Clearly DS(B) ⊆ DSn(A). By Theorem 5.5.4, there exists
a structure C such that DSn(C) = DS(B). Therefore C does not have a nth

29

jump degree and hence it has no kth jump degree for k ≤ n. On the other hand
DSn+1(C) = DS1(B) and hence the (n+ 1)th jump degree of C is 0(n+1).

Now we could provide an example of a structure satisfying the conditions 1.
3. Consider a set B satisfying the following conditions:

(a) B is quasi-minimal above 0(n).
(b) B′ ≡e 0(n+1).
Let G be a subgroup of the additive group of the rationales such that SG ≡e

B. Recall that DS(G) = {a|de(SG) ≤e a and a is total} and de(SG)
′ is the

least element of DS1(G). So the structure G satisfies the conditions 1.- 3.
Our second application is a generalization of results of Slaman [16] and

Wehner [20]. They give an example of a structure with degree spectrum con-
sisting of all noncomputable Turing degrees.

The relativized result is the following: Let n ≥ 0. There exists a total
structure C such that DSn(C) = {a|0(n) <e a}.

It is sufficient to construct a structureB such that the elements ofDS(B) are
exactly the total e-degrees greater than 0(n). We use the Wehner’s construction
using a special family of sets. First we relativize this construction. Let B ⊆ N.
There is a family F of sets, which has no c.e. in B enumeration, and for
every set X >T B there is a enumeration of the family F , computable in
X . Following an idea of Kalimullin [9] we consider the following family of sets
F = {{0}⊕B}∪{{1}⊕B}∪{{n+2}⊕F | F - finite set, F 6=WB

n }.We construct
the structure B, such that DS(B) = {x | x >T b}, using the family F in the
same way as is done in [20]. Let A = (N ; =). It is clear that b ∈ DSn(A) for
each x ≥ 0(n). Thus DS(B) ⊆ DSn(A). By the Jump inversion Theorem 5.5.4
there exists a structure C, such that DSn(C) = DS(B).

References

[1] Ash, C. J., Jockush, C., Knight, J. F. : Jumps of orderings. Trans. Amer.
Math. Soc. 319 (1990) 573–599

[2] Cooper S. B. : Computability Theory, Chapman Hall/CRC Mathematical
series (2003).

[3] Calvert, W., Harizanov V., Shlapentokh A. : Turing degrees of isomorphism
types of algebraic objects. Journal of the London Math. Soc. 73 (2007) 273-
286.

[4] Coles, R., Downey, R. and Slaman, T. :Every set has a least jump enumer-
ation. Journal London Math. Soc, 62 (2000) 641–649

[5] Cutland, N. : An introduction to recursive function theory, Cambridge Uni-
versity Press (1980)

[6] Downey, R. G., Knight, J. F. : Orderings with αth jump degree 0(α). Proc.
Amer. Math. Soc. 114 (1992) 545–552

30

[7] Frolov, A. Kalimullin, I. Sh. Miller R. : Spectra of Algebraic Fields and
Subfields. In Proceedings of CiE’2009, (2009) 232-241

[8] Goncharov, S., Khoussainov, B. : Complexity of categorical theories with
computable models. Algebra and Logic, 43, No. 6 (2004) 365–373

[9] Kallimulin, I. : Some notes on degree spectra of the structures. LNCS 4497

(2007) 389–397

[10] Knight, J. F. : Degrees coded in jumps of orderings. J. Symbolic Logic 51

(1986) 1034–1042.

[11] McEvoy, K. : Jumps of quasi-minimal enumeration degrees. J. Symbolic
Logic, 50 (1985) 839–848

[12] Marker, D. : Non Σn-axiomatizable almost strongly minimal theories. J.
Symbolic Logic 54 No. 3,(1989) 921–927

[13] Montalban, A. : Notes on the jump of a structure. Mathematical Theory
and Computational Practice, (2009), 372-378.

[14] Richter, L. J. : Degrees of structures. J. Symbolic Logic 46 (1981) 723–731.

[15] Selman, A.L. : Arithmetical reducibilities I. Z. Math. Logik Grundlag.
Math 17 (1971) 335–350

[16] Slaman T. A. : Relative to any nonrecursive set. Proc. Amer. Math. Soc.
126 (1998) 2117–2122

[17] Soskov, I. N. : Degree spectra and co-spectra of structures. Ann. Univ.
Sofia 96 (2004) 45–68

[18] Soskova, A., Soskov, I.: A Jump Inversion Theorem for the Degree Spectra,
Journal of Logic and Computation, 19, (2009) 199–215

[19] Stukachev, A. : A jump inversion theorem for the semilattices of Sigma-
degrees. Siberian Advances in Mathematics, 20, N1 (2010), 68 - 74.

[20] Wehner St. : Enumerations, Countable Structures and Turing Degrees.
Proc. of Amer. Math. Soc. 126 (1998) 2131–2139

31

