ENUMERATION DEGREE SPECTRA OF ABSTRACT STRUCTURES

IVAN N. SOSKOV, ALEXNDRA A. SOSKOVA

The degree spectrum $DS(\mathfrak{A})$ of a countable structure \mathfrak{A} we define to be the set of all enumeration degrees generated by the presentations of \mathfrak{A} on the natural numbers. The co-spectrum of \mathfrak{A} is the set of all lower bounds of $DS(\mathfrak{A})$. In this paper we consider the connections between degree spectra and their co-spectra. We present variants of Selman's theorem, the minimal pair theorem and quasi-minimal degree theorem for degree spectra. A structure \mathfrak{A} is called total if all presentations of \mathfrak{A} are total sets. For every total structure \mathfrak{A} the set $DS(\mathfrak{A})$ contains only total degrees. We prove that if $DS(\mathfrak{A})$ consists of total degrees above $\mathbf{0}'$, then there exists a total structure \mathfrak{B} such that $DS(\mathfrak{B}) = DS(\mathfrak{A})$. We prove a generalized Jump inversion theorem for degree spectra. As an application we receive structures with interesting degree spectra.

1. Preliminaries

Definition 1.1. (Friedberg and Rogers, 1959) We say that $\Psi : 2^{\omega} \to 2^{\omega}$ is an enumeration operator iff for some c.e. set W_i and for each $B \subseteq \omega$

 $\Psi(B) = \{ x | (\exists D) [\langle x, D \rangle \in W_i \& D \subseteq \mathfrak{B}] \}$

Here $\{W_i\}_{i \in \omega}, \{D_i\}_{i \in \omega}$ are the standard listings of computably enumerable sets and the finite sets of numbers.

For any sets A and B define A is enumeration reducible to B, written $A \leq_e B$, by $A = \Psi(B)$ for some e-operator Ψ . Let $A^+ = A \oplus (\omega \setminus A)$. The connection with the Turing reducibility is shown by $A \leq_T B$ iff $A^+ \leq_e B^+$.

Let $E_A = \{\langle i, x \rangle | x \in \Psi_i(A)\}$. The set $J_e(A) = E_A^+$ is called the enumeration jump of A [1, 3]. The enumeration jump J_e is monotone and agrees with the Turing jump J_T in the following sense: $J_T(A)^+ \equiv_e J_e(A^+)$.

Let $d_e(A) = \{B \subseteq \omega | A \equiv_e B\}$ and $d_e(A) \leq_e d_e(B) \iff A \leq_e B$.

A set A is called *total* iff $A \equiv_e A^+$. The Rogers embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$ is defined by $\iota(d_T(A)) = d_e(A^+)$. The enumeration degrees in the range of ι are called *total*.

Let $d_e(A)' = d_e(J_e(A))$. The jump is always total and agrees with the Turing jump under the embedding ι .

2. Degree Spectra

Let $\mathfrak{A} = (\mathbb{N}; R_1, \ldots, R_k)$ be a denumerable structure. Enumeration of \mathfrak{A} is every total surjective mapping of \mathbb{N} onto \mathbb{N} .

¹⁹⁹¹ Mathematics Subject Classification. 03D30.

Key words and phrases. enumeration reducibility, enumeration jump, degree spectra. Supported by BNSF Grant No. D002-258/18.12.08.

Given an enumeration f of \mathfrak{A} and a subset of A of \mathbb{N}^a , let

$$f^{-1}(A) = \{ \langle x_1, \dots, x_a \rangle : (f(x_1), \dots, f(x_a)) \in A \}.$$

Set $f^{-1}(\mathfrak{A}) = f^{-1}(R_1) \oplus \cdots \oplus f^{-1}(R_k) \oplus f^{-1}(=) \oplus f^{-1}(\neq).$

Definition 2.1. (Richter [5]) The Turing Degree Spectrum of \mathfrak{A} is the set

$$DS_T(\mathfrak{A}) = \{ d_T(f^{-1}(\mathfrak{A})) : f \text{ is an one to one enumeration of } \mathfrak{A}) \}.$$

If **a** is the least element of $DS_T(\mathfrak{A})$, then **a** is called the *degree of* \mathfrak{A}

Definition 2.2. [7] The e-Degree Spectrum of \mathfrak{A} is the set

 $DS(\mathfrak{A}) = \{ d_e(f^{-1}(\mathfrak{A})) : f \text{ is an enumeration of } \mathfrak{A}) \}.$

If **a** is the least element of $DS(\mathfrak{A})$, then **a** is called the *e*-degree of \mathfrak{A}

The e-degree spectrum is closed upwards: if $\mathbf{a} \in DS(\mathfrak{A})$, \mathbf{b} is a total e-degree and $\mathbf{a} \leq_e \mathbf{b}$ then $\mathbf{b} \in DS(\mathfrak{A})$.

Definition 2.3. The structure \mathfrak{A} is called total if for every enumeration f of \mathfrak{A} the set $f^{-1}(\mathfrak{A})$ is total.

If \mathfrak{A} is a total structure then $DS(\mathfrak{A}) = \iota(DS_T(\mathfrak{A})).$

Given a structure $\mathfrak{A} = (\mathbb{N}, R_1, \dots, R_k)$, for every *j* denote by R_j^c the complement of R_j and let $\mathfrak{A}^+ = (\mathbb{N}, R_1, \dots, R_k, R_1^c, \dots, R_k^c)$. The following are true:

(1) $\iota(DS_T(\mathfrak{A})) = DS(\mathfrak{A}^+).$

(2) If \mathfrak{A} is total then $DS(\mathfrak{A}) = DS(\mathfrak{A}^+)$.

Clearly if \mathfrak{A} is a total structure then $DS(\mathfrak{A})$ consists of total degrees. The vice versa is not always true.

Example. Let K be the Kleene's set and $\mathfrak{A} = (\mathbb{N}; G_S, K)$, where G_S is the graph of the successor function. Then $DS(\mathfrak{A})$ consists of all total degrees. On the other hand if $f = \lambda x.x$, then $f^{-1}(\mathfrak{A})$ is an c.e. set. Hence $\bar{K} \leq_e f^{-1}(\mathfrak{A})$. Clearly $\bar{K} \leq_e (f^{-1}(\mathfrak{A}))^+$. So $f^{-1}(\mathfrak{A})$ is not total.

The question here is: if $DS(\mathfrak{A})$ consists of total degrees do there exists a total structure \mathfrak{B} s.t. $DS(\mathfrak{A}) = DS(\mathfrak{B})$? We will give a positive answer when all elements of $DS(\mathfrak{A})$ are total above $\mathbf{0}'$.

Definition 2.4. Let \mathcal{A} be a nonempty set of enumeration degrees the co-set of \mathcal{A} is the set $co(\mathcal{A})$ of all lower bounds of \mathcal{A} . Namely

$$co(\mathcal{A}) = \{ \mathbf{b} : \mathbf{b} \in \mathcal{D}_e \& (\forall \mathbf{a} \in \mathcal{A}) (\mathbf{b} \leq_e \mathbf{a}) \}.$$

Example. Fix $\mathbf{a} \in \mathcal{D}_e$ and set $\mathcal{A}_{\mathbf{a}} = \{\mathbf{b} \in \mathcal{D}_e : \mathbf{a} \leq_e \mathbf{b}\}$. Then $co(\mathcal{A}_{\mathbf{a}}) = \{\mathbf{b} \in \mathcal{D}_e : \mathbf{b} \leq_e \mathbf{a}\}$.

Definition 2.5. The co-spectrum of the structure \mathfrak{A} is called the set $CS(\mathfrak{A}) = co(DS(\mathfrak{A}))$.

If **a** is the greatest element of $CS(\mathfrak{A})$ then call **a** the *co-degree* of \mathfrak{A} . If \mathfrak{A} has a degree **a** then **a** is also the co-degree of \mathfrak{A} . The vice versa is not always true.

We will give a normal form of the elements of the co-spectrum $CS(\mathfrak{A})$. A set A of natural numbers is admissible in \mathfrak{A} if for every enumeration f of \mathfrak{A} , $A \leq_e f^{-1}(\mathfrak{A})$. Clearly $\mathbf{a} \in CS(\mathfrak{A})$ iff $\mathbf{a} = d_e(A)$ for some admissible set A. Every finite mapping of \mathbb{N} into \mathbb{N} is called *finite part*. For every finite part τ and natural numbers e, x, let

$$\tau \Vdash F_e(x) \iff x \in \Psi_e(\tau^{-1}(\mathfrak{A})) \text{ and}$$

$$\tau \Vdash \neg F_e(x) \iff (\forall \rho \supseteq \tau)(\rho \nvDash F_e(x)).$$

Given an enumeration f of $\mathfrak{A}, e, x \in \mathbb{N}$, set

$$f \models F_e(x) \iff x \in \Psi_e(f^{-1}(\mathfrak{A})).$$

An enumeration f is generic if for every $e, x \in \mathbb{N}$, there exists a $\tau \subseteq f$ s.t. $\tau \Vdash F_e(x) \lor \tau \Vdash \neg F_e(x)$.

A set A of natural numbers is *forcing definable in the structure* \mathfrak{A} iff there exist finite part δ and natural number e s.t.

$$A = \{x | (\exists \tau \supseteq \delta)(\tau \Vdash F_e(x))\}$$

Theorem 2.1. Let $A \subseteq \mathbb{N}$ and $d_e(B) \in DS(\mathfrak{A})$. Then the following are equivalent:

- (1) A is admissible.
- (2) $A \leq_e f^{-1}(\mathfrak{A})$ for all generic enumerations f of \mathfrak{A} .
- (3) $A \leq_{e}^{e} f^{-1}(\mathfrak{A})$ for all generic enumerations f of \mathfrak{A} s.t. $(f^{-1}(\mathfrak{A}))' \equiv_{e} B'$.
- (4) A is forcing definable.

Example. (Richter 1981, [5]) Let $\mathfrak{A} = (\mathbb{N}; <)$ be a linear ordering. Then $DS(\mathfrak{A})$ contains a minimal pair of degrees and hence $CS(\mathfrak{A}) = \{\mathbf{0}_e\}$. Clearly $\mathbf{0}_e$ is the co-degree of \mathfrak{A} . Therefore if \mathfrak{A} has a degree \mathbf{a} , then $\mathbf{a} = \mathbf{0}_e$.

Definition 2.6. Let $n \ge 0$. The n-th jump spectrum of a structure \mathfrak{A} is defined by $DS_n(\mathfrak{A}) = \{\mathbf{a}^{(n)} | \mathbf{a} \in DS(\mathfrak{A})\}$. Set $CS_n(\mathfrak{A}) = co(DS_n(\mathfrak{A}))$.

Example. (Knight 1986, [2]) Consider again a linear ordering \mathfrak{A} . Then $CS_1(\mathfrak{A})$ consists of all Σ_2^0 sets. The co-degree of \mathfrak{A} is $\mathbf{0}'_e$.

Example. (Slaman 1998, Whener 1998) There exists an \mathfrak{A} s.t.

$$DS(\mathfrak{A}) = \{ \mathbf{a} : \mathbf{a} \text{ is total and } \mathbf{0}_e < \mathbf{a} \}.$$

Clearly the structure \mathfrak{A} has co-degree $\mathbf{0}_e$ but has not a degree.

Example. (based on Coles, Dawney, Slaman - 1998) Let G be a torsion free Abelian group of rank 1, i.e. G is a subgroup of Q. Let $a \neq 0 \in G$ and let p be a prime number.

Let $h_p(a)$ be the greatest k s.t. $(\exists x \in G)(p^k \cdot x = a)$. Let

$$\chi(a) = (h_{p_0}(a), h_{p_1}(a), \dots) \text{ and}$$

$$S_a = \{ \langle i, j \rangle : j \le \text{the } i\text{-th member of } \chi(a) \}.$$

For $a, b \neq 0 \in G$, $S_a \equiv_e S_b$.

Set $\mathbf{s}_G = d_e(S_a)$. Then $DS(G) = \{\mathbf{b} : \mathbf{b} \text{ is total and } \mathbf{s}_G \leq_e \mathbf{b}\}.$

- The co-degree of G is \mathbf{s}_G .
- G has a degree iff \mathbf{s}_G is total
- If $1 \le n$, then $\mathbf{s}_G^{(n)}$ is the *n*-th jump degree of G.

For every $\mathbf{d} \in \mathcal{D}_e$ there exists a G, s.t. $\mathbf{s}_G = \mathbf{d}$. Hence every principle ideal of enumeration degrees is CS(G) for some G.

We can represent every coubstable non-principle countable ideal as co-spectra.

Example. Let B_0, \ldots, B_n, \ldots be a sequence of sets of natural numbers. Set $\mathfrak{A} = (\mathbb{N}; f; \sigma)$,

$$f(\langle i, n \rangle) = \langle i+1, n \rangle;$$

$$\sigma = \{\langle i, n \rangle : n = 2k + 1 \lor n = 2k \& i \in B_k\}.$$

Then $CS(\mathfrak{A}) = I(d_e(B_0), \ldots, d_e(B_n), \ldots)$

Definition 2.7. Consider a subset \mathcal{A} of \mathcal{D}_e . Say that \mathcal{A} is upwards closed if for every $\mathbf{a} \in \mathcal{A}$ all total degrees greater than \mathbf{a} are contained in \mathcal{A} .

Let \mathcal{A} be an upwards closed set of degrees. Note that if $\mathcal{B} \subseteq \mathcal{A}$, then $co(\mathcal{A}) \subseteq co(\mathcal{B})$. Selman [6] proved that if $\mathcal{A}_t = \{\mathbf{a} : \mathbf{a} \in \mathcal{A} \& \mathbf{a} \text{ is tota}\}$ then $co(\mathcal{A}) = co(\mathcal{A}_t)$.

Propostion 2.1 (Selman's Theorem for Degree Spectra). Let **b** be an arbitrary enumeration degree and n > 0. Set $\mathcal{A}_{\mathbf{b},n} = \{\mathbf{a} : \mathbf{a} \in \mathcal{A} \& \mathbf{b} \leq_e \mathbf{a}^{(n)}\}$. Then $co(\mathcal{A}) = co(\mathcal{A}_{\mathbf{b},n})$.

If $1 \leq n$ and $\mathbf{c} \in DS_n(\mathfrak{A})$ then $CS(\mathfrak{A}) = co(\{\mathbf{b} \in DS(\mathfrak{A}) : \mathbf{b}^{(n)} = \mathbf{c}\}).$

Example. (Upwards closed set for which the Theorem is not true) Let $B \not\leq_e A$ and $A \not\leq_e B'$. Denote by $\mathcal{D} = \{\mathbf{a} : d_e(A) \leq_e \mathbf{a}\} \cup \{\mathbf{a} : d_e(B) \leq_e \mathbf{a}\}.$

Set $\mathcal{A} = \{ \mathbf{a} : \mathbf{a} \in \mathcal{D} \& \mathbf{a}' = d_e(B)' \}.$

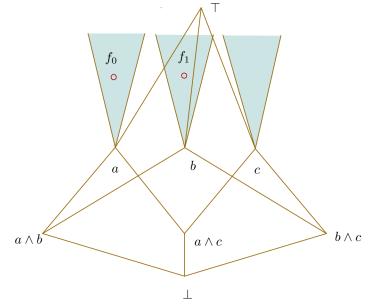
- $d_e(B)$ is the least element of \mathcal{A} and hence $d_e(B) \in co(\mathcal{A})$.
- $d_e(B) \not\leq d_e(A)$ and hence $d_e(B) \not\in co(\mathcal{D})$.

Theorem 2.2 (The minimal pair theorem). Let $\mathbf{c} \in DS_2(\mathfrak{A})$. There exist $\mathbf{f}, \mathbf{g} \in DS(\mathfrak{A})$ s.t. \mathbf{f}, \mathbf{g} are total, $\mathbf{f}'' = \mathbf{g}'' = \mathbf{c}$ and $CS(\mathfrak{A}) = co(\{\mathbf{f}, \mathbf{g}\})$.

Notice that for every enumeration degree **a** there exists a structure $\mathfrak{A}_{\mathbf{a}}$ s. t. $DS(\mathfrak{A}) = \{\mathbf{x} \in \mathcal{D}_T | \mathbf{a} <_e \mathbf{x}\}$. As a corollary we receive

Corollary 2.1. (Rozinas) For every $\mathbf{b} \in \mathcal{D}_e$ there exist total \mathbf{f}, \mathbf{g} below \mathbf{b}'' which are a minimal pair over \mathbf{b} .

The next example shows that not every upwards closed set of enumeration degrees has a minimal pair:



Definition 2.8. Let \mathcal{A} be a set of enumeration degrees. The degree \mathbf{q} is quasiminimal with respect to \mathcal{A} if:

- $\mathbf{q} \notin co(\mathcal{A})$.
- If \mathbf{a} is total and $\mathbf{a} \geq \mathbf{q}$, then $\mathbf{a} \in \mathcal{A}$.
- If **a** is total and $\mathbf{a} \leq \mathbf{q}$, then $\mathbf{a} \in co(\mathcal{A})$.

If **q** is quasi-minimal with respect to \mathcal{A} , then **q** is an upper bound of $co(\mathcal{A})$.

Theorem 2.3. For every structure \mathfrak{A} there exists a quasi-minimal with respect to $DS(\mathfrak{A})$ degree.

Corollary 2.2. (Slaman and Sorbi) Let I be a countable ideal of enumeration degrees. There exist an enumeration degree \mathbf{q} s.t.

- (1) If $\mathbf{a} \in I$ then $\mathbf{a} <_e \mathbf{q}$.
- (2) If **a** is total and $\mathbf{a} \leq_e \mathbf{q}$ then $\mathbf{a} \in I$.

Let $\mathcal{B} \subseteq \mathcal{A}$ be sets of degrees. Then \mathcal{B} is a base of \mathcal{A} if $(\forall \mathbf{a} \in \mathcal{A})(\exists \mathbf{b} \in \mathcal{B})(\mathbf{b} \leq \mathbf{a})$.

Theorem 2.4. Let \mathcal{A} be an upwards closed set of degrees possessing a quasiminimal degree. Suppose that there exists a countable base \mathcal{B} of \mathcal{A} such that all elements of \mathcal{B} are total. Then \mathcal{A} has a least element.

As a corollary we have that a total structure \mathfrak{A} has a degree if and only if $DS(\mathfrak{A})$ has a countable base.

If we consider the set of two incomparable degrees and the cones of all total degrees over them then this set is an example of a upwards closed set which is not a degree spectrum, since it has a countable base but it has no degree.

3. Jump spectra

Definition 3.1. The n-th jump spectrum of a structure \mathfrak{A} is the set

$$DS_n(\mathfrak{A}) = \{\mathbf{a}^{(n)} | \mathbf{a} \in DS(\mathfrak{A})\}$$

If **a** is the least element of $DS_n(\mathfrak{A})$ then **a** is called *n*-th jump degree of \mathfrak{A} . For every \mathfrak{A} , $DS_1(\mathfrak{A}) \subseteq DS(\mathfrak{A})$. It is not known if for every \mathfrak{A} , $DS_1(\mathfrak{A}) \subset DS(\mathfrak{A})$. Probably the answer is "no".

We will show that every jump spectrum is spectrum of a total structure. Let $\mathfrak{A} = (\mathbb{N}; R_1, \ldots, R_n)$. Consider a new element $\overline{0} \notin \mathbb{N}$. Denote by $\mathbb{N}_0 = \mathbb{N} \cup \{\overline{0}\}$. Let $\langle ., . \rangle$ be a pairing function s.t. none of the elements of \mathbb{N}_0 is a pair and N^* be the least set containing \mathbb{N}_0 and closed under $\langle ., . \rangle$.

Definition 3.2. Moschovakis' extension [4] of \mathfrak{A} is the structure

$$\mathfrak{A}^* = (\mathbb{N}^*, R_1, \dots, R_n, \mathbb{N}_0, G_{\langle \dots \rangle}).$$

It is easy to see that $DS(\mathfrak{A}) = DS(\mathfrak{A}^*)$ Let $K_{\mathfrak{A}} = \{ \langle \delta, e, x \rangle : (\exists \tau \supseteq \delta)(\tau \Vdash F_e(x)) \}$. And $\mathfrak{A}' = (\mathfrak{A}^*, K_{\mathfrak{A}}, \mathbb{N}^* \setminus K_{\mathfrak{A}}).$

Theorem 3.1. The structure \mathfrak{A}' is total and $DS_1(\mathfrak{A}) = DS(\mathfrak{A}')$.

We will present an analogue of the Jump Inversion Theorem for degree spectra. Consider two structures \mathfrak{A} and \mathfrak{B} . Suppose that

 $DS(\mathfrak{B})_t = \{\mathbf{a} | \mathbf{a} \in DS(\mathfrak{B}) \text{ and } \mathbf{a} \text{ is total}\} \subseteq DS_1(\mathfrak{A}).$

Theorem 3.2. There exists a structure \mathfrak{C} s.t. $DS(\mathfrak{C}) \subseteq DS(\mathfrak{A})$ and $DS_1(\mathfrak{C}) = DS(\mathfrak{B})_t$.

Corollary 3.1. [8] Let $DS(\mathfrak{B}) \subseteq DS_1(\mathfrak{A})$. Then there exists a structure \mathfrak{C} s.t. $DS(\mathfrak{C}) \subseteq DS(\mathfrak{A})$ and $DS(\mathfrak{B}) = DS_1(\mathfrak{C})$.

Corollary 3.2. Suppose that $DS(\mathfrak{B})$ consists of total degrees greater than or equal to $\mathbf{0}'$. Then there exists a total structure \mathfrak{C}' such that $DS(\mathfrak{B}) = DS(\mathfrak{C}')$.

Theorem 3.3. Let $n \ge 1$. Suppose that $DS(\mathfrak{B}) \subseteq DS_n(\mathfrak{A})$. There exists a structure \mathfrak{C} s.t. $DS_n(\mathfrak{C}) = DS(\mathfrak{B})$.

Corollary 3.3. Suppose that $DS(\mathfrak{B})$ consists of total degrees greater than or equal to $\mathbf{0}^{(n)}$. Then there exists a total structure \mathfrak{C} s.t. $DS_n(\mathfrak{C}) = DS(\mathfrak{B})$.

Example. Let $n \ge 0$. There exists a total structure \mathfrak{C} s.t. \mathfrak{C} has a n + 1-th jump degree $\mathbf{0}^{(n+1)}$ but has no k-th jump degree for $k \le n$.

It is sufficient to construct a structure ${\mathfrak B}$ satisfying:

- (1) $DS(\mathfrak{B})$ has not least element.
- (2) $\mathbf{0}^{(n+1)}$ is the least element of $DS_1(\mathfrak{B})$.
- (3) All elements of $DS(\mathfrak{B})$ are total and above $\mathbf{0}^{(n)}$.

Consider a set B satisfying: B is quasi-minimal above $\mathbf{0}^{(n)}$ and $B' \equiv_{e} \mathbf{0}^{(n+1)}$.

Let G be a subgroup of the additive group of the rationales s.t. $S_G \equiv_e B$. Recall that $DS(G) = \{\mathbf{a} | d_e(S_G) \leq_e \mathbf{a} \text{ and } \mathbf{a} \text{ is total}\}$ and $d_e(S_G)'$ is the least element of $DS_1(G)$.

Example. Let $n \ge 0$. There exists a total structure \mathfrak{C} such that $DS_n(\mathfrak{C}) = {\mathbf{a} | \mathbf{0}^{(n)} <_e \mathbf{a}}.$

It is sufficient to construct a structure \mathfrak{B} such that the elements of $DS(\mathfrak{B})$ are exactly the total e-degrees greater than $\mathbf{0}^{(n)}$.

This is done by Whener's construction using a special family of sets: There exists a family \mathcal{F} of sets of natural number s.t. for every X strictly above $\mathbf{0}^{(n)}$ there exists a recursive in X set U satisfying the equivalence:

$$F \in \mathcal{F} \iff (\exists a)(F = \{x | (a, x) \in U\}).$$

But there is no c.e. in $\mathbf{0}^{(n)}$ such U.

References

- S. B. Cooper, Partial degrees and the density problem. Part 2: The enumeration degrees of the Σ₂ sets are dense, J. Symbolic Logic 49 (1984), 503-513.
- [2] Knight, J. F. : Degrees coded in jumps of orderings. J. Symbolic Logic 51 (1986) 1034–1042.
- [3] K. McEvoy, Jumps of quasi-minimal enumeration degrees, J. Symbolic Logic 50 (1985), 839– 848.
- [4] Moschkovakis, Y. N.: Elementary induction of abstract structures. North-Holland, Amsterdam (1974).
- [5] Richter, L. J. : Degrees of structures. J. Symbolic Logic 46 (1981) 723-731.
- [6] A. L. Selman, Arithmetical reducibilities I, Z. Math. Logik Grundlag. Math. 17 (1971), 335– 350.
- [7] Soskov, I. N. : Degree spectra and co-spectra of structures. Ann. Univ. Sofia 96 (2004) 45-68
- [8] Soskova, A., Soskov, I. N. : A Jump Inversion Theorem for the Degree Spectra. J Logic Computation 19, (2009) 199–215

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, SOFIA UNIVERSITY, 5 JAMES BOURCHIER BLVD, 1164 SOFIA, BULGARIA

E-mail address: asoskova@fmi.uni-sofia.bg, soskov@fmi.uni-sofia.bg