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The degree spectrum DS(A) of a countable structure A we define to be the
set of all enumeration degrees generated by the presentations of A on the natural
numbers. The co-spectrum of A is the set of all lower bounds of DS(A). In this
paper we consider the connections between degree spectra and their co-spectra. We
present variants of Selman’s theorem, the minimal pair theorem and quasi-minimal
degree theorem for degree spectra. A structure A is called total if all presentations
of A are total sets. For every total structure A the set DS(A) contains only total
degrees. We prove that if DS(A) consists of total degrees above 0′, then there
exists a total structure B such that DS(B) = DS(A). We prove a generalized
Jump inversion theorem for degree spectra. As an application we receive structures
with interesting degree spectra.

1. Preliminaries

Definition 1.1. (Friedberg and Rogers, 1959) We say that Ψ : 2ω → 2ω is an
enumeration operator iff for some c.e. set Wi and for each B ⊆ ω

Ψ(B) = {x|(∃D)[〈x,D〉 ∈ Wi &D ⊆ B]}

Here {Wi}i∈ω, {Di}i∈ω are the standard listings of computably enumerable sets
and the finite sets of numbers.

For any sets A and B define A is enumeration reducible to B, written A ≤e B,
by A = Ψ(B) for some e-operator Ψ. Let A+ = A⊕ (ω \ A). The connection with
the Turing reducibility is shown by A ≤T B iff A+ ≤e B+.

Let EA = {〈i, x〉|x ∈ Ψi(A)}. The set Je(A) = E+
A is called the enumeration

jump of A [1, 3]. The enumeration jump Je is monotone and agrees with the Turing
jump JT in the following sense: JT (A)+ ≡e Je(A+).

Let de(A) = {B ⊆ ω|A ≡e B} and de(A) ≤e de(B) ⇐⇒ A ≤e B.
A set A is called total iff A ≡e A+. The Rogers embedding ι : DT → De is

defined by ι(dT (A)) = de(A+). The enumeration degrees in the range of ι are
called total.

Let de(A)′ = de(Je(A)). The jump is always total and agrees with the Turing
jump under the embedding ι.

2. Degree Spectra

Let A = (N;R1, . . . , Rk) be a denumerable structure. Enumeration of A is every
total surjective mapping of N onto N.
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Given an enumeration f of A and a subset of A of Na, let

f−1(A) = {〈x1, . . . , xa〉 : (f(x1), . . . , f(xa)) ∈ A}.

Set f−1(A) = f−1(R1)⊕ · · · ⊕ f−1(Rk)⊕ f−1(=)⊕ f−1(6=).

Definition 2.1. (Richter [5]) The Turing Degree Spectrum of A is the set

DST (A) = {dT (f−1(A)) : f is an one to one enumeration of A)}.

If a is the least element of DST (A), then a is called the degree of A

Definition 2.2. [7] The e-Degree Spectrum of A is the set

DS(A) = {de(f−1(A)) : f is an enumeration of A)}.

If a is the least element of DS(A), then a is called the e-degree of A
The e-degree spectrum is closed upwards: if a ∈ DS(A),b is a total e-degree and

a ≤e b then b ∈ DS(A).

Definition 2.3. The structure A is called total if for every enumeration f of A
the set f−1(A) is total.

If A is a total structure then DS(A) = ι(DST (A)).
Given a structure A = (N, R1, . . . , Rk), for every j denote by Rc

j the complement
of Rj and let A+ = (N, R1, . . . , Rk, Rc

1, . . . , R
c
k). The following are true:

(1) ι(DST (A)) = DS(A+).
(2) If A is total then DS(A) = DS(A+).

Clearly if A is a total structure then DS(A) consists of total degrees. The vice
versa is not always true.

Example. Let K be the Kleene’s set and A = (N;GS ,K), where GS is the
graph of the successor function. Then DS(A) consists of all total degrees. On the
other hand if f = λx.x, then f−1(A) is an c.e. set. Hence K̄ 6≤e f−1(A). Clearly
K̄ ≤e (f−1(A))+. So f−1(A) is not total.

The question here is: if DS(A) consists of total degrees do there exists a total
structure B s.t. DS(A) = DS(B)? We will give a positive answer when all elements
of DS(A) are total above 0′.

Definition 2.4. Let A be a nonempty set of enumeration degrees the co-set of A
is the set co(A) of all lower bounds of A. Namely

co(A) = {b : b ∈ De & (∀a ∈ A)(b ≤e a)}.

Example. Fix a ∈ De and set Aa = {b ∈ De : a ≤e b}. Then co(Aa) = {b ∈
De : b ≤e a}.

Definition 2.5. The co-spectrum of the structure A is called the set CS(A) =
co(DS(A)).

If a is the greatest element of CS(A) then call a the co-degree of A. If A has a
degree a then a is also the co-degree of A. The vice versa is not always true.

We will give a normal form of the elements of the co-spectrum CS(A). A set A
of natural numbers is admissible in A if for every enumeration f of A, A ≤e f−1(A).
Clearly a ∈ CS(A) iff a = de(A) for some admissible set A.
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Every finite mapping of N into N is called finite part. For every finite part τ and
natural numbers e, x, let

τ  Fe(x) ⇐⇒ x ∈ Ψe(τ−1(A)) and

τ  ¬Fe(x) ⇐⇒ (∀ρ ⊇ τ)(ρ 1 Fe(x)).

Given an enumeration f of A, e, x ∈ N, set

f |= Fe(x) ⇐⇒ x ∈ Ψe(f−1(A)).

An enumeration f is generic if for every e, x ∈ N, there exists a τ ⊆ f s.t. τ 
Fe(x) ∨ τ  ¬Fe(x).

A set A of natural numbers is forcing definable in the structure A iff there exist
finite part δ and natural number e s.t.

A = {x|(∃τ ⊇ δ)(τ  Fe(x))}.

Theorem 2.1. Let A ⊆ N and de(B) ∈ DS(A). Then the following are equivalent:

(1) A is admissible.
(2) A ≤e f−1(A) for all generic enumerations f of A.
(3) A ≤e f−1(A) for all generic enumerations f of A s.t. (f−1(A))′ ≡e B′.
(4) A is forcing definable.

Example. (Richter 1981, [5]) Let A = (N;<) be a linear ordering. Then DS(A)
contains a minimal pair of degrees and hence CS(A) = {0e}. Clearly 0e is the
co-degree of A. Therefore if A has a degree a, then a = 0e.

Definition 2.6. Let n ≥ 0. The n-th jump spectrum of a structure A is defined by
DSn(A) = {a(n)|a ∈ DS(A)}. Set CSn(A) = co(DSn(A)).

Example. (Knight 1986, [2]) Consider again a linear ordering A. Then CS1(A)
consists of all Σ0

2 sets. The co-degree of A is 0′e.
Example. (Slaman 1998,Whener 1998) There exists an A s.t.

DS(A) = {a : a is total and 0e < a}.

Clearly the structure A has co-degree 0e but has not a degree.
Example. (based on Coles, Dawney, Slaman - 1998) Let G be a torsion free

Abelian group of rank 1, i.e. G is a subgroup of Q. Let a 6= 0 ∈ G and let p be a
prime number.

Let hp(a) be the greatest k s.t. (∃x ∈ G)(pk.x = a). Let

χ(a) = (hp0(a), hp1(a), . . . ) and

Sa = {〈i, j〉 : j ≤ the i-th member of χ(a)}.

For a, b 6= 0 ∈ G, Sa ≡e Sb.
Set sG = de(Sa). Then DS(G) = {b : b is total and sG ≤e b}.
• The co-degree of G is sG.
• G has a degree iff sG is total
• If 1 ≤ n, then s(n)

G is the n-th jump degree of G.

For every d ∈ De there exists a G, s.t. sG = d. Hence every principle ideal of
enumeration degrees is CS(G) for some G.

We can represent every coubntable non-principle countable ideal as co-spectra.
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Example. Let B0, . . . , Bn, . . . be a sequence of sets of natural numbers. Set
A = (N; f ;σ),

f(〈i, n〉) = 〈i + 1, n〉;
σ = {〈i, n〉 : n = 2k + 1 ∨ n = 2k & i ∈ Bk}.

Then CS(A) = I(de(B0), . . . , de(Bn), . . . )

Definition 2.7. Consider a subset A of De. Say that A is upwards closed if for
every a ∈ A all total degrees greater than a are contained in A.

Let A be an upwards closed set of degrees. Note that if B ⊆ A, then co(A) ⊆
co(B). Selman [6] proved that if At = {a : a ∈ A & a is total} then co(A) = co(At).

Propostion 2.1 (Selman’s Theorem for Degree Spectra). Let b be an arbitrary
enumeration degree and n > 0. Set Ab,n = {a : a ∈ A & b ≤e a(n)}. Then
co(A) = co(Ab,n).

If 1 ≤ n and c ∈ DSn(A) then CS(A) = co({b ∈ DS(A) : b(n) = c}).
Example. (Upwards closed set for which the Theorem is not true) Let B 6≤e A

and A 6≤e B′. Denote by D = {a : de(A) ≤e a} ∪ {a : de(B) ≤e a}.
Set A = {a : a ∈ D & a′ = de(B)′}.
• de(B) is the least element of A and hence de(B) ∈ co(A).
• de(B) 6≤ de(A) and hence de(B) 6∈ co(D).

Theorem 2.2 (The minimal pair theorem). Let c ∈ DS2(A). There exist f,g ∈
DS(A) s.t. f,g are total, f′′ = g′′ = c and CS(A) = co({f,g}).

Notice that for every enumeration degree a there exists a structure Aa s. t.
DS(A) = {x ∈ DT |a <e x}. As a corollary we receive

Corollary 2.1. (Rozinas) For every b ∈ De there exist total f ,g below b′′ which
are a minimal pair over b.

The next example shows that not every upwards closed set of enumeration de-
grees has a minimal pair:

a ∧ c b ∧ ca ∧ b

b ca

f0 f1

>

⊥
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Definition 2.8. Let A be a set of enumeration degrees. The degree q is quasi-
minimal with respect to A if:

• q 6∈ co(A).
• If a is total and a ≥ q, then a ∈ A.
• If a is total and a ≤ q, then a ∈ co(A).

If q is quasi-minimal with respect to A, then q is an upper bound of co(A).

Theorem 2.3. For every structure A there exists a quasi-minimal with respect to
DS(A) degree.

Corollary 2.2. (Slaman and Sorbi) Let I be a countable ideal of enumeration
degrees. There exist an enumeration degree q s.t.

(1) If a ∈ I then a <e q.
(2) If a is total and a ≤e q then a ∈ I.

Let B ⊆ A be sets of degrees. Then B is a base of A if (∀a ∈ A)(∃b ∈ B)(b ≤ a).

Theorem 2.4. Let A be an upwards closed set of degrees possessing a quasi-
minimal degree. Suppose that there exists a countable base B of A such that all
elements of B are total. Then A has a least element.

As a corollary we have that a total structure A has a degree if and only if DS(A)
has a countable base.

If we consider the set of two incomparable degrees and the cones of all total
degrees over them then this set is an example of a upwards closed set which is not
a degree spectrum, since it has a countable base but it has no degree.

3. Jump spectra

Definition 3.1. The n-th jump spectrum of a structure A is the set

DSn(A) = {a(n)|a ∈ DS(A)}.

If a is the least element of DSn(A) then a is called n-th jump degree of A. For
every A, DS1(A) ⊆ DS(A). It is not known if for every A, DS1(A) ⊂ DS(A).
Probably the answer is ”no”.

We will show that every jump spectrum is spectrum of a total structure. Let
A = (N;R1, . . . , Rn). Consider a new element 0̄ 6∈ N. Denote by N0 = N∪ {0̄}. Let
〈., .〉 be a pairing function s.t. none of the elements of N0 is a pair and N∗ be the
least set containing N0 and closed under 〈., .〉.

Definition 3.2. Moschovakis’ extension [4] of A is the structure

A∗ = (N∗, R1, . . . , Rn, N0, G〈.,.〉).

It is easy to see that DS(A) = DS(A∗)
Let KA = {〈δ, e, x〉 : (∃τ ⊇ δ)(τ  Fe(x))}. And A′ = (A∗,KA, N∗ \KA).

Theorem 3.1. The structure A′ is total and DS1(A) = DS(A′).

We will present an analogue of the Jump Inversion Theorem for degree spectra.
Consider two structures A and B. Suppose that

DS(B)t = {a|a ∈ DS(B) and a is total} ⊆ DS1(A).
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Theorem 3.2. There exists a structure C s.t. DS(C) ⊆ DS(A) and DS1(C) =
DS(B)t.

Corollary 3.1. [8] Let DS(B) ⊆ DS1(A). Then there exists a structure C s.t.
DS(C) ⊆ DS(A) and DS(B) = DS1(C).

Corollary 3.2. Suppose that DS(B) consists of total degrees greater than or equal
to 0′. Then there exists a total structure C′ such that DS(B) = DS(C′).

Theorem 3.3. Let n ≥ 1. Suppose that DS(B) ⊆ DSn(A). There exists a struc-
ture C s.t. DSn(C) = DS(B).

Corollary 3.3. Suppose that DS(B) consists of total degrees greater than or equal
to 0(n). Then there exists a total structure C s.t. DSn(C) = DS(B).

Example. Let n ≥ 0. There exists a total structure C s.t. C has a n + 1-th
jump degree 0(n+1) but has no k-th jump degree for k ≤ n.

It is sufficient to construct a structure B satisfying:
(1) DS(B) has not least element.
(2) 0(n+1) is the least element of DS1(B).
(3) All elements of DS(B) are total and above 0(n).

Consider a set B satisfying: B is quasi-minimal above 0(n) and B′ ≡e 0(n+1).
Let G be a subgroup of the additive group of the rationales s.t. SG ≡e B. Recall

that DS(G) = {a|de(SG) ≤e a and a is total} and de(SG)′ is the least element of
DS1(G).

Example. Let n ≥ 0. There exists a total structure C such that DSn(C) =
{a|0(n) <e a}.

It is sufficient to construct a structure B such that the elements of DS(B) are
exactly the total e-degrees greater than 0(n).

This is done by Whener’s construction using a special family of sets: There exists
a family F of sets of natural number s.t. for every X strictly above 0(n) there exists
a recursive in X set U satisfying the equivalence:

F ∈ F ⇐⇒ (∃a)(F = {x|(a, x) ∈ U}).
But there is no c.e. in 0(n) such U .
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